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ABSTRACT

This paper describes an initial use of genetic
programming as a discovery engine that derives
two sets of information from hyper-spectral
imagery. The first consists of a set of
classification algorithms learned from the data.
The second consists of reduced subsets of the
most germane bands for use in a given
classification, since not all spectral bands are of
use in deriving a particular classification
algorithm. Currently, there are only a few
techniques to discover which bands would be the
most useful for a specific classification task. We
describe the design of a prototype system and
discuss its efficacy on a novel data set from an
imaging system that uses an acoustically tuned
optical filter. The data preprocessing, training
data extraction, training data formatter, GP
implementation, and classification image
generation tasks are detailed.

1 INTRODUCTION

Genetic Programming (GP) offers a unique way to
process hyper-spectral imagery. Being an adaptive
learning technique, GP requires few, if any, assumptions
about the data or features of interest. Since there is no
requirement that the user be an expert in spectroscopy, GP
offers non-specialists a tool to aid in development of
hyper-spectral applications.

An additional advantage is that GP generates explicit
equations. With a classification equation in hand, a user
can see what bands are being used and how. This allows
GP to be used as a discovery engine, thereby giving the
user insight into what spectral bands are important for an
application, as well as showing how these bands are being
used to obtain the desired classification.

1.1  PROBLEM STATEMENT

Our goal is to construct a computer-assisted-design
system for the discovery of classification algorithms and
germane band information, using a small number of
examples of sensor data from user-defined classes.

The potential value of hyper-spectral imaging is high, but
the number of existing applications is small for several
reasons. First, hyper-spectral imagers are relatively new.
Not surprisingly, applications unique to hyper-spectral
data have yet to be identified. Many current applications
are based on work with multi-spectral imagery and often
do not exploit the strengths of hyper-spectral data,
resulting in only incremental improvements over multi-
spectral applications. Second, most existing tools for
exploiting hyper-spectral data require extensive
knowledge of spectroscopic techniques, which is
uncommon for many of the potential users. Third, existing
remote sensing techniques often do not exploit the fine
spectral resolution of hyper-spectral data. Fourth, tools to
investigate new uses are not common or require expert
knowledge. Finally, the data files themselves can be very
intimidating, since even small collections can represent
gigabytes of data.

Using GP on hyper-spectral data has the potential to
address these difficulties by supplying a relatively simple
tool to allow one to conduct application experiments. This
would hopefully encourage the development of new
applications for hyper-spectral imagery. GP would be
supplied with all the band information during training,
thereby allowing the exploitation of the finer spectral
resolution of the data. Spectroscopic techniques are not
required to design classification experiments. If a poor
choice of classes were made, GP would likely fail to
evolve a solution. GP tools can be relatively easy to use,
and would not require expert spectroscopic knowledge to
develop useful applications. Finally, GP results in a
specific equation. This equation can be evaluated to
attempt to understand the underlying physics of the



classification and to reduce the storage capacity needed
for application data. Reduced storage can be
accomplished by determining the spectral bands necessary
for the particular classifications and allowing the use of
smaller subsets of the data to reside in active storage.

1.2 HYPER-SPECTRAL IMAGERY

Multi-spectral imagers for remote sensing have been in
operation since the mid-1970s. Since that time, they have
proven their value in many applications, such as crop
yield estimation, forest harvest monitoring, evaluation of
soil conditions, crop and timber type identification,
regional planning, and cartographic updates. However,
since multi-spectral data inherently have low spectral
resolutions, their usefulness is limited to discriminating
between objects with significantly different and broad
spectral characteristics. Objects that differ only at finer
spectral resolutions cannot be distinguished easily, if at
all.

Although current hyper-spectral imagers are mostly
experimental research systems, they are becoming more
common. A number of airborne systems exist, and several
satellite systems are scheduled for launch in the near
future.1 The term hyper-spectral refers to the large
number of spectral bands and the narrow width of each
band. Table 1 highlights some of the key differences
between multi- and hyper-spectral systems.

Table 1: Comparison of multi and hyper-spectral systems.

System features Multi-
spectral

Hyper-
spectral

Number of bands 7 (LandSat
TM)

224 (AVIRIS)
112 (AOTF)

Spectral
Resolution (nm)

450 to 1250
(LandSat)

10 (AVIRIS)

10–20 (AOTF)

First deployment 1972
(LandSat 1)

1987 (AVIRIS)
1997 (AOTF)

Common
Deployment

Satellite
Airborne (AVIRIS)

Ground (AOTF)

File size (Mb) or
640 by 480
image

2.1 (Landsat
TM)

68 (AVIRIS)
34 (AOTF)

Visualization of hyper-spectral data is also a difficulty.
One common visualization technique is a spectral image
cube, a three-dimensional data structure. X  and Y
coordinates represent the standard spatial representation

                                                            
1 The Moderate Resolution Imaging Spectroradiometer Proto-flight
model was launched in Dec. 1999. First light data was collected in
February 2000. With 36 bands of bandwidths from 20 to 300 nm, it is
considered a hyper-spectral system by some.

of an image; the Z coordinate represents the spectral
dimension, as shown in figure 1.2 Each slice in the X-Y
plane is an image of the target scene at a particular
wavelength. A slice parallel to the Z-axis represents the
spectral signature along that slice. The vector of values
taken along a line parallel to the Z-axis represents the
spectra at that particular point.

1.3 PREVIOUS WORK IN CLASSIFYING
SPECTRAL IMAGERY

There are a number of well-established techniques for
exploiting the spectral content of multi-spectral imagery
(Tassel Cap [Kauth 1976] [Crist and Cicone 1984],
Atmospherically Resistant Vegetation Index (ARVI)
[Kaufman and Tanre 1992], Normalized Difference
Vegetation Index (NDVI) [Goward et al. 1991], and
Principle Component Analysis (PCA) [Jiaju 1988]).
However, when these techniques are applied to hyper-
spectral data, there are several difficulties. Many of these
techniques are forms of band ratioing. NDVI, for
instance, is simply a normalized ratioing of a near-
infrared band and a red band, which highlights healthy
vegetation imagery by exploiting broad spectral features
of chlorophyll. Determining useful band ratios in multi-
spectral imagery is relatively simple. There are n(n-1)
possible ratios (n is the number of spectral bands), and
half that if we ignore the inverse ratios (band 1/ band 3 is
the inverse of band 3/ band 1). For LandSat data
(ignoring the thermal band) there are 6(6-1)/2 = 15
possible ratios. It is a simple matter to visually examine
all of these ratios to determine which ones highlight the
desired classifications. It is even relatively simple to use
these ratioed images as inputs for false color images, and
visually investigate them for the desired highlighting.
However, for hyper-spectral imagery the number of

                                                            
2 Hyper-spectral cube from

http://rst.gsfc.nasa.com/Sect13/Sect13_9.html

Figure 1:Hyper-spectral image cube of AVIRIS data
from NASA.



combinations rapidly becomes unmanageable. The data
used for this project consists of 28 spectral bands,
yielding 378 ratio images to examine. For the AVIRIS
system of 224 bands there are 24,976 unique ratio images.
Clearly some method of reducing the spectral search
space is necessary if one is to pursue this approach for
hyper-spectral data.

One method for reducing the dimensionality of a search
space is principle component analysis (PCA). PCA is a
common tool used in classifying multi-spectral imagery.
The technique works best when knowledge of
atmospheric conditions is available (for radiometric
corrections to the data). This knowledge represents a
nontrivial effort in data correction that at best requires
corroborative measurements. Such measurements are
usually obtained in fieldwork using i n - s i t u
instrumentation. Furthermore, the relevance of the
corroborative measurements usually persists only for the
time of the data collection; the measurements do not
generally apply to any other time or location. Since
corroborative data sets are difficult to obtain, most multi-
and hyper-spectral image data do not contain atmospheric
measurements that would allow accurate atmospheric
corrections to support PCA.

We note that for low-spectral-resolution data — from
well-studied multi-spectral instruments such as the NASA
LandSat thematic mapper—atmospheric modeling
programs exist (e.g. LowTran and ModTran). Such
models can be used to obtain the required atmospheric
corrections for a given image. However, because of the
much higher resolution of hyper-spectral systems, these
models are insufficient for accurate correction. A higher
spectral resolution model does exist (HighTran), but with
higher spectral resolution, the number of potential
contaminants increases significantly and cannot be
accurately modeled, which reduces the usefulness of any
PCA done with data corrected with this atmospheric
model.

Since 1990, the U.S. Geological Service has been
developing a system called Tetracorder (formerly known
as Tricorder) [Clark 1995] for classifying hyper-spectral
data. Tetracorder replicates the process an expert in
spectroscopic analysis would follow, using over 120 high-
quality laboratory spectra of environmental materials for
comparison. It uses a least-squares curve fitting method to
compare the pixel spectra with the library spectra to find
the best match. However, Tetracorder requires expert
understanding and experience in spectroscopic analysis
for proper use on any but the simplest of classification
tasks. It is very sensitive to the accuracy of the
atmospheric correction, as comparisons of materials with
similar spectral curves would be greatly affected by
inaccurate correction. To match a particular imaging
system, Tetracorder must be modified by an expert.
Neither atmospheric data nor details on the imager are
readily available with existing hyper-spectral data sets. It
also appears that a significant effort is required to add
new materials to the system library, thereby limiting the

method’s usefulness in developing new or radical
applications.

Adaptive learning techniques, like neural nets and GP, are
attractive because such techniques can adaptively
compensate for these radiometric corrections, without the
user having to explicitly state (or even be aware of) what
those corrections are. However with neural techniques, it
is difficult to extract the actual classification equation for
analysis. On the other hand, GP supplies both the
algorithm and the subset of useful bands. Both have
geophysical meaning: that is, simply having the
appropriate bands available says something of the physics
involved with the phenomena to be studied. Having the
equation shows why and how the bands are significant.

1.4 THIS EFFORT

To develop and use new hyper-spectral applications
requires some level of automated processing. A challenge
now is to develop automated analysis techniques to take
advantage of hyper-spectral systems, to assist users in
using this new capability, and to process the vast amount
of data that are and will soon be available. In addition, as
hyper-spectral applications are relatively new, it would
benefit the remote sensing community to have available
development tools to aid in determining what spectral
features are useful for particular applications. GP has the
potential to be a key tool in image processing and feature
extraction [Tackett 1993] [Brumby et al. 1999] [Howard
and Roberts 1999].

Encouraging results have been obtained from GP
techniques used on other types of remote sensing data,
such as: synthetic aperture radar [Daida et al. 1996a,
1996b] and infrared line scanner data [Roberts and
Howard 1999]. We report on our initial attempt to use GP
to generate classification equations suitable for processing
an entire spectral image. The goal being, to use only a
small number of training pixels from that image to
generate a classification equation that generalizes well.

In the next section, we present the system design and
briefly discuss each segment. Section 3 discusses the data
used for development. Section 4 presents results from the
first complete run on a single image. We present our
conclusions in section 5.

2 SYSTEM OVERVIEW

The goal for the first phase of this project was to
demonstrate two things: first, that it is possible to use GP
techniques to classify pixels in a spectral image, and
second, that it is potentially useful to do so. Therefore, we
set out to show that this could be done using as many
existing software tools as possible. We felt that there was
little point in designing a streamlined, user-friendly,
optimized system from scratch if it was not going to be
useful.



Figure 2:Data flow
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Figure 2 shows the data flow of the system we designed
for evolving a classification equation. (For comparison,
see also [Bersano-Begey et al. 1997].) The GP portion of
the system was built around the lilgp software package
[Zongker and Punch 1995]. We modified lilgp to
recognize multiple, independent variables (the bands). To
limit the amount of development required with lilgp at
this stage, we used only the simplest of operators: +, -, *,
and protected division (/). To avoid modifying the core
code of lilgp, we added the capability to recognize
multiple variables through modifications to the user
functions.

Other tools were required to extract training data to
present to lilgp, as well as tools to use lilgp's output to
process a complete image. Figure 2 indicates that most of
this is done using Matlab (by Mathworks). The first task
for preparing the data is to import the spectral data into
Matlab and to form the data into a spectral image cube for
visualization.

Once the spectral image is organized into a spectral cube
in Matlab, the data may be visualized in a number of ways
to aid in determining the number and location of the
different classes of objects to be discriminated. Optimally,
a spectral image would have areas that can be “truthed.”
Truthed areas are locations on the image where field notes
or spectral sampling would have been collected to obtain
positive identification of these specific locations. Once

the classes are defined, a Matlab tool is used to select
training pixels representative of each class. The spectrum
of each pixel is extracted, normalized, and saved to a file
in the format that lilgp will accept.

We normalized individual pixel spectrum to a range of -1
to 1 to minimize against the possibility of GP using
intensity as a discriminant (intensity varies greatly
depending on changing illumination, which would not
remain constant even in the same image, due to
shadowing effects). Normalization should result in a more
generalized classification equation, which can be used on
a broader set of data. The normalized data are saved as a
text file that is formatted for acceptance as a lilgp input
file.

Next, a text editor is used to modify the parameter file of
lilgp to define the number of generations, starting
population size, various breeding parameters, and
maximum tree size. Lilgp is then run with the extracted
training data. For this initial test, the fitness function used
was a simple zero threshold. A correct response was
indicated if the equation resulted in a value greater than
zero for the desired target class or less than zero for the
undesired classes. Once lilgp has evolved an equation of
suitable performance, this best equation can be used to
generate a classification image for an entire image or data
set.



Some reformatting of the resulting equation is required
before our image-processing tool can be used to process
an image. Lilgp outputs its best equation in a root-lhs-rhs
style, resulting in equations that look like

(* (/ (+ (+ b1 b2) b3) (- (+ b4 b5)
b6))(/ b7 b7)),

where b stands for band.

Matlab, however, requires a standard mathematical format
(lhs-root-rhs). Fortunately, a parser was available
elsewhere in our research group [Daida et al. 2000]. The
parser consists of lex and yacc routines (lex and yacc are
standard programs common in most UNIX C
programming packages). Lex is used as a token generator
that reads an equation, extracts tokens, and executes
specific C instructions upon finding certain tokens. The
lex code was designed to evaluate and simplify instances
of *1, /1, +0, and -0, as well as checking for instances of
var/0, which is replaced with 1, since protected division
has been used.  This generates a lexical analyzer for use
with yacc. Yacc creates the program that performs the

actual parsing and outputs the reordered (and possibly
simplified) equation. This results in the above lilgp output
being parsed and transformed as

 ((((b1)+(b2))+(b3))/(((b4)+(b5))-(b6))).

This equation is then copied into a Matlab script. The
script loads the full image cube, applies the equation to
every pixel in the image, builds a classification image and
displays the resulting classification image, like that shown
in figure 6.

3 SPECTRAL DATA

The spectral image used during this software development
is from an experimental acousto-optical tunable filter
(AOTF) imaging system developed by Carnegie Mellon
Research Institute [Denes et al. 1997]. The proprietary

Figure 3: Band 19 of AOTF image cube. Showing approximate area where training pixels for grass (X) and pad
(circle) classes were extracted. Note: image is 640 by 480 pixels in size.



Figure 4: Enlargement of barrel with regions
highlighted where classes barrel-bright and barrel-

dark were extracted (approximate) Figure 5: Enlargement showing wall area where pixels
for the wall class were extracted. Crosses show

approximate location of pixels used.image was collected for the U.S. Army Research
Laboratory (ARL) [Gupta et al. 1999] 3 in 1998.

The spectral imager is a visible to near-IR system with an
overall spectral range from 450 to 1000 nm. An AOTF
filter allows the instrument to be selectively tuned to
collect multiple spectral images with bandwidths as
narrow as 10 nm. The system also has an electronically
controlled liquid crystal phase retarder, which allows
collection of polarization information in each spectral
band. For the work reported here, we used a single
polarization image cube of 28 bands, where each band is
approximately 20 nm wide. The sensor recorded each
spectral band as a bit-mapped image and stored each
image as .bmp files. These files were then read into
Matlab and assembled into the spectral image cube.

Figure 3 shows band 19 of the spectral image cube.
Several of the classes used are visible in this image. The
circles and X’s depict the approximate location of the ten
pixels extracted for training spectra for these two classes.
The X’s represent the ten pixels chosen as the class grass.
The circles represent the class labeled as the class pad. It
appears to be rectangular pad of asphalt, concrete, or bare
earth (perhaps a parking area) in front of the building.

Figure 4 shows an enlargement of the barrel. The upper
dark portion of the barrel has been defined as the class
Barrel-dark. The bright pixels show the approximate
location of the ten pixels extracted for the training set for
this class. The lower section of the barrel is defined as the
class Barrel-bright. The black pixels in this area show the
approximate location of the ten pixels chosen for this
class.

Figure 5 shows an enlargement of the left side of the
building. This area is where the ten pixels of the class

                                                            
3 This single image was made available to Mr. Rauss to support his
masters research project at the University Of Michigan by his employer,
the U.S. Army Research Laboratory.

wall were extracted. The crosses show the approximate
location of these pixels.

4 GP RESULTS

These results are from the first successful run of the
complete system.  The classification desired is what we
assume would be the simplest separation (i.e. grass vs.
everything else.) 4

Using the equation from this run, we successfully
processed the full spectral band image with the GP
equation. Lilgp was instructed to accept class 1 (grass) as
positive values (>0) and all other classes as negative (<0).
Most of the GP parameters are similar to those mentioned
in chapter 7 of Genetic Programming: On the
Programming of computer by Means of Natural Selection
[Koza 1992]: population size = 100; crossover rate = 0.9;
replication rate = 0.1; population initialization with
ramped half and half; initialization depth of 2-6 levels;
and fitness-proportionate selection. Other parameter
values were maximum generations = 100 and maximum
tree depth = 20.

The following tree is a best-of-run individual. GP
obtained a perfect score of 50 correct classifications on
the 10 grass pixels within the desired class and the 40
other pixels (10 pixels from each of the remaining four
classes) within the undesired class (again b stands for
band).

 (+(+(/(*(* b8 b3)
         (/ b8 b15))
      (/(/(- b23 b14) b22)

                                                            
4 [NOTE: To effectively obtain the best solution, many more runs should
be performed, as well as numerous runs to generate classification
equations for the other classes.]



Figure 6: Classification image for class grass

         (/(*(* b8 b3)
               (/ b8 b15))
            (/(/ b21 b22)

               (+(-(+ b8 b26)
                     (/ b5 b4))
                  (+(/ b25 b6)
                     (* b22 b2)))))))
   (-(+(- b27 b21)
         (+ b3 b18))

      (*(- b4 b28)
         (/ b5 b1))))
    (/ b20 b28)).

After this file is parsed, the equation reads as follows:

((((((b8)*(b3))*((b8)/(b15)))/((((b23)(b14))/(b22))/((((b8)
*(b3))*((b8)/(b15)))/(((b21)/(b22))/((((b8)+(b26))-
((b5)/(b4)))+(((b25)/(b6))+((b22)*(b2))))))))+((((b27)-
(b21))+((b3)+(b18)))-
(((b4)(b28))*((b5)/(b1)))))+((b20)/(b28))).

Applying this equation to the entire image results in
figure 6.

Note that the gray scale is set to saturate at values below
-1 and above +1. White should indicate the class grass
and non-grass areas should be dark.

5 CONCLUSIONS

We have taken the first steps in demonstrating that GP
techniques can be useful for spectral image processing
and classification. This single initial attempt has shown
that classification images can be generated.

One useful aspect of a GP approach (as opposed to say a
neural network approach) was the ability to obtain an
actual equation. This equation could be analyzed and used
for purposes of data mining. For example, for the image
shown in this paper, the GP equation obviously did not
use all 28 of the available bands. For the grass class GP is
only using 18 of the 28 bands: 1, 2, 3, 4, 5, 6, 8, 14, 15,
18, 20, 21, 22, 23, 25, 26, 27, and 28. Using this approach



with the other classes may similarly reveal that only
particular bands are useful.

We have obtained a classification equation for separating
grass from the other four classes defined in the image.
Figure 6 shows grass in the foreground, as expected;
though there were areas where not-grass has been
incorrectly classified. Some of these pixels could be areas
where the grass spectral signature was mixed with or
overwhelmed by the spectrum of the soil. The areas
around the barrel and crates in the left background were
likely a mixture of correct results and errors. In figure 3, it
does appear that there was tall grass around the crates and
barrel, as well as a grassy area behind them. One area that
did not respond well is at the base of the building. It
appeared that there is grass along the base of the building
in figure 3, but the classification does not highlight that
particularly well. This could have been due to reflected
light from the building reflecting off the grass on its way
to the imager, which would subsequently contaminate the
grass spectra with wall spectra. Since training pixels for
grass were all chosen from the center part of the grass
region, GP did not train on any examples containing both
grass and wall spectra. To improve performance then, one
might select a few pixels for each class (if possible) from
areas where reflected light is included; this could allow
GP to learn how to correctly classify these types of pixels
as well.
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