Skip to main content

Multi-objective Genetic Programming with the Adaptive Weighted Splines Representation for Symbolic Regression

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2022)

Abstract

Genetic Programming (GP) based symbolic regression is prone to generating complex models which often overfit the training data and generalise poorly onto unseen data. To address this issue, many pieces of research have been devoted to controlling the model complexity of GP. One recent work aims to control model complexity using a new representation called Adaptive Weighted Splines. With its semi-structured characteristic, the Adaptive Weighted Splines representation can control the model complexity explicitly, which was demonstrated to be significantly better than its tree-based counterpart at generalising to unseen data. This work seeks to significantly extend the previous work by proposing a multi-objective GP algorithm with the Adaptive Weighted Splines representation, which utilises parsimony pressure to further control the model complexity, as well as improve the interpretability of the learnt models. Experimental results show that, compared with single-objective GP with the Adaptive Weighted Splines and multi-objective tree-based GP with parsimony pressure, the new multi-objective GP method generally obtains superior fronts and produces better generalising models. These models are also significantly smaller and more interpretable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agapitos, A., Loughran, R., Nicolau, M., Lucas, S., O’Neill, M., Brabazon, A.: A survey of statistical machine learning elements in genetic programming. IEEE Trans. Evol. Comput. 23(6), 1029–1048 (2019)

    Article  Google Scholar 

  2. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 1–10. IEEE (2011)

    Google Scholar 

  3. Benítez-Hidalgo, A., Nebro, A.J., García-Nieto, J., Oregi, I., Ser, J.D.: jMetalPy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 100598 (2019). http://www.sciencedirect.com/science/article/pii/S2210650219301397

  4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf. Process. Lett. 24(6), 377–380 (1987)

    Article  MathSciNet  Google Scholar 

  5. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic programming for high-dimensional symbolic regression. IEEE Trans. Evol. Comput. 21(5), 792–806 (2017)

    Article  Google Scholar 

  6. Chen, Q., Zhang, M., Xue, B.: Structural risk minimization-driven genetic programming for enhancing generalization in symbolic regression. IEEE Trans. Evol. Comput. 23(4), 703–717 (2019)

    Article  Google Scholar 

  7. Chen, Q., Xue, B., Shang, L., Zhang, M.: Improving generalisation of genetic programming for symbolic regression with structural risk minimisation. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 709–716. ACM (2016)

    Google Scholar 

  8. Chen, Q., Xue, B., Zhang, M.: Improving symbolic regression based on correlation between residuals and variables. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 922–930 (2020)

    Google Scholar 

  9. Chen, Q., Xue, B., Zhang, M.: Rademacher complexity for enhancing the generalization of genetic programming for symbolic regression. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3004361

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  12. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163. IEEE (2006)

    Google Scholar 

  13. Kinzett, D., Johnston, M., Zhang, M.: Numerical simplification for bloat control and analysis of building blocks in genetic programming. Evol. Intel. 2(4), 151–168 (2009)

    Article  Google Scholar 

  14. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  15. Koza, J.R., et al.: Genetic Programming II, vol. 17. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  16. Le, N., Xuan, H.N., Brabazon, A., Thi, T.P.: Complexity measures in genetic programming learning: a brief review. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2409–2416. IEEE (2016)

    Google Scholar 

  17. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_40

    Chapter  Google Scholar 

  18. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  19. Luke, S., Panait, L.: A comparison of bloat control methods for genetic programming. Evol. Comput. 14(3), 309–344 (2006)

    Article  Google Scholar 

  20. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798 (2012)

    Google Scholar 

  21. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Multi-objective genetic programming for symbolic regression with the adaptive weighted splines representation. In: Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, pp. 165–166 (2021)

    Google Scholar 

  22. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with rademacher complexity for symbolic regression. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2657–2664. IEEE (2019)

    Google Scholar 

  23. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Adaptive weighted splines: a new representation to genetic programming for symbolic regression. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 1003–1011 (2020)

    Google Scholar 

  24. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of 2010 Genetic and Evolutionary Computation Conference, pp. 877–884. ACM (2010)

    Google Scholar 

  25. Vlachos, P.: Statlib datasets archive. Department of statistics (1998)

    Google Scholar 

  26. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)

    Article  Google Scholar 

  27. Wong, P., Zhang, M.: Algebraic simplification of GP programs during evolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 927–934 (2006)

    Google Scholar 

  28. Zhang, M., Wong, P.: Genetic programming for medical classification: a program simplification approach. Genet. Program Evolvable Mach. 9(3), 229–255 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raymond, C., Chen, Q., Xue, B., Zhang, M. (2022). Multi-objective Genetic Programming with the Adaptive Weighted Splines Representation for Symbolic Regression. In: Medvet, E., Pappa, G., Xue, B. (eds) Genetic Programming. EuroGP 2022. Lecture Notes in Computer Science, vol 13223. Springer, Cham. https://doi.org/10.1007/978-3-031-02056-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02056-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02055-1

  • Online ISBN: 978-3-031-02056-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics