Skip to main content

Grammatical Evolution of Robust Controller Structures Using Wilson Scoring and Criticality Ranking

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10196))

Abstract

In process control it is essential that disturbances and parameter uncertainties do not affect the process in a negative way. Simultaneously optimizing an objective function for different scenarios can be solved in theory by evaluating candidate solutions on all scenarios. This is not feasible in real-world applications, where the scenario space often forms a continuum. A traditional approach is to approximate this evaluation using Monte Carlo sampling. To overcome the difficulty of choosing an appropriate sampling count and to reduce evaluations of low-quality solutions, a novel approach using Wilson scoring and criticality ranking within a grammatical evolution framework is presented. A nonlinear spring mass system is considered as benchmark example from robust control. The method is tested against Monte Carlo sampling and the results are compared to a backstepping controller. It is shown that the method is capable of outperforming state of the art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See http://www.boost.org.

References

  1. Ackermann, J., Blue, P., Bünte, T., Güvenc, L., Kaesbauer, D., Kordt, M., Muhler, M., Odenthal, D.: Robust Control: The Parameter Space Approach. Springer Science+Business Media, Heidelberg (2002)

    Book  Google Scholar 

  2. Ahnert, K., Mulansky, M.: Odeint-solving ordinary differential equations in C++ (2011). arXiv preprint arXiv:1110.3397

  3. Chen, P., Lu, Y.Z.: Automatic design of robust optimal controller for interval plants using genetic programming and Kharitonov theorem. Int. J. Comput. Intell. Syst. 4(5), 826–836 (2011)

    Article  Google Scholar 

  4. Cupertino, F., Naso, D., Salvatore, L., Turchiano, B.: Design of cascaded controllers for DC drives using evolutionary algorithms. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002, CEC 2002, vol. 2, pp. 1255–1260. IEEE (2002)

    Google Scholar 

  5. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer Science+Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  6. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments, vol. 194. Springer, Heidelberg (2009)

    Google Scholar 

  7. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Courier Corporation, New York (2013)

    Google Scholar 

  8. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  9. Francis, B.A.: A Course in \(\cal{H}_{\infty }\) Control Theory. Springer, New York (1987)

    Book  Google Scholar 

  10. Gholaminezhad, I., Jamali, A., Assimi, H.: Automated synthesis of optimal controller using multi-objective genetic programming for two-mass-spring system. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 041–046. IEEE (2014)

    Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  12. Hornby, G.S., Globus, A., Linden, D.S., Lohn, J.D.: Automated antenna design with evolutionary algorithms. In: AIAA Space, pp. 19–21 (2006)

    Google Scholar 

  13. Kharitonov, V.: Asympotic stability of an equilibrium position of a family of systems of linear differntial equations. Differntia Uravn. 14(11), 1483–1485 (1978)

    MATH  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3. Pearson Education, Upper Saddle River (1998)

    MATH  Google Scholar 

  15. Koza, J.R.: Genetic Programming: on The Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  16. Koza, J.R., Keane, M.A., Yu, J., Bennett, F.H., Mydlowec, W., Stiffelman, O.: Automatic synthesis of both the topology and parameters for a robust controller for a non-minimal phase plant and a three-lag plant by means of genetic programming. In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999, vol. 5, pp. 5292–5300. IEEE (1999)

    Google Scholar 

  17. Koza, J.R., Keane, M.A., Yu, J., Mydlowec, W., Bennett, F.H.: Automatic synthesis of both the topology and parameters for a controller for a three-lag plant with a five-second delay using genetic programming. In: Cagnoni, S. (ed.) EvoWorkshops 2000. LNCS, vol. 1803, pp. 168–177. Springer, Heidelberg (2000). doi:10.1007/3-540-45561-2_17

    Chapter  Google Scholar 

  18. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930

    Chapter  Google Scholar 

  20. Shimooka, H., Fujimoto, Y.: Generating robust control equations with genetic programming for control of a rolling inverted pendulum. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 491–495. Morgan Kaufmann Publishers Inc. (2000)

    Google Scholar 

  21. Soltoggio, A.: A comparison of genetic programming and genetic algorithms in the design of a robust, saturated control system. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 174–185. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24855-2_16

    Chapter  Google Scholar 

  22. Wang, Q., Stengel, R.F.: Robust control of nonlinear systems with parametric uncertainty. Automatica 38(9), 1591–1599 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Q., Stengel, R.F.: Robust nonlinear flight control of a high-performance aircraft. IEEE Trans. Control Syst. Technol. 13(1), 15–26 (2005)

    Article  Google Scholar 

  24. Wie, B., Bernstein, D.S.: Benchmark problems for robust control design. J. Guid. Control Dyn. 15(5), 1057–1059 (1992)

    Article  Google Scholar 

  25. Wills, A.G., Bates, D., Fleming, A.J., Ninness, B., Moheimani, S.R.: Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans. Control Syst. Technol. 16(1), 3–12 (2008)

    Article  Google Scholar 

  26. Wilson, E.B.: Probable inference, the law of succession, and statistical inference. J. Am. Statist. Assoc. 22(158), 209–212 (1927)

    Article  Google Scholar 

  27. Zames, G.: Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Autom. Control 26(2), 301–320 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Reichensdörfer .

Editor information

Editors and Affiliations

Appendix: Stability Analysis

Appendix: Stability Analysis

We calculate the Jacobian of the system from Eq. (9), substituting u with the GE controller from Eq. (14). The Jacobian for this system is given by \(\varvec{A}(\varvec{x}) = \begin{bmatrix} \frac{\partial \varvec{f}}{\partial \varvec{x}} \end{bmatrix}\). The characteristic polynomial can be calculated by

$$\begin{aligned} p(\lambda ) = \det (\lambda \varvec{I} - \varvec{A}) = \lambda ^4 + \frac{3}{m_1}\lambda ^3 + \frac{k_1(m_1 + m_2) + 3m_2}{m_1m_2}\lambda ^2 + \frac{3k_1}{m_1m_2} \lambda + \frac{k_1}{m_1m_2}\,. \end{aligned}$$
(15)

Looking at the intervals from Eq. (10) it is trivial to see that all coefficients of this polynomial are strictly positive. We can thus continue the analysis by looking at the Hurwitz matrix of the polynomial:

$$\begin{aligned} \varvec{H} = \begin{bmatrix} 1&H_{1,2}&\frac{k_1}{m_1m_2}&0 \\ 0&\frac{3}{m_1}&\frac{4k_1}{m_1m_2}&0 \\ 0&1&H_{3, 3}&\frac{k_1}{m_1m_2} \\ 0&1&\frac{3}{m_1}&\frac{3k_1}{m_1m_2} \end{bmatrix},\, H_{1, 2} = H_{3, 3} = \frac{k_1m_1 + k_1m_2 + 3m_2}{m_1m_2} \,. \end{aligned}$$
(16)

From the 4 principal minors of \(\varvec{H}\) we get the Hurwitz conditions for stability

$$\begin{aligned} \det (\varvec{H}_1)&= 1 \overset{!}{>} 0\,,\quad \det (\varvec{H}_2) = \frac{3}{m_1} \overset{!}{>} 0 \\ \det (\varvec{H}_3)&= \frac{3(k_1 + 9)}{m_1^2} \overset{!}{>} 0, \,\quad \det (\varvec{H}_4) = \frac{9k_1^2 + 18k_1}{m_1^3m_2} \overset{!}{>} 0. \end{aligned}$$

Again since these conditions only depend on \(k_1, m_1\) and \(m_2\) which are strictly positive, the stability conditions hold for any parameter combination \(\varvec{q} \in Q\). The controller \(u_{\text {GE}}(\varvec{x})\) is thus a (local) robust stabilizer of the system.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Reichensdörfer, E., Odenthal, D., Wollherr, D. (2017). Grammatical Evolution of Robust Controller Structures Using Wilson Scoring and Criticality Ranking. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55696-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55695-6

  • Online ISBN: 978-3-319-55696-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics