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ABSTRACT 

Clustering is the process of locating patterns in large data sets. As 

databases continue to grow in size, efficient and effective 

clustering algorithms play a paramount role in data mining 

applications. Traditional clustering approaches usually analyze 

static datasets in which objects are kept unchanged after being 

processed, but many practical datasets are dynamically modified 

which means some previously learned patterns have to be updated 

accordingly. Re-clustering the whole dataset from scratch is not a 

good choice due to the frequent data modifications and the limited 

out-of-service time, so the development of incremental clustering 

approaches is highly desirable. In this paper, we propose an 

incremental algorithm, IPYRAMID: Incremental Parallel hYbrid 

clusteRing using genetic progrAmming and Multiobjective fItness 

with Density employs a combination of data parallelism, genetic 

programming (GP), special operators, and multi-objective density-

based incremental fitness function. Although many incremental 

clustering algorithms have been proposed which can handle 

insertion of new record properly using incremental approach but 

cannot handle deletion of record properly. This issue is resolved 

in the proposed algorithm and density based incremental fitness 

function that helps to handle outliers. Use of parallelism increases 

the speed of execution as well as identifies clusters of arbitrary 

shapes. The incremental merge engine can dynamically determine 

the number of clusters. Preliminary experimental results show that 

it can increase the efficiency of clustering process.   

Keywords 

Data Mining, Clustering, Genetic Programming, Parallelism, 

Density, Incremental mining. 

1. INTRODUCTION 
Clustering is a division of data into groups of similar objects. 

Representing the data by fewer clusters results in loss of certain 

fine details, but achieves simplification. It models data by its 

clusters. Data modeling puts clustering in a historical perspective 

rooted in mathematics, statistics, and numerical analysis. From a 

machine learning perspective clusters correspond to hidden 

patterns, the search for clusters is unsupervised learning, and the 

resulting system represents a data concept. From a practical 

perspective clustering plays an outstanding role in data mining 

applications such as scientific data exploration, information 

retrieval and text mining, spatial database applications, Web 

analysis, CRM, marketing, medical diagnostics, computational 

biology, and many others. Traditional clustering approaches 

usually analyze static datasets in which objects are kept 

unchanged after being processed, but many practical datasets are 

dynamically modified which means some previously learned 

patterns have to be updated accordingly. Re-clustering the whole 

dataset from scratch is not a good choice due to the frequent data 

modifications and the limited out-of-service time, so the 

development of incremental clustering approaches is highly 

desirable. [1], [2] propose efficient methods for incrementally 

modifying a set of association rules mined from a database. [3] 

Introduces generalization algorithms for incremental 

summarization in a data warehouse environment. [4] Proposes the 

first incremental clustering algorithm in a data warehouse 

environment. The paper implements an algorithm called 

Incremental Parallel hYbrid clusteRing using genetic 

progrAmming and Multi-objective fItness with Density 

(IPYRAMID). While still leaving significant challenges 

unresolved, such as handling higher dimensions and dependence 

on user supplied parameters, IPYRAMID employs a combination 

of data parallelism, genetic programming (GP), special operators, 

and multi-objective density-based fitness function in the context 

of clustering to resolve most of the above challenges. The data 

space is divided into cells that become the target of clustering thus 

eliminating dependence on the order of data input. A divide-and-

conquer data parallelism is used to increase execution speed. The 

algorithm divides the data set onto multiple processors each of 

which executes a genetic program that uses a flexible individual 

representation that can represent arbitrary shaped clusters. The 

genetic program also utilizes a density-based incremental fitness 

function that helps to handle outliers. It also introduces an 

incremental merge method that determines the number of clusters 

dynamically. Preliminary experiments have shown positive 

results.  

2. RELATED WORK 
Zhou et al.[5] has proposed GDCP Genetic Clustering algorithm 

and to make it applicable in incremental environment it has 

proposed an Incremental Clustering algorithm—ICGD. [6] Has 

proposed GDCA which is a Grid Density-based Clustering 

Algorithm and to make it useful in incremental environment it has 

proposed an Incremental Grid Density based Clustering 

Algorithm-IGDCA. Both [5] and [6] deals with a bulk of updates 

rather than single update. The problem with [5], [6] is that, they 

can handle insertion of new record in database properly using 

incremental approach but cannot handle deletion of record form 

database properly. [7] Has proposed an incremental clustering 

algorithm which takes only one scan of the data to find clusters. 

The use of objects for representation of points of cluster along 

with the Balanced Search tree increases the speed of the 

algorithm. But the major limitation of this algorithm is that, it 

works with relational database only. [5], [6], [7] cannot handle 

outliers properly. [8] Has proposed IOFCA which is an 

Incremental algorithm for clusters generation and it can handle 

Outlier Factors. It handles insertion as well as deletion of records 

from database properly. The major drawback of this approach is, 

it requires huge amount of memory while processing. [9] Has 

proposed Genetic Algorithm for generating K no of Clusters-

GAKC and it can efficiently cluster the data set which has 
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ambiguous boundaries. The major drawback of this approach is, it 

cannot handle outliers properly  

 

3. ARCHITECTURE OF IPYRAMID 
The architecture of IPYRAMID is as shown in Figure 1: 

 
 

Figure 1 Architecture of IPYRAMID 

 

A. Difference Generator It identifies the change in database D. 

When new data is inserted or original data is deleted, clustering 

process must modify the existed clusters to reflect the changes. 

Let d be the deleted data from D, and ∆d be the inserted data to 

D.  The new database D’ = D ∆d－ d. Since updates can be seen 

as a series of insertions and deletions, we only consider insertions 

and deletions. So we define the difference database ∆D as the set 

of ∆d d.  

 

B. Incremental Binning 

This is a quantization process, where a Minimum Bounding 

Rectangle (MBR) is defined on the difference database ∆D. MBR 

is the smallest hyper-rectangular area in the data space that 

contains all the 2D data points in a given data set. Master 

Processors conduct binning on MBR. On these MBR, master 

processors conduct binning. Each dimension is divided into finite 

number of intervals called bins. All bins within a dimension m 

have the same bin width, denoted wm. This is calculated using 

equation (1), where óm is the standard deviation of the 

coordinates of the data points on dimension m. 

Wm = 3.5 X δm X n-1/3                                                                (1) 

There is no overlap between any two bins within the same 

dimension. The lower and upper bounds of the ith bin with respect 

to dimension m, called bini,m, are respectively denoted lb_bini,m 

and ub_bini,m. Experimental results have been taken with m=2. 

 

C. Incremental Geometric Division 

It divides the data space of the ∆D into quadrants. A quadrant 

encompasses a data subset, which is formed by the data points that 

belong to its constituent cells as defined in [10]. Fig 2 and Fig 3 

shows the geometric division of the initial increment on dataset1. 

The details of the algorithm are outlined below.  

 

 

 

 

Algorithm: 

 

1. Select v, number of divisions per dimension of ∆D. Calculate 

required division subset size as s = n/v, where n is the number of 

points. 

2. For every dimension m = 1,...,d, traverse grid columns from 

lower to upper bin numbers, adding the cardinalities of their 

constituent cells. Stop when > s. 

3. Compare which is closest to s: before or after adding the last 

column. If before, do not count the last column, else count it. 

4. Continue until v divisions have been identified. 

5. The intersections of the resulting divisions on every dimension 

form the p = vd subsets, called quadrants, which will be 

transmitted to the p slave processors for parallelism. 

6. Examine number of data points in every quadrant. If one 

quadrant contains less than half of an adjacent quadrant, adjust 

border between the two quadrants, with respect to all dimensions 

if necessary, until that is not the case anymore. Repeat for all 

quadrants.  

 
Figure 2 Incremental Geometric division  

 
Figure 3 3D view of the incremental geometric division 

D. Genetic Program 

A genetic program typically represents a solution as a tree ∆based 

individual [7]. In this paper, each individual is encoded as a 

combination of blocks (rules) to form a genetic programming tree 

with leaf nodes symbolizing these constituent rules [11]. 

Individual: Individual I is the region in the MBHR that is a union 

of rules, called I’s constituent rules. In the context of clustering, 

an individual constitutes one possible solution to the clustering. 

The tree representation and its 2D representation is shown in  

Figure 4 and its rules in Figure 5. 
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Figure 4 Tree representation of an Individual 

 
Figure 5 Rules for individual in Figure 4 

 

Crossover: Experimental results are taken on consideration of 

rule-level crossover by swapping rules between individuals thus 

producing two new individuals.  

Smart Mutation: Experimental results are taken by examining the 

densities of the cells that surround the target rule and performs 

enlarge mutation towards the denser cells. Another variant of 

mutation is shrinking whereby a rule is diminished by one bin 

with respect to a certain dimension m. 

Repair Operator: Overlaps occur when one of the above operators 

produces a change in an existing rule, or an addition of a new rule, 

that shares at least one cell with an existing rule within the same 

individual. As mentioned earlier, overlaps are prohibited by [10]. 

Therefore, this paper introduces a novel repair operator that 

results in smoother detection by reforming the overlapping rules 

into new ones that align better with the distribution of the data 

points as shown in [10]. 

IFitness Function: This paper focuses on three main factors to 

achieve good solutions. It attempts to find a solution that captures 

as much of the data set as possible, thus high coverage. It also 

tries to identify gatherings of dense areas in the MBHR by 

looking for solutions in the form of dense individuals composed 

of dense rules that contain dense cells. Finally, as shown in 

equation (2), it attempts to avoid complex individuals by having a 

bias in favor of those having a smaller number of member rules. 

(a). Maximize IFcoverage(I) which is the number of data points in 

an individual over the total number of data points.[4] 

(b). Maximize IFdensity(I), which is product of the individual, 

rule, and cell densities.  

(c). Minimize IFsize(I), which is the size of the individual by 

exerting parsimony pressure on large individuals[12].  

 

                                    (2) 

 

Selection Operator and Elitism: The selection operator is based 

on tournament selection with a tour size of three. Furthermore, 

this paper adopts one-individual elitism, whereby in every 

iteration, the best performer is preserved for the next generation. 

Main Algorithm: The GP that is run on each slave processor is 

summarized in [10]. After each operator is applied, the fitness of 

resulting individuals is evaluated.  

E. Incremental Merge Engine 

After the discovered points are reported back to the master or the 

server, which traverses those discovered cells; assigning them 

cluster labels based on their neighborhoods in the database D’. 

This is driven by the algorithm shown below, resulting in the final 

solution.  

Algorithm: 

1. Determine the changed return cells that contain the returned 

data points, denoted the ∆returned cells. 

2. Label all cells of the Clusters of Database D as ―No Label‖. 

3. Label all changed returned cells with ―∆ Label‖. 

4. Traverse returned cells. For each cell check neighbor cells, as 

follows: 

If neighbor cell does not belong to returned cells and is not 

labeled, skip to the next neighbor, unless that cell is denser than 

the average density of returned cells and ―No Label‖ cell, in 

which case both that and the current cell are assigned same label. 

Else if neighbor cell is labeled with L1, assign current cell with 

the same label as neighbor, unless the current cell is labeled with a 

different label L2, then change both labels to L3. 

Else if all neighbors are labeled with ―No Label‖ or ―∆ Label‖, 

then assign the current label. 

5. Return to Step 3 until all returned cells are processed. 

6. Assign different clusters to different labels. The algorithm 

IPYRAMID implemented is summarized below: 

Master/ Server Processor 

1. Conduct incremental binning on MBR. 

2. Perform incremental geometric division. 

3. Send each subset to a different slave/ client processor. 

4. Receive p resulting subsets of discovered data points from p 

slaves. Determine cells that contain returned points. Mark those 

cells as ∆returned cells. 

5. Merge returned cells along with the cells of the clusters of 

database D into global solution that labels every cell with a cluster 

label. 

Slave/ Client Processor 

1. Receive a data subset P of ∆D from master processor. Perform 

quantization on local data. 

2. Run genetic program on the local data points in P (on current 

slave processor). 

3. After algorithm finishes, send points in discovered cells to 

master/ server processor. 

 

4. RESULTS 
In this section, experiments made to show the performance of the 

proposed approach are described. They were implemented in Java 

on a personal computer with Intel Pentium IV 3.20GHz and 1GB 

RAM. IPYRAMID requires 1 Server and 4 Clients, in all 5 

Processors to implement Parallel Genetic Programming to detect 

Clusters. 

A dynamic database of having two incremental datasets dataset1 

(1500 data points) and dataset2 (8500 data points) with 

increments of 100 and 1500 data points respectively, is used to 
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test the performance of IPYRAMID algorithm. Experimental 

results are as shown in Figure 6.                                                

From Figure 6 top part is for dataset1 and bottom is dataset2. 

After bulk updates (insertion and deletions) of 100 or 1500 data 

points the clusters discovered are as shown in Figures below. We 

can see that by dividing the data set onto multiple processors each 

of which executes a genetic program that uses a flexible 

individual representation leading to arbitrary shapes. 

 

 

Figure 6 Arbitrary shaped Cluster Detection 

The genetic program also utilizes a density based fitness 

function that helps avoid outliers by either considering a 

new cluster or merging it into an existing one as shown in 

Figure 7. 

From Figure 8 and Figure 9 it can be analyzed that the number of 

clusters are reduced due to the updates (deletion). This proves that 

IPYRAMID incremental merge engine can handle deletion of 

records efficiently.   

The results have shown that detection remained fairly similar even 

when crucial parameters such as the genetic algorithm population 

size, number of rules per individual, and the genetic operator 

percentages were changed as shown in Figure 7 for dataset2. 

 

Figure 7 Outlier Handling 

 

Figure 8 Cluster Detection with Updates (deletions)       
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Figure 9 Cluster Detection with Updates (Additions) 

5. CONCLUSION AND FUTURE WORK 
This paper proposed an approach to clustering large data sets 

called IPYRAMID, which improves the approach by employing a 

hybrid combination of GP’s global search and strong 

representational capabilities along with a powerful density-aware 

multi-objective fitness function. Use of data parallelism is 

increases the speed of execution. The proposed approach can 

handle outliers properly as well as it can handle deletion of 

records from database with high efficiency which is not taken care 

in most of the incremental clustering algorithms. Experimental 

results demonstrated that IPYRAMID detects clusters of arbitrary 

shapes and is immune to outliers, and independent of the order of 

input. In addition, it does not require prior knowledge of the 

number of clusters, and its inherent data parallelism allows it to 

have better performance than its sequential counterpart. 

Possible Avenue for future research is to performing additional 

experiments to assess various aspects of cluster detection such as 

exploring the use of rules with variable shapes, not strictly 

rectangular, and using other data sets such as spatial or 

categorical, as well as other forms of parallelism. 
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