
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.8, December 2010

13

Incremental Cluster Detection using a Soft Computing
Approach

Alpa Reshamwala

MPSTME, SVKM’s NMIMS,
Mumbai-400056

Vijay Katkar

MPSTME, SVKM’s NMIMS,
Mumbai-400056

Mamta Ubnare

MPSTME, SVKM’s NMIMS,
Mumbai-400056

ABSTRACT

Clustering is the process of locating patterns in large data sets. As

databases continue to grow in size, efficient and effective

clustering algorithms play a paramount role in data mining

applications. Traditional clustering approaches usually analyze

static datasets in which objects are kept unchanged after being

processed, but many practical datasets are dynamically modified

which means some previously learned patterns have to be updated

accordingly. Re-clustering the whole dataset from scratch is not a

good choice due to the frequent data modifications and the limited

out-of-service time, so the development of incremental clustering

approaches is highly desirable. In this paper, we propose an

incremental algorithm, IPYRAMID: Incremental Parallel hYbrid

clusteRing using genetic progrAmming and Multiobjective fItness

with Density employs a combination of data parallelism, genetic

programming (GP), special operators, and multi-objective density-

based incremental fitness function. Although many incremental

clustering algorithms have been proposed which can handle

insertion of new record properly using incremental approach but

cannot handle deletion of record properly. This issue is resolved

in the proposed algorithm and density based incremental fitness

function that helps to handle outliers. Use of parallelism increases

the speed of execution as well as identifies clusters of arbitrary

shapes. The incremental merge engine can dynamically determine

the number of clusters. Preliminary experimental results show that

it can increase the efficiency of clustering process.

Keywords

Data Mining, Clustering, Genetic Programming, Parallelism,

Density, Incremental mining.

1. INTRODUCTION
Clustering is a division of data into groups of similar objects.

Representing the data by fewer clusters results in loss of certain

fine details, but achieves simplification. It models data by its

clusters. Data modeling puts clustering in a historical perspective

rooted in mathematics, statistics, and numerical analysis. From a

machine learning perspective clusters correspond to hidden

patterns, the search for clusters is unsupervised learning, and the

resulting system represents a data concept. From a practical

perspective clustering plays an outstanding role in data mining

applications such as scientific data exploration, information

retrieval and text mining, spatial database applications, Web

analysis, CRM, marketing, medical diagnostics, computational

biology, and many others. Traditional clustering approaches

usually analyze static datasets in which objects are kept

unchanged after being processed, but many practical datasets are

dynamically modified which means some previously learned

patterns have to be updated accordingly. Re-clustering the whole

dataset from scratch is not a good choice due to the frequent data

modifications and the limited out-of-service time, so the

development of incremental clustering approaches is highly

desirable. [1], [2] propose efficient methods for incrementally

modifying a set of association rules mined from a database. [3]

Introduces generalization algorithms for incremental

summarization in a data warehouse environment. [4] Proposes the

first incremental clustering algorithm in a data warehouse

environment. The paper implements an algorithm called

Incremental Parallel hYbrid clusteRing using genetic

progrAmming and Multi-objective fItness with Density

(IPYRAMID). While still leaving significant challenges

unresolved, such as handling higher dimensions and dependence

on user supplied parameters, IPYRAMID employs a combination

of data parallelism, genetic programming (GP), special operators,

and multi-objective density-based fitness function in the context

of clustering to resolve most of the above challenges. The data

space is divided into cells that become the target of clustering thus

eliminating dependence on the order of data input. A divide-and-

conquer data parallelism is used to increase execution speed. The

algorithm divides the data set onto multiple processors each of

which executes a genetic program that uses a flexible individual

representation that can represent arbitrary shaped clusters. The

genetic program also utilizes a density-based incremental fitness

function that helps to handle outliers. It also introduces an

incremental merge method that determines the number of clusters

dynamically. Preliminary experiments have shown positive

results.

2. RELATED WORK
Zhou et al.[5] has proposed GDCP Genetic Clustering algorithm

and to make it applicable in incremental environment it has

proposed an Incremental Clustering algorithm—ICGD. [6] Has

proposed GDCA which is a Grid Density-based Clustering

Algorithm and to make it useful in incremental environment it has

proposed an Incremental Grid Density based Clustering

Algorithm-IGDCA. Both [5] and [6] deals with a bulk of updates

rather than single update. The problem with [5], [6] is that, they

can handle insertion of new record in database properly using

incremental approach but cannot handle deletion of record form

database properly. [7] Has proposed an incremental clustering

algorithm which takes only one scan of the data to find clusters.

The use of objects for representation of points of cluster along

with the Balanced Search tree increases the speed of the

algorithm. But the major limitation of this algorithm is that, it

works with relational database only. [5], [6], [7] cannot handle

outliers properly. [8] Has proposed IOFCA which is an

Incremental algorithm for clusters generation and it can handle

Outlier Factors. It handles insertion as well as deletion of records

from database properly. The major drawback of this approach is,

it requires huge amount of memory while processing. [9] Has

proposed Genetic Algorithm for generating K no of Clusters-

GAKC and it can efficiently cluster the data set which has

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.8, December 2010

14

ambiguous boundaries. The major drawback of this approach is, it

cannot handle outliers properly

3. ARCHITECTURE OF IPYRAMID
The architecture of IPYRAMID is as shown in Figure 1:

Figure 1 Architecture of IPYRAMID

A. Difference Generator It identifies the change in database D.

When new data is inserted or original data is deleted, clustering

process must modify the existed clusters to reflect the changes.

Let d be the deleted data from D, and ∆d be the inserted data to

D. The new database D’ = D ∆d－ d. Since updates can be seen

as a series of insertions and deletions, we only consider insertions

and deletions. So we define the difference database ∆D as the set

of ∆d d.

B. Incremental Binning

This is a quantization process, where a Minimum Bounding

Rectangle (MBR) is defined on the difference database ∆D. MBR

is the smallest hyper-rectangular area in the data space that

contains all the 2D data points in a given data set. Master

Processors conduct binning on MBR. On these MBR, master

processors conduct binning. Each dimension is divided into finite

number of intervals called bins. All bins within a dimension m

have the same bin width, denoted wm. This is calculated using

equation (1), where óm is the standard deviation of the

coordinates of the data points on dimension m.

Wm = 3.5 X δm X n-1/3 (1)

There is no overlap between any two bins within the same

dimension. The lower and upper bounds of the ith bin with respect

to dimension m, called bini,m, are respectively denoted lb_bini,m

and ub_bini,m. Experimental results have been taken with m=2.

C. Incremental Geometric Division

It divides the data space of the ∆D into quadrants. A quadrant

encompasses a data subset, which is formed by the data points that

belong to its constituent cells as defined in [10]. Fig 2 and Fig 3

shows the geometric division of the initial increment on dataset1.

The details of the algorithm are outlined below.

Algorithm:

1. Select v, number of divisions per dimension of ∆D. Calculate

required division subset size as s = n/v, where n is the number of

points.

2. For every dimension m = 1,...,d, traverse grid columns from

lower to upper bin numbers, adding the cardinalities of their

constituent cells. Stop when > s.

3. Compare which is closest to s: before or after adding the last

column. If before, do not count the last column, else count it.

4. Continue until v divisions have been identified.

5. The intersections of the resulting divisions on every dimension

form the p = vd subsets, called quadrants, which will be

transmitted to the p slave processors for parallelism.

6. Examine number of data points in every quadrant. If one

quadrant contains less than half of an adjacent quadrant, adjust

border between the two quadrants, with respect to all dimensions

if necessary, until that is not the case anymore. Repeat for all

quadrants.

Figure 2 Incremental Geometric division

Figure 3 3D view of the incremental geometric division

D. Genetic Program

A genetic program typically represents a solution as a tree ∆based

individual [7]. In this paper, each individual is encoded as a

combination of blocks (rules) to form a genetic programming tree

with leaf nodes symbolizing these constituent rules [11].

Individual: Individual I is the region in the MBHR that is a union

of rules, called I’s constituent rules. In the context of clustering,

an individual constitutes one possible solution to the clustering.

The tree representation and its 2D representation is shown in

Figure 4 and its rules in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.8, December 2010

15

Figure 4 Tree representation of an Individual

Figure 5 Rules for individual in Figure 4

Crossover: Experimental results are taken on consideration of

rule-level crossover by swapping rules between individuals thus

producing two new individuals.

Smart Mutation: Experimental results are taken by examining the

densities of the cells that surround the target rule and performs

enlarge mutation towards the denser cells. Another variant of

mutation is shrinking whereby a rule is diminished by one bin

with respect to a certain dimension m.

Repair Operator: Overlaps occur when one of the above operators

produces a change in an existing rule, or an addition of a new rule,

that shares at least one cell with an existing rule within the same

individual. As mentioned earlier, overlaps are prohibited by [10].

Therefore, this paper introduces a novel repair operator that

results in smoother detection by reforming the overlapping rules

into new ones that align better with the distribution of the data

points as shown in [10].

IFitness Function: This paper focuses on three main factors to

achieve good solutions. It attempts to find a solution that captures

as much of the data set as possible, thus high coverage. It also

tries to identify gatherings of dense areas in the MBHR by

looking for solutions in the form of dense individuals composed

of dense rules that contain dense cells. Finally, as shown in

equation (2), it attempts to avoid complex individuals by having a

bias in favor of those having a smaller number of member rules.

(a). Maximize IFcoverage(I) which is the number of data points in

an individual over the total number of data points.[4]

(b). Maximize IFdensity(I), which is product of the individual,

rule, and cell densities.

(c). Minimize IFsize(I), which is the size of the individual by

exerting parsimony pressure on large individuals[12].

 (2)

Selection Operator and Elitism: The selection operator is based

on tournament selection with a tour size of three. Furthermore,

this paper adopts one-individual elitism, whereby in every

iteration, the best performer is preserved for the next generation.

Main Algorithm: The GP that is run on each slave processor is

summarized in [10]. After each operator is applied, the fitness of

resulting individuals is evaluated.

E. Incremental Merge Engine

After the discovered points are reported back to the master or the

server, which traverses those discovered cells; assigning them

cluster labels based on their neighborhoods in the database D’.

This is driven by the algorithm shown below, resulting in the final

solution.

Algorithm:

1. Determine the changed return cells that contain the returned

data points, denoted the ∆returned cells.

2. Label all cells of the Clusters of Database D as ―No Label‖.

3. Label all changed returned cells with ―∆ Label‖.

4. Traverse returned cells. For each cell check neighbor cells, as

follows:

If neighbor cell does not belong to returned cells and is not

labeled, skip to the next neighbor, unless that cell is denser than

the average density of returned cells and ―No Label‖ cell, in

which case both that and the current cell are assigned same label.

Else if neighbor cell is labeled with L1, assign current cell with

the same label as neighbor, unless the current cell is labeled with a

different label L2, then change both labels to L3.

Else if all neighbors are labeled with ―No Label‖ or ―∆ Label‖,

then assign the current label.

5. Return to Step 3 until all returned cells are processed.

6. Assign different clusters to different labels. The algorithm

IPYRAMID implemented is summarized below:

Master/ Server Processor

1. Conduct incremental binning on MBR.

2. Perform incremental geometric division.

3. Send each subset to a different slave/ client processor.

4. Receive p resulting subsets of discovered data points from p

slaves. Determine cells that contain returned points. Mark those

cells as ∆returned cells.

5. Merge returned cells along with the cells of the clusters of

database D into global solution that labels every cell with a cluster

label.

Slave/ Client Processor

1. Receive a data subset P of ∆D from master processor. Perform

quantization on local data.

2. Run genetic program on the local data points in P (on current

slave processor).

3. After algorithm finishes, send points in discovered cells to

master/ server processor.

4. RESULTS
In this section, experiments made to show the performance of the

proposed approach are described. They were implemented in Java

on a personal computer with Intel Pentium IV 3.20GHz and 1GB

RAM. IPYRAMID requires 1 Server and 4 Clients, in all 5

Processors to implement Parallel Genetic Programming to detect

Clusters.

A dynamic database of having two incremental datasets dataset1

(1500 data points) and dataset2 (8500 data points) with

increments of 100 and 1500 data points respectively, is used to

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.8, December 2010

16

test the performance of IPYRAMID algorithm. Experimental

results are as shown in Figure 6.

From Figure 6 top part is for dataset1 and bottom is dataset2.

After bulk updates (insertion and deletions) of 100 or 1500 data

points the clusters discovered are as shown in Figures below. We

can see that by dividing the data set onto multiple processors each

of which executes a genetic program that uses a flexible

individual representation leading to arbitrary shapes.

Figure 6 Arbitrary shaped Cluster Detection

The genetic program also utilizes a density based fitness

function that helps avoid outliers by either considering a

new cluster or merging it into an existing one as shown in

Figure 7.

From Figure 8 and Figure 9 it can be analyzed that the number of

clusters are reduced due to the updates (deletion). This proves that

IPYRAMID incremental merge engine can handle deletion of

records efficiently.

The results have shown that detection remained fairly similar even

when crucial parameters such as the genetic algorithm population

size, number of rules per individual, and the genetic operator

percentages were changed as shown in Figure 7 for dataset2.

Figure 7 Outlier Handling

Figure 8 Cluster Detection with Updates (deletions)

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.8, December 2010

17

Figure 9 Cluster Detection with Updates (Additions)

5. CONCLUSION AND FUTURE WORK
This paper proposed an approach to clustering large data sets

called IPYRAMID, which improves the approach by employing a

hybrid combination of GP’s global search and strong

representational capabilities along with a powerful density-aware

multi-objective fitness function. Use of data parallelism is

increases the speed of execution. The proposed approach can

handle outliers properly as well as it can handle deletion of

records from database with high efficiency which is not taken care

in most of the incremental clustering algorithms. Experimental

results demonstrated that IPYRAMID detects clusters of arbitrary

shapes and is immune to outliers, and independent of the order of

input. In addition, it does not require prior knowledge of the

number of clusters, and its inherent data parallelism allows it to

have better performance than its sequential counterpart.

Possible Avenue for future research is to performing additional

experiments to assess various aspects of cluster detection such as

exploring the use of rules with variable shapes, not strictly

rectangular, and using other data sets such as spatial or

categorical, as well as other forms of parallelism.

6. REFERENCES
[1] Cheung D. W., Han J., Ng V. T., Wong Y.: ―Maintenance of

Discovered Association Rules in Large Databases: An

Incremental Technique‖, Proc. 12th Int. Conf. on Data

Engineering, New Orleans, USA, 1996, pp. 106-1 14.

[2] Feldman R., Aumann Y., Amir A., Mannila H.: ―Efficient

Algorithms for Discovering Frequent Sets in Incremental

Databases‖, Proc. ACM SIGMOD Workshop on Research

Issues on Data Mining and Knowledge Discovery, Tucson,

AZ, 1997, pp. 59-66.

[3] Ester M., Wittmann R.: ―Incremental Generalization for

Mining in a Data Warehousing Environment‖, Proc. 6th Int.

Cod on Extending Database Technology, Valencia, Spain,

1998, in: Lecture Notes in Computer Science, Vol. 1377,

Springer, 1998, pp. 135-152.

[4] Ester. M., Kriegel. H.-P. Sander. J. et. al. Incremental

Clustering for Mining in a Data Warehousing Environment.

In: Gupta. A., Shmueli. 0.. Widom. J., eds. Proceedings of

the 24& International Conference on Very .Lyge Data Bases.

New York: Morgan Kaufmann Publishers Inc., 1998.323-

333.

[5] Chen Zhuo, Liu Xiang-shuang, Zhuang Xiao-dong (2007),

―A Fast Incremental Clustering Algorithm Based on Grid and

Density‖, Third International Conference on Natural

Computation (ICNC 2007) ISBN: 0-7695-2875-9/07 IEEE

2007, 207 – 211.

[6] Chen, An, Chen Ning, ―An Incremental Grid Density-Based

Clustering Algorithm in Large Spatial Databases‖,

http://www.jos.org.cn/ch/reader/download_pdf.aspx?file_no

= 20020101&year_id=2002&quarter_id=1&falg=1.

[7] Tao Li, Saabjot S. Anand (2008) HIREL: An Incremental

Clustering Algorithm for Relational Datasets‖ 2008 Eighth

IEEE International Conference on Data Mining, 887 – 892.

[8] Yong-Feng Zhou, Qing-Bao Ln, Su Deng, Qing Yang (2002)

―An Incremental Outlier Factor Based Clustering Algorithm‖

Proceedings of the First International Conference on

Machine Learning and Cybernetics, ISBN: 0-7803-7508-4,

1358 - 1361 vol.3.

[9] Li Xiaohong, Luo Min (2009) , ―GAKC: A new GA-based k

clustering algorithm‖, Second International Symposium on

Information Science and Engineering, ISBN: 978-0-7695-

3991-1, IEEE 2009, 334 – 338.

[10] Tout, S., Sverdlik, W., & Sun, J. (2006). ―Parallel Hybrid

Clustering using Genetic Programming and Multi-objective

Fitness with Density (PYRAMID)‖, Proceedings of the 2006

International Conference on Data Mining (DMIN’06), Las

Vegas, NV, USA, 197-203.

[11] Koza, J.R. (1991). ―Evolving a Computer Program to

Generate Random Numbers using the Genetic Programming

Paradigm‖, Proceedings of the Fourth International

Conference on Genetic Algorithms, La Jolla, CA, 37-44.

[12] Karypis, G., Han, S., & Kumar, V. (1999). ‖Chameleon: A

Hierarchical Clustering using Dynamic Modeling.” IEEE

Computer: Special Issue on Data Analysis and Mining,

32(8), 68-75.

