Skip to main content
Log in

Multi-objective optimization of QCA circuits with multiple outputs using genetic programming

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Quantum-Dot Cellular Automata (QCA) is a promising nanotechnology that has been recognized as one of the top emerging technologies in future computers. Size density of several orders of magnitude smaller than Complementary Metal-Oxide Semiconductor, fast switching time and extremely low power, has caused QCA to become a topic of intense research. The majority gate and the inverter gate together make a universal set of Boolean primitives in QCA technology. Reducing the number of required primitives to implement a given Boolean function is an important step in designing QCA logic circuits. Previous research has shown how to use genetic programming to minimize the number of gates implementing a given Boolean function with one output. In this paper, we first show how to minimize the gates for the given Boolean truth tables with an arbitrary number of outputs using genetic programming. Then, another criterion, reduction of the delay of the implementing circuit is considered. Multi-objective genetic programming is applied to simultaneously optimize both objectives. The results demonstrate the proposed approach is promising and worthy of further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. International technology roadmap for semiconductors (ITRS). [Online]. Available: http://www.itrs.net

  2. K. Hennessy, C.S. Lent, Clocking of molecular quantum-dot cellular automata. J Vac Sci Technol B Microelectron Process Phenom 19, 1752–1755 (2001)

    Article  Google Scholar 

  3. C.S. Lent, B. Isaksen, M. Lieberman, Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  4. C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proceed IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  5. P.D. Tougaw, C.S. Lent, Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  Google Scholar 

  6. T. Oya, T. Asai, T. Fukui, Y. Amemiya, A majority-logic nanodevice using a balanced pair of single-electron boxes. J Nanosci Nanotech 2, 333–342 (2002)

    Article  Google Scholar 

  7. T. Oya, T. Asai, T. Fukui, Y. Amemiya, A majority-logic device using an irreversible single-electron box. IEEE Trans. Nanotechnol. 2, 15–22 (2003)

    Article  Google Scholar 

  8. Fahmy HA, Kiehl RA (1999) Complete logic family using tunnelingphase-logic devices. In: Proceedings of the international conferences on microelectronics, pp 22–24

  9. C.S. Lent, P.D. Tougaw, W. Porod, Bistable saturation of in coupled quantum dot for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)

    Article  Google Scholar 

  10. P.D. Tougaw, C.S. Lent, W. Porod, Bistable saturation in coupled quantum dot cells. J. Appl. Phys. 74, 3558–3566 (1993)

    Article  Google Scholar 

  11. M. Karnaugh, The map method for synthesis of combinational logic circuits. Trans Am Inst Electr Eng 72, 593–599 (1953)

    MathSciNet  Google Scholar 

  12. Zhang R, Walus K, Wang W, Jullien G (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nainventerechnol 3

  13. Akers SB (1962) Synthesis of combinational logic using three-input majority gates. In: Proceedings of the 3rd annual symposium switching circuit theory and logical design, pp 149–157

  14. H.S. Miller, R.O. Winder, Majority logic synthesis by geometric methods. IRE Trans Electron Comput EC-11, 89–90 (1962)

    Article  Google Scholar 

  15. Walus K, Schulhof G, Jullien GA, Zhang R, Wang W (2004) Circuit design based on majority gates for applications with quantum-dot cellular automata. In: 38th Asilomar conference on signals, systems and computers, Vol 2, pp 1354–1357

  16. Huo Z, Zhang Q, Huo Z, Zhang Q (2006) Logic optimization for majority gate-based nanoelectronic circuits. In: Proceedings of the international symposium on circuits and systems (ISCAS), pp 1307–1310

  17. Zhang R, Jha NK (2007) Threshold/majority logic synthesis and concurrent error detection targeting nanoelectronic implementations. In: Proceedings of the 16th ACM great lakes symposium on VLSI

  18. Bonyadi MR, Azghadi SMR, Rad NM, Navi K, Afjei E (2007) Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm. In: Proceedings of the international conference on electrical engineering, ICEE, pp 1–5

  19. Houshmand M, Khayyat SH, Rezayee R (2009) Genetic algorithm based logic optimization for multi-output majority gate-based nano-electronic circuits. In: Proceedings of 2009 IEEE international conference on intelligent computing and intelligent systems (ICIS 2009)

  20. Houshmand M, Saleh RR, Houshmand M (2011) Logic minimization for QCA circuits using genetic algorithm. In: Advances in intelligence and soft computing, Vol 96, pp 393–403

  21. I. Amlani, Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett. 77, 738–740 (2000)

    Article  Google Scholar 

  22. A. Konaka, D.W. Coitb, A.E. Smith, Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91, 992–1007 (2006)

    Article  Google Scholar 

  23. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. In: Institute of electrical and electronics engineering, pp 541–557

  24. O.P.V. Neto, M.A.C. Pacheco, C.R.H. Barbosa, Neural network simulation and evolutionary synthesis of QCA circuits. IEEE Trans. Comput. 56, 191–201 (2007)

    Article  MathSciNet  Google Scholar 

  25. Antonelli DA, Chen DZ, Dysart TJ, Hu XS, Kahng AB, Kogge PM, Murphy RC, Niemier MT (2004) Quantum-dot cellular automata (QCA) circuit partitioning: problem modeling and solutions. In: DAC 2004, San Diego

  26. S. Zhao, L. Jiao, Multi-objective evolutionary design and knowledge discovery of logic circuits based on an adaptive genetic algorithm. Genet Program Evol Mach 7, 195–210 (2006)

    Article  Google Scholar 

  27. Horowitz E, Sahni S (1983) Fundamentals of data structures. W H Freeman & Co (SD)

  28. Y.W. Leung, Y.P. Wang, Multiobjective programming using uniform design and genetic algorithm. IEEE Trans Syst Man Cybernet 30, 293–304 (2000)

    Article  Google Scholar 

  29. K.C. Tan, E.F. Khor, T.H. Lee, Multiobjective evolutionary algorithms and applications (Springer, Berlin, 2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Houshmand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaee, R., Houshmand, M. & Houshmand, M. Multi-objective optimization of QCA circuits with multiple outputs using genetic programming. Genet Program Evolvable Mach 14, 95–118 (2013). https://doi.org/10.1007/s10710-012-9173-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-012-9173-6

Keywords

Navigation