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Abstract- The RoboCup simulated soccer league is a 
dynamic, complex and uncertain environment which 
presents many challenges to machine learning 
techniques.  The asynchronous design of the RoboCup 
simulation environment can create long and 
unpredictable delays in the effects of actions, often 
causing onerous training times.  A new environment 
known as Simple Soccer is proposed which, while 
retaining much of the dynamics and complexity of 
RoboCup, provides more certainty and less delay, thus 
increasing the viability of machine learning 
techniques.  The goal of this work is to create an 
environment complex and dynamic enough that while 
low-level tactics may differ due to the removal of 
systematic uncertainty, high-level strategies directly 
applicable to the RoboCup environment can be 
developed.  This paper specifies the Simple Soccer 
environment, and presents some initial learning 
results. 

1 Introduction 

The RoboCup simulated soccer league is an important and 
useful tool for multi-agent and machine learning research 
(Kitano 1995, Kitano 1997) which provides a distributed, 
multi-agent environment in which agents have an 
incomplete and uncertain world view.  The agent 
perception and action cycles in the RoboCup environment 
are asynchronous, sometimes resulting in long and 
unpredictable delays in the completion of actions in 
response to some stimuli.  These delays, as well as the 
uncertain and incomplete world view of the agents, can 
increase the learning cycle of some machine learning 
techniques onerously. 
There is a large body of work in the area of the application 
of machine learning techniques to the challenges of 
RoboCup (e.g. Uchibe 1999, Stone 1999, Stone 2001, 
Riedmiller 2001, Luke 1998a, Luke 1998b), but because 
the RoboCup environment is so large, complex and 
unpredictable the extent to which such techniques can 
meet these challenges is not certain.  More progress would 
be made more quickly if the complexity and uncertainty 
could be reduced.  Simple Soccer is proposed as 
environment that reduces complexity and uncertainty 
sufficiently to increase the viability of machine learning 
techniques, yet retains sufficient complexity and dynamics 

to allow learnings from Simple Soccer to be directly 
transferrable to the RoboCup environment. 

2 Goal 

The primary goal of the work presented in this paper is to 
create an environment complex and dynamic enough that 
while low-level tactics may differ due to the removal of 
systematic uncertainty, high-level strategies directly 
applicable to the RoboCup environment can be developed, 
and to investigate the usefulness of using such a simplified 
system to produce coarsely trained players that can be 
further trained in the more uncertain RoboCup 
environment. 
 

3 Simple Soccer 

The environment developed for this work, named Simple 
Soccer, was inspired by the Ascii Soccer environment 
(Balch 1995).  The soccer field in Simple Soccer is 
represented by a two-dimensional grid with player and the 
ball locations specified by discrete grid co-ordinates, or 
cells.  Whereas for Ascii Soccer the goal area is the entire 
width of the playing field at each end, the goal area for 
Simple Soccer is a defined area at each end of the field, 
more in keeping with the RoboCup field.   

Player movement and sensory capabilities in Simple 
Soccer are more aligned with those of RoboCup than 
Ascii Soccer.  Whereas for Ascii Soccer player movement 
is limited to eight discrete directions, in Simple Soccer 
players may move in any direction, specified by a real- 
valued angle from -360.0o to +360.0o relative to the 
player’s current facing direction.  Similarly, the ball can 
be kicked in any direction.  At the completion of an 
action, player and ball final locations are quantized to 
discrete cells.  Unlike Ascii Soccer, in which a player’s 
sensory capability is limited to the cells immediately 
adjacent to the player, players in Simple Soccer have a 
field of vision similar to that of RoboCup.  A player’s 
field of vision is a cone-like area specified by the depth of 
the field and the angle around the centre-line.  Players are 
presented with the cell co-ordinates, direction and distance 
(number of cells) of any object of interest (ball, player or 
goal) in the player’s field of vision. 



The specific actions available to players are: 
 

turn(direction): the player turns through the angle 
specified by direction. 
 
dash(direction, power, face): the player dashes in the 
direction specified with the power specified.   
kick(direction, power, face): if the ball is within a 
kickable distance from the player, the player kicks the ball 
in the direction specified with the power specified 
 
For each of these actions: 

 
direction is specified in degrees in a clockwise direction 
relative to the direction the player is facing. 
 
power is specified as a percentage of maximum power and 
determines the number of cells the player or ball will 
travel as a result of the action. 
 
face, where specified, if true, causes the player to turn to 
face in the direction specified. 

 
A Simple Soccer unit of time is a single tick which 

corresponds to one iteration of the program’s main loop.  
At each tick the ball and players are moved, if necessary, a 
single cell (as a result of a previous action) and each 
player is presented with their new (visual) view of the 
state of the game, whereupon each player determines what 
action, if any, is to be taken and that action is begun (any 
previous action still in progress is superseded by the new 
action). 

There may be a maximum of eleven players per team in 
Simple Soccer, and team sizes may be uneven.  There is 
no referee; there are no free kicks for offside or other rule 
violations.  The ball is never out of bounds; the 
boundaries (except for the goal areas) are hard barriers.  
Unlike the RoboCup environment, in Simple Soccer there 
is no uncertainty (or introduced randomness) in response 
to actions, there is no momentum or stamina, and there is 
no loss of clarity of vision over distance etc 

4 Experiment Description 

The experiments performed are based on those described 
in previous work involving the RoboCup simulation 
league (Riley 2002). 

4.1 Overview 
Learning classifier systems (Holland 1986) are an 
example of genetic algorithms (Holland 1975) 
incorporated into models of complex systems, where the 
classifier systems are used as models of behaviour ranging 
from simple stimulus-response to more complex cognitive 
behaviour.  Classifier systems implement hierarchies of 
internal models that represent the environment, and the 
genetic algorithm uses intermittent feedback from the 

environment in order to discover the rules that represent 
those hierarchies. 

This work implements a method involving the use of a 
messy genetic algorithm (Goldberg 1989) and a fuzzy 
inference system (Zadeh 1965) in which the messy genetic 
algorithm is used to determine, by simulated evolution, the 
fuzzy ruleset which defines the set of behaviours exhibited 
by reactive agents (players) in response to stimuli. 

In addition to the Simple Soccer primitives of turn, 
dash and kick, a set of mid-level actions constructed from 
those primitives is provided for the agent being evolved.  
These are: 

 
runTowardBall: the player dashes once in the direction 
of the ball, provided the direction to the ball is known. 
 
goToBall: the player dashes towards ball until it is within 
kicking distance of the ball, provided the direction to the 
ball is known. 
 
runTowardGoal: the player dashes once in the direction 
of its goal, provided the direction to the goal is known. 
 
kickTowardGoal: the player kicks the ball once towards 
its goal, provided the direction to the goal is known. 
 
dribble: the player kicks the ball once in the direction it is 
facing, then dashes once in that direction. 
 
dribbleTowardGoal: the player kicks the ball once in the 
direction of its goal, then dashes once in that direction, 
provided the direction to the goal is known. 
 
doNothing: the player takes no new action. 

 
The player will perform one of these actions in 

response to external stimuli; the specific response being 
determined by the fuzzy ruleset.  If no action is indicated 
given the information known by the player (that is, no rule 
fires) and the ball is not visible to the player, the player 
will dash in a randomly chosen direction in an effort to 
locate the ball. 

The external stimuli used as input to the fuzzy 
inference system is the visual information supplied by the 
Simple Soccer server. 

 

4.2 Detail 
Input variables for the fuzzy rules developed by this 
method are fuzzy interpretations of the visual stimuli 
supplied to the agent by the soccer server.  Output 
variables are the fuzzy actions to be taken by the agent.  
The universe of discourse of both input and output 
variables are covered by fuzzy sets, the parameters of 
which are predefined and fixed.  Each input is fuzzified to 
have a degree of membership in the fuzzy sets appropriate 
to the input variable. 

The encoding scheme implemented for this method 
exploits the capability of messy genetic algorithms to 



encode information of variable structure and length.  The 
basic element of the coding of the fuzzy rules is a triplet 
representing a fuzzy clause and connector, with the first 
element denoting the input variable, the second the fuzzy 
set membership (or fuzzy variable) of this input variable, 
and the third the clause connector.  The rule consequent 
gene is specially coded to distinguish it from premise 
genes allowing multiple rules, or a ruleset, to be encoded 
onto a single chromosome.  Chromosomes are not fixed 
length: the length of each chromosome in the population 
varies with the length of individual rules and the number 
of rules on the chromosome.  The number of clauses in a 
rule and the number of rules in a ruleset is only limited by 
the maximum size of a chromosome.  The minimum size 
of a rule is two clauses (one premise and one consequent), 
and the minimum number of rules in a ruleset is one. 

 
The set of input variables for the premise clauses is: 
 
(Ball, Goal) 
 
and for the consequent clauses: 
 
(turn, kick, dash, runTowardBall, goToBall, 
runTowardGoal, kickTowardGoal, dribbleTowardGoal, 
dribble, doNothing) 

 
The fuzzy variables for each of the fuzzy sets 

DISTANCE, POWER and DIRECTION which describe 
the input or action variables for both the premise and 
consequent clauses are: 

 
DISTANCE:  (At, Very Near, Near, Slightly Near, 
Medium, Slightly Far, Far, Very Far) 
 
POWER: (Very Low, Low, Slightly Low, Medium, 
Slightly High, High, Very High) 
 
DIRECTION: (Left180, Very Left, Left, Slightly Left, 
Straight, Slightly Right, Right, Very Right, Right180) 

 
Each of these can be further modified by the use of a not 
operator.   
 
 
 
 
 

The set of possible clause connectors is: 
 

(and, or, *) 
 
where * indicates the connector is not used – for example, 
in the final premise and consequent clauses of a rule.  An 
example chromosome and corresponding rules are shown 
in Figure 1. 

The genetic operators implemented are cut, splice and 
mutation.  Cut and splice are analogous to the crossover 
operation of classic genetic algorithms; the mutation 
operator is the same as that of the classic genetic 
algorithm.  Since chromosomes are variable in length and 
can contain multiple rules, each chromosome represents a 
complete ruleset. 

No explicit don’ t care values are implemented for any 
attributes in this method.  Since messy genetic algorithms 
encode information of variable structure and length not all 
attributes, particularly premise variables, need be present 
in any rule, or indeed in the entire ruleset.  In other words 
the format of the messy genetic algorithm implies 
don’ t care values for all attributes since any attribute 
(premise variable) may be omitted from any or all rules, 
so generalisation is an implicit feature of this method. 

 

5 Results 

Some initial trials for both RoboCup and Simple Soccer 
were performed for comparison.  Each trial consisted of a 
population of 200 randomly initialised chromosomes 
evolved over 10 generations.  The best performing player 
from the Simple Soccer trials was then used to seed the 
population for a second RoboCup trial.  For this seeded 
trial, 50 individuals from the initial population were 
initialised to the seed chromosome, with the remainder 
randomly initialised.  The RoboCup seeded trial was also 
conducted over 10 generations.   
  

 
 
 
 
 

(B,N,O) (B,nF,A) (G,N,*) (RB,S,*) (B,A,A) (G,vN,*) (KG,M,*) (B,F,*) (GB,vF,*) 

 
Premise Consequent 

 
Rule 1: if Ball is Near or Ball is not Far and Goal is Near then runTowardBall Slow 
Rule 2: if Ball is At and Goal is Very Near then kickTowardGoal Medium 
Rule 3: if Ball is Far then goToBall Very Fast 

 
Figure 1 Chromosome and corresponding rules 
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For each of these trials: 
 

• The Roulette Wheel method of selection for 
crossover was used, and the probability of 
crossover occurring after selection was 0.8. 

• Each generation was mutated by selecting 10% 
of the population for possible mutation, then 
subjecting those selected individuals to a 
probability of mutation of 0.35, so a maximum 
of 3.5% of the population was mutated.  For 
each individual, a single gene was randomly 
selected for mutation: for a premise gene the 
input variable, fuzzy variable or connector was 
mutated; and for a consequent gene the input 
variable or fuzzy variable was mutated.  
Mutation consisted of replacement by a 
randomly selected value. 

 
Individuals were rewarded, in order of importance, for 
 

• the number of goals scored in a game 
• the number of times the ball was kicked 

during a game 
 
A game was played with the only player on the field 

being the agent under evaluation.  The player was 
placed randomly on its half of the field and oriented so 
that it was facing the end of the field to which it was 
kicking.   

 
 
 
 

A Simple Soccer game was terminated when any of the 
following was true: 

• the target fitness of 0.05 was reached 
• 120 seconds expired 
• 5 seconds elapsed with no dash executed 
• 5 seconds elapsed with no kick executed 

 
Similarly, a RoboCup game was terminated when any of 
the following was true: 

• the target fitness of 0.05 was reached 
• 120 seconds expired 
• 5 seconds elapsed with no dash executed 
• 10 seconds elapsed with no kick executed 
• the ball was kicked out of play 
 

The increase in time to wait for a kick to be executed 
for RoboCup reflects the uncertainty of that 
environment. 

Two methods of terminating the evolutionary search 
were implemented.  The first stops the search when a 
specified maximum number of generations have 
occurred; the second stops the search when the best 
fitness in the current population becomes less than a 
specified threshold.  Both methods were active, with the 
first to be encountered terminating the search. 

Figure 2 shows the average fitness of the population 
after each generation for each of the trials.  Figure 3 
shows the best individual fitness from the population 
after each generation for each of the trials. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2 Average fitness per generation. 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

Figure 3 Best fitness per generation. 



Table 1 shows the training times for each of the trials.  
It is clear from these times that players in the Simple 
Soccer environment are able to learn much faster than in 
the RoboCup environment.  This is almost certainly due to 
the removal of uncertainty from the environment. 

 
 

 Gens Elapsed 
Minutes 

Minutes/ 
Generation 

RoboCup 10 2430 243 
Simple Soccer 10 340 34 
RoboCup Seeded 10 2280 228 

 
Table 1 Training times. 

 
The best performing individual from the Simple Soccer 

trial was defined by the following rules: 
 

if  Goal is Medium Distant or Ball is Very Left or  
 Ball is Far or goal is Slightly Left and  
 Goal is Very Right and Ball is Right180 or  
 Goal is Slightly Near  
then runTowardBall Slightly Low 

 
if  Goal is Straight or Goal is Very Right or  
 Ball is not Slightly Left or Goal is Very Near or 
 Goal is Slightly Right and Goal is Left  
then kickTowardGoal Soft 

 
if  Ball is not Slightly Left or Goal is Slightly Left  
then dribbleTowardGoal Hard 

 
if  Goal is Slightly Left or Goal is Slightly Far and  
 Ball is Near or Ball is Far and Ball is Left or  
 Goal is At and Goal is Right180 or  
 Goal is Medium Distant and Ball is Very Far and 
 Goal is Straight  
then turn Left 

 
if  Ball is Left180  
then doNothing 

 
The player defined by this ruleset achieved a fitness 

value of 0.1 during training by kicking 5 goals in the 
allotted time of 120 seconds.  In subsequent tests in the 
Simple Soccer environment kicked one or more goals in 
56% of the trials conducted, whereas the same player 
tested in the RoboCup environment kicked one or more 
goals in 44% of the trials conducted. 

6 Conclusions 

The goal of this work was to create an environment with 
similar complexity and dynamics to the RoboCup 
simulated soccer environment but with reduced 
uncertainty, both in agents’  perception and in their 
interaction with the environment.  The motivation was to 
create an environment in which the training times of 

machine learning techniques would be reduced sufficiently 
so as to improve the viability of such techniques.  The 
Simple Soccer environment was proposed as a solution, 
and through some sample experiments it was shown that 
the Simple Soccer environment does aid in the reduction 
of training times for some machine learning techniques.  
High-level strategies learned in the more certain Simple 
Soccer environment are directly transferrable to the 
RoboCup environment, and when used as the starting 
point for further learning can help to reduce the training 
time in the RoboCup environment. 
Further work needs to be done in order to generalise these 
results to other machine learning techniques, as well as 
work to identify how best to transfer the learning from 
Simple Soccer to RoboCup in a way that maximises the 
benefit. 
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