
The Simple Soccer Machine Learning Environment

Jeff Riley
School of Computer Science and Information Technology

RMIT University
Melbourne, AUSTRALIA

jeff.riley@optushome.com.au

Abstract- The RoboCup simulated soccer league is a
dynamic, complex and uncertain environment which
presents many challenges to machine learning
techniques. The asynchronous design of the RoboCup
simulation environment can create long and
unpredictable delays in the effects of actions, often
causing onerous training times. A new environment
known as Simple Soccer is proposed which, while
retaining much of the dynamics and complexity of
RoboCup, provides more certainty and less delay, thus
increasing the viability of machine learning
techniques. The goal of this work is to create an
environment complex and dynamic enough that while
low-level tactics may differ due to the removal of
systematic uncertainty, high-level strategies directly
applicable to the RoboCup environment can be
developed. This paper specifies the Simple Soccer
environment, and presents some initial learning
results.

1 Introduction

The RoboCup simulated soccer league is an important and
useful tool for multi-agent and machine learning research
(Kitano 1995, Kitano 1997) which provides a distributed,
multi-agent environment in which agents have an
incomplete and uncertain world view. The agent
perception and action cycles in the RoboCup environment
are asynchronous, sometimes resulting in long and
unpredictable delays in the completion of actions in
response to some stimuli. These delays, as well as the
uncertain and incomplete world view of the agents, can
increase the learning cycle of some machine learning
techniques onerously.
There is a large body of work in the area of the application
of machine learning techniques to the challenges of
RoboCup (e.g. Uchibe 1999, Stone 1999, Stone 2001,
Riedmiller 2001, Luke 1998a, Luke 1998b), but because
the RoboCup environment is so large, complex and
unpredictable the extent to which such techniques can
meet these challenges is not certain. More progress would
be made more quickly if the complexity and uncertainty
could be reduced. Simple Soccer is proposed as
environment that reduces complexity and uncertainty
sufficiently to increase the viability of machine learning
techniques, yet retains sufficient complexity and dynamics

to allow learnings from Simple Soccer to be directly
transferrable to the RoboCup environment.

2 Goal

The primary goal of the work presented in this paper is to
create an environment complex and dynamic enough that
while low-level tactics may differ due to the removal of
systematic uncertainty, high-level strategies directly
applicable to the RoboCup environment can be developed,
and to investigate the usefulness of using such a simplified
system to produce coarsely trained players that can be
further trained in the more uncertain RoboCup
environment.

3 Simple Soccer

The environment developed for this work, named Simple
Soccer, was inspired by the Ascii Soccer environment
(Balch 1995). The soccer field in Simple Soccer is
represented by a two-dimensional grid with player and the
ball locations specified by discrete grid co-ordinates, or
cells. Whereas for Ascii Soccer the goal area is the entire
width of the playing field at each end, the goal area for
Simple Soccer is a defined area at each end of the field,
more in keeping with the RoboCup field.

Player movement and sensory capabilities in Simple
Soccer are more aligned with those of RoboCup than
Ascii Soccer. Whereas for Ascii Soccer player movement
is limited to eight discrete directions, in Simple Soccer
players may move in any direction, specified by a real-
valued angle from -360.0o to +360.0o relative to the
player’s current facing direction. Similarly, the ball can
be kicked in any direction. At the completion of an
action, player and ball final locations are quantized to
discrete cells. Unlike Ascii Soccer, in which a player’s
sensory capability is limited to the cells immediately
adjacent to the player, players in Simple Soccer have a
field of vision similar to that of RoboCup. A player’s
field of vision is a cone-like area specified by the depth of
the field and the angle around the centre-line. Players are
presented with the cell co-ordinates, direction and distance
(number of cells) of any object of interest (ball, player or
goal) in the player’s field of vision.

The specific actions available to players are:

turn(direction): the player turns through the angle
specified by direction.

dash(direction, power, face): the player dashes in the
direction specified with the power specified.
kick(direction, power, face): if the ball is within a
kickable distance from the player, the player kicks the ball
in the direction specified with the power specified

For each of these actions:

direction is specified in degrees in a clockwise direction
relative to the direction the player is facing.

power is specified as a percentage of maximum power and
determines the number of cells the player or ball will
travel as a result of the action.

face, where specified, if true, causes the player to turn to
face in the direction specified.

A Simple Soccer unit of time is a single tick which

corresponds to one iteration of the program’s main loop.
At each tick the ball and players are moved, if necessary, a
single cell (as a result of a previous action) and each
player is presented with their new (visual) view of the
state of the game, whereupon each player determines what
action, if any, is to be taken and that action is begun (any
previous action still in progress is superseded by the new
action).

There may be a maximum of eleven players per team in
Simple Soccer, and team sizes may be uneven. There is
no referee; there are no free kicks for offside or other rule
violations. The ball is never out of bounds; the
boundaries (except for the goal areas) are hard barriers.
Unlike the RoboCup environment, in Simple Soccer there
is no uncertainty (or introduced randomness) in response
to actions, there is no momentum or stamina, and there is
no loss of clarity of vision over distance etc

4 Experiment Description

The experiments performed are based on those described
in previous work involving the RoboCup simulation
league (Riley 2002).

4.1 Overview
Learning classifier systems (Holland 1986) are an
example of genetic algorithms (Holland 1975)
incorporated into models of complex systems, where the
classifier systems are used as models of behaviour ranging
from simple stimulus-response to more complex cognitive
behaviour. Classifier systems implement hierarchies of
internal models that represent the environment, and the
genetic algorithm uses intermittent feedback from the

environment in order to discover the rules that represent
those hierarchies.

This work implements a method involving the use of a
messy genetic algorithm (Goldberg 1989) and a fuzzy
inference system (Zadeh 1965) in which the messy genetic
algorithm is used to determine, by simulated evolution, the
fuzzy ruleset which defines the set of behaviours exhibited
by reactive agents (players) in response to stimuli.

In addition to the Simple Soccer primitives of turn,
dash and kick, a set of mid-level actions constructed from
those primitives is provided for the agent being evolved.
These are:

runTowardBall: the player dashes once in the direction
of the ball, provided the direction to the ball is known.

goToBall: the player dashes towards ball until it is within
kicking distance of the ball, provided the direction to the
ball is known.

runTowardGoal: the player dashes once in the direction
of its goal, provided the direction to the goal is known.

kickTowardGoal: the player kicks the ball once towards
its goal, provided the direction to the goal is known.

dribble: the player kicks the ball once in the direction it is
facing, then dashes once in that direction.

dribbleTowardGoal: the player kicks the ball once in the
direction of its goal, then dashes once in that direction,
provided the direction to the goal is known.

doNothing: the player takes no new action.

The player will perform one of these actions in

response to external stimuli; the specific response being
determined by the fuzzy ruleset. If no action is indicated
given the information known by the player (that is, no rule
fires) and the ball is not visible to the player, the player
will dash in a randomly chosen direction in an effort to
locate the ball.

The external stimuli used as input to the fuzzy
inference system is the visual information supplied by the
Simple Soccer server.

4.2 Detail
Input variables for the fuzzy rules developed by this
method are fuzzy interpretations of the visual stimuli
supplied to the agent by the soccer server. Output
variables are the fuzzy actions to be taken by the agent.
The universe of discourse of both input and output
variables are covered by fuzzy sets, the parameters of
which are predefined and fixed. Each input is fuzzified to
have a degree of membership in the fuzzy sets appropriate
to the input variable.

The encoding scheme implemented for this method
exploits the capability of messy genetic algorithms to

encode information of variable structure and length. The
basic element of the coding of the fuzzy rules is a triplet
representing a fuzzy clause and connector, with the first
element denoting the input variable, the second the fuzzy
set membership (or fuzzy variable) of this input variable,
and the third the clause connector. The rule consequent
gene is specially coded to distinguish it from premise
genes allowing multiple rules, or a ruleset, to be encoded
onto a single chromosome. Chromosomes are not fixed
length: the length of each chromosome in the population
varies with the length of individual rules and the number
of rules on the chromosome. The number of clauses in a
rule and the number of rules in a ruleset is only limited by
the maximum size of a chromosome. The minimum size
of a rule is two clauses (one premise and one consequent),
and the minimum number of rules in a ruleset is one.

The set of input variables for the premise clauses is:

(Ball, Goal)

and for the consequent clauses:

(turn, kick, dash, runTowardBall, goToBall,
runTowardGoal, kickTowardGoal, dribbleTowardGoal,
dribble, doNothing)

The fuzzy variables for each of the fuzzy sets

DISTANCE, POWER and DIRECTION which describe
the input or action variables for both the premise and
consequent clauses are:

DISTANCE: (At, Very Near, Near, Slightly Near,
Medium, Slightly Far, Far, Very Far)

POWER: (Very Low, Low, Slightly Low, Medium,
Slightly High, High, Very High)

DIRECTION: (Left180, Very Left, Left, Slightly Left,
Straight, Slightly Right, Right, Very Right, Right180)

Each of these can be further modified by the use of a not
operator.

The set of possible clause connectors is:

(and, or, *)

where * indicates the connector is not used – for example,
in the final premise and consequent clauses of a rule. An
example chromosome and corresponding rules are shown
in Figure 1.

The genetic operators implemented are cut, splice and
mutation. Cut and splice are analogous to the crossover
operation of classic genetic algorithms; the mutation
operator is the same as that of the classic genetic
algorithm. Since chromosomes are variable in length and
can contain multiple rules, each chromosome represents a
complete ruleset.

No explicit don’ t care values are implemented for any
attributes in this method. Since messy genetic algorithms
encode information of variable structure and length not all
attributes, particularly premise variables, need be present
in any rule, or indeed in the entire ruleset. In other words
the format of the messy genetic algorithm implies
don’ t care values for all attributes since any attribute
(premise variable) may be omitted from any or all rules,
so generalisation is an implicit feature of this method.

5 Results

Some initial trials for both RoboCup and Simple Soccer
were performed for comparison. Each trial consisted of a
population of 200 randomly initialised chromosomes
evolved over 10 generations. The best performing player
from the Simple Soccer trials was then used to seed the
population for a second RoboCup trial. For this seeded
trial, 50 individuals from the initial population were
initialised to the seed chromosome, with the remainder
randomly initialised. The RoboCup seeded trial was also
conducted over 10 generations.

(B,N,O) (B,nF,A) (G,N,*) (RB,S,*) (B,A,A) (G,vN,*) (KG,M,*) (B,F,*) (GB,vF,*)

Premise Consequent

Rule 1: if Ball is Near or Ball is not Far and Goal is Near then runTowardBall Slow
Rule 2: if Ball is At and Goal is Very Near then kickTowardGoal Medium
Rule 3: if Ball is Far then goToBall Very Fast

Figure 1 Chromosome and corresponding rules

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10
Generation

F
itn

es
s

RoboCup Sim ple Soccer RoboCup Seeded

0

0.5

1

1 2 3 4 5 6 7 8 9 10
Generation

F
itn

es
s

RoboCup Sim ple Soccer RoboCup Seeded

For each of these trials:

• The Roulette Wheel method of selection for
crossover was used, and the probability of
crossover occurring after selection was 0.8.

• Each generation was mutated by selecting 10%
of the population for possible mutation, then
subjecting those selected individuals to a
probability of mutation of 0.35, so a maximum
of 3.5% of the population was mutated. For
each individual, a single gene was randomly
selected for mutation: for a premise gene the
input variable, fuzzy variable or connector was
mutated; and for a consequent gene the input
variable or fuzzy variable was mutated.
Mutation consisted of replacement by a
randomly selected value.

Individuals were rewarded, in order of importance, for

• the number of goals scored in a game
• the number of times the ball was kicked

during a game

A game was played with the only player on the field

being the agent under evaluation. The player was
placed randomly on its half of the field and oriented so
that it was facing the end of the field to which it was
kicking.

A Simple Soccer game was terminated when any of the
following was true:

• the target fitness of 0.05 was reached
• 120 seconds expired
• 5 seconds elapsed with no dash executed
• 5 seconds elapsed with no kick executed

Similarly, a RoboCup game was terminated when any of
the following was true:

• the target fitness of 0.05 was reached
• 120 seconds expired
• 5 seconds elapsed with no dash executed
• 10 seconds elapsed with no kick executed
• the ball was kicked out of play

The increase in time to wait for a kick to be executed
for RoboCup reflects the uncertainty of that
environment.

Two methods of terminating the evolutionary search
were implemented. The first stops the search when a
specified maximum number of generations have
occurred; the second stops the search when the best
fitness in the current population becomes less than a
specified threshold. Both methods were active, with the
first to be encountered terminating the search.

Figure 2 shows the average fitness of the population
after each generation for each of the trials. Figure 3
shows the best individual fitness from the population
after each generation for each of the trials.

Figure 2 Average fitness per generation.

Figure 3 Best fitness per generation.

Table 1 shows the training times for each of the trials.
It is clear from these times that players in the Simple
Soccer environment are able to learn much faster than in
the RoboCup environment. This is almost certainly due to
the removal of uncertainty from the environment.

 Gens Elapsed
Minutes

Minutes/
Generation

RoboCup 10 2430 243
Simple Soccer 10 340 34
RoboCup Seeded 10 2280 228

Table 1 Training times.

The best performing individual from the Simple Soccer

trial was defined by the following rules:

if Goal is Medium Distant or Ball is Very Left or
 Ball is Far or goal is Slightly Left and
 Goal is Very Right and Ball is Right180 or
 Goal is Slightly Near
then runTowardBall Slightly Low

if Goal is Straight or Goal is Very Right or
 Ball is not Slightly Left or Goal is Very Near or
 Goal is Slightly Right and Goal is Left
then kickTowardGoal Soft

if Ball is not Slightly Left or Goal is Slightly Left
then dribbleTowardGoal Hard

if Goal is Slightly Left or Goal is Slightly Far and
 Ball is Near or Ball is Far and Ball is Left or
 Goal is At and Goal is Right180 or
 Goal is Medium Distant and Ball is Very Far and
 Goal is Straight
then turn Left

if Ball is Left180
then doNothing

The player defined by this ruleset achieved a fitness

value of 0.1 during training by kicking 5 goals in the
allotted time of 120 seconds. In subsequent tests in the
Simple Soccer environment kicked one or more goals in
56% of the trials conducted, whereas the same player
tested in the RoboCup environment kicked one or more
goals in 44% of the trials conducted.

6 Conclusions

The goal of this work was to create an environment with
similar complexity and dynamics to the RoboCup
simulated soccer environment but with reduced
uncertainty, both in agents’ perception and in their
interaction with the environment. The motivation was to
create an environment in which the training times of

machine learning techniques would be reduced sufficiently
so as to improve the viability of such techniques. The
Simple Soccer environment was proposed as a solution,
and through some sample experiments it was shown that
the Simple Soccer environment does aid in the reduction
of training times for some machine learning techniques.
High-level strategies learned in the more certain Simple
Soccer environment are directly transferrable to the
RoboCup environment, and when used as the starting
point for further learning can help to reduce the training
time in the RoboCup environment.
Further work needs to be done in order to generalise these
results to other machine learning techniques, as well as
work to identify how best to transfer the learning from
Simple Soccer to RoboCup in a way that maximises the
benefit.

Bibliography

Balch, T. The Ascii Robot Soccer Home Page.
http://www-2.cs.cmu.edu/~trb/soccer/ 1995.

Goldberg, D., Korb, B., and Deb, K. Messy Genetic
Algorithms: Motivation, Analysis, and First Results. In
Complex Systems, 3, 1989.

Holland, J. Adaptation in Natural and Artificial Systems.
Ann Arbor: The University of Michigan Press, 1975.

Holland, J., Holyoak, K., Nisbett, R., Thagard, P.
Induction: Processes of Inference, Learning, and
Discovery. MIT Press, 1986.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and
Osawa, E. RoboCup: The Robot World Cup Initiative. In
Proceedings of the 1995 International Joint Conference on
Artificial Intelligence (IJCAI’95), Workshop on
Entertainment and AI/ALife, Montreal, Canada, 1995.

Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi,
S., Osawa, E., Matsubara, H., Noda, I. and Asada, M. The
RoboCup Synthetic agent Challenge 97. In Proceedings
of the Fifteenth International Joint Conference on
Artificial Intelligence, pp24-29, San Francisco CA, USA,
1997.

Luke, S. Genetic Programming Produced Competitive
Soccer Softbot Teams for RoboCup97. In Proceedings of
the Third Conference on Genetic Programming,
Madison WI, USA, 1998(a).

Luke, S. Evolving SoccerBots: A Retrospective. In
Proceedings of the Twelfth Annual Conference of the
Japanese Society for Artificial Intelligence, Tokyo, Japan,
1998(b).

Riedmiller, M., Merke, A., Meier, D., Hoffman, A.,
Sinner, A., Thate, O. and Ehrmann, R. Karlsruhe
Brainstormers – a Reinforcement Learning Approach to
Robotic Soccer. In Peter Stone, Tucket Balch and
Gerhard Kraetszchmar, editors, RoboCup-2000: Robot
Soccer World Cup IV. Springer Verlag, Berlin, 2001

Riley, J. and Ciesielski, V. Evolving Fuzzy Rules for
Reactive Agents in Dynamic Environments. In
Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution And Learning , Singapore, 2002.

Stone, P. and Sutton, R. Scaling Reinforcement Learning
Toward RoboCup Soccer. In Proceedings of the
Eighteenth International Conference on Machine
Learning, Williamstown MA, USA, 2001.

Stone, P. and Veloso, M. Team-partitioned, Opaque-
transition Reinforcement Learning. In Proceedings of the
Third International Conference on Autonomous Agents,
Seattle WA, USA, 1999.

Uchibe, E. Cooperative Behavior Acquisition by
Learning and Evolution in a Multi-Agent Environment for
Mobile Robots. PhD thesis, Osaka University, 1999.

Zadeh, L. Fuzzy Sets. Journal of Information and
Control, Vol 8, 1965.

