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We study the approximate state preparation problem on noisy intermediate-scale quantum (NISQ) 
computers by applying a genetic algorithm to generate quantum circuits for state preparation. The 
algorithm can account for the specific characteristics of the physical machine in the evaluation of 
circuits, such as the native gate set and qubit connectivity. We use our genetic algorithm to optimize 
the circuits provided by the low-rank state preparation algorithm introduced by Araujo et al., and 
find substantial improvements to the fidelity in preparing Haar random states with a limited number 
of CNOT gates. Moreover, we observe that already for a 5-qubit quantum processor with limited 
qubit connectivity and significant noise levels (IBM Falcon 5T), the maximal fidelity for Haar random 
states is achieved by a short approximate state preparation circuit instead of the exact preparation 
circuit. We also present a theoretical analysis of approximate state preparation circuit complexity to 
motivate our findings. Our genetic algorithm for quantum circuit discovery is freely available at https://
github .com /beratyenilen /qc -ga.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Quantum computing has gained a lot of attention in the recent 
years mainly due to the continued development of quantum hard-
ware by both academic research groups and companies. Significant 
speed-ups in certain computational tasks by quantum computers 
were theoretically demonstrated already in the 1990’s by several 
authors [1–4]. However, a quantum advantage for specific compu-
tational problems was only recently experimentally demonstrated 
[5,6]. This has brought the field past the proof-of-concept stage 
to a point, where real-world applications for quantum computing 
are starting to emerge, although still severely limited by the hard-
ware. First applications are expected to be simulations of quantum 
systems and quantum machine learning, as these typically have 
lower hardware requirements compared to many other potential 
applications, which require higher computational fidelity and thus 
quantum error correction with additional overhead [7].
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The application of genetic algorithms to quantum circuit dis-
covery has already been discussed in the literature for quite a 
while (see e.g. [8–13]). Automating the design of quantum algo-
rithms is an appealing idea, as the behavior of quantum systems, 
such as a quantum processor, is often unintuitive and challeng-
ing to understand. However, only recently the growth of classical 
and quantum computational resources has started to allow for the 
practical feasibility of this approach. Genetic algorithms have re-
cently been successfully applied to quantum circuit optimization, 
e.g., in quantum machine learning [14–16] and chemistry [17], and 
specialized software packages have been developed for the task 
[18]. The original inspiration for our work was however the paper 
[19] by Potoček et al., who obtained promising results in applying 
a multi-objective genetic algorithm to discover optimized quan-
tum circuits for the implementation of quantum Fourier transform 
and Grover search. With the multi-objective approach not only one 
finds circuits that reproduce the exact desired unitary, but the al-
gorithm can also produce a set of alternative circuits with variable 
trade-offs between accuracy and circuit depth. This can be highly 
desirable, when running the circuit on physical hardware, as the 
error rate grows exponentially as a function of the circuit depth in 
the absence of error correction.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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State preparation is among the most fundamental tasks in 
quantum computing. Indeed, essentially all quantum algorithms 
proceed by preparing some quantum state for the qubits, whose 
statistics contains information for solving the computational prob-
lem at hand. The state preparation problem can be stated as fol-
lows: Given some set of basis gates, find a quantum circuit com-
posed of these gates, which transforms the all-zeros state |00 . . . 0〉
to some target state |ψ〉 [20,21]. Besides being a suitable first prob-
lem to gauge the performance of our genetic algorithm for circuit 
discovery, this problem also has practical significance. If the same 
state needs to be prepared a large number of times during the run-
ning of the algorithm, as is often the case due to the probabilistic 
nature of quantum computing, small gains in the preparation pro-
cess of the state may lead to significant savings in the running 
time of the algorithm.

The minimum number of gates required to reach a certain 
state (possibly with a margin of error) from a fixed reference 
state is called the quantum circuit complexity of a quantum state 
[22,23]. Our genetic algorithm for state preparation provides es-
timates of the quantum circuit complexity of multi-qubit states. 
On the theory side, quantum circuit complexity is of fundamen-
tal importance for several reasons. Most fundamentally, the diffi-
culty of a computational task can be quantified by how the circuit 
complexity scales as a function of the input size. Understanding 
the quantum circuit complexity of different computational prob-
lems has far-reaching practical consequences, e.g., for the safety of 
cryptographic protocols. In condensed matter theory, phase transi-
tions have recently been studied with quantum circuit complexity 
[24–26]. On the other hand, in quantum gravity circuit complex-
ity has been the topic of intense research, in particular in rela-
tion to the anti de Sitter/conformal field theory (AdS/CFT) duality 
through the ‘complexity=volume’ [27,28] and ‘complexity=action’ 
[29] conjectures, with attempts to relate quantum circuit complex-
ity of quantum field theory states to spacetime geometry.

In this work, we developed a genetic algorithm enabling us to 
find quantum circuits, which provide trade-offs between weighted 
circuit depth (‘circuit cost’) and the fidelity of the output state. 
We then applied the genetic algorithm to find approximate state 
preparation circuits for 1000 Haar random states of 5 qubits, us-
ing the qubit connectivity and the noise model of a 5-qubit IBM 
Falcon 5T processor provided by IBM Qiskit. More specifically, we 
first applied the low-rank state preparation (LRSP) algorithm intro-
duced in [30] to the states, and then further optimized the circuits 
with the genetic algorithm to study their optimality. For all the 
states, the fidelity with noise is maximized by an approximate cir-
cuit. Theoretical analysis shows that, in the absence of noise, the 
fidelity of approximate circuits approaches unity exponentially as 
the circuit depth increases, while noise causes an exponential de-
cay in fidelity as a function of the circuit depth. It is the delicate 
balance of these two effects, which allows to find approximate cir-
cuits that maximize the noisy fidelity. We find that the maximal 
noisy fidelity of the output states is increased by 9.4% on average 
with the circuits found by the genetic algorithm as compared to 
the circuits given by the LRSP algorithm, with maximum observed 
relative improvement of 38%.

The structure of the rest of the paper is as follows. In Section 2
we discuss the state preparation problem in more detail. We also 
discuss the effect of noise on the state preparation problem on 
physical hardware, and provide a theoretical analysis of the rela-
tion between circuit depth and state preparation fidelity. Section 3
describes the detailed implementation of our genetic algorithm. In 
Section 4 we explore the performance of our algorithm, and show 
that we improve on the LRSP algorithm results. Section 5 provides 
first a summary and discussion of the results. Finally, we provide 
some pointers for the direction of future work.
2

2. State preparation problem in the presence of noise

2.1. Problem description

Let us restate what we call in this paper the exact state prepa-
ration problem more precisely. Let n be a positive integer. We are 
given

• an n-qubit state |target〉, the target state, and
• a universal set of quantum gates G .

Quantum gates are typically assumed to be simple unitaries, which 
act only on a few qubits at a time.1 Some gates, such as a 1-
qubit rotation gate Rz(θ), may be parametrized by one or more 
real parameters. Universality of the gate set implies that we can 
approximate any n-qubit unitary to an arbitrary precision ε > 0 by 
a finite sequence of gates from the gate set. Several examples of 
universal gate sets exist. However, in this work we mainly concen-
trate on the universal gate set

G IBM = {Rz,
√

X, X,CNOT} ,

which has been experimentally implemented as the native gate set 
of IBM quantum processors. The exact state preparation problem 
then asks us to find a sequence of gates gl gl−1 · · · g2 g1, gk ∈ G ∀k, 
such that

gl gl−1 · · · g2 g1|00 . . . 0〉 = |target〉 .

Upper bounds on the number of CNOT gates for exact state prepa-
ration without ancilla qubits have been derived and improved 
upon by several different authors [20,31,32,21,33].2 Typically only 
the CNOT count is considered for near-term applications, as the er-
ror rates of 1-qubit gates are an order of magnitude smaller. Often 
the connectivity of the qubits is not restricted in deriving these re-
sults, which means that the CNOT gates may act on any pair of 
qubits. The strictest bounds to our knowledge on the number of 
CNOT gates for all-to-all connectivity are given by [21,33]:

Cub =
{

23
24 2n − 3

2 2
n+1

2 + 4
3 , n odd (n ≥ 5)

23
24 2n − 2

n
2 +1 + 5

3 , n even
.

However, the qubit connectivity may also be restricted without 
changing the problem significantly. This brings the problem closer 
to practice, as the connectivity of qubits is usually heavily re-
stricted on physical hardware, but makes theoretical analysis more 
challenging. The only work we found considering restricted con-
nectivity is [32], where the authors consider the state preparation 
problem on a linear chain of qubits. The difference in CNOT counts 
between different topologies is always polynomial, as one may per-
mute qubits using a polynomial number of SWAP gates, but it may 
still have a significant contribution in practice.

Also, the approximate state preparation problem may be con-
sidered, which asks us to find a sequence of gates gl gl−1 · · · g2 g1, 
gk ∈ G ∀k, such that

|〈target|gl gl−1 · · · g2 g1|00 . . . 0〉|2 < δ

1 Some implementations of quantum processors, such as ion traps, may allow for 
gates, which act on all the qubits simultaneously. However, here we mostly concen-
trate on superconducting devices, such as transmon qubits.

2 In this paper we only consider the case without ancilla qubits. With the use 
of ancilla qubits the circuit depth can be significantly reduced, see e.g. [34,35]. The 
closely related task of unitary synthesis has also been the subject of active research 
efforts recently, see e.g. [33,36–38].
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Fig. 1. Histogram of noisy fidelities for 1000 simulated state preparation circuits for 
2, 3, 4 and 5 qubits provided by the standard Qiskit library method. The simulations 
were performed using the IBM Qiskit FakeVigo backend.

for some fixed δ > 0. Upper bounds on the number of CNOT gates 
in these cases are much less known. A recent approach to numer-
ically estimate the bound for a small number of qubits is found in 
[39]. However, we have been unable to find a theoretical analysis 
of the approximate state preparation problem. In the next sub-
section (and in Appendix A) we provide a back-of-the-envelope 
theoretical analysis of the optimal trade-off between fidelity and 
CNOT count, which we later confirm with our numerical results 
obtained with the genetic algorithm.

The state preparation problem for a physical quantum computer 
is somewhat different from the abstract version of the problem 
due to the presence of noise. Even if we could find the abso-
lute minimum depth circuit, which prepares the target state ex-
actly, this may still not be the best circuit in practice. Producing 
a generic state of n qubits exactly requires an exponential ∼ 2n

number of gates, which makes the circuit basically useless with 
the non-negligible levels of noise in the current hardware, for just 
a moderate number of qubits. This is demonstrated in Fig. 1, where 
we have plotted the performance of the standard IBM Qiskit ex-
act state preparation method (based on the algorithm presented in 
[20]) for an increasing number of qubits in the presence of sim-
ulated noise. Therefore, what we ideally want to find is a circuit, 
which offers an optimal trade-off between the circuit depth (or the 
CNOT count) and the noise-free error in the target state such that 
the total error in the presence of noise is minimized. This is where 
a genetic algorithm becomes particularly useful, as it can perform 
simultaneous multi-objective optimization on these parameters. In 
Section 3 we will explore in detail the application of our genetic 
algorithm to the state preparation problem.

2.2. Theoretical analysis

On a theoretical level, the trade-off between circuit length and 
fidelity can be understood in the following way. First of all, let us 
consider the dependence of the final state fidelity on the length of 
the circuit in the presence of noise. For simplicity imagine that all 
our gates have the same error rate p. Then the probability of no 
errors for a circuit of length l is P (no error) = (1 − p)l . Assuming 
that any error takes us to an approximately orthogonal state, we 
get for the final state fidelity

F (ρfinal, Ucirc|00 . . . 0〉) ≈ (1 − p)l ,

which shows an exponential decrease in fidelity as the circuit 
length increases. In practice, at least for a superconducting NISQ 
3

device, we may consider l to be the number of CNOT gates in the 
circuit to get a reasonable estimate, since the single-qubit gates 
have error rates that are typically an order of magnitude smaller.

On the other hand, we may reduce the effects of noise by em-
ploying a shorter circuit, which approximates the target state. In 
Appendix A we estimate the dependence of the noise-free error 
ε on the CNOT count l in preparing an arbitrary state. We find 
that (given certain assumptions discussed in more detail in the ap-
pendix) we may approximate

ε ≈ exp

[
− A(n)

2

l

lph
− B(n)

2

]
,

where

A(n) =
(2 ln 2)n + ln

(
n(n−1)

2

)
2n − n − 1

, B(n) = (ln 2)n2

2n − n − 1
,

and n is the number of qubits. Moreover, lph is the average number 
of physical CNOT gates required to implement one logical CNOT 
gate, which reflects the connectivity of the qubits. We observe that 
the error ε decreases exponentially as a function of the number of 
CNOT gates l. This is essentially due to the fact that the number of 
states or, more precisely, the fraction of the Hilbert space volume 
reached with a fixed error ε � 1 increases exponentially in l: Each 
CNOT gate allows for two more single-qubit rotations (each with 
two independent parameters) to be added after it, thus increasing 
the dimensionality of the subspace of states, which can be reached 
without error, by 4. Since the dimensionality grows linearly in l, 
the volume grows exponentially. Thus, the error ε needed to cover 
the whole Hilbert space (i.e., to reach the volume of the full Hilbert 
space) decreases exponentially in l. Accordingly, we should be able 
to get a decent approximation to any state with a relatively small 
number of CNOT gates as compared to the circuit producing the 
exact state.

Now, imagine we want to produce the target state |target〉 with 
our noisy quantum computer. We may reach noise-free fidelity

F (|approx〉, |target〉) = 1 − ε2 ≈ 1 − exp

[
−A(n)

l

lph
− B(n)

]

with a circuit containing at most l CNOT gates and outputting the 
approximation state |approx〉. When we run this circuit on the 
noisy quantum computer, the fidelity reduces approximately by the 
factor (1 − p)l , where p is the error rate of the CNOT gates.3 Thus, 
we reach a total fidelity

F (ρnoisy, |target〉) ≈ (1 − p)l
(

1 − exp

[
−A(n)

l

lph
− B(n)

])
.

The total fidelity in the presence of noise has a global maximum 
at

l∗
lph

= 1

A(n)
ln

(
1 − A(n)

ln(1 − p)

)
− B(n)

A(n)
,

meaning that at length l∗ the trade-off between circuit accuracy 
and noise is optimized. (See Appendix B for an asymptotic analysis 
of these formulae.)

Unfortunately, in practice the number lph of physical CNOT 
gates per one logical CNOT gate is not easy to compute exactly, 
since the distribution is unknown. However, a lower bound is pro-
vided by the average distance 〈d〉 between qubit pairs, lph ≥ 〈d〉, 

3 As we later note in fitting these formulae to our numerical results, the error rate 
p also accounts implicitly for 1-qubit gates errors, decoherence and other possible 
errors that crop up during the computation. Thus, we may expect p to be larger in 
practice than the bare CNOT error rate.
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since in order to implement a CNOT between an arbitrary pair of 
qubits we need to at least connect the qubits via CNOT gates. An 
upper limit is provided by lph ≤ 1 + 6(〈d〉 − 1), since we may al-
ways move distant qubits next to each other by permuting qubits 
with SWAP gates before applying the CNOT gate, and then move 
the qubits back to their original positions afterwards. (However, 
this is usually not the optimal way to perform the logical CNOT 
gate.) Each SWAP gate requires 3 CNOT gates, so altogether we 
need 6 CNOT gates to move a qubit one step forward and then 
back. Using these estimates, we find that for a small number of 
qubits a significant reduction of noise can be achieved by us-
ing short approximate circuits for state preparation tasks. For ex-
ample, for a linear chain of 10 qubits (n = 10, lph ∼ 〈d〉 ≈ 3.7) 
with a CNOT error rate p = 0.01 we find the maximum value of 
F (ρnoise, |target〉)max ≈ 0.163 at circuit length l∗ = 67. For the ex-
act state preparation circuit of length l ≈ 210lph the total fidelity 
drops essentially down to zero. In Section 4 we will see that these 
formulae are reproduced reasonably well by our numerical experi-
ments.

3. Multi-objective optimization using genetic algorithms

Genetic algorithms are heuristic optimization algorithms moti-
vated by the evolutionary processes in nature [11,40]. The basic 
idea is that we have a population of candidate solutions to the 
problem described by their genomes, which are iteratively refined 
though selective breeding. Individual solutions are selected from 
the population for breeding (i.e., to mutate or combine with other 
selected solutions) based on their fitness, which measures how 
well they solve the desired problem. Diversity in the population 
is maintained by mutations. The selection pressure on the popula-
tion guides it towards more optimal solutions. Genetic algorithms 
seem to be particularly well suited to global optimization prob-
lems, which present a complex fitness landscape.

Since genetic algorithms deal with populations of candidate 
solutions, they are also naturally adapted to multi-objective opti-
mization problems [40]. In this case there exist several different 
properties of the solutions, which we try to optimize simulta-
neously, but which cannot be simultaneously optimized to their 
global minima/maxima. In this case, the best we can do is to find 
solutions with a reasonable trade-off between the different de-
sired properties. Several multi-objective genetic algorithms have 
been developed in the past, such as Fast Non-dominated Sorting 
Genetic Algorithm (NSGA2) and Improved Strength Pareto Evolu-
tionary Algorithm (SPEA2), which perform very well against many 
different kind of problems. In this work we apply the NSGA2 al-
gorithm [41] for ranking and selection of the candidate solutions, 
as it is implemented in the DEAP Python package [42], while ge-
netic representation and the evolutionary operations of mutation 
and cross-over for quantum circuits are adapted from the work of 
Potoček et al. [19]. Let us now describe some of the details of the 
implementation. Our full implementation can be found at [43].

The problem instance is defined by the target state |target〉 and 
the set of allowed gates. In this work, we focus on the IBM quan-
tum processors with the native gate set

G IBM = {Rz(θ), X,
√

X,CNOT}
where Rz(θ) = ei Zθ/2, θ ∈ [0, 2π) is the parametrized rotation by 
angle θ around the z-axis on the Bloch sphere. This set of gates 
constitutes a universal gate set, where the only native multi-qubit 
gate is the CNOT gate. Moreover, the allowed CNOT gates are lim-
ited by the qubit connectivity of the quantum processor. A quan-
tum circuit C is represented in the genetic algorithm by a genome, 
which is just a list of tuples of form (g, q), where g ∈ G IBM and q
is a list of indices specifying the qubits on which the gate g acts. 
4

The operations, which are used to modify circuits, are defined as 
follows:

• Operations acting on single gates within one circuit:
1. Discrete uniform mutation: Iterate over all gates in the cir-

cuit and randomly change the target and/or control qubits 
with probability inversely proportional to the length of the 
circuit.

2. Continuous uniform mutation: Iterate over all gates in the 
circuit and adjust the parameter for the Rz(θ) gates.

3. Move gate: A randomly chosen gate is moved to a new ran-
domly chosen position in the circuit.

4. Insert mutate invert: Apply a discrete mutation on a single 
gate, after which a randomly selected gate and its inverse 
are placed immediately before and immediately after, re-
spectively.

• Operations acting on sequences of gates within one circuit:
5. Sequence insertion: Generate a random gate sequence, 

which is then inserted at a random point in the gate list.
6. Sequence and inverse insertion: Apply a sequence insertion 

at one point and insert the inverse sequence at a later point 
in the gate list.

7. Sequence deletion: Delete a randomly selected interval in 
the gate list.

8. Sequence replacement: Sequence deletion followed by se-
quence insertion.

9. Sequence swap: Swap two randomly chosen sequences in 
the gate list.

10. Sequence scramble: Pick a sequence in the gate list ran-
domly, and perform a random permutation on that se-
quence.

• Operations acting on two circuits:
11. Crossover: Select a random number of gates from the be-

ginning of the first parent circuit, disregard the same num-
ber of gates from the second parent, and combine them into 
a child circuit. Additionally, a second child with the oppo-
site combination is returned as well.

• Operations modifying other properties of a single circuit:
12. Permutation mutation: Permute the mapping of logical 

qubits to physical qubits.
13. Clean: Remove all pairs of subsequent gates that are in-

verses of each other, and combine subsequent pairs of z-
rotations. Iterate until no simplifications are found.

Single-gate operations 1–4 depend on the expected mutation count 
(EMC) parameter, which is a fixed constant during the evolution. 
For these operations the probability of a mutation on a single gate 
is given by EMC/l, where l is the length of the gate list. Operation 2 
also takes an additional continuous mutation width (CMW) param-
eter for the adjustment of parametrized gates. The gate parameters 
are adjusted by adding a value from Gaussian distribution with 
standard deviation CMW/ε , where ε the error of the circuit. With 
this approach the parameter will be adjusted less for more optimal 
circuits. Sequence operations 5–10 pick the length of the sequence 
randomly from a geometric distribution with the mean value given 
by the expected sequence length (ESL) parameter, which is another 
fixed constant. Constants EMC, CMW and ESL are all set to 2.0 by 
default, following Potoček et al. [19]. While the evolutionary oper-
ations above were mostly adapted from Potoček et al. [19], some 
have been altered for the purposes of this implementation.

Before running the genetic algorithm, parameters such as the 
population size, the number of generations, the number of qubits, 
and the simulation backend must be initialized. Some parameters, 
such as the noise model, basis gates, and the connectivity can be 
taken, e.g., from the desired simulated Qiskit backend, but can also 
be adjusted if needed. The population is initialized with circuits 
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obtained from the LRSP algorithm [30]. The remaining population 
is filled with randomly generated circuits. The size of the popula-
tion stays constant during the evolution.

Candidate circuits in every generation are evaluated with re-
spect to two criteria:

1. Circuit cost: Defined as

cost = (number of single-qubit gates)

+ 10 × (number of CNOT gates) .

2. Fidelity: Apply the unitary UC corresponding to the circuit C
to the initial state |00 . . . 0〉, and compute the fidelity

F (|target〉, UC |00 . . . 0〉) = |〈target|UC |00 . . . 0〉|2

with respect to the target state.4

In comparing circuits, a circuit is said to dominate those circuits, 
which have both a lower fidelity and a higher cost. The opti-
mal ‘non-dominated’ circuits are those, which are not dominated 
by any other circuit. After evaluation the circuits are sorted in 
a list from best to worst using the multi-objective NSGA-2 non-
dominated sorting algorithm. Essentially, the circuits are ranked 
according to their dominance: Non-dominated circuits get rank 1; 
those circuits, which are dominated only by rank 1 circuits, get 
rank 2, etc.

The production of the next generation proceeds as follows. First, 
the best 10% of the population according to their rank are moved 
directly into the next generation. If the circuits from a certain 
rank do not all fit into the 10%, the chosen ones are picked ran-
domly. Then, the remaining 90% of the next generation is filled 
with modified versions, i.e., offspring of the circuits in the current 
generation. First, the rank of the parent circuit is picked according 
to a Boltzmann-like distribution, where the probability of a rank r
to be chosen is proportional to e−r . After the rank has been cho-
sen, any circuit is picked from that rank with an equal probability. 
New candidates are generated from the chosen circuits with evo-
lutionary operations listed above until the population is filled for 
the next generation. Evolutionary operations are picked randomly 
with equal probability. This procedure results in a new generation 
of circuits with an altered population. The process is iterated over 
for a given number of generations.

Once the algorithm has been run for a given number of gener-
ations, a final ‘clean’ operation is performed on every circuit of the 
final population to remove all the gates that trivially cancel each 
other. The final population is then saved alongside a DEAP logbook 
file that contains statistical data for every generation.

4. Results

For our target states we generated 1000 random statevectors for 
5 qubits, sampled from the uniform Haar measure. For each state, 
the genetic algorithm was seeded with circuits obtained from the 
LRSP algorithm (transpiled using the Qiskit transpiler), and then 
run on the Triton supercomputer cluster [44] with population of 
400 for 30 000 generations. Without multithreading, the duration 
of a single run for one state varied from 32 to 50 hours. The 
backend simulation and noise model were implemented from IBM 

4 In the current implementation the application of the unitary UC and the com-
putation of the fidelity is done via classical simulation. This is the most resource-
intensive part of the algorithm. However, one could imagine moving this part of the 
algorithm to be performed by a quantum computer if one had an access to a good 
enough machine.
5

Qiskit’s ‘FakeVigo’ backend, which models a 5-qubit IBM Falcon 5T 
processor.

The best non-dominated circuits found for a given state re-
produce the approximately exponential convergence to the exact 
state as a function of the number of CNOT gates (in the absence 
of noise), as predicted by our theoretical analysis. See Fig. 2 for 
examples of results for four arbitrarily chosen individual random 
states. For each state the genetic algorithm was run 100 times, and 
the non-dominated solutions of the final populations are plotted in 
Fig. 2. When we compare the circuits with the best noise-free fi-
delity for a given number of CNOT gates generated by the genetic 
algorithm and LRSP algorithm for a given state, we can see a sig-
nificant rise in fidelity over LRSP results in most cases. This shows 
that the approximate state preparation circuits obtained from the 
LRSP algorithm are not near-optimal, at least when transpiled with 
the Qiskit transpiler for the specific quantum processor.

For Fig. 3, we ran the genetic algorithm once for each one of 
1000 random states, and plotted the non-dominated solutions of 
the final populations. Fitting of the theoretical fidelity curve de-
rived in Subsection 2.2 to the data is also shown with n = 5 and 
lph ranging between the limiting values 〈d〉 = 1.8 and 1 + 6(〈d〉 −
1) = 5.8 with unit steps. The best fit with the optimal circuits is 
achieved with lph ≈ 3.8 indicating that about this many physical 
CNOT gates are needed to implement one logical CNOT gate in the 
state preparation circuits, on average. The CNOT error rate of the 
backend is p = 0.0088. We see that the actual error rate seems to 
be somewhat higher, as the theoretical fit overestimates the noisy 
fidelities by a small margin. This is explained by the fact that also 
other errors not accounted for by our theoretical analysis, such as 
single-qubit gate errors and identity errors, contribute to the ex-
ponential decay of fidelity as a function of the circuit length.

We may then consider including the noise in the simulation of 
the non-dominated solutions. Running the simulation with noise 
for the final populations shows that the highest total fidelity is 
achieved for shorter approximate circuits, as predicted by our the-
oretical analysis. For most of the runs improvements over LRSP cir-
cuits were achieved. Averaging over single genetic algorithm runs 
for 1000 random states gives an average absolute improvement of 
about 0.057 (σ ≈ 0.031) in the maximum fidelity with noise, or 
an average relative improvement of about 9.4% (σ ≈ 5.2%). The 
largest observed absolute improvement was about 0.22, and the 
largest relative improvement 38%. In Fig. 4 the distributions for the 
absolute and relative differences between the LRSP and genetic al-
gorithm circuits are plotted. We see that in most cases the genetic 
algorithm is able to significantly improve on the circuits found by 
the LRSP algorithm. In a few cases the genetic algorithm was un-
able to improve on the performance of the LRSP circuit. In these 
cases it would be possible either to use the LRSP circuit directly, 
or to run the genetic algorithm again. It is likely that running the 
genetic algorithm more than once would improve the results, since 
(as we saw already in Fig. 2) there is quite a lot of variation be-
tween the runs for an individual state.

5. Summary & outlook

We implemented a multi-objective genetic algorithm for quan-
tum circuit discovery, and applied it to perform a numerical anal-
ysis of the approximate state preparation problem. We focused 
particularly on the native gate set, connectivity and noise profile 
of the IBM 5-qubit processors. The genetic algorithm was able to 
improve on the circuits found by the low-rank state preparation 
(LRSP) algorithm introduced in [30] and compiled with the Qiskit 
compiler in that it found preparation circuits with the same num-
ber of CNOT gates but a higher fidelity for the output state. As 
a result, also the maximum fidelity with realistic noise (imple-
mented from the IBM Qiskit ‘FakeVigo’ backend) was significantly 
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Fig. 2. Example results for four arbitrarily picked random states (indices 160, 559, 748 and 932 in our database for the states in [43]). Blue crosses: Circuits obtained by the 
LRSP algorithm. Red dots: Non-dominated circuits from 100 runs of the genetic algorithm for each state.

Fig. 3. Numerical results and theoretical fidelity curves for 1000 random states without (left) and with (right) noise. Red dots: Non-dominated solutions of genetic algorithm 
runs for 1000 different random states. Parameters for the runs were 30 000 generations, population of 400, 5 qubits, and FakeVigo backend connectivity and noise model. 
Curves: Theoretical fidelity curves with n = 5 and p = 0.0088. lph varies from 〈d〉 = 1.8 (blue) to 1 + 6(〈d〉 − 1) = 5.8 (purple) with unit steps.
improved in most cases with an average relative improvement of 
about 9.4%, and maximum observed improvement of 38%. We also 
provided a back-of-the-envelope theoretical analysis of the approx-
imate state preparation problem to support our numerical findings, 
and derived the optimal fidelity curve, which was reproduced by 
our numerical results. Our results support the overall conclusions 
6

that (1) there is still room to improve in current state-of-the-art 
algorithms for approximate state preparation, (2) the maximum fi-
delity for generic state preparation on a NISQ computer may be 
achieved by using a shorter approximate circuit rather than the ex-
act state preparation circuit, and (3) genetic algorithms continue to 
provide a useful tool for quantum circuit discovery and optimiza-
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Fig. 4. Left: The histogram of absolute differences in noisy fidelities between the genetic algorithm circuits and the LRSP circuits, together with a Gaussian fit. Right: The 
same for the relative differences in fidelity.
tion, especially as the classical computing power at the disposal of 
researchers continues to increase.

In the future, our genetic algorithm can be applied to find near-
optimal circuits for the state preparation task on NISQ computers. 
It would be interesting to search for optimized circuits for the 
preparation of some practically more relevant states than Haar ran-
dom states, and see if the improvements can be as significant as 
for random states. Even though running the genetic algorithm is 
computationally expensive, it may still be beneficial to optimize 
the state preparation circuit to save the scarce quantum compu-
tational resources on a NISQ machine, especially if the particular 
state needs to be prepared many times during the desired algo-
rithm. However, for a larger quantum processor the output state 
fidelity evaluation step will need to be implemented on the quan-
tum machine itself, since the classical simulation becomes pro-
hibitively expensive. Indeed, this seems to be a key challenge to 
overcome in quantum circuit compilation in general.

Finally, the idea of automated quantum circuit discovery is very 
appealing, and genetic algorithms seem to be well suited for the 
task. However, it would be great if we could somehow generalize 
the search from individual circuits, as done in this work, to families 
of circuits with different numbers of qubits, perhaps defined in 
some iterative manner. In this way it would be possible to search 
for general solutions to problems with different input sizes, as is 
often required. This might make it possible to numerically explore 
more directly the scaling of circuit depth as a function of the input 
size — a key relation in determining the computational complexity 
of a problem — and thus shed more light on the computational 
capabilities of quantum computers.
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Appendix A. Error estimate for approximate state preparation 
circuits

We may estimate the dependence of the noise-free error on the 
CNOT count by considering the fraction of the total volume of the 
Hilbert space, which can be reached with error ε by using at most 
l CNOT-gates. The Hilbert space Hn of n qubits is geometrically 
the 2(2n − 1)-dimensional complex projective space CP2n−1. (See, 
e.g., [46] for a review of complex projective geometry.) A complex 
projective space comes with a canonical metric, the Fubini-Study 
metric.5 The volume of a 2d-dimensional complex projective space, 
as defined by this metric, is given by

Vol(CPd) = πd

d! .

Accordingly, the total volume of Hn is given by Vol(Hn) =
π2n−1/(2n − 1)!.

5 We normalize the metric so that the geodesic length D F S (|φ〉, |ψ〉) =
arccos(|〈φ|ψ〉|) between any two (normalized) state vectors |φ〉, |ψ〉 ∈ CPd . With 
this normalization, any two orthogonal states have distance π

2 , and the unique 
closed geodesic passing through those states has circumference π .
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The subspace we reach from the initial state |00 . . . 0〉 without 
any CNOT gates is a tensor product H⊗n

1 of single-qubit Hilbert 
spaces H1, each of which is isomorphic to a 2-dimensional com-
plex projective space of volume Vol(CP1) = π . Thus, we get for 
the volume of the 2n-dimensional subspace of states reachable by 
single-qubit unitaries Vol(H⊗n

1 ) = πn . Now, imagine ‘thickening’ 
this subspace by distance ε into the total Hilbert space. For ε � 1
we can approximate the thickened subspace as the Cartesian prod-
uct CP×n

1 × Bd⊥ (ε), where Bd(R) denotes the d-dimensional ball 
of radius R , and d⊥ = 2(2n − n − 1) is the codimension of the sub-
space H⊗n

1 in Hn . The volume of a d-dimensional ball is given by

Vol(Bd(R)) = π
d
2


( d
2 + 1)

Rd .

Accordingly, the volume of the thickened subspace is given by

Vol(CP×n
1 × Bd⊥(ε)) = Vol(CP1)

nVol(Bd⊥(ε)))

= π2n−1

(2n − n − 1)!ε
2(2n−n−1) .

Without restrictions on the connectivity of the qubits, a sin-
gle CNOT gate can be applied to any of the n(n−1)

2 pairs of qubits. 
Each allowed CNOT gate in a circuit increases the dimension of 
the subspace of states that can be reached without an error: Af-
ter each CNOT gate two more single-qubit rotations can be added, 
which lead to distinct states. However, z-rotations of the control 
qubit and x-rotations of the target qubit commute with the CNOT 
gate, reducing the number of free parameters for each one of the 
rotations from 3 to 2. Each space of single-qubit rotations after a 
CNOT is isomorphic to a 2-sphere S2(1) ∼= CP1, so we get an ex-
tra direct product factor of H2

1 for our subspace from each CNOT 
gate. Accordingly, with l CNOT gates the volume of the subspace of 
states reached without an error is given by Vol(H⊗(n+2l)

1 ) = πn+2l . 
Allowing for error ε now gives volume

Vol(CP×(n+2l)
1 × Bd⊥(ε)) = π2n−1ε2(2n−(n+2l)−1)

(2n − (n + 2l) − 1)! .

In the leading order, the number of different circuits contain-
ing l CNOT gates is given by (n(n − 1)/2)l . Some of these circuits 
are actually equivalent due to commuting CNOT gates and the sat-
uration of the Hilbert space, but this only affects the sub-leading 
order behavior. Circuits with larger l also reproduce the subspaces 
of states given by circuits with smaller l as we may cancel out 
CNOT gates from the beginning of the circuit by setting the pre-
ceding single-qubit unitaries to identity, given that the initial state 
of the circuit is |00 . . . 0〉. Assuming for simplicity that each dif-
ferent combination of CNOT gates leads to a distinct subspace of 
states,6 we reach a volume

Vol(CP×(n+2l)
1 × Bd⊥(ε))

(
n(n − 1)

2

)l

= π2n−1ε2(2n−(n+2l)−1)

(2n − (n + 2l) − 1)!
(

n(n − 1)

2

)l

with circuits containing at most l CNOT gates. Dividing by the total 
volume of the Hilbert space, we get for the fraction of the volume 
covered by the subspace of states reached within an error ε

6 This assumption will presumably hold approximately true for ε � 1, until we 
reach ∼ 2n CNOT gates, which is required for the exact preparation of an arbitrary 
state.
8

ηn,l(ε) = Vol(CP×(n+2l)
1 × Bd⊥(ε))

Vol(Hn)

(
n(n − 1)

2

)l

= (2n − 1)! ε2(2n−(n+2l)−1)

(2n − (n + 2l) − 1)!
(

n(n − 1)

2

)l

.

Using the approximation 
(x + α) ≈ 
(x)xα for x � 1, for large n
we may approximate

(2n − 1)!
(2n − (n + 2l) − 1)! ≈ (2n)n+2l = 2n(n+2l) .

We then get

ηn,l(ε) ≈ 2n(n+2l)ε2(2n−(n+2l)−1)

(
n(n − 1)

2

)l

= 2n2
ε2(2n−n−1)

(
4n

ε4

n(n − 1)

2

)l

.

We may then obtain at least a crude estimate for the error ε , 
which is needed to cover the full Hilbert space by setting ηn,l(ε) =
1 and solving for ε . This gives

ε ≈ exp

⎡
⎣−

(2 ln 2)n + ln
(

n(n−1)
2

)
2(2n − n − 1)

l − (ln 2)n2

2(2n − n − 1)

⎤
⎦ .

In the above analysis we did not yet consider the possible re-
strictions on the connectivity of qubits. We may estimate the effect 
of restricted qubit connectivity by dividing l, the number of logi-
cal CNOT gates in the circuit, by the average number lph of physical 
CNOT gates required to implement one logical CNOT gate. Thus, we 
arrive at an estimate for the maximum error with l CNOT gates:

ε ≈ exp

⎡
⎣−

(2 ln 2)n + ln
(

n(n−1)
2

)
2(2n − n − 1)

l

lph
− (ln 2)n2

2(2n − n − 1)

⎤
⎦ .

A linear scaling of the number of CNOT gates is obviously a very 
simplistic way to take the connectivity into account. However, we 
know that different connectivities differ only polynomially, so the 
overall exponential behavior of ε must be preserved. We also get a 
decent fit to the numerical results using this approach, as we see 
in Section 4.

Appendix B. Asymptotic analysis of the fidelity formula

Let us consider the asymptotic scaling of l∗ according to the 
formula

l∗
lph

= 1

A(n)
ln

(
1 − A(n)

ln(1 − p)

)
− B(n)

A(n)
,

where

A(n) =
(2 ln 2)n + ln

(
n(n−1)

2

)
2n − n − 1

, B(n) = (ln 2)n2

2n − n − 1

as we increase the number of qubits n. We have

x ln(1 − 1

cx
) → −1

c

as x → ∞, so the first term converges to the constant 
(

ln 1
1−p

)−1

as n → ∞, since A(n) → 0 in the limit. The second term

B(n)

A(n)
= (ln 2)n2

(2 ln 2)n + ln
(

n(n−1)
2

) ≈ n

2
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when n � 1. Thus, for large n, we have the approximation

l∗
lph

≈
(

ln
1

1 − p

)−1

− n

2
.

First of all, to get any benefit from the computation and reach a 
better average fidelity than with the initial state |00 . . . 0〉, we must 
have l∗ > 0, which gives the condition p < 1 − e−2/n ≈ 2

n for n � 1. 
Thus, the error rate of CNOT gates must decrease inversely propor-
tionally to the number of qubits to have any chance of preparing 
an arbitrary target state to any degree of approximation. On the 
other hand, counter-intuitively the optimum length l∗ of a state 
preparation circuit actually decreases linearly at fixed error rate as 
the number of qubits is increased. This occurs because it gets ex-
ponentially hard to get close to an arbitrary state. It doesn’t pay 
off to try that hard with noisy gates, because the errors build up 
as we try to increase the length of the circuit to get closer to the 
target state. Thus, we are better off with a shorter circuit, which 
at least gives somewhat a decent approximation, rather than try-
ing to climb up the exponentially long ladder with faulty rungs 
towards the target state.

When p � 1, we may further approximate ln 1
1−p ≈ p. Assum-

ing again that n � 1, the maximum value of total fidelity is found 
to be approximated by

F (ρnoise, |target〉)max ≈ (1 − p)l∗
(

1 − exp

[
−A(n)

l∗
lph

− B(n)

])

≈ (1 − p)

(
1
p − n

2

)
lph

(
1 − 2n ln(1 − p)

(2 ln 2)n

)−1

.

In order to keep the maximum total fidelity sufficiently high, both 
of the factors in this expression must remain large enough as n

grows. In order to keep the first term constant, (1 − p)

(
1
p − n

2

)
lph =

f1, we find that the error rate must satisfy p ≈ 2(1 + ln f1
lph

)/n, 
which again implies inverse proportionality of the error rate to the 
number of qubits. However, the second factor imposes a stricter 
requirement. In order for it to stay constant,(

1 − 2n ln(1 − p)

(2 ln 2)n

)−1

= f2 ,

the error rate must satisfy

p ≈ (ln 2)( f −1
2 − 1)2−n+log2 n .

We find a nearly inverse exponential scaling requirement for the 
error rate in the number of qubits, which reflects the general dif-
ficulty of the arbitrary state preparation task in the presence of 
noise.
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] V. Potoček, A. Reynolds, A. Fedrizzi, D. Corne, Multi-objective evolutionary al-
gorithms for quantum circuit discovery, arXiv:1812 .04458, 2018.

] V. Shende, S. Bullock, I. Markov, Synthesis of quantum-logic circuits, IEEE Trans. 
Comput.-Aided Des. Integr. Circuits Syst. 25 (2006) 1000–1010, https://doi .org /
10 .1109 /tcad .2005 .855930, arXiv:quant -ph /0406176.

] M. Plesch, C. Brukner, Quantum-state preparation with universal gate decom-
positions, Phys. Rev. A 83 (2011) 032302, https://doi .org /10 .1103 /physreva .83 .
032302, arXiv:1003 .5760.

] A. Chi-Chih Yao, Quantum circuit complexity, in: Proceedings of 1993 IEEE 34th 
Annual Foundations of Computer Science, 1993, pp. 352–361.

] J. Watrous, Quantum computational complexity, in: R. Meyers (Ed.), Ency-
clopedia of Complexity and Systems Science, Springer, 2009, pp. 7174–7201, 
arXiv:0804 .3401.

] F. Liu, S. Whitsitt, J. Curtis, R. Lundgren, P. Titum, Z.-C. Yang, J. Garrison, 
A. Gorshkov, Circuit complexity across a topological phase transition, Phys. 
Rev. Res. 2 (2020) 013323, https://doi .org /10 .1103 /PhysRevResearch .2 .013323, 
arXiv:1902 .10720.

] Z. Xiong, D.-X. Yao, Z. Yan, Nonanalyticity of circuit complexity across topolog-
ical phase transitions, Phys. Rev. B 101 (2020) 174305, https://doi .org /10 .1103 /
PhysRevB .101.174305, arXiv:1906 .11279.

] S. Roca-Jerat, T. Sancho-Lorente, J. Román-Roche, D. Zueco, Circuit complexity 
through phase transitions: consequences in quantum state preparation, arXiv:
2301.04671, 2023.

] L. Susskind, Computational complexity and black hole horizons, arXiv:1402 .
5674, 2014.

] J. Couch, S. Eccles, T. Jacobson, P. Nguyen, Holographic complexity and volume, 
J. High Energy Phys. 2018 (2018) 1–39, https://doi .org /10 .1007 /JHEP11(2018 )
044, arXiv:1807.02186.

] A. Brown, D. Roberts, L. Susskind, B. Swingle, Y. Zhao, Holographic complexity 
equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301, https://doi .org /10 .1103 /
PhysRevLett .116 .191301, arXiv:1509 .07876.

] I. Araujo, C. Blank, A. da Silva, Approximated quantum-state preparation with 
entanglement dependent complexity, arXiv:2111.03132, 2021.

] M. Möttönen, J. Vartiainen, V. Bergholm, M. Salomaa, Transformation of quan-
tum states using uniformly controlled rotations, Quantum Inf. Comput. 5 
(2005) 467–473, arXiv:quant -ph /0407010.

] V. Bergholm, J. Vartiainen, M. Möttönen, M. Salomaa, Quantum circuits with 
uniformly controlled one-qubit gates, Phys. Rev. A 71 (2005) 052330, https://
doi .org /10 .1103 /physreva .71.052330, arXiv:quant -ph /0410066.

] R. Iten, R. Colbeck, I. Kukuljan, J. Home, M. Christandl, Quantum circuits for 
isometries, Phys. Rev. A 93 (2016) 032318, https://doi .org /10 .1103 /physreva .93 .
032318, arXiv:1501.06911.

] X.-M. Zhang, M.-H. Yung, X. Yuan, Low-depth quantum state preparation, Phys. 
Rev. Res. 3 (2021) 043200, https://doi .org /10 .1103 /PhysRevResearch .3 .043200, 
arXiv:2102 .07533.

] X.-M. Zhang, T. Li, X. Yuan, Quantum state preparation with optimal circuit 
depth: implementations and applications, Phys. Rev. Lett. 129 (2022) 230504, 
https://doi .org /10 .1103 /PhysRevLett .129 .230504, arXiv:2201.11495.

https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137/s0097539795293172
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib6BFBA29EA353A43DABCABAF1686F79ABs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib6BFBA29EA353A43DABCABAF1686F79ABs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib6BFBA29EA353A43DABCABAF1686F79ABs1
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770
https://doi.org/10.22331/q-2018-08-06-79
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibDABD9AB1615D059BBEA031D463D6C59As1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibDABD9AB1615D059BBEA031D463D6C59As1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibDABD9AB1615D059BBEA031D463D6C59As1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib1826D761F033BBE0A40BD00873389BBBs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib1826D761F033BBE0A40BD00873389BBBs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib1826D761F033BBE0A40BD00873389BBBs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibD25E3B8F25FCF08F12AEEE98F80D161Es1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibD25E3B8F25FCF08F12AEEE98F80D161Es1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibD25E3B8F25FCF08F12AEEE98F80D161Es1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibC1B20EAB18D6E18AE2A197747E88607Cs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibC1B20EAB18D6E18AE2A197747E88607Cs1
https://doi.org/10.1162/evco.2006.14.1.21
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib83CF15CA79016C8738733882DD1652B1s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib83CF15CA79016C8738733882DD1652B1s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib83CF15CA79016C8738733882DD1652B1s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib83CF15CA79016C8738733882DD1652B1s1
https://doi.org/10.1088/2058-9565/ac1ab1
https://doi.org/10.1088/2058-9565/ac1ab1
https://doi.org/10.1103/PhysRevApplied.16.044039
https://doi.org/10.1103/PhysRevApplied.16.044039
https://doi.org/10.1016/j.swevo.2022.101030
https://doi.org/10.1016/j.swevo.2022.101030
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib55C14521DC49F7D4DAC44C60EEEDFDC7s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib55C14521DC49F7D4DAC44C60EEEDFDC7s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib55C14521DC49F7D4DAC44C60EEEDFDC7s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib8E92EAFFD51F026A619A177FDFBA60E0s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib8E92EAFFD51F026A619A177FDFBA60E0s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib6EFA7249FD2D56CC31A98080241C7074s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib6EFA7249FD2D56CC31A98080241C7074s1
https://doi.org/10.1109/tcad.2005.855930
https://doi.org/10.1109/tcad.2005.855930
https://doi.org/10.1103/physreva.83.032302
https://doi.org/10.1103/physreva.83.032302
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE096B07BF60BADFADE33EB94B733FF4Bs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE096B07BF60BADFADE33EB94B733FF4Bs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibB1AB10289777D4E3B44E48AEA19F38FCs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibB1AB10289777D4E3B44E48AEA19F38FCs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibB1AB10289777D4E3B44E48AEA19F38FCs1
https://doi.org/10.1103/PhysRevResearch.2.013323
https://doi.org/10.1103/PhysRevB.101.174305
https://doi.org/10.1103/PhysRevB.101.174305
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibF31B75CBA6D6800975309E56C69F76FCs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibF31B75CBA6D6800975309E56C69F76FCs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibF31B75CBA6D6800975309E56C69F76FCs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib5905275AA50A78F3055433C4B180F7CEs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib5905275AA50A78F3055433C4B180F7CEs1
https://doi.org/10.1007/JHEP11(2018)044
https://doi.org/10.1007/JHEP11(2018)044
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevLett.116.191301
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibD40BD65CC68E424AB48273ADB88B22FBs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibD40BD65CC68E424AB48273ADB88B22FBs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE81980A991B83464E275000C7D7AEC70s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE81980A991B83464E275000C7D7AEC70s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE81980A991B83464E275000C7D7AEC70s1
https://doi.org/10.1103/physreva.71.052330
https://doi.org/10.1103/physreva.71.052330
https://doi.org/10.1103/physreva.93.032318
https://doi.org/10.1103/physreva.93.032318
https://doi.org/10.1103/PhysRevResearch.3.043200
https://doi.org/10.1103/PhysRevLett.129.230504


T. Rindell, B. Yenilen, N. Halonen et al. Physics Letters A 475 (2023) 128860
[36] M. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, C. Iancu, Heuristics for quantum 
compiling with a continuous gate set, arXiv:1912 .02727, 2019.

[37] D. Camps, R. Van Beeumen, Approximate quantum circuit synthesis using block 
encodings, Phys. Rev. A 102 (2020) 052411, https://doi .org /10 .1103 /physreva .
102 .052411, arXiv:2007.01417.

[38] E. Younis, K. Sen, K. Yelick, C. Iancu, Qfast: quantum synthesis using a hierar-
chical continuous circuit space, arXiv:2003 .04462, 2020.

[39] S. Ashhab, N. Yamamoto, F. Yoshihara, K. Semba, Numerical analysis of quan-
tum circuits for state preparation and unitary operator synthesis, Phys. Rev. 
A 106 (2022) 022426, https://doi .org /10 .1103 /physreva .106 .022426, arXiv:2204 .
13524.

[40] A. Konak, D. Coit, A. Smith, Multi-objective optimization using genetic algo-
rithms: a tutorial, J. RESS 91 (2006) 992–1007, https://doi .org /10 .1016 /j .ress .
2005 .11.018.

[41] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective ge-
netic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197, https://
doi .org /10 .1109 /4235 .996017.

[42] F.-A. Fortin, F.-M. De Rainville, M.-. Gardner, M. Parizeau, C. Gagné, DEAP: evo-
lutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012) 2171, https://
pypi .org /project /deap/.

[43] T. Rindell, B. Yenilen, N. Halonen, A. Pönni, I. Tittonen, M. Raasakka, https://
github .com /beratyenilen /qc -ga.

[44] Triton cluster, https://scicomp .aalto .fi /triton/.
[45] ‘Post-Quantum Cryptography (PQC) Finland’ project, https://www.pqc .fi/.
[46] I. Bengtsson, K. Zyczkowski, Geometry of Quantum States, 2nd ed., Cambridge 

University Press, 2017.
10

http://refhub.elsevier.com/S0375-9601(23)00240-2/bibBFC68C4B1F953320032C86D5411C6953s1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibBFC68C4B1F953320032C86D5411C6953s1
https://doi.org/10.1103/physreva.102.052411
https://doi.org/10.1103/physreva.102.052411
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE3146C5AA6C7CFA0FFB0864EA785644Bs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bibE3146C5AA6C7CFA0FFB0864EA785644Bs1
https://doi.org/10.1103/physreva.106.022426
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://pypi.org/project/deap/
https://pypi.org/project/deap/
https://github.com/beratyenilen/qc-ga
https://github.com/beratyenilen/qc-ga
https://scicomp.aalto.fi/triton/
https://www.pqc.fi/
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib4FA4C4A606BBAD6B8FA795E41976803Bs1
http://refhub.elsevier.com/S0375-9601(23)00240-2/bib4FA4C4A606BBAD6B8FA795E41976803Bs1

	Exploring the optimality of approximate state preparation quantum circuits with a genetic algorithm
	1 Introduction
	2 State preparation problem in the presence of noise
	2.1 Problem description
	2.2 Theoretical analysis

	3 Multi-objective optimization using genetic algorithms
	4 Results
	5 Summary & outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Error estimate for approximate state preparation circuits
	Appendix B Asymptotic analysis of the fidelity formula
	References


