Skip to main content

Automatic Generator of Decoupling Blocks Using Genetic Programming

  • Conference paper
  • First Online:
New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 312))

Abstract

This paper describes a new method for decouple systems with an automatic generator of decoupling blocks using genetic programming and shows that the decoupling of MIMO systems by this method is easier and more powerful than the results obtained using a regular decoupling state feedback technique in a paper production machine process and an irrigation of fields process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. C. Kuo, “Sistemas de Control Automático”, New York: Prentice Hall, 1996.

    Google Scholar 

  2. K. Ogata, “Ingeniería de Control Moderna”, Madrid: PEARSON EDUCACIÓN, 2010.

    Google Scholar 

  3. F. Morilla, J. Garrido y F. Vázquez, “Control Multivariable por Desacoplo”, Revista Iberoamericana de Automática e Informática industrial, vol. 10, pp. 3–17, 2013.

    Article  Google Scholar 

  4. J. Acedo Sánchez, “Control Avanzado de Procesos”, Madrid, España: Ediciones Diaz de Santos, 2003.

    Google Scholar 

  5. A. Preglej, I. Steiner y S. Blazic, “Multivariable Predictive Functional Control of an Autoclave”, Jounal of Mechanical Engineering, vol. 59, nº 2, pp. 89–96, 2013.

    Google Scholar 

  6. E. Eitelberg, “Load sharing in a multivariable temperature control system”, Pergamon Control Engineering Practice, pp. Vol. 7 pp. 1369–1377, 1999.

    Google Scholar 

  7. C. F. Alastruey y C. Jover, “Multivariable control for an industrial rotary dryer”, Food Control, pp. Volume 17 pp. 653–659, 2006.

    Google Scholar 

  8. P. L. Falb y W. A. Wolovich, “Decoupling in the Design and Synthesis of Multivariable Control Systems”, IEEE Transactions on Automatic Control, pp. Vol. AC-12,No. 6, 1967.

    Google Scholar 

  9. J. A. Delgado, J. A. Jáuregui, E. Rámirez V., S. E. Luna y J. L. Orozco, “Aplicación del Desacoplamiento Regular a un Circuito Eléctrico”, Ropec Internacional, 2011.

    Google Scholar 

  10. L. Wang, Y. Cheng y J. Hu, “A Quasi-ARX Model for Multivariable Decoupling Control of Nonlinear MIMO System”, Mathematical Problems in Engineering, vol. 2012, p. 13, 2012.

    Google Scholar 

  11. B. Grosman y D. R. Lewin, “Automated nonlinear model predictive control using genetic programming”, Computers and Chemical Engineering, pp. Volume 26 pp. 631–640, 2002.

    Google Scholar 

  12. L. dos Santos Coelho y M. Wicthoff Pessôa, “Nonlinear model identification of an experimental ball-and-tube system using a genetic progrmming approach”, Mechanical Systems and Signal Processing, pp. Volume 23 pp. 1434–1446, 2009.

    Google Scholar 

  13. J. Ruiz León y J. A. Torres Muñoz, “Desacoplamiento no regular con estabilidad: El caso de sistemas con 2 salidas”, Instituto Tecnológico de Chihuahua Electro2000, 2000.

    Google Scholar 

  14. L. P. Falb y W. A. Wolovich, “Invariants and canonical forms under dynamic compesantion”, SIAM J Contr. Optimiz, pp. Vol 14 no. 6 pp. 996–1008, 1976.

    Google Scholar 

  15. J. Ruiz León, “Decoupling with Stability of Linear Multivariable Systems: An Algebraic Approach”, Latin American Applied Research, vol. 34, pp. 179–186, 2004.

    Google Scholar 

  16. M. Ejnarsson, A. Verikas y C. M. Nilsson, “Multi-resolution screening of paper formation variations on production line”, Expert Systems with Applications, pp. Volume 36 pp. 3144–3152, 2009.

    Google Scholar 

  17. P. E. Wellstead, “Introduction to Physical System Modelling, London”, New York, Toronto, Sydney and St. Francis: Academic Press, 1979.

    Google Scholar 

  18. TecQuipment, CE108 Coupled Drives Apparatus User Guide, TecQuipment, 2009.

    Google Scholar 

  19. R. Poli, W. B. Langdon, N. F. McPhee y J. R. Koza, “A Field Guide to Genetic Programming”, March 2008. [Online]. Available: http://www.gp-field-guide.org.uk/. [last access: 7 June 2013].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Montes Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rivera, M.M., Ramos, M.P., Mora, J.L.O. (2015). Automatic Generator of Decoupling Blocks Using Genetic Programming. In: Elleithy, K., Sobh, T. (eds) New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-319-06764-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06764-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06763-6

  • Online ISBN: 978-3-319-06764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics