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Abstract: - The creation process of Artificial Neural Networks (ANNs) used to be quite slow and the human 
expert had to test several architectures until finding the one that achieves the best results for the solution of a 
certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically 
creating ANNs. This technique also allows the obtaining of simplified networks with few neurons for solving the 
problem. In order to measure the performance of the system and to compare the results with other ANN 
generation and training methods with Evolutionary Computation (EC) techniques, several tests were performed 
with problems based on some of the most used test databases. The results of those comparisons showed that the 
system achieved good results comparable with already existing techniques and, in most of the cases, they worked 
better than those techniques. 
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1   Introduction 
ANNs are learning systems that have solved a large 
amount of complex problems related to different 
disciplines (classification, clustering, regression, etc.) 
[1]. The interesting characteristics of this powerful 
technique have induced its use by researchers in 
different environments [2]. 
     Nevertheless, the use of ANNs has some 
problems, mainly related to their development 
process. This process can be divided into two parts: 
architecture development and training and validation. 
As the network architecture is problem-dependant, 
the design process of this architecture used to be 
manually performed, meaning that the expert had to 
test different architectures and train them until 
finding the one that achieves best results after the 
training process. The manual nature of the described 
process determines its slow performance although the 
recent use of ANNs creation techniques have 
contributed to achieve a more automatic procedure. 
 
 
2   State of the Art 
 
 
2.1 Genetic Programming 
Genetic Programming (GP) [3] is based on the 
evolution of a given population. In this population, 
every individual represents a solution for a problem 
that is intended to be solved. The evolution is 

achieved by means of selection of the best individuals 
– although the worst ones also have a little chance of 
being selected – and their mutual combination for 
creating new solutions. This process is developed 
using selection, crossover and mutation operators. 
After several generations, it is expected that the 
population might contain some good solutions to the 
problem. 
     In GP, the codification of the solutions is in shape 
of trees. Therefore, the user must specify which 
nodes of the tree are the terminals (leaves of the tree) 
and the functions (nodes that have descendants) for 
being used by the evolutionary algorithm in order to 
build complex expressions. 
     The wide application of GP to different 
environments and its consequent success are due to 
its capability for being adapted to numerous different 
problems. Although the main application is the 
generation of mathematical expressions [4], GP has 
also been used in many others fields such as rule 
generation [5], filter design [6], etc. 
 
 
2.2 ANN development with EC tools 
 
The development of ANNs is a topic that has been 
extensively dealt with very diverse techniques. The 
world of evolutionary algorithms is no exception, and 
proof of that is the great amount of works that have 
been published about the different techniques in this 
area, even with GAs or GP [3] [12] [14] [18] [20] 
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[21]. These techniques follow the general strategy of 
an evolutionary algorithm: an initial population 
consisting of different types of genotypes, each one 
of them codifying different parameters (typically, the 
weight of the connections and/or the architecture of 
the network and/or the rules of learning) is randomly 
created. This population is evaluated in order to 
determine the fitness of each individual. Afterwards, 
this group is made to evolve repeatedly by means of 
different genetic operators (replication, crossover, 
mutation, etc.) until a determined termination criteria 
is satisfied (for example, a sufficiently good 
individual is obtained, or that a predetermined 
maximum number of generations is reached). 
     As a general rule, the field of ANN generation 
using evolutionary algorithms is divided into three 
main fields: evolution of weights, architectures and 
learning rules. 
     First, the weight evolution starts from an ANN 
with an already determined topology. In this case, the 
problem to be solved is the training of the connection 
weights, attempting to minimize the network error. 
Most of training algorithms, such as back-
propagation (BP) algorithm, are based on gradient 
descent, which has several drawbacks [7]. The most 
important is the possibility of getting stuck into a 
local minimum of the fitness function. With the use 
of an evolutionary algorithm, the weights can be 
represented either as a concatenation of binary values 
[8] or of real numbers [9]. The main disadvantage of 
this type of encoding is the permutation problem. 
This problem means that the order in which weights 
are taken at the string might cause that equivalent 
networks correspond to completely different 
chromosomes, making the crossover operator 
inefficient. 
     Second, the evolution of architectures includes the 
generation of the topological structure. This means 
establishing the connectivity and the transfer function 
of each neuron. The network architecture is highly 
important for the successful application of the ANN, 
since the architecture has a very significant impact on 
the processing ability of the network. Therefore, the 
network design, traditionally performed by a human 
expert using trial and error techniques on different 
architectures, is crucial. The automatic architecture 
design has been possible thanks to the use of 
evolutionary algorithms. In order to use them to 
develop ANN architectures, it is needed to choose 
how to encode the genotype of a given network for it 
used by the genetic operators. 
     At the first option, direct encoding, there is a one-
to-one correspondence between each of the genes and 
their subsequent phenotypes. The most typical 
encoding method consists of a matrix that represents 

an architecture where every element reveals the 
presence or absence of connection between two nodes 
[10]. These types of encoding are generally quite 
simple and easy to implement. However, they also 
have a large amount of inconveniences such as 
scalability [11], the incapability of encoding repeated 
structures, or permutation [12]. 
     Apart from direct encoding, there are some 
indirect encoding methods. In these methods, only 
some characteristics of the architecture are encoded 
in the chromosome. These methods have several 
types of representation. First, the parametric 
representations represent the network as a group of 
parameters such as number of hidden layers, number 
of nodes for each layer, number of connections 
between two layers, etc [13]. Although the parametric 
representation can reduce the length of the 
chromosome, the evolutionary algorithm performs 
the search within a restricted area in the search space 
containing all the possible architectures. Another non 
direct representation type is based on grammatical 
rules [11]. In this system, the network is represented 
by a group of rules, with the shape of production 
rules, that make a matrix that represents the network, 
which has several restrictions. 
     The growing methods represent another type of 
encoding. In this case, the genotype does not encode 
a network directly. Instead of it, it contains a group of 
instructions for building up the phenotype. The 
genotype decoding will consist on the execution of 
those instructions [14]. 
     With regards to the evolution of the learning rule, 
there are several approaches [15], although most of 
them are only based on how learning can modify or 
guide the evolution and also on the relationship 
among the architecture and the connection weights. 
 
 
3   Model 
The GP-development of ANNs is performed by 
means of the GP typing property [16]. This property 
provides the ability of developing structures that 
follow a specific grammar. In this case, the nodes to 
be used will be the following: 

• ANN. Node that defines the network. It 
appears only at the root of the tree. It has the 
same number of descendants as the network 
expected outputs, each of them a neuron. 

• n-Neuron. Node that identifies a neuron with 
n inputs. This node will have 2*n 
descendants. The first n descendants will be 
other neurons, either input or hidden ones. 
The second n descendants will be 
arithmetical sub-trees. These sub-trees 
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Fig. 1. GP tree and its resulting network 

represent real values. These values 
correspond to values of the respective 
connection weights of the input neurons – the 
first descendants – of this neuron. 

• n-Input neuron. Nodes that define an input 
neuron which receives its activation value 
from the input variable n. These nodes do not 
have any descendants. 

• Finally, the arithmetic operators set {+,-
,*,%}, where % designs the operation of 
protected division (returns 1 as result if the 
divisor is 0). They will generate the values of 
connection weights (sub-trees of the n-
Neuron nodes). These nodes perform 
operations among constants in order to obtain 
new values. As real values are also needed 
for such operations, they have to be 
introduced by means of the addition of 
random constants to the terminal set in the 
range [-4, 4]. 

     ANNs can be generated with these operator sets. 
However, these networks would not allow, for a 
given neuron, the existence of output connections to 
more than one different neuron. For such reason, the 
system has been endowed with a list where neurons 
are being added as the tree is being evaluated, and an 
index that points to a specific element of the list. In 

order to extract neurons from the list, and therefore to 
operate with it, the operator sets were added with the 
following operators: 

• “Forward”. This node advances the index 
list one unit. This node has one descendant. 

• “Pop”. This node extracts from the list the 
neuron at the position pointed by the index. 
This node substitutes the evaluation of a 
neuron, as it returns an already existing one, 
so it has no descendants. 

     Every time a neuron is created, it is added to the 
list once its descendants have been evaluated. In such 
way, they are not allowed to reference that neuron, so 
recurrent links will be avoided. 
     Note that, during the creation of a neuron, a given 
neuron - either an input or a hidden - can be repeated 
several times as input of that neuron. In such case, 
there is no new input connection from that processing 
element, but the weight of the already existing 
connection will be added with the value of the new 
connection. 
     Once the tree has been evaluated, the genotype 
turns into phenotype. In other words, it is converted 
into an ANN with its weights already set (thus it does 
not need to be trained) and therefore can be 
evaluated. The evolutionary process demands the 
assignation of a fitness value to every genotype. Such 
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value is the result after the evaluation of the network 
with the pattern set that represents the problem. This 
result is the mean square error (MSE) of this 
evaluation. 
     Nevertheless, this error value considered as fitness 
value has been modified in order to induce the system 
to generate simple networks. The modification has 
been made by adding a penalization value multiplied 
by the number of neurons of the network. In such 
way, and given that the evolutionary system has been 
designed in order to minimize an error value, when 
adding a fitness value, a larger network would have a 
worse fitness value. Therefore, the existence of 
simple networks would be preferred as the 
penalization value that is added is proportional to the 
number of neurons of the ANN. The calculus of the 
final fitness is as follows: 
 

PNMSEfitness *+=  
  
     Where MSE is the mean square error of the ANN 
in the training patterns set, N is the number of 
neurons of the network and P is the penalization 
value for such number. 
 
 
4   Problems to be solved 
This technique has been used for solving problems of 
different complexity taken from the UCI database 
[17]. All these problems are knowledge-extraction 
problems from databases where, taking certain 
features as a basis, it is intended to perform a 
prediction about another attribute of the database. 

The value that is intended to be predicted might be a 
diagnosis value (when using medical databases), a 
classification value or a prediction one. A small 
summary of the problems to be solved can be seen on 
Table 1. 
 

 Number 
of 

inputs 

Number 
of data 
points 

Number of 
outputs 

Breast Cancer 9 699 1 
Iris Flower 4 150 3 
Heart disease 13 303 1 
Ionosphere 34 351 1 

Table 1. Summary of the problems to be solved 
 
     All these databases values have been normalized 
between 0 and 1 and the patterns divided into two 
parts for each problem, taking the 70% of the 
database for training and using the remaining 30% for 
performing tests. 
 
 
5   Results 
Several experiments have been performed in order to 
evaluate the system performance. The values taken 
for the parameters at these experiments were the 
following: 

• Crossover rate: 95%. 
• Mutation probability: 4%. 
• Selection algorithm: 2-individual tournament. 
• Creation algorithm: Ramped Half&Half. 
• Population size: 500. 
• Tree maximum height: 6. 

  0.1 0.01 0.001 0.0001 0.00001 0 
 

Neurons 1.75 2 2.65 9.3 22.65 27.833 
Connections 8.8 9.2 13.1 47.6 100.7 126.944 

Training 0.03371 0.01968 0.01801 0.01426 0.01366 0.01257 

Breast 
Cancer 

Test 0.03392 0.02063 0.02096 0.02381 0.02551 0.02514 
Neurons 3 4 8.45 24.2 38.9 42.85 

Connections 8.8 11.95 27.85 86.55 140.25 157.05 
Training 0.06079 0.03021 

Iris Flower 

0.01746 0.01658 0.01681 0.01572 
Test 0.07724 0.05222 0.03799 0.04084 0.04071 0.04075 

Neurons 1 1.3 4.95 16.4 24.8 30.4 
Connections 7.25 8.7 28.45 88.1 118.95 167.5 

Training 0.10589 0.10731 0.07517 0.06867 0.06600 0.06218 

Heart 
Cleveland 

Test 0.15728 0.16335 0.17654 0.17816 0.17472 0.17292 
Neurons 1 2.35 8.15 21.6 32.4 42.45 

Connections 6.1 11.95 48.3 128.15 197.4 261.8 
Training 0.09836 0.06253 0.03097 0.02114 0.02264 0.01781 

Ionosphere 

Test 0.10941 0.09127 0.06854 0.07269 0.07393 0.07123 
 

Table 2. Comparison of the results with different penalization values 
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• Maximum inputs for each neuron: 12. 
     Table 2 shows a comparison of the results 
obtained for different penalization values. The values 
range from very high (0.1) to very small (0.00001 or 
0). High values only enables the creation of very 
small networks with a subsequent high error, and low 
values lead to overfitting problem. This overfitting 
can be noticed at the table in the training error 
decrease together with a test error increase. 
     The number of neurons as well as of connections 
that were obtained at the resulting networks is also 
shown in table 2. Logically, such number is higher as 
the penalization decreases. The results correspond to 
the MSE obtained after both, the training and the test 
of every problem. As it can be observed, the results 
clearly prove that the problems have been 
satisfactorily solved and, as far as penalization 
parameter is concerned, intermediate values are 
preferred for the creation of networks. These 
intermediate values in the penalization parameter 
allow the creation of networks large enough for 
solving the problem, avoiding overfitting, although it 
should be changed for every problem. 
 
 
6   Comparison with other methods 
In order to evaluate its performance, the system 
presented here has been compared with other 
methods for ANN generation and training. 
     The method 5x2cv [19] is used in [18] for the 
comparison of different evolutionary methods-based 
techniques used in ANN generation and training. This 
work presents as results the average precisions 
obtained in the 10 test results generated by this 
method. Such values are the basis for the comparison 

of the described technique with other well known 
ones. 

 Proposed here 

     Regarding the parameters used for ANN 
generation, the comparison was done using the same 
ones than in section 5, with 0.00001 penalization 
value. 
     The algorithms compared with this technique are 
widely explained with detail in [18]. Such work 
shows the average times needed to achieve the 
results. Not having the same processor that was used, 
the computational effort needed for achieving the 
results can be estimated. This effort represents the 
number of times that the pattern file was evaluated. 
The computational effort for every technique can be 
measured using the population size, the number of 
generations the number of times that the BP 
algorithm was applied, etc. This calculation varies for 
every algorithm used. All the techniques that are 
compared with the work are related to the use of 
evolutionary algorithms for the ANN design. Five 
iterations of a 5-fold cross-validation test [20] were 
performed in all these techniques in order to evaluate 
the accuracy of this technique. The mentioned 
techniques are the following: 

• Connectivity matrix. 
• Pruning. 
• Parameter search. 
• Graph rewriting grammar. 

     Table 3 shows a summary of the number of 
neurons used in [18] in order to solve the problems 
that were used with connectivity matrix and pruning 
techniques. Such number is compared with the 
average neurons number of the ANNs (table 2) that 
solved the problem with the method proposed here. 
The epoch number of the BP algorithm, when used, is 
also indicated here. 

[18] 
 Inputs 

number 
Hidden 
neurons 
number 

Output 
neurons 
number 

Inputs 
number 

Hidden 
neurons 
number 

Output 
neurons 
number 

BP 
Epochs 

Breast cancer 9 1.65 1 9 5 1 20 
Iris Flower 4 5.45 3 4 5 3 80 
Heart Cleveland 13 3.95 1 26 5 1 40 
Ionosphere 34 7.15 1 34 10 1 40 

 

Table 3. Comparison of the architectures used  

 Connectivity matrix Pruning Parameters Grammar 
Chromosome length (L) (hidden+output)*input + 

output*hidden 
(hidden+output)*input 

+ output*hidden 
36 256 

Population size ⎣ ⎦L3  ⎣ ⎦L3  25 64 
Crossover points l/10 l/10 2 l/10 
Mutation rate 1/L 1/L 0.04 0.004 

 

Table 4. Parameters of the techniques used during the comparison 
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     Table 4 shows the parameter configuration used 
by these techniques. The execution was stopped after 
5 generations with no improvement or after 50 total 
generations. 
     The results obtained with these 4 methods are 
shown in table 5. Every box of the table indicates 3 
different values: precision value obtained in [18] 
(left), computational effort needed for obtaining such 
value with that technique (below) and precision value 
obtained with the technique described here and 
related to the previously mentioned computational 
effort value (right). 
     Watching this table, it is obvious that the results 
obtained with the method proposed here are, not only 
similar to the ones presented in [18], but better in 
many cases. The reason of this lies in the fact that 
these methods need a high computational load since 
training is necessary for every case of network 
(individual) evaluation, which therefore turns to be 
time-consuming. During the work described here, the 
design and training procedures are performed 
simultaneously, and therefore, the times needed for 
designing as well as for evaluating the network are 
combined. 
     Most of the techniques used for the development 
of ANNs are quite costly, due in some cases to the 
combination of training with architecture evolution. 
The technique described here can achieve good 
results with a low computational cost and besides, the 
added advantage is that, not only the architecture and 
the connectivity of the network are evolved, but also 
the network itself undergoes an optimization process. 
     Table 5 also shows a small overfitting problem. 
This is due to the fact that the system has been left to 
training up to a certain number of fitness function 
evalutions. This usually leads to overfitting the 
training set when it keeps training for a long time. 
 
 
 
7   Conclusions 

This paper presents a technique for ANN generation 
with GP. This system has been compared to different 
techniques that use evolutionary algorithms for 
generating and training networks. The conclusion of 
such comparison is that the results of 5x2cv tests 
using this method are not only comparable to those 
obtained with other methods, but also better than 
them in most of the cases. It should be borne in mind 
that if the parameters of the system were adapted to 
every problem to be solved the results would have 
been better. However, the parameters used were the 
same for all the problems because it is intended that 
the whole of them might serve for any problem, 
trying to remove the participation of the expert during 
algorithm application. In such way, it can be stated 
that even without human participation, this method 
can improve the results of other algorithms. 

 Matrix Pruning Parameters Grammar 

96.77 

     This system has another advantage over other 
methods of ANN generation since -after a short 
analysis by the system- it is possible to differentiate 
the variables that are not relevant for problem 
solving, as they will not be present in the ANN. 
 
 
8   Future Works 
Once the system has been proved, the work continues 
towards several directions. One interesting research 
line would be the possible integration of a GA into 
the system in order to train the networks that were 
generated. In such way, the GP system would only 
create different architectures that would be trained by 
the GA. 
     As was explained earlier, this system has an 
overfitting problem. Another research line could be to 
use any technique to avoid overfitting, such as early 
stop. 
 
 
 
9   Acknowledgements 

96.19 96.31 96.10 96.69 96.19 96.71 96.15 Breast 
cancer 92000 4620 100000 300000 
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