
Using Genetic Programming for Artificial Neural Network Development
and Simplification

DANIEL RIVERO, JULIAN DORADO, JUAN RABUÑAL, ALEJANDRO PAZOS

Department of Information & Communications Technologies
University of A Coruña

Campus Elviña, 15071, A Coruña, Spain
SPAIN

Abstract: - The creation process of Artificial Neural Networks (ANNs) used to be quite slow and the human
expert had to test several architectures until finding the one that achieves the best results for the solution of a
certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically
creating ANNs. This technique also allows the obtaining of simplified networks with few neurons for solving the
problem. In order to measure the performance of the system and to compare the results with other ANN
generation and training methods with Evolutionary Computation (EC) techniques, several tests were performed
with problems based on some of the most used test databases. The results of those comparisons showed that the
system achieved good results comparable with already existing techniques and, in most of the cases, they worked
better than those techniques.

Key-Words: - Artificial Neural Networks, Evolutionary Computation, Genetic Programming, Data Mining

1 Introduction
ANNs are learning systems that have solved a large
amount of complex problems related to different
disciplines (classification, clustering, regression, etc.)
[1]. The interesting characteristics of this powerful
technique have induced its use by researchers in
different environments [2].
 Nevertheless, the use of ANNs has some
problems, mainly related to their development
process. This process can be divided into two parts:
architecture development and training and validation.
As the network architecture is problem-dependant,
the design process of this architecture used to be
manually performed, meaning that the expert had to
test different architectures and train them until
finding the one that achieves best results after the
training process. The manual nature of the described
process determines its slow performance although the
recent use of ANNs creation techniques have
contributed to achieve a more automatic procedure.

2 State of the Art

2.1 Genetic Programming
Genetic Programming (GP) [3] is based on the
evolution of a given population. In this population,
every individual represents a solution for a problem
that is intended to be solved. The evolution is

achieved by means of selection of the best individuals
– although the worst ones also have a little chance of
being selected – and their mutual combination for
creating new solutions. This process is developed
using selection, crossover and mutation operators.
After several generations, it is expected that the
population might contain some good solutions to the
problem.
 In GP, the codification of the solutions is in shape
of trees. Therefore, the user must specify which
nodes of the tree are the terminals (leaves of the tree)
and the functions (nodes that have descendants) for
being used by the evolutionary algorithm in order to
build complex expressions.
 The wide application of GP to different
environments and its consequent success are due to
its capability for being adapted to numerous different
problems. Although the main application is the
generation of mathematical expressions [4], GP has
also been used in many others fields such as rule
generation [5], filter design [6], etc.

2.2 ANN development with EC tools

The development of ANNs is a topic that has been
extensively dealt with very diverse techniques. The
world of evolutionary algorithms is no exception, and
proof of that is the great amount of works that have
been published about the different techniques in this
area, even with GAs or GP [3] [12] [14] [18] [20]

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 65

[21]. These techniques follow the general strategy of
an evolutionary algorithm: an initial population
consisting of different types of genotypes, each one
of them codifying different parameters (typically, the
weight of the connections and/or the architecture of
the network and/or the rules of learning) is randomly
created. This population is evaluated in order to
determine the fitness of each individual. Afterwards,
this group is made to evolve repeatedly by means of
different genetic operators (replication, crossover,
mutation, etc.) until a determined termination criteria
is satisfied (for example, a sufficiently good
individual is obtained, or that a predetermined
maximum number of generations is reached).
 As a general rule, the field of ANN generation
using evolutionary algorithms is divided into three
main fields: evolution of weights, architectures and
learning rules.
 First, the weight evolution starts from an ANN
with an already determined topology. In this case, the
problem to be solved is the training of the connection
weights, attempting to minimize the network error.
Most of training algorithms, such as back-
propagation (BP) algorithm, are based on gradient
descent, which has several drawbacks [7]. The most
important is the possibility of getting stuck into a
local minimum of the fitness function. With the use
of an evolutionary algorithm, the weights can be
represented either as a concatenation of binary values
[8] or of real numbers [9]. The main disadvantage of
this type of encoding is the permutation problem.
This problem means that the order in which weights
are taken at the string might cause that equivalent
networks correspond to completely different
chromosomes, making the crossover operator
inefficient.
 Second, the evolution of architectures includes the
generation of the topological structure. This means
establishing the connectivity and the transfer function
of each neuron. The network architecture is highly
important for the successful application of the ANN,
since the architecture has a very significant impact on
the processing ability of the network. Therefore, the
network design, traditionally performed by a human
expert using trial and error techniques on different
architectures, is crucial. The automatic architecture
design has been possible thanks to the use of
evolutionary algorithms. In order to use them to
develop ANN architectures, it is needed to choose
how to encode the genotype of a given network for it
used by the genetic operators.
 At the first option, direct encoding, there is a one-
to-one correspondence between each of the genes and
their subsequent phenotypes. The most typical
encoding method consists of a matrix that represents

an architecture where every element reveals the
presence or absence of connection between two nodes
[10]. These types of encoding are generally quite
simple and easy to implement. However, they also
have a large amount of inconveniences such as
scalability [11], the incapability of encoding repeated
structures, or permutation [12].
 Apart from direct encoding, there are some
indirect encoding methods. In these methods, only
some characteristics of the architecture are encoded
in the chromosome. These methods have several
types of representation. First, the parametric
representations represent the network as a group of
parameters such as number of hidden layers, number
of nodes for each layer, number of connections
between two layers, etc [13]. Although the parametric
representation can reduce the length of the
chromosome, the evolutionary algorithm performs
the search within a restricted area in the search space
containing all the possible architectures. Another non
direct representation type is based on grammatical
rules [11]. In this system, the network is represented
by a group of rules, with the shape of production
rules, that make a matrix that represents the network,
which has several restrictions.
 The growing methods represent another type of
encoding. In this case, the genotype does not encode
a network directly. Instead of it, it contains a group of
instructions for building up the phenotype. The
genotype decoding will consist on the execution of
those instructions [14].
 With regards to the evolution of the learning rule,
there are several approaches [15], although most of
them are only based on how learning can modify or
guide the evolution and also on the relationship
among the architecture and the connection weights.

3 Model
The GP-development of ANNs is performed by
means of the GP typing property [16]. This property
provides the ability of developing structures that
follow a specific grammar. In this case, the nodes to
be used will be the following:

• ANN. Node that defines the network. It
appears only at the root of the tree. It has the
same number of descendants as the network
expected outputs, each of them a neuron.

• n-Neuron. Node that identifies a neuron with
n inputs. This node will have 2*n
descendants. The first n descendants will be
other neurons, either input or hidden ones.
The second n descendants will be
arithmetical sub-trees. These sub-trees

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 66

ANN

2-Neuron

Pop

2_Input

Forward

2-Neuron

2-Neuron

1-Input

1-Input

3-Neuron

2-Input
-

3_Input

4 Input
0.67

x1

x2

x3

x4

3.2

-2

2.1 1

1.3

%
-2.34

- 2

2.6 1.8

3.2

2.8

-2

0.67 1.3

1.1

2.8

-1

-1

-2.34 0.4

Fig. 1. GP tree and its resulting network

represent real values. These values
correspond to values of the respective
connection weights of the input neurons – the
first descendants – of this neuron.

• n-Input neuron. Nodes that define an input
neuron which receives its activation value
from the input variable n. These nodes do not
have any descendants.

• Finally, the arithmetic operators set {+,-
,*,%}, where % designs the operation of
protected division (returns 1 as result if the
divisor is 0). They will generate the values of
connection weights (sub-trees of the n-
Neuron nodes). These nodes perform
operations among constants in order to obtain
new values. As real values are also needed
for such operations, they have to be
introduced by means of the addition of
random constants to the terminal set in the
range [-4, 4].

 ANNs can be generated with these operator sets.
However, these networks would not allow, for a
given neuron, the existence of output connections to
more than one different neuron. For such reason, the
system has been endowed with a list where neurons
are being added as the tree is being evaluated, and an
index that points to a specific element of the list. In

order to extract neurons from the list, and therefore to
operate with it, the operator sets were added with the
following operators:

• “Forward”. This node advances the index
list one unit. This node has one descendant.

• “Pop”. This node extracts from the list the
neuron at the position pointed by the index.
This node substitutes the evaluation of a
neuron, as it returns an already existing one,
so it has no descendants.

 Every time a neuron is created, it is added to the
list once its descendants have been evaluated. In such
way, they are not allowed to reference that neuron, so
recurrent links will be avoided.
 Note that, during the creation of a neuron, a given
neuron - either an input or a hidden - can be repeated
several times as input of that neuron. In such case,
there is no new input connection from that processing
element, but the weight of the already existing
connection will be added with the value of the new
connection.
 Once the tree has been evaluated, the genotype
turns into phenotype. In other words, it is converted
into an ANN with its weights already set (thus it does
not need to be trained) and therefore can be
evaluated. The evolutionary process demands the
assignation of a fitness value to every genotype. Such

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 67

value is the result after the evaluation of the network
with the pattern set that represents the problem. This
result is the mean square error (MSE) of this
evaluation.
 Nevertheless, this error value considered as fitness
value has been modified in order to induce the system
to generate simple networks. The modification has
been made by adding a penalization value multiplied
by the number of neurons of the network. In such
way, and given that the evolutionary system has been
designed in order to minimize an error value, when
adding a fitness value, a larger network would have a
worse fitness value. Therefore, the existence of
simple networks would be preferred as the
penalization value that is added is proportional to the
number of neurons of the ANN. The calculus of the
final fitness is as follows:

PNMSEfitness *+=

 Where MSE is the mean square error of the ANN
in the training patterns set, N is the number of
neurons of the network and P is the penalization
value for such number.

4 Problems to be solved
This technique has been used for solving problems of
different complexity taken from the UCI database
[17]. All these problems are knowledge-extraction
problems from databases where, taking certain
features as a basis, it is intended to perform a
prediction about another attribute of the database.

The value that is intended to be predicted might be a
diagnosis value (when using medical databases), a
classification value or a prediction one. A small
summary of the problems to be solved can be seen on
Table 1.

 Number
of

inputs

Number
of data
points

Number of
outputs

Breast Cancer 9 699 1
Iris Flower 4 150 3
Heart disease 13 303 1
Ionosphere 34 351 1

Table 1. Summary of the problems to be solved

 All these databases values have been normalized
between 0 and 1 and the patterns divided into two
parts for each problem, taking the 70% of the
database for training and using the remaining 30% for
performing tests.

5 Results
Several experiments have been performed in order to
evaluate the system performance. The values taken
for the parameters at these experiments were the
following:

• Crossover rate: 95%.
• Mutation probability: 4%.
• Selection algorithm: 2-individual tournament.
• Creation algorithm: Ramped Half&Half.
• Population size: 500.
• Tree maximum height: 6.

 0.1 0.01 0.001 0.0001 0.00001 0

Neurons 1.75 2 2.65 9.3 22.65 27.833
Connections 8.8 9.2 13.1 47.6 100.7 126.944

Training 0.03371 0.01968 0.01801 0.01426 0.01366 0.01257

Breast
Cancer

Test 0.03392 0.02063 0.02096 0.02381 0.02551 0.02514
Neurons 3 4 8.45 24.2 38.9 42.85

Connections 8.8 11.95 27.85 86.55 140.25 157.05
Training 0.06079 0.03021

Iris Flower

0.01746 0.01658 0.01681 0.01572
Test 0.07724 0.05222 0.03799 0.04084 0.04071 0.04075

Neurons 1 1.3 4.95 16.4 24.8 30.4
Connections 7.25 8.7 28.45 88.1 118.95 167.5

Training 0.10589 0.10731 0.07517 0.06867 0.06600 0.06218

Heart
Cleveland

Test 0.15728 0.16335 0.17654 0.17816 0.17472 0.17292
Neurons 1 2.35 8.15 21.6 32.4 42.45

Connections 6.1 11.95 48.3 128.15 197.4 261.8
Training 0.09836 0.06253 0.03097 0.02114 0.02264 0.01781

Ionosphere

Test 0.10941 0.09127 0.06854 0.07269 0.07393 0.07123

Table 2. Comparison of the results with different penalization values

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 68

• Maximum inputs for each neuron: 12.
 Table 2 shows a comparison of the results
obtained for different penalization values. The values
range from very high (0.1) to very small (0.00001 or
0). High values only enables the creation of very
small networks with a subsequent high error, and low
values lead to overfitting problem. This overfitting
can be noticed at the table in the training error
decrease together with a test error increase.
 The number of neurons as well as of connections
that were obtained at the resulting networks is also
shown in table 2. Logically, such number is higher as
the penalization decreases. The results correspond to
the MSE obtained after both, the training and the test
of every problem. As it can be observed, the results
clearly prove that the problems have been
satisfactorily solved and, as far as penalization
parameter is concerned, intermediate values are
preferred for the creation of networks. These
intermediate values in the penalization parameter
allow the creation of networks large enough for
solving the problem, avoiding overfitting, although it
should be changed for every problem.

6 Comparison with other methods
In order to evaluate its performance, the system
presented here has been compared with other
methods for ANN generation and training.
 The method 5x2cv [19] is used in [18] for the
comparison of different evolutionary methods-based
techniques used in ANN generation and training. This
work presents as results the average precisions
obtained in the 10 test results generated by this
method. Such values are the basis for the comparison

of the described technique with other well known
ones.

 Proposed here

 Regarding the parameters used for ANN
generation, the comparison was done using the same
ones than in section 5, with 0.00001 penalization
value.
 The algorithms compared with this technique are
widely explained with detail in [18]. Such work
shows the average times needed to achieve the
results. Not having the same processor that was used,
the computational effort needed for achieving the
results can be estimated. This effort represents the
number of times that the pattern file was evaluated.
The computational effort for every technique can be
measured using the population size, the number of
generations the number of times that the BP
algorithm was applied, etc. This calculation varies for
every algorithm used. All the techniques that are
compared with the work are related to the use of
evolutionary algorithms for the ANN design. Five
iterations of a 5-fold cross-validation test [20] were
performed in all these techniques in order to evaluate
the accuracy of this technique. The mentioned
techniques are the following:

• Connectivity matrix.
• Pruning.
• Parameter search.
• Graph rewriting grammar.

 Table 3 shows a summary of the number of
neurons used in [18] in order to solve the problems
that were used with connectivity matrix and pruning
techniques. Such number is compared with the
average neurons number of the ANNs (table 2) that
solved the problem with the method proposed here.
The epoch number of the BP algorithm, when used, is
also indicated here.

[18]
 Inputs

number
Hidden
neurons
number

Output
neurons
number

Inputs
number

Hidden
neurons
number

Output
neurons
number

BP
Epochs

Breast cancer 9 1.65 1 9 5 1 20
Iris Flower 4 5.45 3 4 5 3 80
Heart Cleveland 13 3.95 1 26 5 1 40
Ionosphere 34 7.15 1 34 10 1 40

Table 3. Comparison of the architectures used

 Connectivity matrix Pruning Parameters Grammar
Chromosome length (L) (hidden+output)*input +

output*hidden
(hidden+output)*input

+ output*hidden
36 256

Population size ⎣ ⎦L3 ⎣ ⎦L3 25 64
Crossover points l/10 l/10 2 l/10
Mutation rate 1/L 1/L 0.04 0.004

Table 4. Parameters of the techniques used during the comparison

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 69

 Table 4 shows the parameter configuration used
by these techniques. The execution was stopped after
5 generations with no improvement or after 50 total
generations.
 The results obtained with these 4 methods are
shown in table 5. Every box of the table indicates 3
different values: precision value obtained in [18]
(left), computational effort needed for obtaining such
value with that technique (below) and precision value
obtained with the technique described here and
related to the previously mentioned computational
effort value (right).
 Watching this table, it is obvious that the results
obtained with the method proposed here are, not only
similar to the ones presented in [18], but better in
many cases. The reason of this lies in the fact that
these methods need a high computational load since
training is necessary for every case of network
(individual) evaluation, which therefore turns to be
time-consuming. During the work described here, the
design and training procedures are performed
simultaneously, and therefore, the times needed for
designing as well as for evaluating the network are
combined.
 Most of the techniques used for the development
of ANNs are quite costly, due in some cases to the
combination of training with architecture evolution.
The technique described here can achieve good
results with a low computational cost and besides, the
added advantage is that, not only the architecture and
the connectivity of the network are evolved, but also
the network itself undergoes an optimization process.
 Table 5 also shows a small overfitting problem.
This is due to the fact that the system has been left to
training up to a certain number of fitness function
evalutions. This usually leads to overfitting the
training set when it keeps training for a long time.

7 Conclusions

This paper presents a technique for ANN generation
with GP. This system has been compared to different
techniques that use evolutionary algorithms for
generating and training networks. The conclusion of
such comparison is that the results of 5x2cv tests
using this method are not only comparable to those
obtained with other methods, but also better than
them in most of the cases. It should be borne in mind
that if the parameters of the system were adapted to
every problem to be solved the results would have
been better. However, the parameters used were the
same for all the problems because it is intended that
the whole of them might serve for any problem,
trying to remove the participation of the expert during
algorithm application. In such way, it can be stated
that even without human participation, this method
can improve the results of other algorithms.

 Matrix Pruning Parameters Grammar

96.77

 This system has another advantage over other
methods of ANN generation since -after a short
analysis by the system- it is possible to differentiate
the variables that are not relevant for problem
solving, as they will not be present in the ANN.

8 Future Works
Once the system has been proved, the work continues
towards several directions. One interesting research
line would be the possible integration of a GA into
the system in order to train the networks that were
generated. In such way, the GP system would only
create different architectures that would be trained by
the GA.
 As was explained earlier, this system has an
overfitting problem. Another research line could be to
use any technique to avoid overfitting, such as early
stop.

9 Acknowledgements

96.19 96.31 96.10 96.69 96.19 96.71 96.15 Breast
cancer 92000 4620 100000 300000

92.40 94.98 92.40 82.99 91.73 94.95 92.93 95.27 Iris
320000 4080 400000 1200000

76.78 80.53 89.50 79.45 65.89 80.66 72.8 80.46 Heart
Cleveland 304000 7640 200000 600000

87.06 88.65 83.66 83.21 85.58 88.13 88.03 88.71 Ionosphere
464000 11640 200000 600000

Average 88.25 90.08 90.46 85.43 84.97 89.98 87.61 90.14

Table 5. Comparison of the results obtained with other methods and with the present one

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 70

This work was supported in part by the Spanish
Ministry of Education and Culture (Ref. TIC2003-
07593, TIN2006-13274), the IMBIOMED network
(Ref P10/52048) financed by the Carlos III Health
Institute, grants from the General Directorate of
Research of the Xunta de Galicia (Ref. PGIDIT03-
PXIC10504PN PGIDIT04-PXIC10503PN,
PGIDIT04-PXIC10504PN), and the European project
Interreg (Ref. IIIA-PROLIT-SP1E194/03).
 The development of the experiments described in
this work, has been performed with equipments
belonging to the Super Computation Center of
Galicia (CESGA).
 The Cleveland heart disease database was
available thanks to Robert Detrano, M.D., Ph.D.,
V.A. Medical Center, Long Beach and Cleveland
Clinic Foundation.

References:
[1] Haykin, S., Neural Networks (2nd ed.),

Englewood Cliffs, NJ: Prentice Hall, 1999.
[2] Rabuñal, J.R., Dorado J., (eds.) Artificial Neural

Networks in Real-Life Applications, Idea Group
Inc, 2005.

[3] Koza, J. R., Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, Cambridge, MA, MIT Press, 1992.

[4] Rivero D., Rabuñal J.R., Dorado J., Pazos A.,
Time Series Forecast with Anticipation using
Genetic Programming, IWANN 2005, 2005, pp.
968-975.

[5] Bot, M., Application of Genetic Programming to
Induction of Linear Classification Trees, Final
Term Project Report, Vrije Universiteit,
Amsterdam, 1999.

[6] Rabuñal J.R., Dorado J., Puertas J., Pazos A.,
Santos A., Rivero D., Prediction and Modelling of
the Rainfall-Runoff Transformation of a Typical
Urban Basin using ANN and GP, Applied
Artificial Intelligence, 2003.

[7] Sutton, R.S., Two problems with backpropagation
and other steepest-descent learning procedure for
networks, Proc. 8th Annual Conf. Cognitive
Science Society, Hillsdale, NJ: Erlbaum, 1986, pp.
823-831.

[8] Janson D.J., Frenzel J.F., Training product unit
neural networks with genetic algorithms, IEEE
Expert, vol. 8, 1993, pp. 26-33.

[9] Greenwood G.W. Training partially recurrent
neural networks using evolutionary strategies,
IEEE Trans. Speech Audio Processing, vol. 5,
1997, pp. 192-194.

[10] Alba E., Aldana J.F., Troya J.M., Fully
automatic ANN design: A genetic approach, Proc.

Int. Workshop Artificial Neural Networks
(IWANN’93), Lecture Notes in Computer Science,
vol. 686. Berlin, Germany: Springer-Verlag,
1993, pp. 399-404.

[11] Kitano H., Designing neural networks using
genetic algorithms with graph generation system,
Complex Systems, vol. 4, 1990, pp. 461-476.

[12] Yao X., Liu Y., Towards designing artificial
neural networks by evolution, Appl. Math.
Computation, vol. 91, no. 1, 1998, pp. 83-90.

[13] Harp S.A., Samad T., Guha A., Towards the
genetic synthesis of neural networks, Proc. 3rd
Int. Conf. Genetic Algorithms and Their
Applications, J.D. Schafer, Ed. San Mateo, CA:
Morgan Kaufmann, 1989, pp. 360-369.

[14] Nolfi S. & Parisi D., Evolution of Artificial
Neural Networks, Handbook of brain theory and
neural networks, Second Edition, Cambridge,
MA: MIT Press, 2002, pp. 418-421.

[15] Turney P. Whitley D., Anderson R., Special
issue on the baldwinian effect, Evolutionary
Computation, vol. 4, no. 3, 1996, pp. 213-329.

[16] Montana D.J., Strongly typed genetic
programming, Evolutionary Computation, Vol. 3,
No. 2, 1995, pp. 199-200.

[17] Mertz C.J., Murphy P.M., UCI repository of
machine learning databases. http://www-
old.ics.uci.edu/pub/machine-learning-databases,
2002

[18] Cantú-Paz E., Kamath C., An Empirical
Comparison of Combinations of Evolutionary
Algorithms and Neural Networks for
Classification Problems, IEEE Transactions on
systems, Man and Cybernetics – Part B:
Cybernetics, 2005, pp. 915-927.

[19] Dietterich T.G., Approximate statistical tests for
comparing supervised classification learning
algorithms, Neural Computation, Vol. 10, No. 7,
1998, pp. 1895-1924.

[20] Herrera F., Hervás C., Otero J., Sánchez L., Un
estudio empírico preliminar sobre los tests
estadísticos más habituales en el aprendizaje
automático, R. Giraldez, J.C. Riquelme, J.S.
Aguilar (Eds.) Tendencias de la Minería de Datos
en España, Red Española de Minería de Datos y
Aprendizaje, 2004, pp. 403-412.

[21] Gruau F., Genetic Micro Programming of
Neural Networks, Advances in Genetic
Programming, K. Kinnear, Ed., Cambridge,
MA:MIT Press, 1994, pp. 495-518.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 71

