Skip to main content

Ensemble Genetic Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12101))

Abstract

Ensemble learning is a powerful paradigm that has been used in the top state-of-the-art machine learning methods like Random Forests and XGBoost. Inspired by the success of such methods, we have developed a new Genetic Programming method called Ensemble GP. The evolutionary cycle of Ensemble GP follows the same steps as other Genetic Programming systems, but with differences in the population structure, fitness evaluation and genetic operators. We have tested this method on eight binary classification problems, achieving results significantly better than standard GP, with much smaller models. Although other methods like M3GP and XGBoost were the best overall, Ensemble GP was able to achieve exceptionally good generalization results on a particularly hard problem where none of the other methods was able to succeed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Araújo Padilha, C.A., Barone, D.A.C., Neto, A.D.D.: A multi-level approach using genetic algorithms in an ensemble of least squares support vector machines. Knowl.-Based Syst. 106, 85–95 (2016). https://doi.org/10.1016/j.knosys.2016.05.033

    Article  Google Scholar 

  2. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 17(3), 368–386 (2013). https://doi.org/10.1109/TEVC.2012.2199119

    Article  Google Scholar 

  3. Brameier, M., Banzhaf, W.: Evolving teams of predictors with linear genetic programming. Genet. Program Evolvable Mach. 2(4), 381–407 (2001). https://doi.org/10.1023/A:1012978805372

    Article  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. Evol. Comput. 7(1), 54–68 (2003)

    Article  Google Scholar 

  6. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. J. Math. Model. Algorithms 5(4), 417–445 (2006). https://doi.org/10.1007/s10852-005-9020-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. ArXiv abs/1603.02754 (2016)

    Google Scholar 

  8. Coelho, A.L.V., Fernandes, E., Faceli, K.: Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming. Decis. Support Syst. 51(4), 794–809 (2011). https://doi.org/10.1016/j.dss.2011.01.014

    Article  Google Scholar 

  9. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  10. Escalante, H.J., Acosta-Mendoza, N., Morales-Reyes, A., Gago-Alonso, A.: Genetic programming of heterogeneous ensembles for classification. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 9–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8_2

    Chapter  Google Scholar 

  11. Gagné, C., Sebag, M., Schoenauer, M., Tomassini, M.: Ensemble learning for free with evolutionary algorithms? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), pp. 1782–1789. ACM, New York (2007). https://doi.org/10.1145/1276958.1277317

  12. Gijsbers, P.: Gametes\_epistasis\_2-way\_1000atts\_0.4h\_edm-1\_edm-1\_1 (2017). https://www.openml.org/d/40645

  13. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation (GECCO 1999), vol. 2, pp. 1053–1060. Morgan Kaufmann Publishers Inc., San Francisco (1999). http://dl.acm.org/citation.cfm?id=2934046.2934063

  14. Ingalalli, V., Silva, S., Castelli, M., Vanneschi, L.: A multi-dimensional genetic programming approach for multi-class classification problems. In: Nicolau, M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 48–60. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3_5

    Chapter  Google Scholar 

  15. Islam, M.M., Yao, X.: Evolving artificial neural network ensembles. IEEE Comput. Intell. Mag. 3, 31–42 (2008)

    Google Scholar 

  16. Johansson, U., Lofstrom, T., Konig, R., Niklasson, L.: Building neural network ensembles using genetic programming. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 1260–1265, July 2006. https://doi.org/10.1109/IJCNN.2006.246836

  17. Koza, J.R.: Genetic Programming (1992)

    Google Scholar 

  18. La Cava, W., Silva, S., Vanneschi, L., Spector, L., Moore, J.: Genetic programming representations for multi-dimensional feature learning in biomedical classification. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_11

    Chapter  Google Scholar 

  19. Langdon, W.B., Buxton, B.F.: Genetic programming for combining classifiers. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 66–73. Morgan Kaufmann (2001)

    Google Scholar 

  20. Lichman, M.: UCI Machine Learning Repository (2013). https://archive.ics.uci.edu/ml/index.php

  21. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_40

    Chapter  Google Scholar 

  22. Muñoz, L., Silva, S., Trujillo, L.: M3GP – multiclass classification with GP. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 78–91. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_7

    Chapter  Google Scholar 

  23. Muñoz, L., Trujillo, L., Silva, S., Castelli, M., Vanneschi, L.: Evolving multidimensional transformations for symbolic regression with M3GP. Memetic Comput. 11(2), 111–126 (2018). https://doi.org/10.1007/s12293-018-0274-5

    Article  Google Scholar 

  24. de Oliveira, D.F., Canuto, A.M.P., de Souto, M.C.P.: Use of multi-objective genetic algorithms to investigate the diversity/accuracy dilemma in heterogeneous ensembles. In: 2009 International Joint Conference on Neural Networks, pp. 2339–2346 (2009)

    Google Scholar 

  25. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd., Essex (2008)

    Google Scholar 

  26. Silva, S., Vanneschi, L., Cabral, A.I., Vasconcelos, M.J.: A semi-supervised genetic programming method for dealing with noisy labels and hidden overfitting. Swarm Evol. Comput. 39, 323–338 (2018). https://doi.org/10.1016/j.swevo.2017.11.003

    Article  Google Scholar 

  27. Sousa, R.T., Silva, S., Pesquita, C.: Evolving knowledge graph similarity for supervised learning in complex biomedical domains. BMC Bioinform. 21, 6 (2020). https://doi.org/10.1186/s12859-019-3296-1

    Article  Google Scholar 

  28. Vanneschi, L.: An introduction to geometric semantic genetic programming. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-3_1

    Chapter  Google Scholar 

  29. Veeramachaneni, K., Arnaldo, I., Derby, O., O’Reilly, U.M.: FlexGP. J. Grid Comput. 13, 391–407 (2015)

    Article  Google Scholar 

  30. Yu, J., Guo, M., Needham, C.J., Huang, Y., Cai, L., Westhead, D.R.: Simple sequence-based kernels do not predict protein-protein interactions. Bioinformatics 26(20), 2610–2614 (2010). https://doi.org/10.1093/bioinformatics/btq483

    Article  Google Scholar 

  31. Zhang, B., Joung, J.G.: Enhancing robustness of genetic programming at the species level. In: Genetic Programming Conference (GP 1997), pp. 336–342. Morgan Kaufmann (1997)

    Google Scholar 

  32. Zhang, S.: sonar.all-data (2018). https://www.kaggle.com/ypzhangsam/sonaralldata

Download references

Acknowledgement

This work was partially supported by FCT through funding of LASIGE Research Unit UIDB/00408/2020 and projects PTDC/CCI-INF/29168/2017, PTDC/CCI-CIF/29877/2017, DSAIPA/DS/0022/2018, PTDC/ASP-PLA/28726/2017 and PTDC/CTA-AMB/30056/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, N.M., Batista, J.E., Silva, S. (2020). Ensemble Genetic Programming. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44094-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44093-0

  • Online ISBN: 978-3-030-44094-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics