Skip to main content

Cooperative Co-Evolutionary Genetic Programming for High Dimensional Problems

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Abstract

We propose a framework for Cooperative Co-Evolutionary Genetic Programming (CCGP) that considers co-evolution at three different abstraction levels: genotype, feature and output level. A thorough empirical evaluation is carried out on a real-world high dimensional ML problem (image denoising). Results indicate that GP’s performance is enhanced only when cooperation happens at an output level (ensemble-alike). The proposed co-evolutionary ensemble approach is compared against a canonical GP implementation and a GP customized for image processing tasks. Preliminary results show that the proposed framework obtains superior average performance in comparison to the other GP models. Our most relevant finding is the empirical evidence showing that the proposed CCGP model is a promising alternative to specialized GP implementations that require knowledge of the problem’s domain.

The last author gratefully acknowledges support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a SEP-Cinvestav grant (application no. 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Two-tier genetic programming: Towards raw pixel-based image classification. Expert Syst. Appl. 39(16), 12291–12301 (2012)

    Article  Google Scholar 

  2. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2009)

    MATH  Google Scholar 

  3. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26 (2001)

    Article  Google Scholar 

  4. Brown, G.: Ensemble learning. Encyclopedia Mach. Learn. 312 (2010)

    Google Scholar 

  5. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  6. Doucette, J.A., Mcintyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic coevolutionary genetic programming: a benchmarking study under large attribute spaces. Genet. Program. Evol. Mach. 13(1), 71–101 (2012)

    Article  Google Scholar 

  7. Esfahanipour, A., Mousavi, S.: A genetic programming model to generate risk-adjusted technical trading rules in stock markets. Expert Syst. Appl. 38(7), 8438–8445 (2011)

    Article  Google Scholar 

  8. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in genetic programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_275

    Chapter  Google Scholar 

  9. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Genetic and Evolutionary Computing Conference (GECCO’99), vol. 2, pp. 1053–1060. Morgan Kaufmann Publishers, San Francisco, California (July (1999)

    Google Scholar 

  10. Krawiec, K., Bhanu, B.: Coevolution and Linear Genetic Programming for Visual Learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L.D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 332–343. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_39

    Chapter  MATH  Google Scholar 

  11. Krawiec, K., Bhanu, B.: Visual learning by coevolutionary feature synthesis. IEEE Trans. Syst. Man. Cyber. 35(3), 409–425 (2005)

    Article  Google Scholar 

  12. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature synthesis. IEEE T. Evol. Comput. 11(5), 635–650 (2007)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks 3361(10), 1995 (1995)

    Google Scholar 

  14. Lemczyk, M., Heywood, M.I.: Training Binary GP Classifiers Efficiently: A Pareto-coevolutionary Approach. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 229–240. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1_21

    Chapter  Google Scholar 

  15. Lichodzijewski, P., Heywood, M.I.: Coevolutionary bid-based genetic programming for problem decomposition in classification. Genetic Program. Evol. Mach. 9(4), 331–365 (2008)

    Article  Google Scholar 

  16. Liu, L., Shao, L., Li, X., Lu, K.: Learning spatio-temporal representations for action recognition: A genetic programming approach. IEEE T. Cybernet. 46(1), 158–170 (2015)

    Article  Google Scholar 

  17. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC’2001), vol. 2, pp. 1101–1108. IEEE (2001)

    Google Scholar 

  18. McIntyre, A.R., Heywood, M.I.: Cooperative Problem Decomposition in Pareto Competitive Classifier Models of Coevolution. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 289–300. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9_25

    Chapter  Google Scholar 

  19. Miguel Antonio, L., Coello Coello, C.A.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013). pp. 2758–2765. IEEE Press (2013)

    Google Scholar 

  20. Park, J., Mei, Y., Nguyen, S., Chen, G., Johnston, M., Zhang, M.: Genetic programming based hyper-heuristics for dynamic job shop scheduling: cooperative coevolutionary approaches. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 115–132. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_8

    Chapter  Google Scholar 

  21. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  22. Rodriguez-Coayahuit, L., Morales-Reyes, A., H.J., E.: A comparison among different levels of abstraction in genetic programming. In: 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), IEEE (Nov 2019)

    Google Scholar 

  23. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally layered representation learning: towards deep learning through genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 271–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_17

    Chapter  Google Scholar 

  24. Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In: Null, pp. 860–867. IEEE (2005)

    Google Scholar 

  25. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2781 (2014)

    Google Scholar 

  26. Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjective genetic programming. IEEE Trans. Neural Net. Learn. Syst. 25(7), 1359–1371 (2013)

    Article  Google Scholar 

  27. Tran, B., Xue, B., Zhang, M.: Using feature clustering for gp-based feature construction on high-dimensional data. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 210–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_14

    Chapter  Google Scholar 

  28. Veeramachaneni, K., Arnaldo, I., Derby, O., O’Reilly, U.M.: FlexGP. J. Grid Comput. 13(3), 391–407 (2015)

    Article  Google Scholar 

  29. Veeramachaneni, K., Derby, O., Sherry, D., O’Reilly, U.M.: Learning regression ensembles with genetic programming at scale. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1117–1124 (2013)

    Google Scholar 

  30. Yan, R., Shao, L., Liu, L., Liu, Y.: Natural image denoising using evolved local adaptive filters. Sig. Process. 103, 36–44 (2014)

    Article  Google Scholar 

  31. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  32. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Proces. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zou, X., Bhanu, B.: Human activity classification based on gait energy image and coevolutionary genetic programming. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 556–559. IEEE (2006)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by CONACyT under project grant A1-S-26314, Integración de Visión y Lenguaje mediante Representaciones Multimodales Aprendidas para Clasificación y Recuperación de Imágenes y Videos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lino Rodriguez-Coayahuitl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J., Coello Coello, C.A. (2020). Cooperative Co-Evolutionary Genetic Programming for High Dimensional Problems. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics