

Multilayered Evolutionary Architecture for
Behaviour Arbitration in Cognitive Agents

Oscar Javier Romero López, TLanguages, Information Systems and Software Engineering Department,
Politécnica de Madrid University, Madrid - Spain

Abstract— In this work, an hybrid, self-configurable,

multilayered and evolutionary subsumption architecture for
cognitive agents is developed. Each layer of the multilayered
architecture is modeled by one different Machine Learning
System (MLS) based on bio-inspired techniques such as Extended
Classifier Systems (XCS), Artificial Immune Systems (AIS),
Neuro Connectionist Q-Learning (NQL) and Learning Classifier
Systems (LCS) among others. In this research an evolutionary
mechanism based on Gene Expression Programming (GEP) to
self-configure the behaviour arbitration between layers is
suggested. In addition, a co-evolutionary mechanism to evolve
behaviours in an independent and parallel fashion is used. The
proposed approach was tested in an animat environment using a
multi-agent platform and it exhibited several learning capabilities
and emergent properties for self-configuring internal agent’s
architecture.

Index Terms — Bio-inspired Machine Learning, Gene
Expression Programming, Hybrid Behaviour Co-evolution,
Subsumption Architecture.

I. INTRODUCTION
In the last decades, Cognitive Architectures have been an

area of study that collects disciplines as artificial intelligence,
human cognition, psychology and more, to determine
necessary, sufficient and optimal distribution of resources for
the development of agents exhibiting emergent intelligence.
One of the most referenced is the Subsumption Architecture
proposed by Brooks [1].

According to Brooks [1], the Subsumption Architecture is
built in layers. Each layer gives the system a set of pre-wired
behaviours, where the higher levels build upon the lower levels
to create more complex behaviours: The behaviour of the
system as a whole is the result of many interacting simple
behaviours. Another characteristic is its lack of a world model,
which means that its responses are always and only reflexive as
proposed by Brooks.

However, Subsumption Architecture results in a tight
coupling of perception and action, producing high reactivity,
poor adaptability and learning of new environments, no internal

representation and the need of all patterns of behaviours are
pre-wired.

Manuscript received May 25, 2007. This work was supported in part by the

Programme Alban, the European Union Programme of High Level Scholarships
for Latin America and Politécnica de Madrid University.

Oscar J. Romero is with the Software Engineering Department, UPM, Spain
(phone: 34-64-877-7757; e-mail: ojrlopez@ hotmail.com).

Several extensions have attempted to add representation and
behaviour arbitration to Subsumption like Behavior-Based
Control Architecture [2] and Hormonal Activation Systems [3],
but pre-wired behaviours and non-learning characteristics still
remain becoming the architecture applicable and useful only
for a specific pre-configured environments.

The present research focuses on developing an Hybrid
Multilayered Architecture for Cognitive Agents based on
Subsumption theory. Additionally this work proposes an
Evolutionary Model which allows the Agent to self-configure
and evolve its processing layers through the definition of
inhibitory and suppressor processes, behaviours and number of
layers. That means each agent instead of having a
pre-configured structure of layers and processes it will have an
Artificial Evolutionary Process which is responsible for
defining the multilayered structure. On the other hand, instead
of using an Augmented Finite Machine System as Subsumption
theory states [1] where no internal representation is done, in
this paper we propose that each behaviour layer is driven by a
different bio-inspired machine learning system (chosen from a
repertoire where behaviour co-evolution occurs) which learns
from the environment and generates an internal world-model
by means of an unsupervised and reinforced learning.

The remainder of the paper is organized as follows. Section 2
presents a brief description of some fundamental concepts used
in this work. The evolutionary approach for self-configurable
cognitive agents is detailed in Section 3. Section 4 outlines and
discusses the experimental results and emergent properties
obtained. Finally concluding remarks are shown in Section 5.

II. PRELIMINARIES
For the development of the proposed cognitive architecture,

some fundamentals about evolutionary theory and some
techniques of biologically inspired computational intelligence
which are the basis of this work are summarized in this section.
First, the multilayered processing theory is described, which
the proposed architecture is based on, next several machine
learning systems used in each layer of the hybrid architecture
are introduced. Finally, a Gene Expression Programming
mechanism for evolving and self-configuring the internal
subsumption architecture of each agent is described.

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

A. Multilayered Processing
In 1986, R.A. Brooks [1] proposed a Multilayered structure

for robotics that decomposes the problem into a set of
asynchronous task achieving behaviours that he called
Subsumption Architecture. According to Brooks [1], the task
achieving behaviours locally and asynchronously operated are
only loosely coupled to one another. In contrast to the
conventional approach, each of the task achieving behaviours is
typically in direct communication with the world (and each
other) [4].

Brooks stated in [1] that in the subsumption architecture,
various subsets of the task achieving behaviours typically
exhibit some partial competence in solving a simpler version of
the overall problem. Thus, the solution for more complex
version of a problem can potentially be built up by
incrementally adding new independent acting behaviours to
existing ones. Potential conflicts among behavioural actions are
resolved by a hierarchical arrangement of suppressor nodes.

On the other hand, Brooks [1] proposes that the layers of the
Subsumption Architecture are composed of networks of
augmented finite state machines (AFSM) with timers. Each
AFSM has an input and output signal (Fig. 1). When the input
of an AFSM exceeds a predetermined threshold, the behaviour
of that AFSM is activated. The inputs of AFSMs come from
sensors and outputs are sent to the agent's actuators. Each
AFSM also accepts a suppression signal and an inhibition
signal and these signals allow behaviours to override each other
so that the system can produce coherent behaviour.

Fig. 1. A typical parallel Subsumption Architecture

In this work, instead of using AFSM, an evolutionary

Subsumption Architecture that uses machine learning and
biologically inspired techniques in each layer to create internal
representations of the world and learn from environment in an
autonomous fashion, is developed.

B. Extended Classifier Systems XCS
According to Wilson [5], a classifier system is a machine

learning system that seeks to gain reinforcement from its
environment based on an evolving set of condition-action rules
called classifiers. Via a Darwinian process, classifiers useful in
gaining reinforcement are selected and propagate over those
less useful, leading to increasing system performance. The
classifier system idea is due to Holland [6], who laid out a
framework that included generalization of classifier conditions,
internal message-passing and reinforcement, and

computational completeness. However, despite considerable
research, the performance of the traditional system has been
mixed, and there have been few advances on the initial theory.

In [5] Wilson et. al. proposed an Extended Classifier System
(XCS). XCS is a recently developed learning classifier system
(LCS) that differs in several ways from traditional LCSs.
Wilson stated [5] that in XCS, classifier fitness is based on the
accuracy of the classifier’s payoff prediction instead of
prediction itself. Second, the Genetic Algorithm (GA) takes
place in the action sets instead of the population as a whole.
Finally, unlike the traditional LCS, XCS has no message list
and so is only suitable for learning in Markov environments
(XCS extensions using an internal-state register have shown
promise in non-Markov environments).

In keeping with the typical LCS model, Wilson [5] proposes
that the environment provides as a input to the system a series
of sensory situations σ (t) ∈ {1, 0}L, where L is the number of
bits in each situation. In response, the system executes actions
α (t) ∈ {a1, …, an} upon the environment. Each action result in
a scalar reward ρ (t) (possibly zero). The reinforcement
program determines the reward according to the current
environmental input and the action that was executed. Fig. 2
illustrates the interaction of the environment and the
reinforcement program with XCS.

Fig. 2. XCS interacts with an Environment and a Reinforcement Program [5]

C. Artificial Immune Systems AIS
Inspired by immunological theory, Artificial Immune

Systems (AIS) [7] are adaptive systems based on models and
principles which emulate mechanisms of defense observed in
nature. Researches are interesting in several immunological
properties from which have been generated a significant
number of theoretical and computational models to solve
real-world problems: self-identity, diversity, robustness, fault
tolerance, pattern recognition and self- learning.

In 1974, N.K. Jerne stated in [8] that a biological immune
system is a regulated network of cells and molecules that
possess a dynamical behavior, even in absence of any external
stimulation (antigens). Thus, artificial immune networks are
models that emulate Jerne´s architecture. A set of antigens that
correspond to an input data set in most artificial network
applications, will stimulate an immune network to goes through
a dynamic process, until it reaches some type of stability. AiNet
[9] is a model based on the immune principles and implements
a discrete immune network that was developed for data
compression and clustering and later for optimization.

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

This paper references the work of D. Romero [9] who
proposed an Artificial Cognitive Immune System (ACIS).
Based on the advantages of AiNet, an ACIS algorithm that
combines the structure of AiNet and a reinforcement machine
learning mechanism is proposed by Romero [9]. Particularly,
AiNet capabilities to perform data clustering, learning and
optimization were exploited. Next, the proposed immune
algorithm (ACIS) was used in the object recognition and
optimization tasks. In figure 3 the algorithm of ACIS is
depicted.

Fig. 3. Flow diagram of the proposed cognitive artificial immune system

(ACIS) [9]

D. Neuro Connectionist Q-Learning System NQL
The Q-Learning algorithm suggested by Watkins in 1989

[10] belongs to a group of reinforcement learning algorithms.
In accordance with Watkins [10] the main feature of that
technique is that in the process of learning the system is not
shown how to act in a specific situation. Instead, learning
develops by trial and error using reward and penalty signals. As
a result of the Q-learning algorithm, a function of state-action
pair evaluation appears that has a tabular representation. When
the state-action space is large, it might be difficult to meet one
of Q-learning algorithms convergence conditions (multiple
approbation of all possible state-action pairs) and more
resources are required to store the table of evaluation.
According to Kuzmin [11], to solve those problems,
additionally it must be introduced some generalization means.
Using a Neural Net of type Multilayer Perceptron (MLP) as a
Q-learning table approximator is one of the possible
generalization means proposed by Kuzmin [11]. The joint use
of MLP and the Q-learning algorithm is what Kuzmin [11]
called connectionist Q-learning.

Kuzmin stated [11] that the use of neural network for
Q-value approximation has the following advantages:

- Effective scaling for the space of large dimension inputs;
- Generalization for large and continuous state spaces;
- Possibility of implementation on parallel hardware.
Kuzmin [11] makes use of the methodology of working with

a neural network that consists in applying a separate neural
network for each action, see Fig. 4. During each iteration of the

algorithm, the current state of the system is forwarded to the
inputs of each neural network, but the weights are only updated
for the network whose action was selected.

Fig. 4. Q-function approximation by a set of Neural Networks [11]

E. Gene Expression Programming GEP
Gene expression programming proposed by Ferreira [12] is,

like Genetic Algorithms and Genetic Programming, a genetic
algorithm since it uses populations of individuals, selects them
according to fitness, and introduces genetic variation using
some genetic operators.

In accordance with Ferreira [12], the fundamental difference
is the nature of three algorithms. In GEP the individuals are
encoded as linear strings of fixed length (the genome or
chromosomes) which are afterwards expressed as nonlinear
entities of different sizes and shapes (e.g., simple diagram
representations or expression trees).

The interaction of chromosomes (replicators) and expression
trees (phenotype) in GEP implies an unequivocal translation
system for converting the language of chromosomes into the
language of expression trees (ETs). The structural organization
of GEP chromosomes allows a truly functional genotype/
phenotype relationship, as any modification made in the
genome always results in syntactically correct ETs or
programs. Indeed, the varied set of genetic operators developed
by Ferreira [12] to introduce genetic diversity in GEP
populations always produces valid ETs. Thus, GEP is an
artificial life system, well established beyond the replicator
threshold, capable of adaptation and evolution.

Ferreira stated [12] that the advantages of a system like GEP
are clear from nature, but the most important should be
emphasized. First, the chromosomes are simple entities: linear,
compact, relatively small, easy to manipulate genetically
(replicate, mutate, recombine, transpose, etc.). Second, the ETs
are exclusively the expression of their respective
chromosomes; they are the entities upon which selection acts
and, according to fitness, they are selected to reproduce with
modification. During reproduction it is the chromosomes of the
individuals, not the ETs, which are reproduced with
modification and transmitted to the next generation.

A GEP Algorithm is proposed in this work to evolve
individuals (agents) and their multilayered structures, learning
both applicability predicates for behaviour activation and the
conflict resolution hierarchy for behaviour arbitration. As a

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

simple example [4], suppose that there are three task achieving
behaviors with strictly decreasing priority. The applicability
predicates and the suppressor nodes of these three behaviors are
equivalent to the following composition of ordinary IF
conditional functions:
 (IF AP1 BEHAVIOR1
 (IF AP2 BEHAVIOR2
 (IF AP3 BEHAVIOR3)

In particular, if the first applicability predicate (AP1) is
satisfied, then BEHAVIOR1 is executed. Otherwise, if AP2 is
satisfied, BEHAVIOR2 is executed. Otherwise, the lowest
priority behavior (e.g. BEHAVIOR3) is executed. In our
approach, the GEP mechanism will be in charge of defining the
applicability predicates and conditional rules from which
behaviour layers are built for each agent.

III. PROPOSED HYBRID, SELF-CONFIGURABLE AND
EVOLUTIONARY APPROACH FOR COGNITIVE AGENTS

In order to design an hybrid, self-configuring,
self-organizing, scalable, adaptable, and evolutionary
architecture for cognitive systems which exhibits emergent
behaviours and learning capabilities, the proposed work is
explained as follows.

Consider a virtual environment where there exists several
agents interacting with objects, food, each others, etc., it arises
some mayor questions and constraints:

 Environmental conditions change, e.g. about objects:
quantity, type of object, location, size, etc., about other
agents: intentions and desires, goals, etc.

 There is a variable number of desired behaviours:
avoiding-obstacles, wandering, feeding, hunting,
escaping, etc.

 How many behaviours can be integrated into a single
agent? And how can agents arbitrate behaviours?

 When does a single agent know if it has to inhibit or
suppress a behaviour if an applicability predicate is not
preestablished?

 How can a behaviour that drives one of the layers in a
single multilayered agent, generate a model of the
world, couple with the environment via the agent ’s
sensors and actuators, learn from its own interaction
with the environment and receive a reinforcement of its
actions, so the internal state of the behaviour evolve?

These questions address the following proposed approach of
an hybrid, self-configurable and bio-inspired architecture for
cognitive agents, depicted in Fig. 5:

The Fig. 5 shows an hybrid architecture from which all the
questions mentioned above can be solved. An internal
architecture based on subsumption principles but with few
variations can be observed in every agent:

 Each processing layer is connected randomly with a
different learning machine system (Extended Classifier
System XCS, Artificial Immune System AIS, Neuro
Connectionist Q-Learnig System NQL, Learning
Classifier System LCS and scalable to others) which
replaces the typical AFSMs proposed by Brook’s

architecture [1].

Agent

Multi-Agent System

Behaviour
Co-evolution
Mechanism

Subsumption Architecture

GEP

Applicability
predicates,
behaviour
arbitration,

layers
hierarchy…

Evolutionary Process

Pr
oc

es
si

ng
La

ye
rs

Pr
oc

es
si

ng
La

ye
rs

Behaviour 1

Behaviour 2

Behaviour 3

Behaviour 4

Behaviour n

…

M
ac

hi
ne

Le
ar

ni
ng

Sy
st

em
s

M
ac

hi
ne

Le
ar

ni
ng

Sy
st

em
s

XCS

AIS

NQL

LCS

Behaviour nBehaviour n others

…

AgentAgent

Multi-Agent System

Behaviour
Co-evolution
Mechanism

Behaviour
Co-evolution
Mechanism

Subsumption Architecture

GEP

Applicability
predicates,
behaviour
arbitration,

layers
hierarchy…

Evolutionary Process

Pr
oc

es
si

ng
La

ye
rs

Pr
oc

es
si

ng
La

ye
rs

Behaviour 1

Behaviour 2

Behaviour 3

Behaviour 4

Behaviour n

…

M
ac

hi
ne

Le
ar

ni
ng

Sy
st

em
s

M
ac

hi
ne

Le
ar

ni
ng

Sy
st

em
s

XCS

AIS

NQL

LCS

Behaviour nBehaviour n others

…

Fig. 5. Hybrid and Evolutionary Architecture for Cognitive Agents

 After being trained in the agent, every behaviour is sent
to a behaviour repertoire according to its type, where a
co-evolutionary mechanism is applied so that every
behaviour not only will learn in a local way inside of
each agent but also will evolve in a global way, to be
selected afterwards by another agent in the next
generation.

 There is an evolutionary process driven by a Gene
Expression Programming Algorithm GEP, which is in
charge of self-configuring the agent: defining the
number of layers, the behaviours that the agent will use,
the connections and hierarchies between them (inhibit,
suppress, aggregate, etc.): behaviour arbitration, the
applicability predicates where it is determined which
behaviour is activated at a certain situation and an
activation time controlled by a timer.

A. Hybrid Learning Architecture: Behaviours driven by
different Machine Learning Systems

Every behaviour layer in the multilayered architecture will

be associated to a Machine Learning System MLS, that allows
the architecture being hybrid and not only reactive since each
behaviour will be able to exert deliberative processes using the
acquired knowledge. Besides, this mechanism gives plasticity
to the architecture because every behaviour “learns” in an
unsupervised, independent and parallel way, through its
interaction with the environment, generating internal
representations, rules and both specific and generalized
knowledge. This mechanism is favored by the MLSs
characteristics: robustness, fault tolerance, use of bio-inspired
techniques, adaptability and it does not require a previous
definition of knowledge (unsupervised learning).

There are two principles formulated by Stone [13] that have
motivated the proposed layered learning approach:

 “Layered learning is designed for domains that are too
complex for learning a mapping directly from an agent’s
sensory inputs to its actuator outputs. Instead the layered
learning approach consists of breaking a problem down

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

into several behavioral layers and using MLSs at each
level. Layered learning uses a bottom up incremental
approach to hierarchical task decomposition.”

 “MLS is used as a central part of layered learning to
exploit data in order to train and or adapt the overall
system. MLS is useful for training behaviors that are
difficult to fine-tune manually.”

Sensory
input

Actuator
output

Internal processing

XCS AIS NQL others

Machine Learning SystemMultilayered Architecture

Behaviour A

Behaviour B

Behaviour C

Behaviour D

…

inputs Sensory
input

Actuator
output

Internal processing

XCS AIS NQL others

Machine Learning SystemMultilayered Architecture

Behaviour A

Behaviour B

Behaviour C

Behaviour D

…

inputs

Fig. 6. Multilayered Architecture connecting with MLS interface

The sensory inputs of each MLS read the distance and type
of object sensed around the agent whereas the actuator outputs
indicate actions that the agent must to execute, e.g.
turn-to-the-left, turn-to-the-right, move-backward,
move-forward, jump, stop, etc.

Accordingly, a common interface for all MLSs (XCS, AIS,
NQL, LCS, etc.) is proposed so, although each MLS has a
different internal process, they all have a similar structure that it
lets the system to be scalable introducing new MLSs if is
required and connecting them in an easy way with each
behaviour layer in the agent’s multilayered architecture, as
depicted in Fig. 6.

B. Hybrid Behaviour Co-evolution: evolving globally
A co-evolutionary mechanism is proposed to evolve each

type of behavior separately in its own genetic pool. Most
evolutionary approaches use a single population where
evolution is performed; instead, the behaviours are
discriminated in categories and make them evolve in separate
behaviour pools without any interaction [14].

First, each agent defines a specific set of behaviours that
builds its own multilayered structure. For each required agent’s
behaviour, a behaviour instance is chosen from the pool (this
instance is connected with one MLS). Subsequently each agent
will interact with the environment and each agent’s behaviour
will learn a set of rules and generate an own knowledge base.

After certain period time a co-evolutionary mechanism is
activated. For each behaviour pool is applied a probabilistic
selection method of behaviours where those behaviours that
had the best performance (fitness) will have more probability to
reproduce. Then, a crossover genetic operator is applied
between each pair of selected behaviours: a portion of
knowledge acquired by each agent’s behaviour (through its
MLS) is selected and interchanged with the other one: heritage
of Knowledge and Experience.

Finally, new random rules are generated until complete the
maximum size of rules that behaviours can have in their own
knowledge base, so a new pair of behaviors is created and left
in the corresponding behaviour pool to be selected by an agent
in the next generation.

C. Self-configurable Architecture: Behaviour Arbitration
If each agent has an arbitrary behaviour set, how to

determine: the interaction between them, the hierarchy levels,
the Subsumption process (inhibition and suppression) and the
necessary layers to do an adequate processing? These questions
are solved next.

The internal multilayered structure of each agent is
decomposed in atomic components which can be estimated and
used to find the optimal organization of behaviors during the
agent’s lifetime [14]. The main goal is that the agent in an
automatic way self-configures its own behaviours structure.
The model proposed by Ferreira [12] called Gene Expression
Programming GEP is used to evolve internal structures of each
agent and generate a valid arbitration of behaviours.

GEP uses two sets: a function set and a terminal set. The
proposed function set is: AND, OR, NOT, IFMATCH,
IFOBJECT, INHIBIT, SUPRESS. The AND, OR and NOT
functions are logic operators used to group and exclude subsets
of objects, behaviours, etc. The conditional function
IFMATCH is a typical applicability predicate that matches with
a specific problem situation. This function has four arguments;
the first three arguments belong to the rule’s antecedent: the
first indicates what object is sensed, second one is the activated
sensor ant the third argument is the current behaviour running
on the agent. If the first three arguments are applicable then the
fourth argument, the rule’s consequent, is executed. The fourth
argument should be a INHIBIT or SUPPRESS function, or
maybe and AND/OR function if more elements are necessary.
The INHIBIT and SUPPRESS functions have two arguments
(behaviourA, behaviourB) and indicate that behaviourA
inhibits/suppresses behaviourB.

On the other hand, the terminal set is composed by the
behaviour set, the environmental element set (objects, agents,
food, etc.) and an agent’s sensor set. Additionally “don’t care”
elements are included so whichever sensor, behaviour or object
can be referenced.

Each agent has a chromosome with information about its self
structure, e.g. the agent A can have a chromosome as:
[{IFMATCH}, {wall}, {looking-for-food}, {sensor1},
{INHIBIT}, {avoiding-obstacle}, {AND}, {wandering},
{looking-for-food}], and this chromosome is a valid rule
because both the antecedent and the consequent of IFMATCH
function match to each required argument type: [{IFMATCH},
{object}, {behaviour}, {sensor}, {INHIBIT / SUPRESS},
{behaviour}, {behaviour}]. The above chromosome traduces
in the following rule:

IFMATCH:
 There is a wall
 Is Activated looking-for-food behaviour
 Reading by sensor1

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

THEN:
Avoiding-obstacle INHIBIT wandering AND
looking-for-food
Analyzing this rule we can infer that the agent has three

behaviour layers: avoiding-obstacle, wandering and
looking-for-food, and the two last ones are inhibited by the first
one when sensor1 identifies a wall in front of the agent.
However, these chromosomes (applicability predicates) don’t
have always a valid syntax, so the GEP mechanism is used to
evolve the chromosome until it becomes in a valid syntactic
rule.

Each individual (agent) has a multigenic chromosome, that
means, each chromosome has a gene set where each gene is an
applicability predicate like the example, so the agent has
multiples rules (genes) as part of its genotype and each one is
applied according to the situation that matching the rule
antecedent. Each gene is become to a tree representation and
then a genetic operator set is applied between genes of the same
agent and genes of other agents [12]: selection, mutation, root
transposition, gene transposition, two-point recombination and
gene recombination.

After certain number of evolutionary generations, valid and
better adapted agent’s configurations are generated. A
roulette-wheel method is used to select individuals with most
selection probability derived from its own fitness. Fitness
represents how good interaction with environment during
agent’s lifetime was.

D. Emergent Properties of the Architecture
Brooks postulates in his paper [3] the possibility that

intelligence can emerge out of a set of simple, loosely coupled
behaviours, and emergent properties arise (if at all) due to the
complex dynamics of interactions among the simple behaviours
and that this emergence is to a large extent accidental.

The proposed architecture articulates a behaviour set that
learns about environmental conditions in an independent and
parallel fashion, and on the other hand evolve inside a
categorized pool.

Each simple behavior can be applied to a subset of specific
situations but not to the whole problem space, however the
individual level interaction between behaviours (inside each
agent) allows covering multiple subsets of problem states and
some characteristics are generated: robustness, redundancy in
acquired knowledge: fault tolerance and a big plasticity level,
so emergent properties in the individual and inside of the
society (Multi-agent systems) appear.

Then, the emergent properties arise from three points of view
in a bottom-up approach:

 Atomic: in each behaviour of the multilayered
architecture, when the associated MLS learns from the
environment how to associate sensory inputs and
actuator outputs, in an automate way.

 Individual: when the agent self-configures its internal
structure (chromosome), hierarchy and arbitration of
behaviours through an evolutionary process driven by
GEP.

 Social: when an hybrid behaviour co-evolution
mechanism is applied to all agent’s behaviours, so
behaviours learn not only themselves via the MLS
associated but also cooperating with other agents and
communicating the acquired knowledge between them.

It is important to notice that emergence in different levels,
from atomic to social point of view, provokes an overall
emergence of the system, where some kind of intelligence we
hope to arise. The experimentation focused on discovering
some characteristics of identity in the animats, e.g. we expected
to see some animat agents behaving like depredators and others
behaving like preys. Depredators should include some
behaviours like avoiding-obstacles, looking-for-water,
persecuting-preys, rounding-up, hunting-preys, etc. and Preys
should include some behaviours like avoiding-obstacles,
looking-for-food, looking-for-water, hiding, escaping, etc.

Nevertheless, expected emergent properties can vary
according to the environment and the pre-configured behaviour
set.

IV. 4. EXPERIMENTATION
In order to evaluate the proposed architecture, following

aspects were considered in each level:

About Machine Learning Systems:

 Learning convergence rate of each proposed systems:
XCS, AIS, LCS and NQL.

 Generalization and Robustness (reactions to
environmental changes)

About hybrid behaviour co-evolution:
 Learning and evolution convergence rate of each

behaviour pool.
 Knowledge diversity in each behaviour pool

About GEP Algorithm to self-configuring Subsumption
conditions and behaviour arbitration:

 Variation of success rate vs. number of genes
 Progression of fitness increment of the population
 Syntactically well-formed gene convergence rate

About overall System:
 Subsumption architectures obtained on individuals after

n iterations and emergent properties.
An artificial life environment called Animat (animal + robot)

[6] is proposed to test the experiments. The environment
simulates virtual agents competing for getting food and water,
avoiding obstacles, hunting, escaping from depredators, etc.
This animat environment was selected because is more friendly
to see emergent behaviours but it is not the only applicable
environment. Each animat driven by an agent in the
environment disposes a set of 14 proximity sensors (see Fig. 7)
simulating a limited sight sense. 12 sensors read a safe zone and
2 sensors read a danger zone (to avoid collisions), as proposed
by D. Romero [9].

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

1
2 3 4

5

6

789
10

11
12

Safe Zone

Danger Zone

Animat

Sensed
object

1
2 3 4

5

6

789
10

11
12

Safe Zone

Danger Zone

Animat

Sensed
object

Fig. 7. Animat Sensor distribution

Additionally, a simulated environment with objects, food,
water deposits, animats, obstacles, traps, etc. is depicted in Fig.
8.

Tree (obstacle)

Water
deposit

Food

Wall
(obstacle)

Animats

Animats

Tree (obstacle)

Water
deposit

Food

Wall
(obstacle)

Animats

Animats

Fig. 8. Simulated Animat Environment

Thus, some experiments designed to evaluate the
performance aspects mentioned above are described next.

A. Learning convergence and Generalization level of each
MLS
In this experiment we chose an environment where the

animat has to interact with using one different MLS on a time.
This scenario consists of a coarse rectangular grid. Inside the
grid, there will be the animat (represented by a rabbit) in a maze
which will have to avoid obstacles and follow the food path
iteratively until it has learned the pattern. Each 200 iterations
changes are applied to the environment and the animat will
have to learn the new pattern and make knowledge
generalizations in an adaptive way. Fig. 9 shows the variations
of the environment.

a) b) c)

Fig. 9. a) initial environment; b) soft variation of initial environment; c) hard

variation of initial environment

Fig. 10 shows a chart of the learning curve of the following
MLSs: XCS, AIS, LCS, simple NQL and multilayered NQL.
The learning convergence experiment was carried out with the
environments on Fig. 9 and the following parameters:

 Number of epochs per run = 1000
 Number of runs = 20

0

100

200

300

400

500

600

700

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

Epochs

Ite
rr

at
io

ns

LCS
AIS
Q - Simple
XCS
Q - Multicapa

Figure 10. Learning Curve of each MLS

Fig. 10 shows the different MLSs converging quickly after

20th epoch in average for the first pattern, however when any
change in the environment is executed (each 200 iterations),
each MLS registers a peak and then it converges again after 5-7
epochs. This demonstrates the capacity of MLSs to generalize
the previous acquire learning and apply it to new situations, in
this case, the learning of a new environmental pattern.

Besides, Fig. 10 illustrates that MLSs of type AIS and NQL
are more adaptive and robust than the others converging more
quickly when changes in the learned environmental pattern are
introduced.

B. Learning and evolution convergence of each behaviour
pool.
The goal of this experiment is to examine if the fitness of

every separate behaviour pool increments gradually until
reaches a convergence point whereas evolution takes place.

In this experiment 3 behaviours pools were studied:
“looking-for-food”, “avoiding-obstacles” and “escaping-from-
depredators” and measurements of average fitness in each
behaviour pool were done.

Fig. 11. Evolution convergence rate in 3 behaviour pools

The learning curve of parallel behaviour evolution is

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

depicted on Fig. 11. The learning convergence experiment was
carried out with the following parameters:

• Number of epochs per run = 50
• Number of runs = 50
In each epoch, 50 executions calculating the fitness average

in the pool were done. Initially, in Fig. 11 the looking-for-food
behaviour has a learning curve slower in contrast with
avoiding-obstacles behaviour, and on the other hand the
avoiding-obstacles behaviour has the learning with more peaks
in comparison with the other two behaviours which have softer
curves due to differences in environmental conditions of each
behaviour pool (number of positive rewards per time unity,
impact of negative rewards, obstacles dispersion vs. food
dispersion, etc.), however the 3 pools tried to converge and
reach certain stability in the same number of epochs
approximately (after 30 epochs), that means the evolution was
effective and each behaviour pool has established a coherent
knowledge base getting a consensus between its own behaviour
instances about what the “behaviour” should do.

C. Variation of success with the number of genes in GEP
In order to define the number of genes that each chromosome

should have, several experimental tests gradually incrementing
the number of genes were done. Table 1 shows the used
parameters in the experiment and Fig. 12 illustrates the curve of
variation of success rate vs. number of genes.

Table 1. GEP Parameters

GEP Parameter Value

One-point Mutation rate 0.45
One-point Recombination rate 0.15
Two-point Recombination rate 0.15
Gene Recombination rate 0.15
Root Transposition rate 0.10
Trasposition of IS elements rate 0.10
Gene transposition rate 0.10

0

20

40

60

80

100

120

0 5 10 15 20 25

Number of Genes

Su
cc

es
s

R
at

e(
%

)

Fig. 12. Variations of success rate vs. Number of Genes

Fig. 12 above depicted that the success rate has the higher

percentage when individuals have a chromosome with 10 or 11
genes. Therefore a multigenic chromosome with 10 genes
using the configuration described in table 1 is proposed in the
architecture.

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Number of Generations

Fi
tn

es
s

(M
ax

 2
00

0)

Fitness Average (max 2000)

Best Fitness

Fig. 13. Progression of average fitness of the population vs. number of

Generations

Additionally, we analyzed the progression of average fitness

of the population whereas the number of generations was
incremented. Using the GEP parameters in table 1, results of
progression in 50 runs are shown in Fig. 13. In this experiment
a perfect solution was found in generation 12.

D. Syntactically well-formed gene convergence
In this experiment, the progression of the number of

syntactically well-formed structure (multigenic chromosomes)
of each individual was analyzed. Fig. 14 shows how the
number of valid chromosomes increments whereas generations
evolve through the time. The experiment was executed with a
population of 300 individuals.

-50

0

50

100

150

200

250

300

350

0 10 20 30 40 50

Number of Generations

Va
lid

 S
tr

uc
tu

re
s

60

Fig. 14. Valid Structures (chromosomes) through Generations

Fig. 14 shows that a point of convergence (that means all

chromosomes in population are valid) is given in the generation
27 approximately. Then, the system will need between 25 and
30 generations to evolve all individuals in the population.

E. Analysis of evolved architectures
Finally, after the whole system has evolved during a

specific number of generations, we have analyzed the final
structures of the best adapted agents where emergent properties
arose.

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

Figures 15 and 16 show the genotype (Expression Trees
ETs) and phenotype respectively of an initial architecture of a
random agent without any evolutionary phase; in contrast,
figures 17 and 18 show the genotype and phenotype
respectively of the evolved architecture of the same agent.

In Fig. 16 the chromosome represents four behaviours:
looking-for-water, looking-for-food, avoiding-obstacles and
hiding, where l-f-w inhibits l-f-f and hiding and l-f-w
suppresses a-o, but there is a contradictory process when l-f-f
tries to suppress l-f-w and l-f-f has been inhibited by l-f-w
already. This is solved with the evolved architecture in Fig. 18,
which proposes a new structure adding
escaping-from-depredators behaviour and excluding hiding
behaviour.

INHIBIT

Looking-
for-water

AND

IFMATCH hiding

Tree Looking-
for-food

sensor7 SUPRESS

Looking-
for-food

AND

Looking-
for-water

Avoiding
-obstacles

Generation 0 – Agent 116

INHIBIT

Looking-
for-water

AND

IFMATCH hiding

Tree Looking-
for-food

sensor7 SUPRESS

Looking-
for-food

AND

Looking-
for-water

Avoiding
-obstacles

INHIBIT

Looking-
for-water

AND

IFMATCH hiding

Tree Looking-
for-food

sensor7 SUPRESS

Looking-
for-food

AND

Looking-
for-water

Avoiding
-obstacles

Generation 0 – Agent 116

Fig. 15. Fragment Genotype of an initial Agent’s Architecture

Looking-for-water

Looking-for-food

Avoiding-obstacles

Hiding

i

s

is
Looking-for-water

Looking-for-food

Avoiding-obstacles

Hiding

i

s

is

Fig. 16. Fragment Phenotype of an Initial Agent’s Architecture

IFMACTH

OR OR

EscapingLooking-
for-food

sensor1 INHIBIT

Looking-
for-food

AND

Escaping

Avoiding
-obstacles

Generation 326 – Agent 116

Wall Tree

Looking-
for-water

AND

IFMACTH

OR OR

EscapingLooking-
for-food

sensor1 INHIBIT

Looking-
for-food

AND

Escaping

Avoiding
-obstacles

Generation 326 – Agent 116

Wall Tree

Looking-
for-water

AND

Fig. 17. Genotype Agent’s Architecture after 326 evolutionary generations

Avoiding-obstacles

Escaping-from-depredators

Looking-for-food

Looking-for-water

i ii
Avoiding-obstacles

Escaping-from-depredators

Looking-for-food

Looking-for-water

i ii

Fig. 18. Fragment Phenotype Agent’s Architecture after 326 evolutionary
generations

As depicted in Fig. 18, the initial contradictory

inhibitory/suppressor processes in the agent’s architecture (see
Fig. 16) are solved, and only hierarchical inhibitory processes
are proposed by the evolved architecture. Furthermore, we can
deduce too that evolved architecture has collected a set of
specific behaviours becoming the agent to an animat with prey
identity.

It is important to notice in evolved architecture that
escaping-from-depredators behaviour inhibits looking-for-food
and looking-for-water behaviours but if the animat is escaping
and its sensor7 reads a “wall” or a “tree”, then
escaping-from-depredators behaviour is inhibited by
avoiding-obstacles behaviour until the obstacle is not in front of
the animat anymore, and after that the animat continues its
getaway, so we can say that emergent behaviour arises.

Finally, the experimentation demonstrate that specific
parameter configurations in MLSs, GEP and Co-evolutionary
mechanism are required to reach certain robustness, learning
and adaptation capacities in the overall system. Nevertheless,
emergent properties didn’t arise always or in a quick way, in
several experiments animats died quickly and they couldn’t
learn to survive.

V. CONCLUSIONS
The integration of multiple Machine Learning Systems in

controlling the behaviours layers of an hybrid Subsumption
Architecture approach, instead of using the typical Augmented
Finite State Machines, have demonstrated important
advantages in learning about the world of the agent, making
internal knowledge representations and adapting to
environmental changes.

The evolutionary mechanisms used in this work, provided a
plasticity feature allowing the agent to self-configure its own
multilayered behaviour-based architecture; thus it can avoid
creating exhaustive and extensive knowledge bases, pre-wired
behaviour-based multilayered structures and pre-constrained
environments. Instead, a cognitive agent using our architecture
only needs to interact with an arbitrary environment to adapt to
it and take decisions in a reactive and deliberative fashion.

Some problems were faced when we tried to define the
applicability predicates which evolve through the GEP
algorithm because several validations about function set must
be done, and maybe this work will have to be done each time
the architecture will be applied to other contexts.

In the experimentation, the emergent properties were
difficult to discover because it takes a lot of time to evolve the

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

overall system despite of using a multi-agent platform in a
distributed configuration. Maybe, it can be similar to the
natural evolution where adaptation occurs slowly and
sometimes produces poor adapted creatures.

In our future work we expect to continue working on
designing more adaptive and self-configurable architectures,
using fuzzy techniques in the MLSs to improve the sensors
readings. In the future, one concrete application of this research
will be the development of a Cognitive Module for Emotive
Pedagogical Agents where the agent will be able to self-learn
about its own perspectives, believes, desires, intentions,
emotions, skills and perceptions.

ACKNOWLEDGMENT
Supported by the Programme Alban, the European Union

Programme of High Level Scholarships for Latin America,
scholarship No. E05D056455CO”.

Diego Romero of Mechanical Engineering Department, Luis
F. Niño of Computer and Systems Engineering at National
University of Colombia; and Angélica de Antonio of Software
Engineering Department at Politécnica de Madrid University,
who made numerous contributions in the development of this
research..

REFERENCES
[1] R.A. Brooks, A Robust Layered Control System For A Mobile Robot,

IEEE Journal Of Robotics And Automation, RA-2, 1986, 14-23.
[2] M.J. Mataric, Behavior-based control: Main properties and implications,

Proceedings of the IEEE International Conference on Robotics and
Autonomation, Nice, Francia, 1992, 2-8.

[3] R.A. Brooks, How to build complete creatures rather than isolated
cognitive simulators, Architectures for Intelligence, 1991, 225-239.

[4] J. R. Koza, Evolution of subsumption using genetic programming,
Proceedings of the First European Conference on Artificial Life, Paris,
1992, 110-119.

[5] S.W. Wilson, State of {XCS} Classifier System Research, Lecture Notes
in Computer Science, 1813, 2000, 63-81.

[6] J.H. Holland, “Induction, Processes of Inference, Learning and
Discovery”, Mich:Addison-Wesley, 1953.

[7] L. N. de Castro, J. Timmis, “Artificial Immune Systems: A New
Computational Intelligence Approach”, Ed. Springer, 2002.

[8] N.K. Jerne, The Immune System, Scientific American 229, No. 1, 52-60,
1973.

[9] D. Romero, L. Niño, An Immune-based Multilayered Cognitive Model
for Autonomous Navigation, IEEE Congress on Evolutionary
Computation, Vancouver, 2006, 1115-1122.

[10] C. Watkins, Q-learning, Machine Learning 8, Boston, 1992 – pp.
279-292.

[11] V. Kuzmin, Connectionist Q-learning in Robot Control Task,
Proceedings of Riga Technical University, 2002, 112-121.

[12] C. Ferreira, Gene Expression Programming: A new adaptive algorithm for
solving problems, Proceedings on Complex Systems, forthcoming, 2001.

[13] P.Stone, Layered Learning in Multiagent Systems, (Doctor Thesis
CMU-CS-98-187, 1998)

[14] A. Farahmand, Hybrid Behavior Co-evolution and Structure Learning in
Behavior-based Systems, IEEE Congress on Evolutionary Computation,
Vancouver, 2006, 979-986.

Oscar J. Romero, was born in Bogotá - Colombia, on January 27th, 1979.
Educational Background:

 Systems Engineer professional’s degree, Distrital University,
Bogotá, Colombia, 2002.

 Languages, Information Systems and Software Engineering
doctorate student, Politécnica de Madrid University, Madrid, Spain,
2nd year.

He has worked during 5 years in software engineering and web-based systems
developing. This is his work experience:

 Oracle Solutions, job: Web Developer and Systems Analyst,
Colombia, 2001 – 2002.

 Electronic Data Systems EDS, job: Software Engineer, Function
Point Analyst, Technical Leader, Colombia, 2003 – 2005

 Konrad Lorenz University, Software Engineering and Artificial
Intelligence Professor, Colombia, 2004 - 2005

 Unisys, job: Software Design Leader, Spain, 2005 – 2006
 Banco Santander, job: Testing Engineer, Spain, 2006-2007

Publications:
 Intelligent Tutoring System for Mathematics using an evolutionary

student model (Malaga, Spain: he International Association of
Science And Technology for Development IASTED, 2002)

 Sistema Tutor Inteligente adaptativo para la enseñanza de
matemáticas básicas (Bogotá, Colombia, Revista Científica -
Número 4, 2002) ISSN 0124-2253. Centro de Investigaciones y
Desarrollo Científico - Universidad Distrital

 Animales artificiales con Sistemas Clasificadores y Algoritmos
Genéticos (Bogotá, Colo,bia, Revista Ingeniería, vol 7 No 1,
2002). Facultad de Ingeniería - Universidad Distrital

He is interested on studying about biologically inspired computational
intelligence techniques and applying it to pedagogical virtual agents.

Engineering Letters, 15:2, EL_15_2_04
__

(Advance online publication: 17 November 2007)

	I. INTRODUCTION
	II. PRELIMINARIES
	A. Multilayered Processing
	B. Extended Classifier Systems XCS
	C. Artificial Immune Systems AIS
	D. Neuro Connectionist Q-Learning System NQL
	E. Gene Expression Programming GEP

	III. Proposed hybrid, self-configurable and evolutionary approach for Cognitive Agents
	A. Hybrid Learning Architecture: Behaviours driven by different Machine Learning Systems
	B. Hybrid Behaviour Co-evolution: evolving globally
	C. Self-configurable Architecture: Behaviour Arbitration
	D. Emergent Properties of the Architecture

	IV. 4. Experimentation
	A. Learning convergence and Generalization level of each MLS
	B. Learning and evolution convergence of each behaviour pool.
	C. Variation of success with the number of genes in GEP
	D. Syntactically well-formed gene convergence
	E. Analysis of evolved architectures

	V. Conclusions

