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Abstract— In this work, an hybrid, self-configurable, 

multilayered and evolutionary subsumption architecture for 
cognitive agents is developed. Each layer of the multilayered 
architecture is modeled by one different Machine Learning 
System (MLS) based on bio-inspired techniques such as Extended 
Classifier Systems (XCS), Artificial Immune Systems (AIS), 
Neuro Connectionist Q-Learning (NQL) and Learning Classifier 
Systems (LCS) among others. In this research an evolutionary 
mechanism based on Gene Expression Programming (GEP) to 
self-configure the behaviour arbitration between layers is 
suggested. In addition, a co-evolutionary mechanism to evolve 
behaviours in an independent and parallel fashion is used. The 
proposed approach was tested in an animat environment using a 
multi-agent platform and it exhibited several learning capabilities 
and emergent properties for self-configuring internal agent’s 
architecture. 
 

Index Terms — Bio-inspired Machine Learning, Gene 
Expression Programming, Hybrid Behaviour Co-evolution, 
Subsumption Architecture.  
 

I. INTRODUCTION 
In the last decades, Cognitive Architectures have been an 

area of study that collects disciplines as artificial intelligence, 
human cognition, psychology and more, to determine 
necessary, sufficient and optimal distribution of resources for 
the development of agents exhibiting emergent intelligence. 
One of the most referenced is the Subsumption Architecture 
proposed by Brooks [1]. 

According to Brooks [1], the Subsumption Architecture is 
built in layers. Each layer gives the system a set of pre-wired 
behaviours, where the higher levels build upon the lower levels 
to create more complex behaviours: The behaviour of the 
system as a whole is the result of many interacting simple 
behaviours.  Another characteristic is its lack of a world model, 
which means that its responses are always and only reflexive as 
proposed by Brooks. 

However, Subsumption Architecture results in a tight 
coupling of perception and action, producing high reactivity, 
poor adaptability and learning of new environments, no internal 

representation and the need of all patterns of behaviours are 
pre-wired. 
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Several extensions have attempted to add representation and 
behaviour arbitration to Subsumption like Behavior-Based 
Control Architecture [2] and Hormonal Activation Systems [3], 
but pre-wired behaviours and non-learning characteristics still 
remain becoming the architecture applicable and useful only 
for a specific pre-configured environments. 

The present research focuses on developing an Hybrid 
Multilayered Architecture for Cognitive Agents based on 
Subsumption theory. Additionally this work proposes an 
Evolutionary Model which allows the Agent to self-configure 
and evolve its processing layers through the definition of 
inhibitory and suppressor processes, behaviours and number of 
layers. That means each agent instead of having a 
pre-configured structure of layers and processes it will have an 
Artificial Evolutionary Process which is responsible for 
defining the multilayered structure. On the other hand, instead 
of using an Augmented Finite Machine System as Subsumption 
theory states [1] where no internal representation is done, in 
this paper we propose that each behaviour layer is driven by a 
different bio-inspired machine learning system (chosen from a 
repertoire where behaviour co-evolution occurs) which learns 
from the environment and generates an internal world-model 
by means of an unsupervised and reinforced learning. 

The remainder of the paper is organized as follows. Section 2 
presents a brief description of some fundamental concepts used 
in this work. The evolutionary approach for self-configurable 
cognitive agents is detailed in Section 3. Section 4 outlines and 
discusses the experimental results and emergent properties 
obtained. Finally concluding remarks are shown in Section 5.  

II. PRELIMINARIES 
For the development of the proposed cognitive architecture, 

some fundamentals about evolutionary theory and some 
techniques of biologically inspired computational intelligence 
which are the basis of this work are summarized in this section. 
First, the multilayered processing theory is described, which 
the proposed architecture is based on, next several machine 
learning systems used in each layer of the hybrid architecture 
are introduced. Finally, a Gene Expression Programming 
mechanism for evolving and self-configuring the internal 
subsumption architecture of each agent is described. 
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A. Multilayered Processing 
In 1986, R.A. Brooks [1] proposed a Multilayered structure 

for robotics that decomposes the problem into a set of 
asynchronous task achieving behaviours that he called 
Subsumption Architecture. According to Brooks [1], the task 
achieving behaviours locally and asynchronously operated are 
only loosely coupled to one another. In contrast to the 
conventional approach, each of the task achieving behaviours is 
typically in direct communication with the world (and each 
other) [4].  

Brooks stated in [1] that in the subsumption architecture, 
various subsets of the task achieving behaviours typically 
exhibit some partial competence in solving a simpler version of 
the overall problem. Thus, the solution for more complex 
version of a problem can potentially be built up by 
incrementally adding new independent acting behaviours to 
existing ones. Potential conflicts among behavioural actions are 
resolved by a hierarchical arrangement of suppressor nodes. 

On the other hand, Brooks [1] proposes that the layers of the 
Subsumption Architecture are composed of networks of 
augmented finite state machines (AFSM) with timers. Each 
AFSM has an input and output signal (Fig. 1). When the input 
of an AFSM exceeds a predetermined threshold, the behaviour 
of that AFSM is activated. The inputs of AFSMs come from 
sensors and outputs are sent to the agent's actuators. Each 
AFSM also accepts a suppression signal and an inhibition 
signal and these signals allow behaviours to override each other 
so that the system can produce coherent behaviour. 

 

 
Fig. 1. A typical parallel Subsumption Architecture 

 
In this work, instead of using AFSM, an evolutionary 

Subsumption Architecture that uses machine learning and 
biologically inspired techniques in each layer to create internal 
representations of the world and learn from environment in an 
autonomous fashion, is developed. 

B. Extended Classifier Systems XCS 
According to Wilson [5], a classifier system is a machine 

learning system that seeks to gain reinforcement from its 
environment based on an evolving set of condition-action rules 
called classifiers. Via a Darwinian process, classifiers useful in 
gaining reinforcement are selected and propagate over those 
less useful, leading to increasing system performance. The 
classifier system idea is due to Holland [6], who laid out a 
framework that included generalization of classifier conditions, 
internal message-passing and reinforcement, and 

computational completeness. However, despite considerable 
research, the performance of the traditional system has been 
mixed, and there have been few advances on the initial theory. 

In [5] Wilson et. al. proposed an Extended Classifier System 
(XCS). XCS is a recently developed learning classifier system 
(LCS) that differs in several ways from traditional LCSs. 
Wilson stated [5] that in XCS, classifier fitness is based on the 
accuracy of the classifier’s payoff prediction instead of 
prediction itself. Second, the Genetic Algorithm (GA) takes 
place in the action sets instead of the population as a whole. 
Finally, unlike the traditional LCS, XCS has no message list 
and so is only suitable for learning in Markov environments 
(XCS extensions using an internal-state register have shown 
promise in non-Markov environments). 

In keeping with the typical LCS model, Wilson [5] proposes 
that the environment provides as a input to the system a series 
of sensory situations σ (t) ∈ {1, 0}L, where L is the number of 
bits in each situation. In response, the system executes actions 
α (t) ∈ {a1, …, an} upon the environment. Each action result in 
a scalar reward ρ (t) (possibly zero). The reinforcement 
program determines the reward according to the current 
environmental input and the action that was executed. Fig. 2 
illustrates the interaction of the environment and the 
reinforcement program with XCS. 

 
Fig. 2. XCS interacts with an Environment and a Reinforcement Program [5] 

 

C. Artificial Immune Systems AIS 
Inspired by immunological theory, Artificial Immune 

Systems (AIS) [7] are adaptive systems based on models and 
principles which emulate mechanisms of defense observed in 
nature. Researches are interesting in several immunological 
properties from which have been generated a significant 
number of theoretical and computational models to solve 
real-world problems: self-identity, diversity, robustness, fault 
tolerance, pattern recognition and self- learning. 

In 1974, N.K. Jerne stated in [8] that a biological immune 
system is a regulated network of cells and molecules that 
possess a dynamical behavior, even in absence of any external 
stimulation (antigens). Thus, artificial immune networks are 
models that emulate Jerne´s architecture. A set of antigens that 
correspond to an input data set in most artificial network 
applications, will stimulate an immune network to goes through 
a dynamic process, until it reaches some type of stability. AiNet 
[9] is a model based on the immune principles and implements 
a discrete immune network that was developed for data 
compression and clustering and later for optimization. 
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This paper references the work of D. Romero [9] who 
proposed an Artificial Cognitive Immune System (ACIS). 
Based on the advantages of AiNet, an ACIS algorithm that 
combines the structure of AiNet and a reinforcement machine 
learning mechanism is proposed by Romero [9]. Particularly, 
AiNet capabilities to perform data clustering, learning and 
optimization were exploited. Next, the proposed immune 
algorithm (ACIS) was used in the object recognition and 
optimization tasks. In figure 3 the algorithm of ACIS is 
depicted. 

 

 
Fig. 3. Flow diagram of the proposed cognitive artificial immune system 

(ACIS) [9] 
 

D. Neuro Connectionist Q-Learning System NQL 
The Q-Learning algorithm suggested by Watkins in 1989 

[10] belongs to a group of reinforcement learning algorithms. 
In accordance with Watkins [10] the main feature of that 
technique is that in the process of learning the system is not 
shown how to act in a specific situation. Instead, learning 
develops by trial and error using reward and penalty signals. As 
a result of the Q-learning algorithm, a function of state-action 
pair evaluation appears that has a tabular representation. When 
the state-action space is large, it might be difficult to meet one 
of Q-learning algorithms convergence conditions (multiple 
approbation of all possible state-action pairs) and more 
resources are required to store the table of evaluation. 
According to Kuzmin [11], to solve those problems, 
additionally it must be introduced some generalization means. 
Using a Neural Net of type Multilayer Perceptron (MLP) as a 
Q-learning table approximator is one of the possible 
generalization means proposed by Kuzmin [11]. The joint use 
of MLP and the Q-learning algorithm is what Kuzmin [11] 
called connectionist Q-learning.  

Kuzmin stated [11] that the use of neural network for 
Q-value approximation has the following advantages:  

- Effective scaling for the space of large dimension inputs;  
- Generalization for large and continuous state spaces;  
- Possibility of implementation on parallel hardware.  
Kuzmin [11] makes use of the methodology of working with 

a neural network that consists in applying a separate neural 
network for each action, see Fig. 4. During each iteration of the 

algorithm, the current state of the system is forwarded to the 
inputs of each neural network, but the weights are only updated 
for the network whose action was selected. 

 

 
Fig. 4. Q-function approximation by a set of Neural Networks [11] 

 

E. Gene Expression Programming GEP 
Gene expression programming proposed by Ferreira [12] is, 

like Genetic Algorithms and Genetic Programming, a genetic 
algorithm since it uses populations of individuals, selects them 
according to fitness, and introduces genetic variation using 
some genetic operators. 

In accordance with Ferreira [12], the fundamental difference 
is the nature of three algorithms. In GEP the individuals are 
encoded as linear strings of fixed length (the genome or 
chromosomes) which are afterwards expressed as nonlinear 
entities of different sizes and shapes (e.g., simple diagram 
representations or expression trees).  

The interaction of chromosomes (replicators) and expression 
trees (phenotype) in GEP implies an unequivocal translation 
system for converting the language of chromosomes into the 
language of expression trees (ETs). The structural organization 
of GEP chromosomes allows a truly functional genotype/ 
phenotype relationship, as any modification made in the 
genome always results in syntactically correct ETs or 
programs. Indeed, the varied set of genetic operators developed 
by Ferreira [12] to introduce genetic diversity in GEP 
populations always produces valid ETs. Thus, GEP is an 
artificial life system, well established beyond the replicator 
threshold, capable of adaptation and evolution. 

Ferreira stated [12] that the advantages of a system like GEP 
are clear from nature, but the most important should be 
emphasized. First, the chromosomes are simple entities: linear, 
compact, relatively small, easy to manipulate genetically 
(replicate, mutate, recombine, transpose, etc.). Second, the ETs 
are exclusively the expression of their respective 
chromosomes; they are the entities upon which selection acts 
and, according to fitness, they are selected to reproduce with 
modification. During reproduction it is the chromosomes of the 
individuals, not the ETs, which are reproduced with 
modification and transmitted to the next generation. 

A GEP Algorithm is proposed in this work to evolve 
individuals (agents) and their multilayered structures, learning 
both applicability predicates for behaviour activation and the 
conflict resolution hierarchy for behaviour arbitration. As a 
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simple example [4], suppose that there are three task achieving 
behaviors with strictly decreasing priority. The applicability 
predicates and the suppressor nodes of these three behaviors are 
equivalent to the following composition of ordinary IF 
conditional functions: 
 (IF AP1 BEHAVIOR1 
  (IF AP2 BEHAVIOR2 
   (IF AP3 BEHAVIOR3) 

In particular, if the first applicability predicate (AP1) is 
satisfied, then BEHAVIOR1 is executed. Otherwise, if AP2 is 
satisfied, BEHAVIOR2 is executed. Otherwise, the lowest 
priority behavior (e.g. BEHAVIOR3) is executed. In our 
approach, the GEP mechanism will be in charge of defining the 
applicability predicates and conditional rules from which 
behaviour layers are built for each agent. 

III. PROPOSED HYBRID, SELF-CONFIGURABLE AND 
EVOLUTIONARY APPROACH FOR COGNITIVE AGENTS 

In order to design an hybrid, self-configuring, 
self-organizing, scalable, adaptable, and evolutionary 
architecture for cognitive systems which exhibits emergent 
behaviours and learning capabilities, the proposed work is 
explained as follows. 

Consider a virtual environment where there exists several 
agents interacting with objects, food, each others, etc., it arises 
some mayor questions and constraints: 

 Environmental conditions change, e.g. about objects: 
quantity, type of object, location, size, etc., about other 
agents: intentions and desires, goals, etc. 

 There is a variable number of desired behaviours: 
avoiding-obstacles, wandering, feeding, hunting, 
escaping, etc. 

 How many behaviours can be integrated into a single 
agent? And how can agents arbitrate behaviours? 

 When does a single agent know if it has to inhibit or 
suppress a behaviour if an applicability predicate is not 
preestablished? 

 How can a behaviour that drives one of the layers in a 
single multilayered agent, generate a model of the 
world, couple with the environment via the agent ’s 
sensors and actuators, learn from its own interaction 
with the environment and receive a reinforcement of its 
actions, so the internal state of the behaviour evolve? 

These questions address the following proposed approach of 
an hybrid, self-configurable and bio-inspired architecture for 
cognitive agents, depicted in Fig. 5: 

The Fig. 5 shows an hybrid architecture from which all the 
questions mentioned above can be solved. An internal 
architecture based on subsumption principles but with few 
variations can be observed in every agent: 

 Each processing layer is connected randomly with a 
different learning machine system (Extended Classifier 
System XCS, Artificial Immune System AIS, Neuro 
Connectionist Q-Learnig System NQL, Learning 
Classifier System LCS and scalable to others) which 
replaces the typical AFSMs proposed by Brook’s 

architecture [1]. 
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Fig. 5. Hybrid and Evolutionary Architecture for Cognitive Agents 
 

 After being trained in the agent, every behaviour is sent 
to a behaviour repertoire according to its type, where a 
co-evolutionary mechanism is applied so that every 
behaviour not only will learn in a local way inside of 
each agent but also will evolve in a global way, to be 
selected afterwards by another agent in the next 
generation. 

 There is an evolutionary process driven by a Gene 
Expression Programming Algorithm GEP, which is in 
charge of self-configuring the agent: defining the 
number of layers, the behaviours that the agent will use, 
the connections and hierarchies between them (inhibit, 
suppress, aggregate, etc.): behaviour arbitration, the 
applicability predicates where it is determined which 
behaviour is activated at a certain situation and an 
activation time controlled by a timer. 

A. Hybrid Learning Architecture: Behaviours driven by 
different Machine Learning Systems 

 
Every behaviour layer in the multilayered architecture will 

be associated to a Machine Learning System MLS, that allows 
the architecture being hybrid and not only reactive since each 
behaviour will be able to exert deliberative processes using the 
acquired knowledge. Besides, this mechanism gives plasticity 
to the architecture because every behaviour “learns” in an 
unsupervised, independent and parallel way, through its 
interaction with the environment, generating internal 
representations, rules and both specific and generalized 
knowledge. This mechanism is favored by the MLSs 
characteristics: robustness, fault tolerance, use of bio-inspired 
techniques, adaptability and it does not require a previous 
definition of knowledge (unsupervised learning). 

There are two principles formulated by Stone [13] that have 
motivated the proposed layered learning approach: 

 “Layered learning is designed for domains that are too 
complex for learning a mapping directly from an agent’s 
sensory inputs to its actuator outputs. Instead the layered 
learning approach consists of breaking a problem down 

Engineering Letters, 15:2, EL_15_2_04
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



 
 

 

into several behavioral layers and using MLSs at each 
level. Layered learning uses a bottom up incremental 
approach to hierarchical task decomposition.” 

 “MLS is used as a central part of layered learning to 
exploit data in order to train and or adapt the overall 
system. MLS is useful for training behaviors that are 
difficult to fine-tune manually.” 
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Fig. 6. Multilayered Architecture connecting with MLS interface 
 

The sensory inputs of each MLS read the distance and type 
of object sensed around the agent whereas the actuator outputs 
indicate actions that the agent must to execute, e.g. 
turn-to-the-left, turn-to-the-right, move-backward, 
move-forward, jump, stop, etc. 

Accordingly, a common interface for all MLSs (XCS, AIS, 
NQL, LCS, etc.) is proposed so, although each MLS has a 
different internal process, they all have a similar structure that it 
lets the system to be scalable introducing new MLSs if is 
required and connecting them in an easy way with each 
behaviour layer in the agent’s multilayered architecture, as 
depicted in Fig. 6. 

B. Hybrid Behaviour Co-evolution: evolving globally 
A co-evolutionary mechanism is proposed to evolve each 

type of behavior separately in its own genetic pool. Most 
evolutionary approaches use a single population where 
evolution is performed; instead, the behaviours are 
discriminated in categories and make them evolve in separate 
behaviour pools without any interaction [14]. 

First, each agent defines a specific set of behaviours that 
builds its own multilayered structure. For each required agent’s 
behaviour, a behaviour instance is chosen from the pool (this 
instance is connected with one MLS). Subsequently each agent 
will interact with the environment and each agent’s behaviour 
will learn a set of rules and generate an own knowledge base. 

After certain period time a co-evolutionary mechanism is 
activated. For each behaviour pool is applied a probabilistic 
selection method of behaviours where those behaviours that 
had the best performance (fitness) will have more probability to 
reproduce. Then, a crossover genetic operator is applied 
between each pair of selected behaviours: a portion of 
knowledge acquired by each agent’s behaviour (through its 
MLS) is selected and interchanged with the other one: heritage 
of Knowledge and Experience.  

Finally, new random rules are generated until complete the 
maximum size of rules that behaviours can have in their own 
knowledge base, so a new pair of behaviors is created and left 
in the corresponding behaviour pool to be selected by an agent 
in the next generation. 

C. Self-configurable Architecture: Behaviour Arbitration 
If each agent has an arbitrary behaviour set, how to 

determine: the interaction between them, the hierarchy levels, 
the Subsumption process (inhibition and suppression) and the 
necessary layers to do an adequate processing? These questions 
are solved next. 

The internal multilayered structure of each agent is 
decomposed in atomic components which can be estimated and 
used to find the optimal organization of behaviors during the 
agent’s lifetime [14]. The main goal is that the agent in an 
automatic way self-configures its own behaviours structure. 
The model proposed by Ferreira [12] called Gene Expression 
Programming GEP is used to evolve internal structures of each 
agent and generate a valid arbitration of behaviours. 

GEP uses two sets: a function set and a terminal set. The 
proposed function set is: AND, OR, NOT, IFMATCH, 
IFOBJECT, INHIBIT, SUPRESS. The AND, OR and NOT 
functions are logic operators used to group and exclude subsets 
of objects, behaviours, etc. The conditional function 
IFMATCH is a typical applicability predicate that matches with 
a specific problem situation. This function has four arguments; 
the first three arguments belong to the rule’s antecedent: the 
first indicates what object is sensed, second one is the activated 
sensor ant the third argument is the current behaviour running 
on the agent. If the first three arguments are applicable then the 
fourth argument, the rule’s consequent, is executed. The fourth 
argument should be a INHIBIT or SUPPRESS function, or 
maybe and AND/OR function if more elements are necessary. 
The INHIBIT and SUPPRESS functions have two arguments 
(behaviourA, behaviourB) and indicate that behaviourA 
inhibits/suppresses behaviourB. 

On the other hand, the terminal set is composed by the 
behaviour set, the environmental element set (objects, agents, 
food, etc.) and an agent’s sensor set. Additionally “don’t care” 
elements are included so whichever sensor, behaviour or object 
can be referenced. 

Each agent has a chromosome with information about its self 
structure, e.g. the agent A can have a chromosome as: 
[{IFMATCH}, {wall}, {looking-for-food}, {sensor1}, 
{INHIBIT}, {avoiding-obstacle}, {AND}, {wandering}, 
{looking-for-food}], and this chromosome is a valid rule 
because both the antecedent and the consequent of IFMATCH 
function match to each required argument type: [{IFMATCH}, 
{object}, {behaviour}, {sensor}, {INHIBIT / SUPRESS}, 
{behaviour}, {behaviour}]. The above chromosome traduces 
in the following rule: 

IFMATCH: 
 There is a wall
 Is Activated looking-for-food behaviour 
 Reading by sensor1
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THEN: 
Avoiding-obstacle INHIBIT wandering AND  
looking-for-food 
Analyzing this rule we can infer that the agent has three 

behaviour layers: avoiding-obstacle, wandering and 
looking-for-food, and the two last ones are inhibited by the first 
one when sensor1 identifies a wall in front of the agent. 
However, these chromosomes (applicability predicates) don’t 
have always a valid syntax, so the GEP mechanism is used to 
evolve the chromosome until it becomes in a valid syntactic 
rule. 

Each individual (agent) has a multigenic chromosome, that 
means, each chromosome has a gene set where each gene is an 
applicability predicate like the example, so the agent has 
multiples rules (genes) as part of its genotype and each one is 
applied according to the situation that matching the rule 
antecedent. Each gene is become to a tree representation and 
then a genetic operator set is applied between genes of the same 
agent and genes of other agents [12]: selection, mutation, root 
transposition, gene transposition, two-point recombination and 
gene recombination. 

After certain number of evolutionary generations, valid and 
better adapted agent’s configurations are generated. A 
roulette-wheel method is used to select individuals with most 
selection probability derived from its own fitness. Fitness 
represents how good interaction with environment during 
agent’s lifetime was. 

D. Emergent Properties of the Architecture 
Brooks postulates in his paper [3] the possibility that 

intelligence can emerge out of a set of simple, loosely coupled 
behaviours, and emergent properties arise (if at all) due to the 
complex dynamics of interactions among the simple behaviours 
and that this emergence is to a large extent accidental. 

The proposed architecture articulates a behaviour set that 
learns about environmental conditions in an independent and 
parallel fashion, and on the other hand evolve inside a 
categorized pool. 

Each simple behavior can be applied to a subset of specific 
situations but not to the whole problem space, however the 
individual level interaction between behaviours (inside each 
agent) allows covering multiple subsets of problem states and 
some characteristics are generated: robustness, redundancy in 
acquired knowledge: fault tolerance and a big plasticity level, 
so emergent properties in the individual and inside of the 
society (Multi-agent systems) appear. 

Then, the emergent properties arise from three points of view 
in a bottom-up approach: 

 Atomic: in each behaviour of the multilayered 
architecture, when the associated MLS learns from the 
environment how to associate sensory inputs and 
actuator outputs, in an automate way. 

 Individual: when the agent self-configures its internal 
structure (chromosome), hierarchy and arbitration of 
behaviours through an evolutionary process driven by 
GEP. 

 Social: when an hybrid behaviour co-evolution 
mechanism is applied to all agent’s behaviours, so 
behaviours learn not only themselves via the MLS 
associated but also cooperating with other agents and 
communicating the acquired knowledge between them. 

It is important to notice that emergence in different levels, 
from atomic to social point of view, provokes an overall 
emergence of the system, where some kind of intelligence we 
hope to arise.  The experimentation focused on discovering 
some characteristics of identity in the animats, e.g. we expected 
to see some animat agents behaving like depredators and others 
behaving like preys. Depredators should include some 
behaviours like avoiding-obstacles, looking-for-water, 
persecuting-preys, rounding-up, hunting-preys, etc. and Preys 
should include some behaviours like avoiding-obstacles, 
looking-for-food, looking-for-water, hiding, escaping, etc.  

Nevertheless, expected emergent properties can vary 
according to the environment and the pre-configured behaviour 
set. 

IV. 4. EXPERIMENTATION 
In order to evaluate the proposed architecture, following 

aspects were considered in each level: 
 
About Machine Learning Systems: 

 Learning convergence rate of each proposed systems: 
XCS, AIS, LCS and NQL. 

 Generalization and Robustness (reactions to 
environmental changes) 

About hybrid behaviour co-evolution: 
 Learning and evolution convergence rate of each 

behaviour pool. 
 Knowledge diversity in each behaviour pool 

About GEP Algorithm to self-configuring Subsumption 
conditions and behaviour arbitration: 

 Variation of success rate vs. number of genes 
 Progression of fitness increment of the population 
 Syntactically well-formed gene convergence rate  

About overall System: 
 Subsumption architectures obtained on individuals after 

n iterations and emergent properties. 
An artificial life environment called Animat (animal + robot) 

[6] is proposed to test the experiments. The environment 
simulates virtual agents competing for getting food and water, 
avoiding obstacles, hunting, escaping from depredators, etc. 
This animat environment was selected because is more friendly 
to see emergent behaviours but it is not the only applicable 
environment. Each animat driven by an agent in the 
environment disposes a set of 14 proximity sensors (see Fig. 7) 
simulating a limited sight sense. 12 sensors read a safe zone and 
2 sensors read a danger zone (to avoid collisions), as proposed 
by D. Romero [9]. 
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Fig. 7. Animat Sensor distribution 
 

Additionally, a simulated environment with objects, food, 
water deposits, animats, obstacles, traps, etc. is depicted in Fig. 
8. 
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Fig. 8. Simulated Animat Environment 
 

Thus, some experiments designed to evaluate the 
performance aspects mentioned above are described next. 

A. Learning convergence and Generalization level of each 
MLS 
In this experiment we chose an environment where the 

animat has to interact with using one different MLS on a time. 
This scenario consists of a coarse rectangular grid. Inside the 
grid, there will be the animat (represented by a rabbit) in a maze 
which will have to avoid obstacles and follow the food path 
iteratively until it has learned the pattern. Each 200 iterations 
changes are applied to the environment and the animat will 
have to learn the new pattern and make knowledge 
generalizations in an adaptive way. Fig. 9 shows the variations 
of the environment. 
 

a) b) c)  
 
Fig. 9. a) initial environment; b) soft variation of initial environment; c) hard 

variation of initial environment 
 

Fig. 10 shows a chart of the learning curve of the following 
MLSs: XCS, AIS, LCS, simple NQL and multilayered NQL. 
The learning convergence experiment was carried out with the 
environments on Fig. 9 and the following parameters: 

 Number of epochs per run = 1000 
 Number of runs = 20 
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Figure 10. Learning Curve of each MLS 

 
Fig. 10 shows the different MLSs converging quickly after 

20th epoch in average for the first pattern, however when any 
change in the environment is executed (each 200 iterations), 
each MLS registers a peak and then it converges again after 5-7 
epochs. This demonstrates the capacity of MLSs to generalize 
the previous acquire learning and apply it to new situations, in 
this case, the learning of a new environmental pattern. 

Besides, Fig. 10 illustrates that MLSs of type AIS and NQL 
are more adaptive and robust than the others converging more 
quickly when changes in the learned environmental pattern are 
introduced. 

B. Learning and evolution convergence of each behaviour 
pool. 
The goal of this experiment is to examine if the fitness of 

every separate behaviour pool increments gradually until 
reaches a convergence point whereas evolution takes place. 

In this experiment 3 behaviours pools were studied:  
“looking-for-food”, “avoiding-obstacles” and “escaping-from- 
depredators” and measurements of average fitness in each 
behaviour pool were done.  
 

 
 

Fig. 11. Evolution convergence rate in 3 behaviour pools 
 

The learning curve of parallel behaviour evolution is 
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depicted on Fig. 11. The learning convergence experiment was 
carried out with the following parameters: 

• Number of epochs per run = 50 
• Number of runs = 50 
In each epoch, 50 executions calculating the fitness average 

in the pool were done. Initially, in Fig. 11 the looking-for-food 
behaviour has a learning curve slower in contrast with 
avoiding-obstacles behaviour, and on the other hand the 
avoiding-obstacles behaviour has the learning with more peaks 
in comparison with the other two behaviours which have softer 
curves due to differences in environmental conditions of each 
behaviour pool (number of positive rewards per time unity, 
impact of negative rewards, obstacles dispersion vs. food 
dispersion, etc.), however the 3 pools tried to converge and 
reach certain stability in the same number of epochs 
approximately (after 30 epochs), that means the evolution was 
effective and each behaviour pool has established a coherent 
knowledge base getting a consensus between its own behaviour 
instances about what the “behaviour” should do. 

C. Variation of success with the number of genes in GEP 
In order to define the number of genes that each chromosome 

should have, several experimental tests gradually incrementing 
the number of genes were done. Table 1 shows the used 
parameters in the experiment and Fig. 12 illustrates the curve of 
variation of success rate vs. number of genes. 

 
Table 1. GEP Parameters 

 
GEP Parameter Value 

One-point Mutation rate 0.45 
One-point Recombination rate 0.15 
Two-point Recombination rate 0.15 
Gene Recombination rate 0.15 
Root Transposition rate 0.10 
Trasposition of IS elements rate 0.10 
Gene transposition rate 0.10 
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Fig. 12. Variations of success rate vs. Number of Genes 

 
Fig. 12 above depicted that the success rate has the higher 

percentage when individuals have a chromosome with 10 or 11 
genes. Therefore a multigenic chromosome with 10 genes 
using the configuration described in table 1 is proposed in the 
architecture. 
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Fig. 13. Progression of average fitness of the population vs. number of 

Generations 
 
Additionally, we analyzed the progression of average fitness 

of the population whereas the number of generations was 
incremented. Using the GEP parameters in table 1, results of 
progression in 50 runs are shown in Fig. 13. In this experiment 
a perfect solution was found in generation 12. 

D. Syntactically well-formed gene convergence 
In this experiment, the progression of the number of 

syntactically well-formed structure (multigenic chromosomes) 
of each individual was analyzed. Fig. 14 shows how the 
number of valid chromosomes increments whereas generations 
evolve through the time. The experiment was executed with a 
population of 300 individuals. 
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Fig. 14. Valid Structures (chromosomes) through Generations 

 
Fig. 14 shows that a point of convergence (that means all 

chromosomes in population are valid) is given in the generation 
27 approximately. Then, the system will need between 25 and 
30 generations to evolve all individuals in the population. 

E. Analysis of evolved architectures 
Finally, after the whole system has evolved during a 

specific number of generations, we have analyzed the final 
structures of the best adapted agents where emergent properties 
arose. 
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Figures 15 and 16 show the genotype (Expression Trees 
ETs) and phenotype respectively of an initial architecture of a 
random agent without any evolutionary phase; in contrast, 
figures 17 and 18 show the genotype and phenotype 
respectively of the evolved architecture of the same agent.  

In Fig. 16 the chromosome represents four behaviours: 
looking-for-water, looking-for-food, avoiding-obstacles and 
hiding, where l-f-w inhibits l-f-f and hiding and l-f-w 
suppresses a-o, but there is a contradictory process when l-f-f 
tries to suppress l-f-w and l-f-f has been inhibited by l-f-w 
already. This is solved with the evolved architecture in Fig. 18, 
which proposes a new structure adding 
escaping-from-depredators behaviour and excluding hiding 
behaviour. 
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Fig. 15. Fragment Genotype of an initial Agent’s Architecture 
 
 

Looking-for-water

Looking-for-food

Avoiding-obstacles

Hiding

i

s

is
Looking-for-water

Looking-for-food

Avoiding-obstacles

Hiding

i

s

is

 
 

Fig. 16. Fragment Phenotype of an Initial Agent’s Architecture 
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Fig. 17. Genotype Agent’s Architecture after 326 evolutionary generations 
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Fig. 18. Fragment Phenotype Agent’s Architecture after 326 evolutionary 
generations 

 
As depicted in Fig. 18, the initial contradictory 

inhibitory/suppressor processes in the agent’s architecture (see 
Fig. 16) are solved, and only hierarchical inhibitory processes 
are proposed by the evolved architecture. Furthermore, we can 
deduce too that evolved architecture has collected a set of 
specific behaviours becoming the agent to an animat with prey 
identity. 

It is important to notice in evolved architecture that 
escaping-from-depredators behaviour inhibits looking-for-food 
and looking-for-water behaviours but if the animat is escaping 
and its sensor7 reads a “wall” or a “tree”, then 
escaping-from-depredators behaviour is inhibited by 
avoiding-obstacles behaviour until the obstacle is not in front of 
the animat anymore, and after that the animat continues its 
getaway, so we can say that emergent behaviour arises. 

Finally, the experimentation demonstrate that specific 
parameter configurations in MLSs, GEP and Co-evolutionary 
mechanism are required to reach certain robustness, learning 
and adaptation capacities in the overall system. Nevertheless, 
emergent properties didn’t arise always or in a quick way, in 
several experiments animats died quickly and they couldn’t 
learn to survive. 

V. CONCLUSIONS 
The integration of multiple Machine Learning Systems in 

controlling the behaviours layers of an hybrid  Subsumption 
Architecture approach, instead of using the typical Augmented 
Finite State Machines, have demonstrated important 
advantages in learning about the world of the agent, making 
internal knowledge representations and adapting to 
environmental changes. 

The evolutionary mechanisms used in this work, provided a 
plasticity feature allowing the agent to self-configure its own 
multilayered behaviour-based architecture; thus it can avoid 
creating exhaustive and extensive knowledge bases, pre-wired 
behaviour-based multilayered structures and pre-constrained 
environments. Instead, a cognitive agent using our architecture 
only needs to interact with an arbitrary environment to adapt to 
it and take decisions in a reactive and deliberative fashion. 

Some problems were faced when we tried to define the 
applicability predicates which evolve through the GEP 
algorithm because several validations about function set must 
be done, and maybe this work will have to be done each time 
the architecture will be applied to other contexts. 

In the experimentation, the emergent properties were 
difficult to discover because it takes a lot of time to evolve the 
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overall system despite of using a multi-agent platform in a 
distributed configuration. Maybe, it can be similar to the 
natural evolution where adaptation occurs slowly and 
sometimes produces poor adapted creatures. 

In our future work we expect to continue working on 
designing more adaptive and self-configurable architectures, 
using fuzzy techniques in the MLSs to improve the sensors 
readings. In the future, one concrete application of this research 
will be the development of a Cognitive Module for Emotive 
Pedagogical Agents where the agent will be able to self-learn 
about its own perspectives, believes, desires, intentions, 
emotions, skills and perceptions. 
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