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ABSTRACT 
In this work, an hybrid, self-configurable, multilayered and 
evolutionary subsumption architecture for cognitive agents is 
developed. Each layer of the multilayered architecture is modeled 
by one different Reinforcement Machine Learning System 
(RMLS) based on bio-inspired techniques. In this research an 
evolutionary mechanism based on Gene Expression Programming 
to self-configure the behaviour arbitration between layers is 
suggested. In addition, a co-evolutionary mechanism to evolve 
behaviours in an independent and parallel fashion is used too. The 
proposed approach was tested in an animat environment (artificial 
life) using a multi-agent platform and it exhibited several learning 
capabilities and emergent properties for self-configuring internal 
agent’s architecture. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Connectionism and 
neural nets, Induction, Knowledge acquisition, Parameter 
learning. 

General Terms 
Algorithms 

Keywords 
Gene Expression Programming, Artificial Immune Systems, 
Extended Classifier Systems, Connectionist Q-Learning, 
Subsumption Architecture, Hybrid Behaviour Co-evolution, 
Cognitive Science. 

1. INTRODUCTION 
Recently, Cognitive Architectures have been an area of study that 
collects disciplines as artificial intelligence, cognitive science, 
psychology and more, to determine necessary, sufficient and 
optimal distribution of resources for the development of agents 
exhibiting emergent intelligence. One of the most referenced is 
the Subsumption Architecture proposed by Brooks [1]. 

According to Brooks [1], the Subsumption Architecture is built in 
layers. Each layer gives the system a set of pre-wired behaviours, 

where the higher levels build upon the lower levels to create more 
complex behaviours: The behaviour of the system as a whole is 
the result of many interacting simple behaviours. Another 
characteristic is its lack of a world model, which means that its 
responses are always and only reflexive as proposed by Brooks. 

However, Subsumption Architecture results in a tight coupling of 
perception and action, producing high reactivity. Poor 
adaptability to new environments, no learning capabilities, no 
internal representation and the need of all patterns of behaviours 
must be pre-wired, are some weaknesses of the Subsumption 
theory. 

Several extensions have attempted to add representation and 
behaviour arbitration to Subsumption like Behavior-Based 
Control Architecture [2] and Hormonal Activation Systems [3], 
but pre-wired behaviours and non-learning characteristics still 
remain becoming the architecture applicable and restricted only 
for a specific pre-configured environments. 

The present research focuses on developing an Hybrid 
Multilayered Architecture for Cognitive Agents based on 
Subsumption theory. Additionally this work proposes an 
Evolutionary Model which allows the Agent to self-configure and 
evolve its arbitration of processing layers through the definition of 
processes (like inhibition, suppression and aggregation), kind of 
behaviours and number of layers. That means each agent instead 
of having a pre-configured structure of layers and processes it will 
have an Artificial Evolutionary Process which is responsible for 
defining the multilayered structure. On the other hand, instead of 
using an Augmented Finite Machine System as Subsumption 
theory states in [3] where no internal representation is done, in 
this paper we propose that each behaviour layer is driven by a 
different bio-inspired reinforcement machine learning system 
RMLS (chosen from a repertoire where behaviour co-evolution 
occurs) which learns from the environment and generates an 
internal world-model by means of an unsupervised and reinforced 
learning. The RMLSs used in the approach are: Extended 
Classifier System XCS [5], Learning Classifier System LCS [6], 
Artificial Immune System AIS [7], [8] and Neuro Connectionist 
Q-Learnig System NQL [9], [10]. 

The remainder of the paper is organized as follows. The 
description of the approach proposed is detailed in Section 2. 
Section 3 outlines and discusses the experimental results and 
emergent properties obtained. Finally concluding remarks are 
shown in Section 4. 
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2. PROPOSED HYBRID, SELF-
CONFIGURABLE AND EVOLUTIONARY 
MODEL 
In order to design an hybrid, self-configurable, scalable, and 
evolutionary architecture for cognitive systems which exhibits 
emergent behaviours and learning capabilities, the proposed work 
is exposed as follows. 

Consider a virtual environment where there are several cognitive 
agents interacting with each others using a typical Subsumption 
Architecture. Some mayor constraints arise: 

o Environmental conditions changing continuously. 

o The number of behaviours inside each agent is variable. 

o Arbitration of behaviours is pre-wired and not depends 
on agent’s motivational states. 

o The cognitive agent can inhibit or suppress behaviours 
“only” if an applicability predicate is preestablished and new 
environment changes are not considered. 

o Agent’s behaviours do not generate a model of the 
world, do not couple with the environment via the agent’s sensors 
and actuators, do not learn about its own interaction with the 
environment and do not evolve the internal state of the behaviour. 

These constraints address the following proposed approach of an 
hybrid, self-configurable and bio-inspired architecture for 
cognitive agents, depicted in Figure 1. 

 

Figure 1. Hybrid and Evolutionary Architecture for 
Cognitive Agents. 
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The Figure 1 shows an hybrid architecture from which all the 
constraints mentioned before can be solved. An internal 
architecture based on subsumption principles but with few 
variations can be observed in every agent: 
o Each processing layer is connected randomly with a 

different learning machine system (XCS, LCS, AIS, NQL, 
and scalable to others) which replaces the typical AFSMs 
proposed by Brook’s architecture in [1]. 

o After being trained, each agent’s behaviour is sent to a 
behaviour repertoire according to its type, where a co-
evolutionary mechanism is applied so that every behaviour 
not only will learn in a local way inside of each agent but 
also will evolve in a global way, to be selected afterwards 
by another agent in the next generation. 

o There is an evolutionary process driven by a Gene 
Expression Programming Algorithm GEP [12], which is in 
charge of self-configuring the agent (defining the number 
of layers, the behaviours that the agent will use, the 
connections and hierarchies between them -inhibit, 
suppress, aggregate-, the applicability predicates that 
determine which behaviour is activated at a certain 
situation and an activation time controlled by a timer). 

2.1 Hybrid Learning Layer: Behaviours 
driven by different Machine Learning 
Systems 
Every behaviour layer in the multilayered architecture will be 
associated to a Reinforcement Machine Learning System 
RMLS, that allows the architecture being hybrid and not only 
reactive since each behaviour will be able to exert deliberative 
processes using the acquired knowledge. Besides, this 
mechanism gives plasticity to the architecture because every 
behaviour “learns” in an unsupervised, independent and parallel 
way through its interaction with the environment, generating 
internal representations, rules and both specific and generalized 
knowledge. This mechanism is favored by the RMLSs 
characteristics: robustness, fault tolerance, use of bio-inspired 
techniques, adaptability and they do not require a previous 
definition of knowledge (unsupervised learning). 

There are two principles formulated by Stone [13] that have 
motivated the proposed layered learning approach: 

o Layered learning is designed for domains that are too 
complex for learning a mapping directly from an agent’s 
sensory inputs to its actuator outputs. Instead the layered 
learning approach consists of breaking a problem down 
into several behavioral layers and using RMLSs at each 
level. Layered learning uses a bottom up incremental 
approach to hierarchical task decomposition. 

o RMLS is used as a central part of layered learning to 
exploit data in order to train and or adapt the overall 
system. RMLS is useful for training behaviors that are 
difficult to fine-tune manually. 

The sensory inputs of each RMLS read the objects sensed 
around the agent while the actuator outputs indicate actions that 
the agent must to execute on the environment. 

Accordingly, a common interface for all RMLSs (XCS, AIS, 
NQL, LCS, etc.) is proposed so although each RMLS has a 

different internal process, they all have a similar structure that it 
lets the system to be scalable introducing new RMLSs if is 
required and connecting them in an easy way with each 
behaviour layer in the agent’s multilayered architecture, as 
depicted in Figure 2. 

Each RMLS has its advantages and disadvantages. However, no 
one RMLS is always better than others, so it is difficult to 
determine a good RMLS to drive each behaviour. On the other 
hand, the Cognitive Agent determines which behaviors must be 
inhibited or suppressed in a specific situation, but not always 
just one behaviour remains activated after inhibition, sometimes 
the Agent can require several behaviours to be activated 
concurrently. In order to merge the outputs of these behaviours 
activated in just one output, we propose an Aggregation 
Mechanism similar to proposed by Jiang in [11] but using 
different RMLS’s. This mechanism is based on Borda Counting 
Method. Aggregation of RMLS can improve the learning 
qualities as a whole because they can share some knowledge and 
utilize the strengths of the others to alleviate individual 
weaknesses. 

 Reinforcement Machine Learning SystemMultilayered Architecture Reinforcement Machine Learning SystemMultilayered Architecture
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2.2 Evolutionary Layer: Behaviour 
Arbitration 
If each agent has an arbitrary behaviour set, how to determine: 
the interaction between them, the hierarchy levels, the 
Subsumption process (inhibition and suppression) and the 
necessary layers to do an adequate processing? These questions 
are solved next. 

The internal multilayered structure of each agent is decomposed 
in atomic components which can be estimated and used to find 
the optimal organization of behaviors during the agent’s lifetime 
[4]. The main goal is that the agent in an automatic way self-
configures its own behaviours structure. The model proposed by 
Ferreira in [12] called Gene Expression Programming GEP is 
used to evolve internal structures of each agent and generate a 
valid arbitration of behaviours. 

GEP uses two sets: a function set and a terminal set. The 
proposed function set is: AND, OR, NOT, IFMATCH, 
INHIBIT, SUPRESS and AGGREGATE. The AND, OR and 
NOT functions are logic operators used to group and exclude 
subsets of elements. The conditional function IFMATCH is an 
applicability predicate that matches with a specific problem 
situation. This function has five arguments; the first four 

Figure 2. Multilayered Architecture connecting with 
RMLS interface. 
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arguments belong to the rule’s antecedent: they all indicate 
motivational levels in the agent (internal states,  moods, etc.), 
for instance: energy level, bravery/cowardice level, 
hunger/thirstiness level, etc. If the first four arguments are 
applicable then the fifth argument, the rule’s consequent, is 
executed. The fifth argument should be a INHIBIT/ 
SUPPRESS/AGGREGATE function, or maybe and AND/OR 
function if more elements are necessary. The INHIBIT, 
SUPPRESS and AGGREGATE functions have two arguments 
(behaviourA, behaviourB) and indicate that behaviourA 
inhibits/suppresses/aggregate behaviourB. 

On the other hand, the terminal set is composed by the 
behaviour set and the motivational levels set. Additionally “do 
not care” elements are included so whichever behaviour or 
motivational levels can be referenced. Behaviour Arbitration is 
driven by Agent’s Motivational Levels which try to simulate 
moods or humor states in the Cognitive Agent. These moods are 
changing continuously whereas the Agent interacts with the 
environment. 

Each agent has a chromosome with information about its self 
structure, e.g. Agent A can have a chromosome as: 
[{IFMATCH}, {ml1}, {ml2}, {ml3}, {ml4}, {INHIBIT}, 
{behaviour1}, {AND}, {behaviour2}, {behaviour3}], and this 
chromosome is a valid rule because both the antecedent and the 
consequent of IFMATCH function match to each required 
argument type, where {ml} is the abbreviation for motivational 
level. The above chromosome traduces in the following rule: 

IFMATCH: 

 ml1, ml2, ml3, ml4 

THEN: 

behaviour1 INHIBIT behaviour2 AND behaviour3. 

Analyzing this rule we can infer that the agent has three 
behaviour layers: behaviour1, behaviour2, and behaviour3, and 
the two last ones are inhibited by the first one when agent has 
the motivational levels m11, ml2, ml3, ml4. However, these 
chromosomes (applicability predicates) do not have always a 
valid syntax, so the GEP mechanism is used to evolve the 
chromosome until it becomes in a valid syntactic rule. 

Each individual (agent) has a multigenic chromosome, that 
means, each chromosome has a gene set where each gene is an 
applicability predicate like the example, so the agent has several 
rules (genes) as part of its genotype and each one is applied 
according to the situation that matching the rule antecedent. 
Each gene is become to a tree representation and then a genetic 
operator set is applied between genes of the same agent and 
genes of other agents as in [12]: selection, mutation, root 
transposition, gene transposition, two-point recombination and 
gene recombination, in order to evolve chromosomal 
information. 

After certain number of evolutionary generations, valid and 
better adapted agent’s configurations are generated. A roulette-
wheel method is used to select individuals with most selection 
probability derived from its own fitness. Fitness represents how 
good interaction with environment during agent’s lifetime was. 

2.3 Behaviour Co-evolution Layer: evolving 
globally 
A co-evolutionary mechanism is proposed to evolve each type 
of behavior separately in its own genetic pool. Most 
evolutionary approaches use a single population where 
evolution is performed; instead, the behaviours are 
discriminated in categories and make them evolve in separate 
behaviour pools without any interaction, as proposed in [14]. 

First, each agent defines a specific set of behaviours that builds 
its own multilayered structure. For each required agent’s 
behaviour, a behaviour instance is chosen from the pool (this 
instance is connected with one RMLS). Subsequently each agent 
will interact with the environment and each agent’s behaviour 
will learn a set of rules and generate an own knowledge base. 

After certain period of time a co-evolutionary mechanism is 
activated. For each behaviour pool is applied a probabilistic 
selection method of behaviours where those behaviours that had 
the best performance (fitness) will have more probability to 
reproduce. Then, a crossover genetic operator is applied 
between each pair of selected behaviours: a portion of 
knowledge acquired by each agent’s behaviour (through its 
RMLS) is selected and interchanged with the other one; this is 
like Heritage of Knowledge.  

Finally, new random rules are generated until complete the 
maximum size of rules that behaviours can have in their own 
knowledge base, so a new pair of behaviors is created and left in 
the corresponding behaviour pool to be selected by an agent in 
the next generation. 

2.4 Emergent Properties of the Architecture 
Brooks postulates in his paper [3] the possibility that 
intelligence can emerge out of a set of simple, loosely coupled 
behaviours, and emergent properties arise (if at all) due to the 
complex dynamics of interactions among the simple behaviours 
and that this emergence is to a large extent accidental. 

The proposed architecture articulates a behaviour set that learns 
about environmental conditions in an independent and parallel 
fashion, and on the other hand evolve inside a categorized pool. 
Each simple behavior can be applied to a subset of specific 
situations but not to the whole problem space, however the 
individual level interaction between behaviours (inside each 
agent) allows covering multiple subsets of problem states and 
some characteristics are generated: robustness, redundancy in 
acquired knowledge: fault tolerance and a big plasticity level, so 
emergent properties in the individual and inside of the society 
(Multiagent systems) appear. So, the emergent properties arise 
from three points of view in a bottom-up approach: 

o Atomic Level: in each behaviour of the multilayered 
architecture, when the associated RMLS learns from the 
environment how to associate sensory inputs and actuator 
outputs, in an automate way. 

o Individual Level: when the agent self-configures its 
internal structure (chromosome), hierarchy and arbitration 
of behaviours through an evolutionary process driven by 
GEP.  



o Social Level: when an hybrid behaviour co-evolution 
mechanism is applied to all agent’s behaviours, so 
behaviours learn not only themselves via the RMLS 
associated but also cooperating with other agents and 
communicating the acquired knowledge between them. 

It is important to notice that emergence in different levels, from 
atomic to social point of view, provokes an overall emergence 
of the system, where some kind of intelligence we hope to arise. 
The experimentation focused on discovering some emergent 
characteristics in the agents. Nevertheless, expected emergent 
properties can vary according to the environment and the 
behaviour set. 

3. EXPERIMENTATION 
In order to evaluate the proposed architecture, following aspects 
were considered in each level: 

o Learning convergence rate of each proposed systems: 
XCS, AIS, LCS and NQL. 

o Learning and evolution convergence rate of each 
behaviour pool. 

o Variation of success rate vs. number of genes in GEP 

o Syntactically well-formed gene convergence rate  

About overall System: 

o Subsumption architectures obtained on individuals after n 
iterations and emergent properties identified. 

An artificial life environment called Animat (animal + robot) 
described in [6] is proposed to test the experiments. The 
environment simulates virtual agents (prey-depredator model) 
competing for getting food and water, avoiding obstacles, 
hunting, escaping from depredators, etc. Each animat driven by 
an agent in the environment disposes a set of 10 proximity 
sensors (see Figure 3) simulating a limited sight sense. 8 sensors 
read a safe zone and 2 sensors read a danger zone (to avoid 
collisions) as proposed by Romero [8]. 

 

 

 

 

 

 

 

 

 

Thus, some experiments designed to evaluate the performance 
aspects mentioned above are described next. 

3.1 Learning convergence of each RMLS 
In this experiment we chose an environment where the animat 
has to interact with using one different RMLS on a time. Table I 
shows the learning parameters used. 

Table 1. Learning parameters of each RMLS 

Parameter  XCS AIS NQL LCS 

Life Tax - 0.005 - 0.005 

Bid Tax - 0.003 - 0.003 

Cloning Rate x rule 1 4 - 1 

Mutation Rate x rule 2 2 - 1 

Similarity Threshold - 0.8 - - 

Alpha  α 0.1 - 0.1 - 

Beta  β 0.2 - - - 

Delta  δ 0.1 - 0.02 - 

Gamma  γ 0.95 - 0.8 - 

Lamda  λ - - 0.8 - 

Layers in NN - - 5 - 

Number of Epochs 50 

Nº runs x epoch 20 

 

Figure 4 shows a chart of the learning curve of the RMLSs: 
XCS, AIS, LCS, simple NQL and multilayered NQL. 
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Figure 4 illustrates that AIS and NQL are more adaptive and 
robust than the others converging more quickly when changes in 
the learned environmental pattern are introduced. The peaks 
were registered because of changing patterns, but each RMLS 
adapted to new conditions quickly. 

3.2 Learning and evolution convergence of 
each behaviour pool. 
The goal of this experiment is to examine if the fitness of every 
separate behaviour pool increments gradually until reaches a 
convergence point while evolution takes place. The experiment 
was carried out with the parameters on Table 2 

Three behaviour pools were selected for the experiment: 
Avoiding-obstacles, Looking-for-food and Escaping-From-
Depredators, the results are depicted in Figure 5. 

Figure 5 depicted some differences in each leraning curve, due 
to environmental conditions, however the pools always tried to 
converge and reach certain stability in the same number of 
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3.3 Syntactically well-formed gene 
convergence 

epochs (approximately after 30 epochs), that means the 
evolution has been effective and each behaviour pool has 
established a coherent knowledge base getting a consensus 
between its own behaviour instances, about what the “behaviour 
category” should do. 

Table 2. Co-evolution Learning Parameters 

Parameters Value 

Epochs 50 

Nº runs x epoch 50 

Crossover Prob. 0.7 

Mutation Prob.  0.3 

In this experiment, the progression of the number of 
syntactically well-formed structure (multigenic chromosomes) 
of each individual was analyzed. Figure 6 shows how the 
number of valid chromosomes increments whereas generations 
evolve through the time. The experiment was executed with a 
population of 300 individuals.  

Figure 6 shows that a point of convergence (that means all 
chromosomes in population are valid) is given in the generation 
27 approximately. Then, the system will need between 25 and 
30 generations to evolve all individuals in the population. 

 Mutation Rate η 0.85 

Mutation Rate θ 0.25 

Mutation Rate κ 1.03 

Mutation Rate γ 0.01 
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3.4 Analysis of evolved architectures 
Finally, after the whole system has evolved during a specific 
number of generations, we have analyzed the final structures of 
the best adapted agents where emergent properties arose. 
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Figure 7 shows the genotype (Expression Trees ETs) and 
phenotype respectively of an initial architecture of a random 
agent without any evolutionary phase; in contrast, Figure 8 
shows the genotype and phenotype respectively of the evolved 
architecture of the same agent.  

In Figure 7 the chromosome represents four behaviours: 
looking-for-water LFW, looking-for-food LFF, avoiding-

obstacles AO and sleeping SL, where LFW inhibits LFF and SL 
and LFW suppresses AO, but there is a contradictory process 
when LFF tries to suppress LFW and LFF has been inhibited by 
LFW already. This is solved with the evolved architecture in 
Figure 8, which proposes a new structure adding escaping-from-
depredators EFD behaviour and excluding sleeping behaviour. 
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Figure 8. Genotype and Phenotype of the Agent’s 
Architecture after 326 evolutionary generations. 

As depicted in Figure 8, the initial contradictory 
inhibitory/suppressor processes in the agent’s architecture are 
solved, and only hierarchical inhibitory processes are proposed 
by the evolved architecture. Furthermore, we can deduce too 
that evolved architecture has collected a set of specific 
behaviours becoming the agent to an animat with a prey 
identity. 

It is important to notice in evolved architecture that EFD 
behaviour inhibits both LFF and LFW behaviours, but if the 
animat is escaping and its sensors read a “wall” or a “tree”, then 
EFD behaviour is inhibited by AO behaviour until the obstacle 
is not in front of the animat anymore, and after that the animat 
continues its getaway, so we can say that emergent behaviour 
arises. 

Finally, the experimentation demonstrate that specific parameter 
configurations in RMLSs, GEP and Co-evolutionary mechanism 
are required to reach certain robustness, adaptability and 
learning capacities in the overall system. Nevertheless, emergent 
properties did not arise every time or in a quick way, in several 
experiments animats died quickly and they could not learn to 
survive. 

4. CONCLUSIONS 
The integration of multiple Reinforcement Machine Learning 
Systems in controlling the behaviours layers of an hybrid  
Subsumption Architecture approach, instead of using the typical 
Augmented Finite State Machines, have demonstrated important 
advantages in learning about the world of the agent, making 

internal knowledge representations and adapting to 
environmental changes. 

The evolutionary mechanisms used in this work, provided a 
plasticity feature allowing the agent to self-configure its own 
multilayered behaviour-based architecture; thus it can avoid 
creating exhaustive and extensive knowledge bases, pre-wired 
behaviour-based multilayered structures and pre-constrained 
environments. Instead of this, a cognitive agent using our 
architecture only needs to interact with an arbitrary environment 
to adapt to it and take decisions in a reactive and deliberative 
fashion. 

In the experimentation, the emergent properties were difficult to 
discover because it takes a lot of time to evolve the overall 
system despite of using a multiagent platform in a distributed 
configuration. Maybe, it can be similar to the natural evolution 
where adaptation occurs slowly and sometimes produces poor 
adapted creatures.  

In our future work we expect to continue working on designing 
more adaptive and self-configurable architectures, using fuzzy 
techniques in the RMLSs to improve the sensors readings and to 
manipulate motivational levels (moods). One concrete 
application of this research will be the development of a 
Cognitive Module for Emotive Pedagogical Agents where the 
agent will be able to self-learn about its own perspectives, 
believes, desires, intentions, emotions and perceptions. 
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