Skip to main content

Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes

  • Chapter
  • First Online:
Genetic Programming Theory and Practice VII

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

Genetic programming is used to automatically construct stochastic processes written in the stochastic π-calculus. Grammar-guided genetic programming constrains search to useful process algebra structures. The time-series behaviour of a target process is denoted with a suitable selection of statistical feature tests. Feature tests can permit complex process behaviours to be effectively evaluated. However, they must be selected with care, in order to accurately characterize the desired process behaviour. Multi-objective evaluation is shown to be appropriate for this application, since it permits heterogeneous statistical feature tests to reside as independent objectives. Multiple undominated solutions can be saved and evaluated after a run, for determination of those that are most appropriate. Since there can be a vast number of candidate solutions, however, strategies for filtering and analyzing this set are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blossey, R., Cardelli, L., and Phillips, A. (2006). A Compositional Approach to the Stochastic Dynamics of Gene Networks. Trans. in Comp. Sys. Bio (TCSB), 3939:99-122.

    MathSciNet  Google Scholar 

  • Borrelli, A., De Falco, I., Della Cioppa, A., Nicodemi, M., and Trautteura, G. (2006). Performance of genetic programming to extract the trend in noisy data series. Physica A: Statistical and Theoretical Physics, 370(1):104-108.

    Article  Google Scholar 

  • Bower, J.M. and Bolouri, H. (2001). Computational Modeling of Genetic and Biochemical Networks. MIT Press Kaufmann.

    Google Scholar 

  • Chatfield, C. (2004). The Analysis of Time Series: An Introduction. Chapman and Hall/CRC.

    Google Scholar 

  • Cho, D.-Y., Cho, K.-H., and Zhang, B.-T. (2006). Identification of biochemical networks by S-tree based genetic programming. Bioinformatics, 22(13):1631-1640.

    Article  Google Scholar 

  • Chu, D. (2007). Evolving genetic regulatory networks for systems biology. In Srinivasan, D. and Wang, L., editors, Proc. CEC 2007, pages 875-882, Singapore. IEEE Press.

    Google Scholar 

  • Coello, C.A. Coello, Lamont, G.B., and Veldhuizen, D.A. Van (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, 2 edition.

    Google Scholar 

  • Drennan, B. and Beer, R.D. (2006). Evolution of repressilators using a biologically-motivated model of gene expression. In et al., L.M. Rocha, editor, Artificial Life X: Proc. Tenth Intl. Conf. on the Simulation and Synthesis of Living Systems, pages 22-27. MIT Press.

    Google Scholar 

  • Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem, 81:2340-2361.

    Article  Google Scholar 

  • Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley.

    Google Scholar 

  • Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory, Languages, and Computation. Addison Wesley.

    Google Scholar 

  • Imada, J. (2009). Evolutionary synthesis of stochastic gene network models using feature-based search spaces. Master's thesis, Department of Computer Science, Brock University.

    Google Scholar 

  • Imada, J. and Ross, B.J. (2008). Using Feature-based Fitness Evaluation in Symbolic Regression with Added Noise. In Proc. GECCO 2008 Late Breaking Papers.

    Google Scholar 

  • Kitagawa, J. and Iba, H. (2003). Identifying Metabolic Pathways and Gene Regulation Networks with Evolutionary Algorithms. In Fogel, G.F. and Corne, D.W., editors, Evolutionary Computation in Bioinformatics, pages 255-278. Morgan Kaufmann.

    Google Scholar 

  • Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., and Lanza, G. (2003). Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

    Google Scholar 

  • Leier, A., Kuo, P.D., Banzhaf, W., and Burrage, K. (2006). Evolving noisy oscillatory dynamics in genetic regulatory networks. In et al., P. Collet, editor, EuroGP 2006, volume 3905 of LNCS, pages 290-299. Springer.

    Google Scholar 

  • Liu, H. and Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers.

    Google Scholar 

  • Markowetz, F. and Spang, R. (2007). Inferring Cellular Networks - a Review. MBC Bioinformatics, 8:1-17.

    Google Scholar 

  • Milner, R. (1989). Communication and Concurrency. Prentice Hall.

    Google Scholar 

  • Milner, R. (1999). Communicating and Mobile Systems: the Pi-calculus. Cambridge University Press.

    Google Scholar 

  • Nanopoulos, A., Alcock, R., and Manolopoulos, Y. (2001). Feature-based classification of time-series data. In Information processing and technology, pages 49-61. Nova Science Publishers, Inc., Commack, NY, USA.

    Google Scholar 

  • Phillips, A. (2008). The stochastic pi machine. http://research.microsoft.com/aphillip/spim/. Last accessed Dec 9, 2008.

  • Phillips, A. and Cardelli, L. (2004). A Correct Abstract Machine for the Stochastic Pi-calculus. In Proc. Bioconcur

    Google Scholar 

  • Priami, C. (1995). Stochastic pi-Calculus. The Computer Journal, 38(7):579-589.

    Article  Google Scholar 

  • Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001). Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters, 80:25-31.

    Article  MATH  MathSciNet  Google Scholar 

  • Rodriguez-Vazquez, K. and Fleming, P. J. (2005). Evolution of mathematical models of chaotic systems based on multiobjective genetic programming. Knowledge and Information Systems, 8(2):235-256.

    Article  Google Scholar 

  • Ross, B.J. (2001). Logic-based Genetic Programming with Definite Clause Translation Grammars. New Generation Computing, 19(4):313-337.

    Article  MATH  Google Scholar 

  • Ross, B.J. and Imada, J. (2009). Evolving Stochastic Processes Using Feature Tests and Genetic Programming. In Proc. GECCO 2009.

    Google Scholar 

  • Streichert, F., Planatscher, H., Spieth, C., Ulmer, H., and Zell, A. (2004). Comparing genetic programming and evolution strategies on inferring gene regulatory networks. In , K.Deb, et al. editor, GECCO-2004, volume 3102 of LNCS, pages 471-480, Seattle, WA. Springer-Verlag.

    Google Scholar 

  • Wang, X., Smith, K., and Hyndman, R. (2006). Characteristic-based clustering for time series data. Data Min. Knowl. Discov., 13(3):335-364.

    Article  MathSciNet  Google Scholar 

  • Whigham, P.A. (1996). Grammatical Bias for Evolutionary Learning. PhD thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy.

    Google Scholar 

  • Zhang, W., Yang, G., and Z. Wu (2004). Genetic Programming-based Modeling on Chaotic Time Series. In Proc. 3rd Intl Conf. on Machine Learning and Cybernetics, pages 2347-2352. IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ross, B., Imada, J. (2010). Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes. In: Riolo, R., O'Reilly, UM., McConaghy, T. (eds) Genetic Programming Theory and Practice VII. Genetic and Evolutionary Computation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1626-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1626-6_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1653-2

  • Online ISBN: 978-1-4419-1626-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics