Skip to main content

Application of GFA-MLR and G/PLS Techniques in QSAR/QSPR Studies with Application in Medicinal Chemistry and Predictive Toxicology

  • Chapter

Abstract

Quantitative structure–activity/property/toxicity relationship (QSAR/QSPR/QSTR) models enable predictions of activity/property/toxicities to be made directly from the chemical structure. Feature selection is one of the integral parts in the development of QSAR/QSPR models which is also included in the Organization of Economic Co-operation and Development (OECD) principle of “an unambiguous algorithm” for QSAR model development and validation. Genetic algorithm (GA) based on the principle of Darwin’s theory of natural selection and evolutions are being widely used in recent times for the selection of descriptors in the development of predictive models for toxicity assessment and virtual screening of hazardous chemicals and design of drug compounds with therapeutic activity. The GA algorithm can handle a huge number of descriptors and generate a population of models competitive with or superior to the results of standard regression analysis. Genetic function approximation (GFA) involves the combination of multivariate adaptive regression splines (MARS) algorithm of Friedman with genetic algorithm of Holland to evolve population of equations. GFA calculations are based on three operators: selection, crossover and mutation. Using spline based terms in the model construction, GFA can either remove the outlier compounds or identify a range of effect. GFA followed by multiple linear regression (GFA-MLR) or partial least squares (G/PLS) regression is frequently used by different research groups for the development of predictive QSAR/QSPR models. This chapter presents examples of some case studies of the use of GFA-MLR and G/PLS techniques in developing predictive models in medicinal chemistry and predictive toxicology applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaramadaka SK, Guha MK, Prabhu G et al (2007) Synthesis and evaluation of urea and thiourea derivatives of oxazolidinones as antibacterial agents. Chem Pharm Bull (Tokyo) 55: 236–240.

    Article  Google Scholar 

  • Allen DM (1971) Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics 13: 469–475.

    Article  MATH  Google Scholar 

  • Andrey P, Tarroux P (1994) Unsupervised image segmentation using a distributed genetic algorithm. Pattern Recogn 27: 659–673.

    Google Scholar 

  • Angeline PJ (1995) Evolution revolution: An introduction to the special track on genetic and evolutionary programming, IEEE Expert Intell Syst Appl 10 (June): 6–10.

    Google Scholar 

  • Archetti F, Giordani I, Vanneschi L (2010) Genetic programming for QSAR investigation of docking energy. Appl Soft Comput J 10: 170–182.

    Article  Google Scholar 

  • Arooj M, Thangapandian S, John S et al (2012) Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition. Chem Biol Drug Des 80: 862–875.

    Article  Google Scholar 

  • Bagheri M, Bagheri M, Gandomi AH, Golbriakh A (2012) Simple yet accurate prediction method for sublimation enthalpies of organic contaminants using their molecular structure. Thermochimica Acta 543: 96–106.

    Article  Google Scholar 

  • Bagheri M, Borhani TN, Gandomi AH, Manan ZA (2014) A simple modelling approach for prediction of standard state real gas entropy of pure materials. SAR QSAR Environ Res 25: 695–710.

    Article  Google Scholar 

  • Bagheri M, Gandomi AH, Bagheri M, Shahbaznezhad M (2012) Multi-expression programming based model for prediction of formation enthalpies of nitro-energetic materials. Expert Systems 30: 66–78.

    Article  Google Scholar 

  • Bäck T (1993) Optimal mutation rates in genetic search. In: Forrest S (ed) Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 2–8.

    Google Scholar 

  • Bangalore AS, Shaffer RE, Small GW (1996) Genetic algorithm-based method for selecting wavelengths and model size for use with partial least-squares regression: application to near-infrared spectroscopy. Anal Chem 68: 4200–4212.

    Article  Google Scholar 

  • Bentley J (1975) Multidimensional Binary Search Trees used for Associative Searching. Commun ACM 18: 509–517.

    Article  MATH  Google Scholar 

  • Bhattacharya P, Leonard JT, Roy K (2005) Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonist using FA and GFA techniques. Bioorg Med Chem 13: 1159–1165.

    Article  Google Scholar 

  • Bhattacharya P, Roy K (2005) QSAR of adenosine A3 receptor antagonist 1, 2, 4-triazolo [4, 3-a] quinoxalin-1-one derivatives using chemometric tools. Bioorg Med Chem Lett 15: 3737–3743.

    Article  Google Scholar 

  • Blaney F (1990) Molecular modelling in the pharmaceutical industry Chem. Indus XII: 791–794.

    Google Scholar 

  • Breiman L, Friedman J, Olshen R et al (1984) Classification and Regression Trees. Wadsworth, Belmont, CA.

    MATH  Google Scholar 

  • Broadhurst D, Goodacre R, Jones A et al (1997) Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal Chim Acta 348: 71–86.

    Article  Google Scholar 

  • Bugg CE, Carson WM, Montgomery JA (1993) Drugs by design. Sci Am December: 60–66.

    Google Scholar 

  • Caldwell C, Johnston VS (1991) Tracking a criminal suspect through ‘face-space’ with a genetic algorithm. In: Belew RK, Booker LB (eds) Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufman n Publishers, San Mateo, California, p 416–421.

    Google Scholar 

  • Cleveland GA and Smith SF (1989) Using genetic algorithms to schedule flow shop releases. In: Schaffer JD (ed) Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 160–169.

    Google Scholar 

  • Chana A, Tromelin A, Andriot I et al (2006) Flavor release from i-carrageenan matrix: a quantitative structure property relationships approach. J Agric Food Chem 54: 3679–3685.

    Article  Google Scholar 

  • Chang G and Lewis M (1994) Using genetic algorithms for solving heavy-atom sites. Acta Cryst D50: 667–674.

    Google Scholar 

  • Chen KX, Xie HY, Li ZG et al (2008) Quantitative structure-activity relationship studies on 1-aryl-tetrahydroisoquinoline analogs as active anti-HIV agents. Bioorg Med Chem Lett 18: 5381–5386.

    Article  Google Scholar 

  • Chen KX, Li ZG, Xie HY et al (2009) Quantitative structure-activity relationship analysis of aryl alkanol piperazine derivatives with antidepressant activities. Eur J Med Chem 44: 4367–4375.

    Article  Google Scholar 

  • Cheng D, Xu WR, Liu CX (2007) Relationship of quantitative structure and pharmacokinetics in fluoroquinolone antibacterials. World J Gastroenterol 13: 2496–2503.

    Article  Google Scholar 

  • Craven P and Wahba G (1979) Smoothing noisy data with spline functions. Numer Math 31: 377–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Dai Y, Chen N, Wang Q et al (2012) Docking analysis and multidimensional hybrid QSAR model of 1, 4-benzodiazepine-2, 5-diones as HM2 antagonists. Iran J Pharm Res 11: 807–830.

    Google Scholar 

  • Darwin C (1859) On the origin of Species by Means of Natural selections, or the Preservation of Favoured Races in the Struggle for life. Nature 5 (121): 502.

    Google Scholar 

  • Davies MN, Hattotuwagama CK, Moss DS et al (2006) Statistical deconvolution of enthalpic energetic contributions to MHC-peptide binding affinity. BMC Struct BIOL 6: 5.

    Article  Google Scholar 

  • Deswal S, Roy N (2006) Quantitative structure activity relationship studies of aryl heterocycle-based thrombin inhibitors. Eur J Med Chem 41:1339–1346.

    Article  Google Scholar 

  • Dimitriou-Christidis P, Autenrieth RL, Abraham MH (2008) Quantitative structure-activity relationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation. Environ Toxicol Chem 27: 1496–1504.

    Article  Google Scholar 

  • Dorn SB, Degen GH, Bolt HM et al (2008) Some molecular descriptors for non-specific chromosomal genotoxicity based on hydrophobic interactions. Arch Toxicol 82: 333–338.

    Article  Google Scholar 

  • Devillers J (1996) Genetic Algorithms in Molecular Modeling, Elsevier Science & Technology Books.

    Google Scholar 

  • Eshelman LJ, Caruana RA, Schaffer JD (1989) Biases in the crossover landscape. In: Schaffer JD (ed) Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 10–19.

    Google Scholar 

  • Fan Y, Shi LM, Kohn KW et al (2001) Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies. J Med Chem 44: 3254–3263.

    Article  Google Scholar 

  • Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Science 261:872–878.

    Article  Google Scholar 

  • Fraser A (1957) Simulation of genetic systems by automatic digital computers. I. Introduction. Aust J Biol Sci 10: 484–491.

    Google Scholar 

  • Frecer V (2006) QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. Bioorg Med Chem 14: 6065–6074.

    Article  Google Scholar 

  • Friedman J (1988) Multivariate Adaptive Regression Splines, Technical Report No. 102, Laboratory for Computational Statistics, Department of Statistics, Stanford University, Stanford, CA, Nov 1988 (revised Aug 1990).

    Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Annals of Statistics 19: 1–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman JH and Silverman BW (1989) Flexible parsimonious smoothing and additive modeling. Technometrics 31: 3–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman JH and Stuetzle W (1981) Projection pursuit regression. J Amer Statist Assoc 76: 817–823.

    Article  MathSciNet  Google Scholar 

  • Gabbert PS, Markowicz BP, Brown DE et al (1991) A system for learning routes and schedules with genetic algorithms. In: Belew RK and Booker LB (eds) The Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 430–436.

    Google Scholar 

  • Gandomi AH, Alavi AH (2013) Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction. Int J Earthquake Engg Hazard Mitig 1: 2–8.

    Google Scholar 

  • Gandomi AH, Alavi AH, Arjmandi P, Aghaeifar A, Seyednour R (2010) Genetic programming and orthogonal least squares: A hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders. J Mech Mater Struct 5: 735–753.

    Article  Google Scholar 

  • Garg D, Gandhi T, Gopi Mohan C (2008) Exploring QSTR and toxicophore of hERG K+ channel blockers using GFA and HypoGen techniques. J Mol Graph Model 26: 966–976.

    Article  Google Scholar 

  • Goldberg DE (1989a) Sizing populations for serial and parallel genetic algorithms. In: Schaffer JD (ed) Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 70–79.

    Google Scholar 

  • Goldberg DE (1989b) Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley Publishing Company, Reading, p 412.

    Google Scholar 

  • Gokhale VM, Kulkarni VM (2000) Understanding the antifungal activity of terbinafine analogues using quantitative structure-activity relationship (QSAR) models. Bioorg Med Chem 8: 2487–2499.

    Article  Google Scholar 

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26: 694–701.

    Article  Google Scholar 

  • Gupta P, Garg P, Roy N (2012) Identification of novel HIV-1 integrase inhibitors using shape-based screening, QSAR and docking approach. Chem Biol Drug Des 79: 835–849.

    Article  Google Scholar 

  • Hahn M, Rogers D (1995) Receptor surface models. 2. Application to quantitative structure-activity relationship studies. J Med Chem 38: 2091–2102.

    Google Scholar 

  • Hansch C, Fujita T (1964) p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J Am Chem Soc 86: 1616–1626.

    Article  Google Scholar 

  • Hansch C, Maloney PP, Fujita T et al (1962) Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 194: 178–180.

    Article  Google Scholar 

  • Harrigan GG, LaPlante RH, Cosma GN, Cockerell G, Goodacre R, Maddox JF, Luyendyk JP, Ganey PE, Roth RA (2004) Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: Contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicol Lett 146: 197–205.

    Article  Google Scholar 

  • Hartke B (1993) Global geometry optimization of clusters using genetic algorithms. J Phys Chem 97: 9973–9976.

    Article  Google Scholar 

  • Hightower RR, Forrest S, Perelson AS (1995) The evolution of emergent organization in immune system gene libraries. In: Eshelman LJ (ed) Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco, California, p 344–350.

    Google Scholar 

  • Holland J (1975) Adaptation in Artificial and Natural Systems. University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  • Horner A, Goldberg DE (1991) Genetic algorithms and computer-assisted n music composition. In: Belew RK, Booker LB (eds) Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 437–441.

    Google Scholar 

  • Jaeger EP, Pevear DC, Felock PJ et al (1995) Genetic algorithm based method to design a primary screen for antirhinovirus agents. In: Reynold CH, Holloway MK, Cox HK (eds) Computer-Aided Molecular Design: Applications in Agrochemicals, Materials, and Pharmaceuticals ACS Symposium Series 589, American Chemical Society, Washington DC, p 139–155.

    Chapter  Google Scholar 

  • Janikow CZ, Michalewicz Z (1991) An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms. In: Belew RK and Booker LB (eds) Proceedings of the Fourth International Conference on Genetic Algorithms, p 31–36.

    Google Scholar 

  • Jones T (1995) Crossover, macromutation, and population-based search. In: Eshelman LJ (ed) Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco, California, p 73–80.

    Google Scholar 

  • Kadam RU, Garg D, Chavan A et al (2007) Evaluation of pseudomonas aeruginosa deacetylase LpxC inhibitory activity of dual PDE4-TNF alpha inhibitors: a multiscreening approach. J Chem Inf Model 47: 1188–1195.

    Article  Google Scholar 

  • Kar S, Roy K (2010) Predictive toxicology using QSAR : A perspective. J Indian Chem Soc 87: 1455–1515.

    Google Scholar 

  • Karki RG, Kulkarni VM (2001) Three dimensional quantitative structure-activity relationship (3D-QSAR) of 3-aryloxazolidin-2-one antibacterials. Bioorg Med Chem 9:3153–3160.

    Article  Google Scholar 

  • Karr CL (1991) Air-injected hydrocyclone optimization via genetic algorithm. In: Davis L (ed) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, p 222–236.

    Google Scholar 

  • Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11: 137–148.

    Article  MATH  Google Scholar 

  • Khajeh A, Modarress H (2010) QSPR prediction of flash point of esters by means of GFA and ANFIS. J Hazard Mater 179: 715–720.

    Article  Google Scholar 

  • Kharkar PS, Desai B, Gaveria H et al (2002) Three dimensional quantitative structure-activity relationship of 1, 4-dihydropyridines as antitubercular agents. J Med Chem 45: 4858–4867.

    Article  Google Scholar 

  • Klein CD, Klingmuller M, Schellinski C et al (1999) Synthesis, pharmacological and biophysical characterization and membrane-interaction QSAR analysis of cationic amphiphilic model compounds. J Med Chem 42:3874–3888.

    Article  Google Scholar 

  • Klein CD, Hopfinger AJ (1998) Pharmacological activity and membrane interactions of antiarrhythmics: 4D QSAR/QSPR analysis. Pharm Res 15:303–311.

    Article  Google Scholar 

  • Kulkarni AS, Hopfinger AJ (1999) Membrane-interaction QSAR analysis: application to the estimation of eye irritation by organic compounds. Pharm Res 16:1245–1253.

    Article  Google Scholar 

  • Kumar S, Tiwari M (2013) Variable selection based QSAR modeling on Bisphenylbenzimidazole as inhibitor of HIV-1 reverse transcriptase. Med Chem 9: 955–967.

    Article  Google Scholar 

  • Lee A, Kim D, Kim KH et al (2012) Elucidation of specific aspects of dielectric constants of conjugated organic compounds: a QSAR approach. J Mol Model 18: 251–256.

    Article  Google Scholar 

  • Leonard JT, Roy K (2006) Comparative QSAR modeling of CCR5 receptor binding affinity of substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas. Bioorg Med Chem Lett 16: 4467–4474.

    Article  Google Scholar 

  • Li ZG, Chen KX, Xie HY et al (2009) Quantitative structure-property relationship studies on amino acid conjugates of jasmonic acid as defense signaling molecules. J Integr Plant Biol 51: 581–592.

    Article  Google Scholar 

  • Maddox J (1995) Genetics helping molecular dynamics. Nature 376: 209.

    Article  Google Scholar 

  • Maccari L, Magnani M, Strappaghetti G et al (2006) A genetic-function-approximation-based QSAR model for the affinity of arylpiperazines toward alpha 1 adrenoceptors. J Chem Inf Model 46: 1466–1478.

    Article  Google Scholar 

  • Mandal AS, Roy K (2009) Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives. Eur J Med Chem 44: 1509–1524.

    Article  Google Scholar 

  • Makhija MT, Kulkarni VM (2002) QSAR of HIV-1 integrase inhibitors by genetic function approximation method. Bioorg Med Chem 10:1483–1497.

    Article  Google Scholar 

  • Mathias KE and Whitley LD (1994) Transforming the search space with Gray coding. Proceedings of the First IEEE Conference on Evolutionary Computation. In: IEEE World Congress on Computational Intelligence, Vol 1.

    Google Scholar 

  • Mirkhani SA, Gharagheizi F, Sattari M (2012) A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition. Chemosphere 86: 959–966.

    Article  Google Scholar 

  • Mitra I, Saha A, Roy K (2009) Quantitative structure-activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors. Chem Biol Drug Des 73: 526–536.

    Article  Google Scholar 

  • Mitra I, Saha A, Roy K (2010) Chemometric modeling of free radical scavenging activity of flavone derivatives. Eur J Med Chem 45: 5071–5079.

    Article  Google Scholar 

  • Mitra I, Saha A, Roy K (2012) In silico development. Validation and comparison of predictive QSAR models for lipid peroxidation inhibitory activity of cinnamic acid, caffeic acid derivatives using multiple chemometric and cheminformatics tools. J Mol Model 18: 3951–3967.

    Article  Google Scholar 

  • Morgan JN, Sonquist JA (1963) Problems in the analysis of survey data, and a proposal. J Amer Statist Assoc 58: 415–434.

    Article  MATH  Google Scholar 

  • Mungalpara J, Pandey A, Jain V et al (2010) Molecular modeling and QSAR analysis of some structurally diverse N-type calcium channel blockers. J Mol Model 16: 629–644.

    Article  Google Scholar 

  • Nargotra A, Sharma S, Koul JL et al (2009) Quantitative structure-activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors. Eur J Med Chem 44: 4128–4135.

    Article  Google Scholar 

  • Nair PC, Sobhia ME (2008) Quantitative structure activity relationship studies on thiourea analogues as influenza virus neuraminidase inhibitors. Eur J Med Chem 43: 293–299.

    Article  Google Scholar 

  • Nargotra A, Koul S, Sharma S et al (2009) Quantitative structure-activity relationship (QSAR) of aryl alkenyl amides/imines for bacterial efflux pump inhibitors. Eur J Med Chem 44: 229–238.

    Article  Google Scholar 

  • Pearson K (1908) On the generalized probable error in multiple normal correlation. Biometrika, 6: 59–68.

    Google Scholar 

  • Popelier PLA (1996) MORPHY, a program for an automated “atoms in molecules” analysis. Comput Phys Commun 93: 212–240.

    Article  Google Scholar 

  • Pramanik S, Roy K (2013) Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) studies. Chemosphere 92: 600–607.

    Article  Google Scholar 

  • Pramanik S, Roy K (2014) Modeling bioconcentration factor (BCF) using mechanically interpretable descriptors computed from open source tool “PaDEL-Descriptor”. Environ Sci Pollut Res Int 21: 2955–2965.

    Article  Google Scholar 

  • Pugazhenthi D, Rajagopalan SP (2007) Machine learning technique approaches in drug discovery, design and development. Inf Tech J 6: 718–724.

    Article  Google Scholar 

  • Raichurkar AV, Shah UA, Kulkarni VM (2011) 3D-QSAR of novel phosphodiesterase-4 inhibitors by genetic function approximation. Med Chem 7: 543–552.

    Google Scholar 

  • Rami C, Patel L, Patel CN et al (2013) Synthesis, antifungal activity and QSAR studies of 1, 6-dihydropyrimidine derivatives. J Pharm Bioallied Sci 5: 277–289.

    Google Scholar 

  • Rawat S, Bruce ED (2014) Designing quantitative structure activity relationships to predict specific toxic endpoints for polybrominated diphenyl ethers in mammalian cells. SAR QSAR Environ Res 16: 1–23.

    Google Scholar 

  • Ray S, Roy PP (2012) A QSAR study of biphenyl analogues of 2-nitroimidazo-[2, 1-b] [1, 3]-oxazines as antitubercular agents using genetic function approximation. Med Chem 8: 717–726.

    Article  Google Scholar 

  • Rogers D (1991) G/SPLINES: A hybrid of Friedman’s multivariate adaptive regression splines (MARS) algorithm with Holland’s genetic algorithm. In: The proceedings of fourth international conference on genetic algorithm, San Diego, July 1991.

    Google Scholar 

  • Rogers D (1992) Data analysis using G/SPLINES. In: Advances in neural processing systems 4, Kaufmann, San Mateo, CA, 1992.

    Google Scholar 

  • Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866.

    Article  Google Scholar 

  • Romeiro NC, Albuquerque MG, de Alencastro Rb et al. (2006) Free-energy force-field three-dimensional quantitative structure-activity relationship analysis of a set of p38-mitogen activated protein kinase inhibitors. J Mol Model 12:855–868.

    Google Scholar 

  • Rossi I, Truhlar DG (1995) Parameterization of NDDO wave functions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions. Chem Phys Lett 23: 231–236.

    Google Scholar 

  • Roy K, Das RN, Popelier PLA (2015) Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity. Environ Sci Pollut Res, 22: 6634–6641

    Google Scholar 

  • Roy K, Ghosh G (2005) QSTR with extended topochemical atom indices. Part 5: Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using genetic function approximation. Bioorg Med Chem 13: 1185–1194.

    Article  Google Scholar 

  • Roy K, Ghosh G (2006) QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica). J Mol Model 12: 306–316.

    Google Scholar 

  • Roy K, Leonard JT (2005) QSAR by LFER model of cytotoxicity data of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives using principal component factor analysis and genetic function approximation. Bioorg Med Chem 13: 2967–2973.

    Article  Google Scholar 

  • Roy K, Mandal AS (2008) Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones. J Enzyme Inhib Med chem. 23: 980–995.

    Article  Google Scholar 

  • Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14: 450–474.

    Article  Google Scholar 

  • Roy K, Mitra I, Saha A (2009) Molecular shape analysis of antioxidant and squalene synthase inhibitory activities of aromatic tetrahydro-1, 4-oxazine derivatives. Chem Biol Drug Des 74: 507–516.

    Article  Google Scholar 

  • Roy K, Paul S (2010a) Docking and 3D QSAR studies of protoporphyrinogen oxidase inhibitor 3H-pyrazolo [3, 4-d][1, 2, 3]triazin-4-one derivatives. J Mol Model 16: 137–153.

    Article  Google Scholar 

  • Roy K, Paul S (2010b) Docking and 3D QSAR studies of acetohydroxy acid synthase inhibitor sulfonylurea derivatives. J Mol Model 16: 951–964.

    Article  Google Scholar 

  • Roy K, Popelier PLA (2014) Chemometric modeling of the chromatographic lipophilicity parameter logk0 of ionic liquid cations with ETA and QTMS descriptors. J Mol Liq 200: 223–228.

    Article  Google Scholar 

  • Roy K, Roy PP (2008a) Exploring QSARs for binding affinity of azoles with CYP2B and CYP3A enzymes using GFA and G/PLS techniques. Chem Biol Drug Des 71: 464–473.

    Article  Google Scholar 

  • Roy K, Roy PP (2008b) Comparative QSAR studies of CYP1A2 inhibitor flavonoids using 2D and 3D descriptors. Chem Biol Drug Des 72: 370–382.

    Article  Google Scholar 

  • Roy K, Roy PP (2009) Exploring QSAR and QAAR for inhibitors of cytochrome P450 2A6 and 2A5 enzymes using GFA and G/PLS techniques. Eur J Med Chem 44: 1941–1951.

    Article  Google Scholar 

  • Roy PP, Roy K (2010a) Exploring QSAR for CYP11B2 binding affinity and CYP11B2/CYP11B1 selectivity of diverse functional compounds using GFA and G/PLS techniques. J Enzyme Inhib Med Chem 25: 354–369.

    Article  Google Scholar 

  • Roy PP, Roy K (2010b) Docking and 3D QSAR studies of diverse classes of human aromatase (CYP19) inhibitors. J Mol Model 16: 1597–1616.

    Article  Google Scholar 

  • Roy PP, Roy K (2010c) Molecular docking and QSAR studies of aromatase inhibitor androstendione derivatives. J Pharm Pharmacol 62: 1717–1728.

    Article  Google Scholar 

  • Sachan N, Kadam SS, Kulkarni VM (2007) Human protein tyrosine phosphatase 1B inhibitors: QSAR by genetic function approximation. J Enzyme Inhib Med Chem 22: 267–276.

    Article  Google Scholar 

  • Santoshi S, Naik PK, Joshi HC (2011) Rational design of novel anti-microtubule agent (9-azido noscapine) from quantitative structure activity relationship (QSAR) evaluation of noscapinoids. J Biomol Screen 16: 1047–1058.

    Article  Google Scholar 

  • Santos-Filho OA, Mishra RK, Hopfinger AJ (2001) Free energy force field (FEFF) 3D-QSAR analysis of a set of plasmodium falciparum dihydrofolate reductase inhibitors. J Comput Aided Mol Des 15: 787–810.

    Article  Google Scholar 

  • Schaffer JD, Caruana RA, Eshelman LJ, et al (1989) A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Schaffer JD (ed) Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 51–60

    Google Scholar 

  • Schaffer JD, Eshelman LJ (1991) On crossover as an evolutionarily viable strategy. In: Belew RK, Booker LB (eds) Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Mateo, California, p 61–68.

    Google Scholar 

  • Shi LM, Fan Y, Myers TG et al (1998) Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues. J Chem Inf Comput Sci 38:189–199.

    Article  Google Scholar 

  • Sivakumar PM, Geeta Babu SK, Mukesh D (2007) QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using genetic function approximation (GFA) method. Chem Pharm Bull (Tokyo) 55: 44–49.

    Article  Google Scholar 

  • Solomon KA, Sundararajan S, Abirami V (2009) QSAR studies on N-aryl derivative activity towards Alzheimer’s disease. Molecules 14: 1448–1455.

    Article  Google Scholar 

  • Spears WM (1993) Crossover or mutation? In Whitley LD (ed) Foundations of Genetic Algorithms. 2, Morgan Kaufmann Publishers, San Mateo, California, p 221–237.

    Google Scholar 

  • Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 2–9.

    Google Scholar 

  • Syswerda G (1991) Schedule optimization using genetic algorithms. In: Davis L (ed) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, p 332–349.

    Google Scholar 

  • Syswerda G (1993) Simulated crossover in genetic algorithms. In: Whitley LD (ed), Foundations of Genetic Algorithms. 2, Morgan Kaufmann Publishers, San Mateo, California, p 239–255.

    Google Scholar 

  • Tate DM, Smith AE (1993) Expected allele coverage and the role of mutation in genetic algorithms. In: Forrest S (ed) Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California, p 31–37.

    Google Scholar 

  • Thangapandian S, John S, Son M et al (2013) Development of predictive quantitative structure-activity relationship model and its application in the discovery of human leukotriene A4 hydrolase inhibitors. Future Med Chem 5: 27–40.

    Article  Google Scholar 

  • Venkatasubramanian V, Chan K, Caruthers JM (1994) Computer-aided molecular design using genetic algorithms. Comput Chem Engng 18: 833–844.

    Article  Google Scholar 

  • Venkatasubramanian V, Chan K, Caruthers JM (1994) On the performance of genetic search for large-scale molecular design. Proc. PSE’94, 1001–1006.

    Google Scholar 

  • Venkatarangan P, Hopfinger AJ (1999) Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase. J Med Chem 42:2169–2179.

    Article  Google Scholar 

  • Wagh NK, Deokar HS, Juvale DC et al (2006) 3D-QSAR of histone deacetylase inhibitors as anticancer agents by genetic function approximation. Indian J Biochem Biophys 43: 360–371.

    Google Scholar 

  • Wise BM, Gallagher NB, Eschbach PA et al (1995) Optimization of prediction error using genetic algorithms and continuum regression: determination of the reactivity of automobile emissions from FTIR spectra. Fourth Scand Symp. On Chemometrics (SSC4), Lund, June 1995.

    Google Scholar 

  • Wise MB, Gallagher NB, Eschbach PA (1996) Application of a genetic algorithm to variable selection for PLS models. EUCHEM Conf, Gothenburg, June 1996.

    Google Scholar 

  • Wold S (1995) Applications of Statistical Experimental Design and PLS Modeling in QSAR. In: Waterbeemd H (ed) Chemometric Methods in Molecular Design, VCH, Weinheim, Germany p 195–218.

    Google Scholar 

  • Yang R, Yu L, Zeng H et al (2012) The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme. J Fluoresc 22: 1449–1459.

    Article  Google Scholar 

  • Yap CW (2011) PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474.

    Article  Google Scholar 

  • Yuan H, Parrill AL (2002) QSAR studies of HIV-1 integrase inhibition. Bioorg Med Chem 10: 4169–4183.

    Article  Google Scholar 

  • Zambre AP, Ganure AL, Shinde DB et al (2007) Perspective assessment of COX-1 and COX-2 selectivity of nonsteroidal anti-inflammatory drugs from clinical practice: Use of genetic function approximation. J Chem Inf Model 47: 635–643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy .

Editor information

Editors and Affiliations

1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roy, P.P., Ray, S., Roy, K. (2015). Application of GFA-MLR and G/PLS Techniques in QSAR/QSPR Studies with Application in Medicinal Chemistry and Predictive Toxicology. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics