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1 Introduction 
1.1 Traditional Computing 
The modern computer is one of the greatest technical developments of the 20th 
Century.  It pervades most aspects of our lives.  In a very short space of time we 
have moved from computers that filled many rooms to Weiser’s ubiquitous 
computing vision [95], where computers disappear into the fabric of everyday 
objects (pens, cups, spectacles etc.) and much computation goes on behind the 
scenes.  

The performance of modern computing platforms has grown at a significant rate; 
a home computer is barely out of the box before a newer, more powerful one is 
being promoted by its manufacturers.  Gordon Moore (co-founder of Intel) observed 
in 1965 that the number of transistors per unit area in an integrated circuit had 
doubled each year.  Subsequently, a slower but still impressive rate of doubling 
approximately every 18 months has been observed.  (This is generally referred to 
now as Moore’s Law.)  Early home computers had only a few kilobytes of memory.  
Today, commercially available ‘memory sticks’, measuring perhaps ½ inch by ¼ 
inch by 1 inch, can store a gigabyte or more of information. 

Such performance gains cannot continue indefinitely. Indeed, as circuitry gets 
ever smaller, with components approaching the atomic scale, the laws of physics 
will present barriers to how much further this technology can be pushed.  However, 
if the laws of physics present a practical problem, for some applications the laws of 
physics also provide a radical solution. 
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1.2 Quantum Computation 
If computers are one of the greatest practical developments of the 20th Century, then 
quantum mechanics must stand as one of its greatest intellectual achievements.  
Despite the controversy that has marked its development, it is now beyond question 
that, as model of behaviour of small-scale phenomena, quantum mechanics, as we 
understand it, ‘works’.  Although the ‘meaning’ of quantum mechanics is still hotly 
debated, down on the ground scientists freely use its mathematical theory as given.  
But only recently, the consequences of the basic mathematical theory were 
recognised as being deeper than we had thought.  

In a keynote speech in 1981, Nobel Laureate Richard Feynman noted that 
harnessing quantum phenomena of matter could allow complex systems to be 
simulated effectively [32].  In particular, he proposed that this could be a way of 
simulating various quantum mechanical systems.  Paul Benioff was actively 
researching quantum computation around this time [7] [8].   

In 1985 David Deutsch showed how the classical computation model (the Turing 
machine) could be simulated using quantum mechanical properties of matter [26].  
Since the Turing Machine is felt to capture what is meant by ‘computation’ (see the 
discussion in [70, Chapter 1]), the whole of classical computation could, in 
principle, be carried out using quantum mechanics.  Subsequent developments 
showed that the laws of physics could be used to achieve results faster than could be 
achieved using classical computing.  Deutsch showed the first ‘faster than classical’ 
computation [26] (concerning the single bit XOR or parity problem).  This was later 
generalised by Deutsch & Jozsa to distinguishing between balanced and constant 
functions on n Boolean variables [27]. 

The biggest practical impetus came in 1994 when Peter Shor demonstrated a 
quantum analogue of the Discrete Fourier Transform [83].  This could be harnessed 
effectively to perform factorisation.  Most importantly, a product n = pq of two large 
primes could be factorised highly efficiently (‘in polynomial time’).  If factorisation 
can be carried out efficiently then swathes of public key cryptography are broken 
and so much communications is rendered insecure.  Factorisation had become 
quantum computing’s ‘killer application’.  We simply do not know whether efficient 
factorisation is possible by classical means, but if it is, we seem far from achieving 
it.  

1.3 Engineering the Physics and the Applications 
Quantum computation is not yet with us in any practical sense (the largest number of 
qubits currently in a quantum computer is 7), but a significant body of physical 
scientists are at work on making quantum computing a practical reality [10].  If 
history repeats itself, we will get small computers initially that will grow as 
technology improves.  Since quantum computers seem capable of achieving results 
unachievable by other means, exploiting effectively even limited hardware platforms 
may bring significant economic benefits.  

We now have an opportunity to build the application infrastructure to run on 
quantum computers when they eventually come on-stream.  Several researchers 
have developed new and important quantum algorithms over the past decade (see 
section 3.4) but there are fundamentally few distinct quantum algorithms.  In some 
ways novel application development seems to have stalled, as Williams & Clearwater 
note: 
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Figure 1. Light as a transverse electromagnetic wave. 

Of course computer scientists would like to develop a repertoire of quantum 
algorithms that can, in principle, solve significant computational problems faster 
than any classical algorithm.  Unfortunately the discovery of Shor’s algorithm for 
factoring large composite integers was not followed by a wave of new quantum 
algorithms for lots of other problems.  To date, there are only about seven quantum 
algorithms known.  — [96] 
 
Why is this?  The authors of this review believe that intuition about quantum 

phenomena and the nature of quantum computation is too limited. It is such a 
radically different arena, well outside the comfort zone provided by traditional 
computation.  If our mindsets are the problem then we must seek to free ourselves, 
or augment our current capabilities.  Nature, in the guise of quantum mechanical 
laws, provides us with new computational capabilities.  But Nature also is good at 
invention; evolution is a form of continual reinvention.  In the rest of this chapter, 
we review how automated search techniques inspired by biological systems can be 
used to uncover new quantum circuits and algorithms.   

2 Quantum Mechanics  
First we provide the background needed to understand this approach, starting with 
an overview of quantum computation and the mathematics needed to support it.  

2.1 A Photonic Introduction 
To illustrate some interesting quantum mechanical phenomena we consider the 
propagation and filtering of white light.1  Light is a transverse electromagnetic wave.  
Photons have electrical and magnetic field components (oscillating in planes 
perpendicular to each other, and perpendicular to the direction of light propagation) 
as shown in Figure 1.  The electrical plane of vibration is shown as vertical, but in 
practice this may be any plane perpendicular to the direction of propagation (with a 
corresponding change in magnetic plane of vibration).  

Suppose we have a white light source, and a target, represented by an eye 
(Figure 2a).  Consider light travelling from the source to the target.  This light 
comprises a vast number of photons, each with its own plane of polarisation 
(hereafter referred to as its polarisation).  The polarisation of emitted photons may 
be regarded as uniformly distributed, that is, all possible polarisations are equally 
likely.  

 

                                                 
1 Similar explanations can be found in [ 70] [96] [77]. 
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Figure 3. Photon passes through vertical filter 

Suppose now we put a vertically polarising filter between the source and the 
target (Figure 2b).  Vertically polarised photons pass through the filter and 
horizontally polarised photons will be absorbed by it.  But what about photons with 
an intermediate polarisation?  50% are absorbed by the filter and 50% pass through 
the filter and emerge the other side as vertically polarised.  Now add a horizontally 
polarising filter, (Figure 2c).  No photons pass through this filter.  

If a diagonally polarising filter is now placed between the other two, light now 
appears at the target, with 12.5% of the intensity of the original (Figure 2d).  Oddly, 
adding a filter which impedes light (only half the photons incident on it will pass 
through) now allows light to reach the target where previously it did not.  What is 
happening? 

Whether or not a photon is absorbed is not determined by its initial polarisation; 
rather its chances of being absorbed are determined by its polarisation.  The 
probability of a photon passing through a filter depends only on the angle ϕ made by 
its polarisation with the direction of the polarising filter.  This probability is given 
by cos2 ϕ.   Τhe probability of being absorbed is sin2 ϕ.  This is shown in Figure 3. 

We may feel that photons with identical polarisation should behave identically, 
yet it appears that the ‘decision’ to pass through or be absorbed is made only at the 
time of incidence.  Let us denote a vertically polarised photon by |0〉 and an 
absorbed photon by |1〉.  We can think of a photon with polarisation at angle to the 
vertical as being some ‘mixture’ of horizontal and vertical and denote its state by 
|ψ〉 = (cos ϕ)|0〉 + (sin ϕ)|1〉.  Incidence with the filter can be thought of as a 
challenge to the photon.  It must probabilistically decide which state, |0〉 or |1〉, it 
‘wants’ to be.  We refer to being forced to choose in this way as a measurement.  
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Measurement clearly affects the state of the photon.  Some schemes use the fact that 
measurement affects quantum state as the basis of cryptographic key distribution 
schemes. 

We can now understand the behaviour exhibited in the filtering experiment 
described above.  If we average out over all angles ϕ, a randomly selected photon is 
equally likely to be absorbed by the vertical filter or to emerge from it, vertically 
polarised.  The horizontal filter blocks with probability 1 all photons emerging 
vertically polarised from the vertical filter (since the angle ϕ is 90 degrees).  
However, when vertically polarised photons are incident on a diagonally polarised 
filter, they have a 50% chance of passing through and emerging diagonally 
polarised.  Thus, we would expect 25% of photons to pass successfully through both 
vertical and diagonal filters.  Finally a diagonally polarised photon has a 50% 
chance of passing through the horizontally polarised filter.  Thus we would now 
expect 12.5% of photons to make it through all three filters.   

Each filter provided a measurement, collapsing the photon into one of two 
orthogonal states.  The experimenter determines which states could arise (by 
choosing the polarisation of the filter).  Different filters define different orthogonal 
output states and so provide different measurements. 

2.2 Qubits, States and Operations on them 
A standard computational memory bit can be in one of two stable states: 0 or 1.  A 
corresponding two-state quantum bit, or qubit for short, may similarly be in one of 
two computational ‘basis states’, which we shall denote by |0〉 and |1〉.  But quantum 
bits can also exist in a complex superposition of these states.  A superposition |Φ〉 is 
denoted by |Φ〉 = a|0〉 + b|1〉 where the coefficients a and b are complex numbers 
normalised such that |a|2 + |b|2 = 1.  We can represent such a complex superposition 
in vector form: 









=+=Φ

b
a

ba 10  

When measured with respect to the standard basis the probability of being 
measured as a |0〉 is |a|2 and the probability of being measured as a |1〉 is |b|2.  The 
basis states can be seen as extremes of superpositions (that is, a = 1, b = 0 denotes 
|0〉 and a = 0, b = 1 denotes |1〉).  The vector is referred to as the system’s state 
amplitude vector, or just state. 

Classical computing uses both reversible and non-reversible computing 
elements.  The classical operation NOT is reversible, since NOT(NOT A) = A, 
whether A is true or false, but the classical operation AND is not reversible, since 
(A AND B) = false loses the information about the sources A and B: there are three 
possible source combinations.  In quantum computing, the fundamental operations 
are physically reversible transformations.  Whatever is done, can be undone. Such 
operations are unitary transformations and represented by unitary matrices.  An n 
by n matrix U is unitary if and only if 

* *T T
nU U UU I= =  
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where T denotes the transpose operation (that is, uT
ij = uji) and * denotes that each 

element of the matrix has been replaced with its complex conjugate.2  An operation 
on a state is represented by the application of the corresponding unitary 
transformation to that state vector.  For example, the matrix N below represents the 
NOT operation and we can see that N |0〉 = |1〉 and N |1〉 =|0〉. 

1 0
0 ,   1

0 1

0 1 1 0 0 1
,   ,   

1 0 0 1 1 0
N N N

   
≡ ≡   
   

         
= =         
         

=
 

A particularly useful single-qubit operation is the Hadamard transformation H: 

1
2

1 1 1
2 2 2

1 1 1
2 2

1 1
  

1 1

1 1
0 1   

0 1

0 1
0 1

1 1

H

H

H

 
=  − 

   
= = +   

   
   

= = −   −    2





 

Applying H to |0〉 (the second line of the above series of formulae) results in an 
equal superposition of the basis states.  We see later why this transform is so useful.  
There are many single qubit gates in addition to the NOT gate and Hadamard gate.  
Other well-known single-qubit transformations are given by the Pauli spin matrices: 









−

==






 −
==









==








==
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0

0

,
01
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0
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x
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There is a generally applicable decomposition for single-qubit unitary 
transformations:  

cos sin0 0
sin cos0 0

i i
i

i i

e e
U e

e e

φ ψ
α

φ ψ

θ θ
θ θ

− −

−

−   
=    

   
 

Application of matrices is linear.  Thus, if our state vector is in a genuine 
complex superposition, we have: 

( ) 0 1 0U a b aU bU+ = + 1

                                                

 

 
2 For a complex number yixz += , the complex conjugate is yixz −=  
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This captures a crucial property of quantum mechanics, that it is thought to be 
linear.  Indeed, if it is not linear, issues such as communication back in time may 
become possible [74]. 

For realistic computations we need to operate on more than one qubit.  A system 
comprising n qubits has 2n possible basis states, denoted |0..0〉 .. |1..1〉.  A complex 
superposition can be represented in vector form similar to the above.  Thus, for a 
two-qubit system, a complex superposition is represented as: 

00 01 10 11

a
b

a b c d
c
d

 
 
 Φ = + + + =
 
  
 

 

where the coefficients are normalised: 2 2 2 2 1a b c d+ + + = . A unitary 
transformation on this system is represented by a 4 by 4 unitary matrix.   

An important operation on two qubits is the CN (Conditional NOT) operation, 
defined by  

00 00 ,    01 01 ,    10 11 ,    11 10CN CN CN CN= = = =  

For each basis state this operation flips the value of the second qubit if and only 
if the first qubit has value 1.  It implements a form of logical XOR transformation 

,CN xy x x y= ⊕ .  The CN matrix and diagrammatic representations are given 
below:  

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CN

 
 
 =
 
  
 

 

 (See section 3.2 for an explanation of the diagrammatic representation.) 
Operations on a single qubit may affect every probability amplitude element in 

the state vector.  For example, in a two-qubit system, applying a NOT operation to 
the first qubit should carry out the following transformation 

00 01 10 11 00 01 10 11Na b c d c d a b+ + + → + + +  

But the NOT operation is defined over a single qubit, by the 2 by 2 matrix N.  To 
apply it to one qubit in a 2-qubit system, we need some way of ‘composing’ this 
operation with the identity operation on the second qubit.  This composing is carried 
out by forming the tensor product of the two appropriate matrices: 
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1 0 1 0 0 0 1 0 0 0 1 0
0 1

0 1 0 10 1 1 0 0 0 0 1 0 0 0 1
,           

1 0 0 1 1 0 0 0 1 0 0 01 0 1 0
1 0

0 1 0 0 0 1 0 00 1 0 1

a c
b d
c a
d b

          × ×                        ⊗ = = =                   × ×                          

 
 
 
 
  
 

 

This serves to ‘lift’ the single-qubit NOT operation to the whole system.  We can 
similarly compose more complex unitary operations on subsystems, for example, we 
can lift a 4 by 4 CN matrix acting on qubits 3 and 4 to act on a 4-qubit system 
(producing a 16 by 16 matrix).  (When an operation acts on non-adjacent qubits 
some implementation tricks are needed.) 

We have already been using shorthand for of tensor notation.  Basis states such 
as |01〉 are actually tensor products: 



















=



























×









×

=







⊗








=⊗=

0
0
1
0

    

1
0

0

1
0

1
    

1
0

0
1

  10  01  

Applying the n-fold product of Hadamard matrices for each qubit to a basis state 
|000…0〉 gives a complex uniform superposition: 

2 1

1 2
0

100..00 00..00
2

n

n
n n

x
H H H H

−
⊗

=

= ⊗ ⊗ ⊗ = x∑"  

All possible basis states are equally likely to be observed.  Now consider the n+1 
qubit state |00..00〉|0〉.  Apply the above n-fold Hadamard product to the first n 
qubits (composing with the identity for the final qubit): 

2 1

1
0

100..00 0 0
2

n

n
n n

x

H I x
−

⊗
+

=

⊗ = ∑  

If Uf is a unitary transformation that acts on a basis state |x〉|0〉 to produce 
|x〉|f(x)〉, then by linearity we obtain 

2 1 2 1 2 1

0 0 0

10 0
2

n n n

f f n
x x x

U x U x x f x
− − −

= = =

= =∑ ∑ ∑ ( )  

Thus superposition and linearity can combine to allow all values of f(x) to be 
calculated simultaneously.  Note that the operation Uf is entirely reversible.  We 
have kept the index values x and so the classical function f need not itself be 
reversible.  A more general approach, where the value of the target qubit is not 
necessarily 0, is to use unitary functions Uf defined by  

)(xfyxyxU f ⊕=  
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The above shows how the mathematics of quantum mechanics implies the 
potential for massive computational parallelism but eventually, we will want to 
observe some ‘result’ of the system, we will wish to make measurements of the 
system.  Very little comes for free, and it is in the area of measurement that quantum 
mechanics exacts a price for the free parallelism it provides, as we shall see later. 

In some problems we will be presented with an unknown binary function f (an 
oracle function) and will seek to determine some property of it (for example, if it is 
balanced or constant).  Such functions can be represented by the unitary transform 
that acts on m input qubit values q1,…,qm and a single output qubit, by flipping the 
output qubit value whenever f(q1,…,qm) is true.  The unitary transformation and 
diagrammatic representation are: 

 

outmmoutm qqqfqqqqq ⊕→ ),,(,,,,,, 111 """   f 

 
 
 
(See section 3.2 for an explanation of the diagrammatic representation.) 

2.3 Making Measurements 
Free from external interference, quantum systems evolve according to the famous 
wave equation of Erwin Schrödinger (see discussion in [96]).  However, observation 
of a qubit ‘forces its hand’, losing all uncertainty.  It is measured as either a |0〉 or a 
|1〉, and any global states inconsistent with this observation are rendered impossible 
to subsequent observation.  This is what is usually referred to in the Copenhagen 
interpretation3 of quantum mechanics as ‘state space collapse’.  Consider the case of  

11100100 2
1

2
1

2
1

2
1 +++=Φ  

Suppose we observe the value of the second qubit.  We are equally likely to 
measure a |0〉 as a |1〉.  Suppose we measure a value of |1〉.  The state now ‘collapses’ 
to a state consistent with this observation: 

1101
2

1
2

1 +=Φ′  

The probability amplitudes of two of the basis states are now zero (and those 
states do not appear in the above formula).  The amplitudes of the other two basis 
states have been normalised so that we have a valid final state superposition.  If we 
now observe the value of the first qubit we are equally likely to observe a value of 
|0〉 (and the state becomes |01〉) as to observe a value of |1〉 (and the state becomes 
|11〉). 

We can see, informally, how superposition, linearity and state space collapse 
might provide a useful means of answering some computational questions.  Suppose 

                                                 
3 There are other interpretations of quantum mechanics, the most important of these for quantum 
computation being Everett’s ‘many worlds’ interpretation [31].  The interested reader is referred to 
[29] [28] for more information.  For present purposes we eschew philosophical discourse and largely 
just present the mathematics.  It is widely held that the mathematics ‘works’. 
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we have a function f(x) defined over 0 .. 2n − 1.  As indicated above we create a 
complex superposition of the basis states and apply the corresponding unitary 
transformation Uf to obtain: 

2 1 2 1

0 0

10 (
2

n n

f n
x x

U x x f x
− −

= =

=∑ ∑ )  

Suppose that we wish to find an x such that f(x) takes on a specific value, say 1.  
If we could arrange, in some way, to observe a |1〉 for the (n+1)th qubit, we would 
have achieved our aim.  This is because all subsequent observations on the index 
component qubits (the first n qubits) must be consistent with this observation, and so 
we must see qubit values representing a value of x for which f(x) = 1.  How one 
arranges to make highly convenient observations (in this case observing a |1〉 for the 
value of the result qubit) forms the crux of many a quantum algorithm.  We typically 
avail ourselves of massive parallelism afforded by superposition and linearity, and 
seek to ‘bump up’ the probability amplitudes of those basis states that form the 
answers we want. 

2.4 The Strange Case of Entanglement 
Entanglement is one of the strangest phenomena in physics.  It is also a 
computational resource. Consider the following superposition of two qubits: 

1100
2

1
2

1 +=Φ  

Suppose we measure the first qubit.  We are equal likely to observe a |0〉 or a |1〉. 
If we measure a |0〉 then the system collapses to |00〉.  If we now measure the second 
qubit we will observe |0〉 with probability 1.  If we initially measure a |1〉 for qubit 1 
then the system collapses to |11〉.  If we now measure the second qubit we will 
observe |1〉 with probability 1.  So observation of the first qubit fully determines the 
state of the second qubit.  Suppose qubit 1 is in York in England, and qubit 2 is in 
New York in the USA.  A measurement taken in York affects the measurement 
taken in New York!  This is sometimes referred to as ‘spooky action at a distance’.  
It was not initially believed by scientists, but has been confirmed by experiment.  

The above qubits are said to be entangled.  Two qubits are said to be entangled 
if their global state cannot be expressed as a tensor product of single qubit states.  
Our  two-qubit system cannot be expressed in the form of a tensor product, that is, in 
the form 

( ) ( ) 1110010010101100
2

1
2

1 bdbcadacdcba +++=+⊗+=+
 

since no choice of a, b, c, d can make the above identity hold.  
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3 Quantum Algorithms  
We now examine some issues in quantum algorithms, their representation, and 
development.  

3.1 Classical System Development and the Drive to Abstraction 
Abstraction is a necessary component of controlling complexity, and it comes in 
many forms in classical computing.  A brief scan of the history of development of 
programming languages, for example, reveals an increasing trend towards 
abstraction, and higher level constructs.  Programmers initially wrote only object 
code, the lowest level of instruction for computer hardware.  This was largely 
superseded by assembly languages, which allow more complex operations to be 
carried out by instructions and allowed locations to be given names.  Higher-level 
languages such as Fortran and C emerged, and modern programming languages, 
such as the object-oriented Java, allow complex operations to be performed with 
single programming instructions. 

Software engineering progress has gone hand-in-hand with the ability to address 
concepts at higher levels of abstraction.  Classical software development has a 
lifecycle, from the elicitation of requirements for the system, through progressive 
refinement into lower level designs, down to code that can be compiled for a 
hardware platform.  Many of these steps enjoy some degree of automation: high 
level programs are transformed to object code by compilers; code itself can be 
generated automatically from designs expressed in certain mathematical or 
diagrammatic notations.  

The software industry has become adept at this refinement process; we know 
how to get from problem to solution, though this may require many thousands of 
person-years effort for the largest systems.  In particular, software engineering has 
learned from both its mistakes and its successes, and has codified this learning in the 
form of patterns, reusable chunks of expertise.  Patterns were originally developed 
in the domain of architecture by Christopher Alexander [1], and have been 
enthusiastically adopted in the software engineering community.  Patterns can occur 
at any stage of the development lifecycle, for example [90] [34] [35] [6]. 

In the quantum domain there is a good deal of apparatus at the low level, in 
terms of the operation of unitary gates, but not much at higher levels of abstraction.  
We have nothing like the classical software engineering intellectual infrastructure in 
the quantum domain, yet it needs to be developed if quantum computing is to 
achieve its full promise [91].  

3.2 The Circuit Model of Quantum Computation 
A common representation of a quantum algorithm is the quantum circuit diagram. It 
bears some similarity to a combinational logic circuit diagram. The evolution of a 
qubit state is represented by its path from left to right along a horizontal ‘wire’.  As 
the qubit moves along the wire it may meet a ‘gate’ that acts on its state. Gates are 
encountered in the order they are applied. Gates may act on one, two or more qubits.  
If a qubit is not acted on by a gate, there is an implicit tensor product with the 
identity transform on that qubit.  Figure 4 shows a simple circuit model. 
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Figure 4. A circuit model of a simple algorithm 
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Figure 5. A measurement gate M 

Initially the system is in the state |00〉.  As we move from left to right we first 
apply the Hadamard transform H to the first qubit, and then apply a controlled-NOT 
with the first qubit as control and the second as the target.  Thus, the evolution is 
given by 

( )1 1 1 1 1 1
2 2 2 2 2 2

00       0 1 0   00 10       00 11H CN→ + = + → +  

In some cases it is possible to express the final state as a tensor product, and so 
meaningfully assign states to individual qubits.  For example, after the application of 
just the Hadamard gate, the state of the system is a tensor product (as shown in the 
equation above).  However, the final superposition is not expressible as a tensor 
product; we can talk only about the state of the whole system, not the states of 
individual qubits.  

We have already seen a two-qubit gate: the controlled-NOT, CN. In general, any 
unitary transform gate can give rise to a controlled variant involving an additional 
control qubit.  Thus, the Pauli matrix X gives rise to a controlled-X gate on two 
qubits.  Since this controlled gate itself implements a unitary transform, it too can be 
lifted to a controlled variant on three qubits, a controlled-controlled-X gate (where 
the gate X is applied to the target qubit if and only if the two control qubits have 
value |1〉), and so on. 

We can choose to measure the value of a qubit using a measurement gate.  This 
is how information gets out of the system.  We will observe either a |0〉 or a |1〉. 
Figure 5 shows a measurement gate acting on a qubit. 

3.3 Choice of Gate Set 
Given the plethora of possible quantum gates, what sets of gates should a designer 
use when considering algorithm development?  The gate set must involve at least 
one multiple qubit gate (since otherwise all operations would result in states that are 
expressible as tensor products).  The gate set must be logically sufficiently powerful 
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to allow arbitrary algorithms to be implemented4 but must be guided also by the 
practicalities of realisation. 

Simple gates will map fairly directly onto physical operations on a small number 
of qubits.  Complex gates implementing complex transformations will need to be 
broken down into a series of simpler physically achievable gates.  We know how to 
compose the operation of a series of transformations: simply lift each simple 
operation to the whole system and multiply the matrices for each such lifted 
operation.  However, we lack a systematic means of factoring complex operations 
into a series of smaller convenient operations.  Convenience here may be affected by 
various criteria: ease of implementation of the smaller transformations; speed of 
execution of smaller gates and their composition etc.  Note also that even a simple 
operation of controlled-NOT may be more easily implemented if the two qubits 
concerned are physically close to each other.  Different operations may differ in 
their ease of implementation according to the underlying architecture mechanisms 
used, for example, quantum dots will favour the implementation of a different gate 
set than would NMR based quantum computing. 

3.4 Particular Algorithms 
There are in fact very few distinct quantum algorithms.  Indeed, it was this 
observation that prompted the authors to engage in using search techniques to look 
for quantum algorithms in the first place.  Below we outline some of the most 
important algorithms. 

3.4.1 Deutsch-Josza Promise 

Quantum computation seems particularly suited to problems where some ‘global 
property’ is sought.  The first such algorithm to demonstrate faster than classical 
behaviour was the Deutsch-Josza promise algorithm [27].  Suppose a black box 
calculates the value of a Boolean function f(x) over a range x = 0 .. 2n − 1, and there 
is a guarantee, or promise, that the function is either constant (f(x) = 0, or f(x) = 1, 
for all x) or is balanced (equal numbers of input values x give f(x) = 0 as give f(x) = 
1).  How much effort is required to determine whether the function is constant or 
balanced?  

For the simplest case of x in the range 0..1, we must carry out two classical 
function evaluations.  But in the quantum case we need only one.  Since this initially 
seems such a counter-intuitive result, we describe the working of the Deutsch-Josza 
algorithm in some detail. 

Start with the state |0〉|1〉 = |01〉.  Now apply the Hadamard transformation to the 
first and then to the second qubit, to give 

( ) ( )1 1
2 20 0 1 1 0 1Ψ = − + −  

Now apply the unitary function Uf defined by  

)(xfyxyxU f ⊕=  

                                                 
4 This may be challenged, though the general motivation is clearly sensible.  Williams & Gray [97] 
note “An incomplete gate set may make sense when the properties of the target computation allow 
it.” 
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to give 

( ) ( )
( ) ( )

1 1
2 2

(0) (1)1
2

0 (0) 1 (0) 1 (1) 1 (1)

( 1) 0 0 1 ( 1) 1 0 1
f

f f

U f f fΨ = − ⊕ + − ⊕

= − − + − −

f
 

Now we have 

( )( )
( )( )

1
2

1
2

0 1 0 1 , if   (0) (1)
  

0 1 0 1 , if   (0) (1)f

f f
U

f f

± + − =Ψ = 
± − − ≠

 

So the first qubit takes each of two orthogonal values depending on whether the 
function is balanced or not.  Now apply the Hadamard transformation to the first 
qubit, to obtain 

( )( )1
2

(0) (1) 0 1f fΦ = ± ⊕ −  

So by measuring the value of the first qubit (one measurement) we can 
determine with certainty whether the function is balanced. 

Although we are able to determine whether the function is constant or balanced 
with a single measurement, we cannot characterise the exact function.  If the 
function is constant we cannot tell whether it is f(0) = f(1) = 0 or f(0) = f(1) = 1.  We 
have given up specific information on values of f(x) for a global property of all such 
values.   

The above algorithm can be extended to work equally efficiently on n variables.  
Calculating global properties efficiently seems to be a task to which quantum 

computation is well suited.  The promise problem is a very restricted one, with little 
practical application but its solution is theoretically important.  The exploitation of 
quantum phenomena for global property elicitation seems a promising avenue for 
further work, both for quantum algorithm development by theorists and evolutionary 
search advocates.  

3.4.2 Grover’s Algorithm – Searching an Unstructured Database 

Consider a function f on the domain 0 .. 2n − 1 with a single value v in this domain 
such that some predicate p(v) = true.  Can we find this index value v?  In classical 
computing our best attempt is enumeration, which on average takes 2n−1 tests.  Full 
enumeration takes 2n tests.  Grover, however, demonstrates how a quantum search 

of ( )2nO  is possible [40]. 

Although the various papers talk about unstructured ‘database’ search, the 
principal applications are those for which the database values are calculated.  First 
place the system in a superposition 

2 1

0

1
2

n

n
x

x
−

=
∑  

Now apply the operator Uv defined such that it inverts the amplitude if the 
predicate is satisfied: 
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Figure 6. Amplitude negation for the correct index value 
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Figure 7. Inversion about the average 
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It is possible also to apply an operator that inverts about the average: 
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The application of these two operators in succession is shown in Figure 6 and 
Figure 7.  Inverting the amplitude of the identified element (here x = 3) reduces the 
average amplitude.  When we invert about this new average the amplitude of the 
identified element is increased (but all the others are decreased).  By repeating this 
process we can further increase the amplitude of the identified element (and so 
increase our chances of observing this element).  We omit the details here, but the 
description provides a rough motivation for the algorithm.  

There are enhancements of this algorithm.  The original algorithm gave a 50% 
chance of seeing the right result.  Subsequent developments have produced more 
reliable variants.  Also, the approach can be extended to cater for several index 
states satisfying the predicate of interest.  If there are R such ‘marked states’ the 
algorithm will deliver one such state in a search of order ( )RO n /2 .  (The original 
single marked state algorithm has R = 1.)  However, the procedure can easily be 
overcooked; perform too many iterations and the amplitudes of interest will start to 
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decrease in magnitude5.  The optimal number of iterations depends on the number R 
of marked states.  (This may not be known but quantum state counting algorithms 
have been developed. See [70].)  A summary of Grover’s algorithm can be found in 
[59]. 

Grover’s search can be regarded as the quantum analogue of brute force 
enumeration.  It does not avail itself of structure in a particular problem (this is what 
is meant by the term ‘unstructured database’). 

3.4.3 Shor’s Quantum Discrete Fourier Transform and Hidden Subgroups 
In 1994 Peter Shor’s Quantum Discrete Fourier Transform (QDFT) [83] gave 
quantum computing its ‘killer application’: composite number factorisation.  Shor 
showed how the QDFT could be used to determine the periodicity of given function 
in polynomial time.  A result from number theory shows how obtaining the period of 
a particular function can allow composite numbers to be factorised.  Hence the 
QDFT gives a polynomial-time factorisation algorithm on a quantum computer.  
Much public key cryptographic security depends on the supposed computational 
difficulty of factorisation.  We do not give the details of the algorithm here: suffice it 
to say that the algorithm bumps up probabilities of states that are some multiple of 
periods part. 

The QDFT has applications to other problems, for example phase estimation and 
order finding.  The general hidden subgroup problem remains a significant focus of 
interest. (See [70, Chapter 5].) 

3.4.4 Teleportation 

Teleportation uses properties of quantum mechanics to transport precisely a qubit 
state from one location to another.  A simple teleportation circuit is shown in Figure 
8. 

The first two gates (Hadamard and controlled-NOT) place the second and third 
qubits in a maximally entanged state (described in section 3.2).  This is done in 
advance of preparing the source qubit |Ψ〉.  The second qubit is sent to Alice and the 
third qubit (now entangled with the second) is sent to Bob.  Now suppose the qubit 
state we Alice wants to transmit is  

10 ba +=Ψ  

After the next two operations (controlled-NOT and Hadamard) the state of the 
system is 

( ) ( ) ( ) ( )1 1 1 1
2 2 2 200 0 1 01 1 0 10 0 1 11 1 0a b a b a b a bΦ = + + + + − + −

 

In each of the four state components the third qubit’s state is defined by a simple 
transformation of that of the original source qubit.  If Alice measures the values of 
the first two qubits the state reduces to a normalised form of one of the four 
components.  If Alice informs Bob of the measurenment results (M1 and M2) Bob 
can uses this information to apply a suitable inverse transformation to his third 
entangled qubit to recover the value of the first source qubit. 

                                                 
5 The reader is invited to verify this informally. 
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Figure 8. Teleportation circuit 

For example, if Bob is informed that two measured values were |01〉 he can 
deduce that the remaining state is  

( )0101 ba +=Φ  

By applying the transformation X to the his (third) qubit Bob can recreate the 
initial Ψ since  
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Similarly if Alice measures |11〉 and communicates the results to Bob, Bob can 
apply X followed by Z to recover the initial qubit, since 
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The general solution is to apply XM2 followed by YM1, where XM2 means apply X 
if M2 = 1 and do nothing otherwise (that is, apply the identity) etc. 

Note that the original state in Alice’s source qubit is lost.  It has been spirited 
away to Bob’s qubit.  No information has been created.6  A state infinitely rich in 
information (any values of a and b may be used) has been teleported across to 
another place at the expense of sending only two classical bits of information.  
However, we cannot extract all this information by measurement; when measured 
we will see a |0〉 or a |1〉. 

Teleportation shows us the power of entanglement as a resource.  We have 
presented it here as an algorithm, but we might just as easily consider it a basic gate.  
It all depends on what level of abstraction we wish to use.  

The teleportation circuit provides an analogue of a well known classical state 
swapping algorithm.  Suppose x and y are locations containing bit values.  A 
traditional approach to swapping involves the use of a temporary location z.  The 
program is: 

: ;     : ;     : ;z x x y y z= = =  
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6 It is a feature of quantum information that it cannot be copied. This is the celebrated ‘no-cloning’ 
theorem. 



A more efficient solution that uses no tempory location, and the XOR function, 
is: 

: ;     : ;     : ;x x y y x y x x y= ⊕ = ⊕ = ⊕  

Starting with the classical circuit for this program, Mermin carries out justified 
replacements to derive a quantum analogue [66], which is the teleportation circuit 
above.  This work is intriguing since it suggests the possibility of a more systematic 
approach to finding quantum analogues of classical circuits. 

4 Evolutionary Computation  
4.1 Introduction  
We will use search as a way to explore the space of quantum circuits.  The search 
space is large, even with only a handful of gate types, and a handful of qubits.  So 
we need an effective algorithm to search this very large space; an effective algorithm 
will necessarily sample only a very small part of the search space, yet must find 
good solutions.  We concentrate on the metaheuristic search technique of 
Evolutionary Algorithms, inspired by the biological process of evolution.  Before we 
apply this to quantum circuits, we give some background on search and evolutionary 
algorithms in general. 

 Michalewicz & Fogel [67] provide an excellent introduction to a range of 
modern heuristic search techniques. 

4.2 Search terminology 

4.2.1 Solution space and objective function 

The solution space Σ is the space comprising the real world artefacts of interest, 
such as electrical circuits, antenna designs, building plans, computer programs, 
musical tunes, and so on, that we wish to search for optimal members.  In our case Σ 
is the  space of quantum circuits. 

The objective function φ measures the real world property to be optimised, such 
as efficiency, accuracy, path length, speed, power consumption, and so on.  φ maps 
each element of the solution space to a real number that expresses how ‘good’ it is, 
in terms of the real world property.  So  φ : Σ → ℜ.  This objective may be difficult 
to capture or quantify: for example, how might we rank melodious music? 

If there are multiple objectives (such as simultaneous high speed and low power 
consumption), φ can be generalised into an objective vector and used to pursue 
multi-objective optimisation, or the objectives can be suitably weighted and 
combined in a single φ.  From now on, we assume a scalar objective function. 

4.2.2 Search space 

Before optimal solutions can searched for, they need to be encoded into some 
computer representation convenient for search.  The chosen representation forms the 
search space S.   

The choice of search space is an important modelling decision.  It should both fit 
the problem naturally, and be searchable by the chosen algorithm.  The search space 
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may be closely related to the solution space (for example, a simple numerical 
representation of certain parameters of interest), or it may be a less direct 
representation (for example, a computer program that, when executed, generates the 
solution space element).  That is, the representation function Γ, that maps the search 
space to the solution space, Γ: S → Σ, may be simple, or extremely complicated. 

The simplest, and possibly most common, choice of search space is bit strings of 
length l,  S = {0,1}l, that directly encode the parameter values being optimised as a 
binary value.  More structured strings of integers and characters can be used, for 
example, encoding the component values in a fixed topology electronic circuit.  The 
search space can comprise finite state machines, for example, as predictors of the 
next value in a sequence.  And the search space can comprise full computer 
programs, for example, ones that on execution draw a variable topology electronic 
circuit diagram.  Here, execution of the program can be thought of as application of 
the representation function Γ. 

A change of representation can ‘smooth’ the search landscape, or make it more 
searchable in other ways.  For example, a numerical parameter can be encoded as a 
bit string using conventional binary coding or Gray coding.  With binary coding, 
changes to high bits has a bigger effect than changes to low bits, whereas with Gray 
coding consecutive underlying numbers differ by only one bit flip.  So Gray coding 
gives a much smoother, more continuous, search landscape, but it may smooth out 
important features 

Other changes of representation are possible.  A change of basis (for example, 
by rotating to use the eigenvectors as the basis) can make structure clearer.  A 
standard data transformation (Fourier, Laplace, and so on) might make the space 
more searchable by highlighting the key properties.  Projecting onto a lower 
dimensional space loses some information: if that information is not relevant the 
space becomes much smaller and more searchable.  Alternatively, embedding in a 
higher dimensional space can smooth the search space.  Ultimately, indirect 
encodings as programs that generate results allow the maximum flexibility. 

4.2.3 The fitness landscape 

The evaluation function f evaluates each element of the search space, f : S → ℜ.  
This function should be in a form suitable for efficient computation, and for use by 
the chosen search algorithm.   

Clearly, f should also be correlated with the objective function: that is, 
optimising the fitness should simultaneously optimise the objective.  It is common 
merely to take f = Γ o φ, effectively ignoring the distinction.  In the case of very 
indirect encodings, this may be necessary, as may be no other useful relationship 
between the search and solution spaces.  But this particular choice is not necessary 
in general, and transforming the evaluation function in some suitable way can 
dramatically alter the efficiency of the search: the choice of evaluation function is as 
much a modelling decision as the choice of search space representation.  
Furthermore, it is not even necessary to require strict simultaneous optimisation, 
provided that the optima of f give ‘good enough’ answers when transformed into the 
solution space, or give answers suitable as the starting points for more refined 
searches.   

f is usually called the fitness function if it is being maximised, and the cost 
function if it is being minimised, although terminology is not consistent.  Some 
search implementations require f to be positive. 
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The fitness function is often described as defining a fitness landscape over the 
search space, by analogy to the way height information describes a topographical 
landscape over physical space in the world.  Thinking of the fitness function in these 
terms, it becomes natural to talk of ‘peaks’ of fitness by analogy with mountain 
peaks, and of ‘hill climbing’ as a way of ascending to the peaks.  A local optimum is 
then any peak, and the global optimum is the highest peak in the landscape, the 
fitness Everest.  (When using cost functions, the terminology is of ‘valleys’.)  The 
analogy holds most closely when the search space is a 2-dimensional space of real 
numbers.  In practice, the search space is more often bit strings or computer 
programs, and the analogy becomes more strained, since the space no longer has the 
continuity or topology of the original.  

4.2.4 Search algorithm 
The task of the search algorithm is to find the global optimum, or, more usually, a 
‘sufficiently good’ local optimum.   

There are two main classes of search algorithms: solitary and population based.  
Solitary algorithms (such as hill climbing, and simulated annealing) consider a 
single search point s at each step, and generate a trace, or trajectory, of (search 
point, evaluation result) pairs T(t) = 〈 (s(0), r(0)), … (s(t), r(t)) 〉.  Population-based 
algorithms (such as evolutionary algorithms, and swarm algorithms) consider a set 
of search points si at each step, and generate a trajectory of sets of (search point, 
evaluation result) pairs T(t) = 〈 (s(0), r(0)) i , … (s(t), r(t))i 〉. 

The meat of the search algorithm is its move function, which determines which 
part of the space to sample next, given the results from the already sampled space, 
M : T → S.  Commonly, the move function is memoryless; it is a function of only 
the current state (s(t), r(t)), and not of the entire trajectory.  Less commonly it takes 
into account some information about earlier states (for example, tabu searches), and 
less commonly still, the entire trajectory of the search so far.   

The algorithm also needs a starting point, s(0).  This is often a random start state, 
or may be seeded with “good” known solutions, especially in hybrid searching 
combining several algorithms. 

4.3 Biology  
Simple search algorithms tend to get trapped on local optima, since the entire local 
neighbourhood comprises worse solutions, and it is difficult to know how to find a 
better one.  Evolutionary algorithms employ a population of candidate solutions to 
explore the search space, they use small variations (‘mutations’) to generate new 
candidate solutions, and some combine solutions from different places in the 
landscape (different ‘parents’); all these provide a means to escape from local 
optima.   

This section describes (in very simplified terms) the biology of evolution.  
Nearly every statement made here about biological evolution is not absolutely true: 
there are always peculiar organisms that do something slightly out of the ordinary, 
and great subtleties in the actual mechanisms.  However, the descriptions given here 
are the ideas that have provided the inspirations for evolutionary algorithms. 

4.3.1 Inheritance + variation + selection = evolution 

We can consider a reproducing population as attempting to solve some optimisation 
problem, of exploring some search space. 
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Consider any reproducing population that exhibits the three characteristics of 
inheritance (offspring resemble their parents, so good solutions are preserved), 
variation (offspring are not identical to their parents, so the population does not get 
‘frozen in’ to a poor solution), and selection (there is preferential survival of those 
that best meet the search criterion, so that good solutions survive in preference to 
poor ones). 

Any such population ‘improves’ with respect to the problem it is solving : it 
evolves.  Note that this argument is independent of any specific mechanisms for 
inheritance, variation, or selection. 

4.3.2 Early pioneers of biological evolution 
Charles Darwin’s grandfather, Erasmus Darwin (1731–1802), had some early ideas 
on evolution: “the strongest and most active animal should propagate the species, 
which should thence become improved”  [23].   

Jean-Baptiste Lamarck (1744–1829) proposed a mechanism by which 
inheritance occurs: that traits acquired due to environmental effects can be passed to 
the next generation.  For example, a blacksmith develops strong arms from  wielding 
a hammer, and this results in stronger sons; or fish in dark environments do not use 
their eyes, and so subsequent generations have vestigial eyes.  We now know that 
this is not the mechanism that is actually used in biological evolution, but the idea 
can be adapted for use in artificial evolution in some circumstances. 

Charles Darwin (1809–1882) promulgated his famous theory of “descent with 
modification”, involving the key steps of inheritance (with no mechanism proposed), 
variation, and natural selection (“survival of the fittest”) [22]. 

4.3.3 DNA – a mechanism for inheritance 
DNA, the ‘double helix’ deoxyribonucleic acid molecule, provides (part of) the 
mechanism for biological inheritance.  DNA provides the ‘instructions’ for 
‘building’ an organism.  More accurately, it provides the instructions for building 
various protein molecules, which in turn are key in the development of the 
organism, but the environmental context also plays a key role.   

DNA is passed from parent to offspring, which provides the inheritance.  It also 
provides variation, because the DNA can mutate, and (in the case of sexual 
reproduction) is inherited from two different parents.   

4.3.4 Genotype v. phenotype 

The genotype of the organism is its complement of DNA, and is what is inherited. 
The phenotype of the organism is its physical form, which develops from the 

original single egg cell (containing its DNA and many other necessary chemicals) by 
a process of morphogenesis.  This is an incredibly complicated, highly non-liner 
process, and can be likened to a ‘one-way function’: it is not computationally 
feasible to deduce the genotype from the phenotype. 

Environmental effects as hammer-wielding or dark adaptation affect the 
phenotype, not the genotype, and so are not inherited.  So the Lamarckian 
mechanism is not, and can not be, the correct mechanism in biological evolution. 

4.3.5 Endogenous and exogenous fitness 

Fitness, the biological survival probability, is also a function of the phenotype.  It is 
organisms, not DNA, that reproduce, survive, and die.  In the case of biology, the 
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fitness function is ability to survive and reproduce, provided endogenously by the 
system (and its definition can therefore sound somewhat circular).   

In artificial evolutionary algorithms, the fitness function is provided 
exogenously, by the designer.  The artificial population’s survival depends on this 
externally determined fitness. 

4.4 Evolutionary algorithms in general 
This biological process provides the metaphor for evolutionary search algorithms 
(EAs).  The most general form of an EA has the following pattern: 

 
initialise population ; 
while not stopped 

  evaluate population ; 
  select parents of next generation ; 
  breed next generation ; 

return fittest in population ; 
 
The specific algorithms incorporate a multitude of variations and optimisations 

around this theme. 

4.4.1 Search and solution space representations 

The biological genotype corresponds to the search space representation, and the 
phenotype to the solution space representation.  The genotype is in the simplest case 
a string (usually called a ‘chromosome’).  Each element of the string (usually called 
an ‘allele’) tends to be a binary bit, but can also be an integer, a real number, a 
character, or any other data type appropriate for encoding the search space. 

In EAs, the search and solution space representations tend to be very close, even 
identical.  For example, in a direct encoding of parameter values of interest, the 
genotype might be the bit string “00101010”, representing the phenotype integer 
“42”.   

However, there is the possibility to have a richer genotype/phenotype 
relationship.  For example, interesting work is being done on certain encodings of 
genotypes and then have a ‘developmental’ phase that ‘grows’ the corresponding 
phenotype [55]. This is also the case of some forms of genetic programming, where 
the genotype is the program being evolved, and the phenotype is the result of 
execution of that program.  Here the genotype tends to be some kind of tree 
representation of the program, and the phenotype can anything computable.   

4.4.2 Initial population 
It is conventional to initialise the population with random chromosomes.  It is 
possible to seed this population with known ‘good’ but sub-optimal solutions.  
However, this may sometimes bias the search away from much better but very 
different solutions.  Populations tend to contain on the order of 100–1000 
individuals, but much smaller populations are also used. 

4.4.3 Evaluation 
For simple representations with small genotype/phenotype distance, the population 
of chromosomes can be evaluated directly, in terms of the appropriate fitness 
function. 

23 



In the case where there is a large distance between the genotype and phenotype, 
for example in the case of evolving computer programs, it is usually necessary to 
calculate the fitness in terms of the solution space objective function, as there is no 
simpler way of evaluating it.  So every generation the population individuals have to 
be ‘grown’ (the genotype program is executed). 

For genotypes that are computer programs intended to run on a range of inputs, 
the fitness is evaluated on a sample of all possible inputs. 

In some cases, it is not possible to define an algorithm for the objective function, 
particularly in cases where evaluation involves a component of aesthetic 
appreciation, for example when evolving music or other artworks.  In such a case the 
selection can be done manually, by presenting a selection of phenotypes to a human 
user, and asking them to chose the best, or rank the selection.  Dawkin’s biomorphs, 
evolving ‘interesting’ looking drawings, uses a human fitness evaluator [24]. 

4.4.4 Selection 
The ‘parents’ who are to provide the input to the next generation are selected based 
on their fitness: fit parents are selected preferentially over less fit ones. 

Possibly the simplest process is to choose the top n% of the population.  
However, there is usually some random element in the selection process, to help 
preserve some diversity.  With roulette wheel selection, the chance of being chosen 
as a parent is directly proportional to fitness value.  This can sometimes lead to 
premature convergence if a badly sub-optimal but relatively very fit solution occurs 
early.  This can be overcome with ranked selection, where the chance of being 
chosen is instead proportional to the parent’s fitness ranking. 

These processes require the fitness of the entire population to be known.  In 
some cases, this can be too expensive to calculate.  Tournament selection overcomes 
this problem.  Candidates are selected at random for a tournament, and the fittest of 
these goes on to become a parent. 

Many algorithms allow the possibility of elitism: keeping the best of the previous 
generation in the next, to ensure good solutions are not lost because of failure to be 
selected, or unfortunate variation. 

4.4.5 Inheritance and variation 
Offspring chromosomes are derived from parent chromosomes by inheritance and 
variation.  Inheritance is simple copying of the chromosome.  Inherited material is 
varied by the genetic operators of ‘mutation’, and, in some EAs, of ‘crossover’, the 
combination of chromosomes from two parents. 

Mutation is controlled by mutation probability parameters.  The mutations 
possible depend on the data type of the alleles.  For a binary bit string chromosome, 
each bit may be flipped with the parameterised probability.  For real number alleles, 
the value may be changed probabilistically by a small random amount.  For tree-
shaped chromosomes, a mutation may involve randomly selecting a node, and 
replacing its subtree with a random subtree. 

One-point crossover of strings involves selecting a random position in the 
strings, then taking the value of the first string up to this point, and the second string 
beyond.  More complicated crossover arrangements, with multiple crossover points, 
are also used.  The simplest versions of these schemes require all chromosomes to 
be the same length.  It is also important to ensure a representation that remains valid 
after such an operation. 
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Crossover of tree-based representations is achieved by swapping subtrees.  There 
is precious little biological inspiration to guide the design of GP crossover operators, 
because of the non-linear nature of the artificial chromosome being manipulated.  
However, GP still conforms to the original abstract concept of “inheritance + 
variation + selection = evolution”, despite its distance from the biological realisation 
of this concept. 

4.4.6 Stopping condition 
The stopping condition usually combines current best fitness and number of 
iterations. 

The search stops if a good enough solution been produced.  This requires setting 
some acceptable threshold fitness to be passed.  The search also stops once a certain 
threshold number of generations been run.  The result in either case is the current 
best member of the population. 

4.4.7 Diversity and premature convergence 
The whole aim of EAs is to provide a process that does not get trapped in poor local 
optima, but that has a good chance of finding the global optimum (or at least, a very 
good local one).  Certain choice of the multitude of parameters governing the 
behaviour of any one algorithm can result in premature convergence to sub-optimal 
solutions, however, so these have to be chosen with care.  This choice can be 
problem specific, and is currently more art than science.   

Crossover is a mechanism that can move an offspring some distance from its 
parents in the search space, but once an allele value has disappeared from the 
population, crossover cannot reintroduce it.  Mutation can, so is an essential 
diversity-maintaining mechanism. 

Another was of increasing diversity is to inject some ‘new blood’ random 
individuals into the population.  This needs to be done with care, since random 
individuals, especially late in a run, will usually be relatively unfit, and so 
eliminated almost immediately.  The clonal selection algorithm, an artificial 
immune system algorithm with some interesting parallels to EAs, has automatic 
introduction of new individuals every generation [57]. 

4.5 Evolutionary algorithms in particular 

4.5.1 Evolutionary Strategies and Evolutionary Programming: the early days 
Some of the earliest work on EAs is known as “Evolutionary Strategies” (ES) [75] 
[2].  It is characterised by using real-valued chromosomes, directly representing 
solution space values of interest.  

Originally this used only mutation, although more modern variants may 
incorporate crossover.  The mutation rates are controlled by Gaussian probability 
distributions generated from strategy parameters.  These parameters are not global 
and fixed.  Rather, each chromosome can include its own value of these parameters, 
so that they also get mutated, in a form of self-adaptation.  More advanced strategy 
parameters can be used to link mutation rates of different parameters. 

ES uses deterministic selection of the fittest.  They are characterised by two 
parameters.  µ is the number of parents in the breeding population, and λ is the 
number of offspring generated.  The constraint µ < λ ensures selection pressure: 
more offspring are generated than are allowed to breed in the next generation. 
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 (µ, λ) strategies breed λ offspring from µ parents, then choose the next 
generation of parents to be the µ fittest of these offspring.  (µ + λ) strategies breed λ 
offspring from µ parents, then choose the next generation of parents to be the µ 
fittest of the pool containing both the offspring and the current parents. 

The original ES algorithm was (1+1)-ES with no self-adaptation.  This means 1 
parent is used to breed 1 child (by mutation), then the better of the 2 solutions is 
selected to become the next generation.  This is equivalent to hill-climbing. 

Another very early form of EA is known as “Evolutionary Programming” (EP) 
[33].  It is rather similar to ES, in that it also uses self-adapting mutation parameters, 
and only mutation.  However, it uses tournament rather than deterministic selection.  
The original application was to evolve finite state automata to recognise and predict 
strings.  The specially designed mutation operators over this space of finite state 
automata include changing the initial state, adding or deleting a state, adding or 
deleting or retargeting a transition, and changing a transition label. 

This early work on EAs suffered from being somewhat ahead of its time: there 
was simply insufficient computing power to execute the algorithms except on 
relatively small problems.  Now that computing power has increased so that the 
algorithms have become practical, interest in them has re-emerged. 

4.5.2 Genetic Algorithms: incorporating crossover 
Genetic Algorithms (GAs) were invented by John Holland [46] [47], but did not 
receive that much prominence until they were promoted by his student David 
Goldberg [37] [38].  Mitchell  provides a good introduction to GAs [68]. 

GAs are the variant of EAs most closely based on biology (though still very far 
from its full richness and complexity), having linear chromosomes with mutation 
and crossover.  The operation of GAs is well-analysed, and its performance 
characteristics explained in terms of the schema theorem and the related k-armed 
bandit theory [46], and the building block hypothesis [37].  (Curiously, however, the 
“compact GA”, a variant that represents an entire population as a probability 
distribution rather than a set of strings, also performs well [43], even though it 
cannot be using building blocks.)  More recently, Nix & Vose have analysed GA 
performance using Markov chains [71]. 

4.5.3 Genetic Programming: complex phenotypes 
Although there are earlier variants, the first major use of Genetic Programming (GP) 
was due to John Koza [49].  GP is a variant of GA where the chromosomes are 
computer programs.  It is of particular relevance to evolving quantum programs, and 
the next section is dedicated to it. 

4.6 Genetic Programming 
Descriptions and applications of GP can be found in the series of books by Koza 
[49] [52] [53] [54], and also the collection by Kinnear [50].  Banzhaf et al provide a 
good introduction to GP [3]. 

4.6.1 Representation of programs 

The program is usually represented as a tree structure, corresponding to an instance 
of the parse tree of the programming language.  As mentioned earlier, the genetic 
operators that mutate and crossover trees can perform quite radical pruning and 
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grafting of entire subtrees.  So it is important to use a programming language that 
can cope with such manipulations, that remains at least syntactically and preferably 
type-correct after such surgery.  Lisp  (for example [89]) is a favourite, for this 
reason.  Also, purpose-designed domain-specific languages can be used.  It can be 
necessary to constrain the genetic operators to produce correct trees, or to “fix-up” 
the trees after the operations. 

4.6.2 Program as the means to generate the solution 
In the simplest variant of GP, each chromosome is a program that is executed to 
generate a specific potential solution.  For example, a chromosome might be a turtle 
graphics program to draw a specific circuit diagram, in a solution space of circuits; 
the resultant circuit is evaluated in terms of the objective function.  These programs 
tend to be input-free programs that have a single behaviour, and so can be evaluated 
simply by executing them. 

4.6.3 Program as the solution 
In the more general case, the program being evolved is expected to work on a range 
of inputs.  For example, a sorting program is expected to work on any permuted 
input, and a quantum algorithm is expected to work for an arbitrary number of 
qubits.  In this case the program is required to work well for all its inputs, but clearly 
it is infeasible to evaluate its fitness on all its inputs.  It is instead evaluated on a 
representative sample of inputs.  (See section 4.7.1 on co-evolution for one way to 
determine this sample.) 

4.6.4 Disruption and ADFs 

Naïve use of GP can result in very little evolutionary progress, because of the way 
the GP genetic operators nearly always badly disrupt good solutions.  It is rare for a 
child tree to be fitter than its parent under gross mutation or crossover.  Care can be 
taken to devise operators that minimise disruption, by being sensitive to the context 
of the subtree, so helping to maintain structure. 

A more important anti-disruption mechanism is Koza’s Automatically Defined 
Functions (ADFs) [49, chapters 20, 21] [52].  The idea is to encapsulate ‘good’ 
subtrees as functions, essentially adding new ‘useful’ alleles (terminals) that are 
automatically preserved against disruption.  The program trees that undergo 
evolution comprise one result-producing branch that can include calls to ADFs, and 
several function-defining branches whose terminals include formal arguments.   

Koza introduces further automatically defined structures, for similar reasons: 
iterations (ADIs), loops (ADLs), and recursions (ADRs) [53, chapters 6–8].  For 
quantum algorithms, ADLs in particular could be important, because some quantum 
circuit descriptions have a natural “loop” structure (for example, Shor’s algorithm). 

4.6.5 Bloat 
A famous problem of GP is that of bloat: some genetic operators allow trees to grow 
very quickly unless measures are taken to prevent this.  This is perceived to be a 
problem, because bloat is nearly always ‘junk code’ that has no effect on the 
semantics of the programs.  For example, it may be ‘unreachable’ code, such as a 
large then branch guarded by a true condition, or a large loop body with zero 
iterations.   It has been suggested this bloat is analogous to junk DNA (biological 
introns). 
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Various anti-bloat measures are used, such as setting hard size and depth limits, 
having fitness function that prefers smaller programs, choosing operators that do not 
cause bloat.  These are effective at stopping bloat, but may negatively impact GP 
performance by restricting intermediate solutions. 

Most work on bloat concentrates on the (lack of) semantics of the bloated code.  
However, recent work by Daida suggests that there may be general constraints on 
the very shape of trees that can be naturally evolved using GP [19] [20] [21].  
Certain shapes of tree appear to be very hard to achieve, independent of any 
functionality: it appears that GP has a strong structural bias to evolving inherently 
sparse trees.  This has implications for the design of GP languages, and the class of 
solutions that can be found. 

4.6.6 Typed languages: Grammatical Evolution, Enzyme GP 
As mentioned earlier, the programming language manipulated by the GP genetic 
operators must be robust to their somewhat drastic surgery.  Consequently, this has 
led much GP work to be done in untyped languages.   

Approaches to incorporating types include using only highly constrained genetic 
operators to keep the trees type-consistent (which can result in premature 
convergence because there is too little freedom).  Others include evolving type-free 
programs and add the typing information at a later interpretation stage.  One such 
approach is Ryan & O’Neill’s Grammatical Evolution, which uses a variable length 
linear genome to encode references to grammar production rules, and uses these 
rules to generate the program during the genotype to phenotype mapping, at which 
point type information can be added [72] [79].  Lones’ Enzyme GP [62] [61] is 
another approach that can be used to solve the type problem.  Rather than evolving 
whole trees, it evolves fragments of trees, which then ‘assemble’ themselves into 
full program trees.  This assembly process can be adapted to observe the type 
constraints. 

4.7 Variations on a theme 

4.7.1 Co-evolution of test cases and programs 
Biological organisms do not evolve in some static unchanging fitness landscape: 
they co-evolve in dynamic along with other species, and their own landscape is 
changed in response to changes in these other species. 

EAs can also use concepts of co-evolution: as a solution gradually improves, the 
problem can be made gradually harder by co-evolving it. This can help the problem 
of premature convergence, where an initially random population is almost uniformly 
useless at solving the full problem, and survival is dominated by a few ‘lucky’ 
individuals who are nevertheless not near a global optimum.  If the problem starts 
off in an easier form, then a wider range of initial population might be able to 
‘survive’ it. 

Similarly co-evolution can be used to help with the selection of GP evaluation 
inputs.  A program’s fitness should ideally be evaluated against all its inputs, but this 
is infeasible in general, and a sample of inputs is used.  But which sample?  One 
approach is to evolve the program to perform well on its input sample, whilst 
simultaneously co-evolving the sample so that the program has poor performance 
[44].  Thus the input sample evolves to exercise the program to its utmost. 
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 Type Q1 Q2 Parameter= Gate 
 

Figure 9. Gate template. 

4.7.2 Evolving the evolutionary parameters 
As noted earlier, there can be many parameters in EAs, such as population size, 
tournament parameters, choice of mutation and crossover operators, mutation rates.  
Much (often ineffectual) effort goes into ‘tweaking’ these to get the ‘best’ results.   

Another approach is to follow the route of Evolutionary Strategies, and include 
any and all of these parameters as strategy parameters in the chromosome so they 
evolve along with the solution.  This self-adaptation reduces the number of 
parameters, but at the expense of making the search space larger. 

4.7.3 Intrinsic evolution 

Some of the most exciting new work in the area of EAs is on intrinsic evolution, 
where the phenotype is not a computer representation of the solution space, but the 
physical solution space itself.  For example, evolutionary hardware evaluates the 
actual hardware circuits, not software simulations of those circuits [99].  This can 
lead to novel discoveries, as the embodied solution exploits physical characteristics 
abstracted away from in a simulation [92].   

5 Evolving Quantum Algorithms: implementation 
issues 

In this section we review some implementation issues that arise when evolutionary 
algorithms are used to search for quantum algorithms. 

5.1 Representation of Potential Solutions 

5.1.1 Direct Encodings 

A circuit can be represented as an ordered series of gates.  The order in which gates 
appear in the list is the order in which the corresponding transformations are to be 
applied.  A gate template is simply a sequence of slots, with each slot being 
instantiated to attribute values.  In the template shown in Figure 9 there is a slot for 
the type of gate (I, X, Y, Z, N, CN, U, etc.), two slots for the identifiers of the qubits 
upon which the gate operates, and a slot for a (further) parameter.  All gates have a 
type and at least one operational qubit.  The remaining slots are interpreted 
conveniently for each gate type, or ignored where appropriate. 

A NOT gate acting on qubit 3 is represented as the quadruple (N, 3, *, *), where 
‘*’ means we do not care what values are in the slot: they are ignored.  A controlled-
NOT gate with control qubit 3 and target qubit 1 is represented by (CN, 3, 1, *).  A 
single qubit rotation U(π) on qubit 5 is represented by (U, 5, *, 3.14159), and so on. 
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Type Q1 Q2 Param Type Q1 Q2 

2 = CN 11 2 * 4 = H 7 * 

 

Figure 10.  Direct encoding 

In practice, there are choices as to how the series of gates is represented at a low 
level.  The most basic representation is as a bit string.  (Bit string representations are 
still very common in genetic algorithm applications.)  Figure 10 illustrates how sub-
sequences of bits might map onto gate fields.  With black squares denoting bit 
values of 1 and white squares denoting bit values of 0, we can see how a string of 
bits (e.g. a bit chromosome) can be decoded as a circuit. 

Such encodings are not without their problems.  Suppose there are 5 gate types.  
This requires at least three bits to represent.  We may ensure that an initial 
population has type fields with bit values of 000, 001, 010, 011, 100 (that is, 
between 0 and 4), but simple crossover operations are likely to produce 101, 110, 
and 111.  These will need to be interpreted in some way.  Interpreting the value 
modulo 5 produces an acceptable type index, e.g. 110 denotes 6, and 6 mod 5 is 
equal to 1, and so 110 would represent gate type 1.  0 would be represented by 
(000,101), 1 by (001,110), 2 by (010,111) but 3 and 4 would have the single 
representation 011 and 100 respectively.  Thus, some elements of the space are over-
represented, possibly biasing certain types of search.  The most common bit string 
mutation operator is the simple bit flip.  The resulting field values will need 
interpreting in the same way. 

Some researchers have used similar simple bit string representations with genetic 
algorithms.  Although such representations are considered unsophisticated by the 
evolutionary computation community, their application is not without some success 
(see the gate implementation work described in section 6.3, and the teleportation 
circuits of Yabuki and Iba described in section 6.5).7  It is of course possible to work 
directly on character, integer and real fields. 

5.1.2 Linear List Encodings 
Whereas in traditional tree-based genetic programming programs are expressions in 
a functional language such as LISP (see below) linear genetic programming 
typically uses varying length lists of imperative programming language instructions 
[3].  There is generally no a priori reason for expecting a specific length of solution, 
and this approach allows simple manipulation of populations with individuals of 
varying lengths.  Substituting classical instructions for quantum gates provides us 
with a natural representation and powerful approach for the evolution of quantum 
circuitry.  Williams & Gray’s GP approach [97] exemplifies the flexibility afforded 
by such schemes, with a variety of evolution operators provided:  mutation, 
substitution, crossover, transposition, insertion and deletion.  Figure 11 illustrates a 
generalised crossover operation. 

                                                 
7 This success may be in spite of the representation used. 
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Gb5
 

Figure 11. Flexible Crossover with List Representations 

Linear GP with classical program evolution also allows single operations to be 
skipped over via preceding branching instructions.  (Williams & Gray do not 
incorporate such features). 

 Spector et al [86] briefly describe two linear genetic programming variants: 
stack based linear genome genetic programming (SBLGP) and stackless linear 
genome genetic programming (SLLGP).  SBLGP represents programs as linear lists 
of functions that communicate via a global stack (thus the approach generalises 
away from quantum gate lists to instruction/function lists).  SBLGP lends itself 
better than functional programming tree based approaches to the evolution of 
programs whose working functionality is implemented by side effects (see below).  
The SBLGP also allows for certain structuring mechanisms to be incorporated. 
Spector et al report that SBLGP was generally favoured over the traditional tree-
based approaches described below.  Stackless GP uses a linear list of gates much as 
described above for Williams & Gray [97].  Spector et al point out that this may be 
entirely appropriate when scalability is not an issue (and so the structuring 
mechanisms such as parameterised iteration are unnecessary). 

Linear genetic programming appears to be a powerful and flexible approach to 
evolutionary computation.  The approach seems naturally suited to quantum 
program evolution since quantum programs are inherently sequential, and the 
implementation seems simpler than for traditional tree based approaches. 

5.1.3 Spector et al’s Traditional GP Tree Encoding  
With some linear list variants the representations code for specific solutions to 
specific problems.  The solution space may be, for example, the set of circuits 
operating over 4 qubits.  An evolved solution might work perfectly over 4 qubits but 
simply be inapplicable to a similar problem with 5 qubits.  

There is a need to derive scaleable artefacts and human understanding of 
evolved artefacts may be an important goal for evolutionary search in the quantum 
domain.  A feature of scaleable human-developed artefacts is the use of structure, 
because structure captures an intellectual and communicable idea. As a simple 
example, an adder circuit comprises a connected series of single bit adders. In 
classical computing, circuitry for a 12-bit adder looks a lot like that for a 10-bit 
adder.  Both are generally built using the same overall approach, the difference 
being that for the 12-bit case the underlying structural idea is repeated twice more.  
Modern programming languages have significant structuring mechanisms: if-then-
else; for-loops, while-loops; functions; procedures etc.  Functions and procedure 
provide high-level reusable building blocks.  Furthermore these are often 
parameterisable (for example, an integer array sort routine will generally accept 
arrays of different lengths).  We would like similar facilities to be provided for the 
evolution of quantum algorithms.  

This is addressed by using second order encodings.  With direct encodings we 
evolve a circuit directly in one step.  With second-order encodings, we evolve a 
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program that when executed produces a circuit.  This circuit-generating program can 
be run with various parameters to generate different circuits.  For example, if the 
program is parameterisable in the number of qubits we could use it to generate 
circuits for 3, 4, and 5-qubits problems, and so on.  We can see that the ability to 
incorporate structuring mechanisms such as parameterised iteration is important. 

The early GP work by Spector et al (see section 6.1.1) uses such an approach.  
Functions parameterised by numbers add gates to the current circuit; the initial 
circuit is empty.  Subprograms (subtrees) return numeric values that are either used 
directly or after coercion to integers as parameters of the parent node.  The closure 
type is ‘number’; this includes integers, rationals, floating point numbers, and 
complex numbers. 

The approach has various functions to add some standard gates to the circuit.  
Examples are:  

 
• H-GATE: adds a Hadamard gate to the end of the circuit.  It has one 

parameter that is coerced to a valid qubit index.  It returns its argument as a 
result. 

• U-THETA-GATE: adds a rotation gate to the circuit.  There are two 
parameters: the first is coerced to be a valid qubit index, the second is an 
angle in radians. 

• CNOT-GATE: adds a controlled-NOT gate at the end of the circuit.  It has 
two parameters, coerced to form valid source and target qubits.  The first 
argument is returned as a result. 

 
Iteration constructs are incorporated in the program, such as: 
 
• ITERATE.  This takes two parameters: the second is some subprogram body; 

the first is coerced to a non-negative integer denoting how many times that 
body is to be executed.  

• IQ.  This has a program body as its single parameter.  This body is executed 
a number of times equal to the number of qubits in the system. 

 
A variety of helpful support functions are provided (e.g. mathematic operations 

such as +, - , * etc.).  The iteration constructs are very important.  They allow the 
system to evolve scalable algorithms: algorithms that can be parameterised to be 
used on systems of different sizes.  

The language has a general LISP flavour and representation. Consider the 
program. 

 ( CNOT  
 ( U-THETA    
  PI     
  ( /  PI  2.0 ) 
 ) 
 ( H-GATE ( + 1  ( /  PI  2.0 ) ) 
 ) 
) 

 
When executed this will produce 
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Figure 12. Circuit generated when program is executed. 

 

Program node Branching node 
 

Figure 13. Linear Tree GP program representation. 

U-theta   qubit: 3  theta: 1.57079 // PI = 3.14150 coerced to 3 
Hadamard qubit: 2    // 1 + PI/2 = 2.57079 coerced to 2 
Controlled-not  control: 3 target: 2 // PI = 3.14150 coerced to 3 
      // 2.57079 coerced to 2 

 
This program produces the circuit shown in Figure 12. 
A typical problem with basic GP approaches is that they are weakly typed.  The 

coercion of returned values to parameters is somewhat unconvincing and represents 
a significant potential restriction on the programs that can practically be evolved.  
Spector et al [86] also note that tree representation comes at a cost in terms of time, 
space and complexity, with “no guarantee that they are the most appropriate 
representation for all problems”.  A major motivation behind the approach – the 
search for structure and scalability – is entirely well-founded. 

5.1.4 Leier and Banzhaf’s Linear Tree GP Representations 

Kantschik & Banzhaf  [48] introduce a new tree-based representation for GP termed 
linear tree GP (LTGP).  In LTGP a program comprises linear instructions sequences 
connected by branching instructions, Figure 13.  A path from the root node to a leaf 
node defines an execution.  The aim is largely to allow programs to execute different 
instructions sequences for different inputs.  Leier & Banzhaf [56] have adapted this 
scheme for evolving quantum programs.  Unitary transformations form the program 
instructions and measurements form the branching nodes (with the 0 and 1 branches 
being executed in the context of those measurements having occurred).  Both 
branches may be executed if the branching probabilities are non-zero.  The reader is 
referred to [56] for details. 

5.2 Spector’s Push-Based System 
The most advanced suite of quantum genetic programming tools so far is due to 
Spector.  A good deal of his recent book [88] is given over to explaining the basics 
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of the underlying technological tools.  PUSH is a Lisp-like programming language 
with very simple syntax: 

*)(   |      |   :: programliteralninstructioprogram =  

There are several stacks for different data type operations.  Thus may be stacks 
for integers, Booleans, floats and so on as well as a code stack.  New stacks can be 
added (e.g. a quantum gate stack).  The system allows variable names to be 
associated with elements (including code fragments) and has features to ensure safe 
operation (such as ignoring instructions when there are insufficient arguments on the 
appropriate stack). 

Execution of a program (P) is a recursive application of: 
 

If  P is a single instruction then execute it. 
Else if P is a literal push it onto the appropriate stack. 
Else P is a list: sequentially execute each of the programs in the list. 
 

The first component of the program  

( (5 4  INTEGER.+ ) (2.0 2.0 FLOAT.*) ) 

causes 5 and then 4 to be placed on the integer stack, the 4 and 5 to be popped 
from the integer stack and added, with the result (9) being placed back on the integer 
stack.  Similarly the effect of the second component’s execution is to place 4.0 on 
the float stack.  The reader is referred to [88] for further details. 

PUSH GP is a genetic programming system that evolves programs in the PUSH 
language.  The system allows multiple data types, modularity features, support for 
recursion and support for code-self development.  It supports some fairly traditional 
GP operator features. 

Spector provides detailed results of applying this system to solution of various 
problems: Scaling Majority On, Deutsch-Josza XOR, OR and AND-OR, Grover’s 
search (4-item database) and some gate communications problems.  The facilities 
described in [88] (including visualisation of simulations) collectively form a 
cohesive quantum genetic programming research suite.  The underlying simplicity 
of the supporting technology is striking. 

5.3 Evaluating Candidate Solutions: Cost and Fitness Functions 
Evaluation functions define what it means to be a desirable solution to a problem 
and provide guidance to the search process to reach such a goal.  Williams & Gray 
[97] note: “We regard the most sensible evaluation measure as an open question”. 
This remains the case at the time of writing this review (2004). 

A variety of evaluation functions have been used. We identify and examine three 
broad types. 

5.3.1 Evaluation Based on Deviation from Target Matrix 
In their approach Williams & Gray [97] assume that there is a target unitary matrix 
U and the task is to evolve a circuit with unitary matrix S that implements it.  They 
aim to perform what computer scientists would term refinement: breaking a higher 
level construct down into the composition of more concrete (lower-level) ones.  
Their cost function is given by 
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This is an intuitively appealing function and it is applied with some success (see 
below).  The choice of magnitude of differences is not definitive.  Although William 
& Gray set the value of R to 1, DiVincenzo & Smolin [30] use R = 2 to ‘punish’ 
deviation from a target matrix.  Non-integral values might prove useful: Clark et al 
[18] demonstrate the sensitivity of some problems to exponent choice. 

Lukac et al [63] present a detailed account of the evolution of circuitry 
(principally lower level implementations of important ‘gates’) with various 
evaluation functions that combine functional correctness (with an error component 
based on matrix element deviations as above) and circuit cost.  

5.3.2 Evaluation Based on Deviation from Target Amplitude Vectors 

We might not know the unitary transformation we desire but we may be able to 
indicate its likely desired effect on some test inputs, that is, we may be able to define 
properties of a desired final amplitude state vector and punish deviation from them. 

Yabuki & Iba [98] use three test cases (fitness cases) for evaluating the fitness of 
their evolved teleportation circuits.  This is based on the degree of similarity of the 
received qubit value with the source qubit to be teleported.  At first sight, it may 
seem unusual for so few test cases to be needed.  On reflection, the reader might find 
it difficult to conceive of a circuit that successfully teleports three random qubit 
states that is not a generally applicable teleportation circuit.  

For the evolution of deterministic circuits Massey et al [65] use a cost function 
given by 

( || ||)
i iT R

i

f V V= −∑  

where VTi is the target amplitude vector for the ith input test case, and VRi is the 
amplitude vector achieved after applying a candidate circuit to the ith input.  A 
further nuance can be seen when we wish to evolve circuits that ‘bump up’ the 
magnitude of the amplitudes of results we wish to see.  Here the exact amplitudes of 
the resulting state vectors may not be crucial.  Rather, it is the probability that 
matters, and so we can base cost functions on the deviation in magnitude.8 

Spector et al’s work [4] [84] [85] [86] has a probabilistic notion of success and 
uses a fitness function that captures functional correctness but also aspects of 
efficiency.  It has the form: 

f = hits + correctness + efficiency 

The hits component is the total number of fitness cases used minus the number 
of fitness cases where the program produces the correct answer with a probability of 
more than 0.52 (chosen to be far enough away from 0.5 to be sure it is not due to 
rounding errors).  The correctness component is defined as: 

                                                 
8 Whether this matters or not depends on what you are evolving the circuit for. If you want to observe 
a ‘result’ then it is largely the probabilities that matter (and so issues of phase etc. are of no concern); 
if you want to use the circuit as a component in a wider circuit then amplitude is generally important. 
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Because it is desirable for the fitness function to focus on attaining 
probabilistically correct answers to all fitness cases, rather than simply improving 
the probability of success in those fitness cases where it is already good enough (e.g. 
from a 55% success rate to a 60% success rate), errors smaller than 0.48 are ignored.  
Also, it is desirable that reasonably fit programs are compared primarily with respect 
to the number of fitness cases they produce a (probabilistically) correct answer for, 
and only secondarily with respect to the magnitudes of the errors of the incorrect 
cases, the ‘pure’ correctness term is divided by hits (unless hits < 1) before being 
used in the fitness function. 

The efficiency is the number of quantum gates in the final solution, divided by a 
large constant.  Therefore, efficiency has a very small effect on the overall fitness of 
the solution, until programs are evolved that solve all fitness cases, at which point 
the other two terms become zero and the efficiency dominates.  The overall effect is 
that the search initially concentrates on finding probabilistic solutions to the 
problem, and then tries to make those solutions more efficient, in terms of the 
number of quantum gates used.  No effort is wasted on trying to make the solutions 
more accurate (i.e. increase the probability of them correctly giving the answer).  

The fitness function of Spector et al has been adopted by Massey et al [65] for 
probabilistic circuits.  More general fitness functions (but using many of the same 
concepts) can be found in Spector’s book [88].  Spector et al [86] note that the 
fitness function evolved as the work reported progressed.  Further fitness function 
details can be found in [84]. 

5.3.3 Evaluation Based on Resource Usage 
Not all searches start from nothing.  If you have a working circuit you may wish 
simply to improve it in some way.  Compilers for traditional programming 
languages generally have an optimisation engine that applies a series of functionality 
preserving transformations to obtain a program that improves some non-functional 
aspect such as average execution speed. 

Similar considerations apply to quantum circuitry.  Work has been carried out to 
determine circuit identities (for example, [60]).  Maslov et al [64] discuss linear cost 
circuit metrics and non-linear circuit cost metrics (the former being a simple 
weighted gate count, the latter being based on the full circuit). 

Concentrating solely on efficiency (however defined) simplifies matters: 
functionality and efficiency may often be in conflict and fitness and cost functions 
may be inclined to produce tradeoffs we would not want.  It remains, however, an 
open question whether it is best to evolve a circuit then optimise it, or else evolve an 
efficient circuit in one go. 

5.4 Structure of the search landscape 
The structure of the search landscape has a strong effect on the ease of searching it.  
Rugged landscapes are difficult to search, because the fitness of  the current position 
gives little indication of the fitness of nearby positions.  Landscapes with many local 
optima can “trap” the search.  Some of these problems may be alleviated by 
choosing the landscape with care.  There are three factors under the control of the 
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designer:  (1) the points in the search landscape itself, determined by how the 
problem is represented; (2) the “height” of each point, determined by the fitness 
function; (3) the move function, or which points can be reached from which other 
points, determined by the choice of genetic operator.   

A principled design of the search space needs understanding of how these 
various choices affect it.  Leier & Banzhaf [57] investigate the shape of the search 
landscape for a particular case of the 2- and 3-qubit Deutsch-Josza problem (with a 
predetermined gate set and fitness function), for a range of program sizes (10 to 30 
gates), and for mutation operators only.  They investigate ruggedness by estimating 
the autocorrelation function of time series generated by random walks around the 
search space, where the paths are given by the mutation operators.  They investigate 
the structure of local isolated optima by estimating certain information measures. 

Their results of low autocorrelation indicate extremely rugged landscapes: 
“beyond 2 steps most of the points on the landscape path become almost 
uncorrelated”.  The autocorrelation is slightly larger for n = 3 qubits than for n = 2, 
and also for larger programs.  The information measure also shows larger program 
sizes tend to have smoother landscapes, but also have a more complex structure of 
local optima. 

It is difficult to interpret what the combined effect of these opposing trends in 
ruggedness and local optima might be for even larger program sizes or higher 
number of qubits, and whether any improvements in searchability are outweighed by 
the exponentially increasing size of the search spaces.  However, Leier & Banzhaf 
[57] provide an important first investigation, possibly demonstrating why search for 
(small) quantum programs is proving quite tricky.  Further investigation of 
landscape structure in terms of larger programs, more sophisticated genetic 
operators, and different fitness functions, is called for. 

5.5 Hand Processing 
Sometimes the mechanisms by which the search proceeds give rise to circuits that 
can be simplified.  For example, two successive applications of the Hadamard 
operation to a qubit (without any intervening operation in the system) produces no 
effect (H2 = I) and so such a pair of H gates can be removed.  Such ‘junk’ may 
actually serve a purpose during an evolutionary search, but at the end it is simply 
clutter.  Various authors have resorted to hand simplification.  Such removals are 
particular examples of the more general idea of semantics-preserving operations.  
Traditional program compilers carry out a variety of such operations to produce 
more efficient code.  These are taken from a set of substitution templates derived 
over many years of experience.  The authors believe that a similar quantum circuit 
substitution library can be created, and highly efficient circuits created from 
inefficient, but functionally correct, ones.  This issue is discussed in section 6.4. 

5.6 Simulation Issues 
Evaluation of the cost function requires simulation of a quantum computation on a 
classical hardware platform.  Simulation efficiency is of major practical importance.  
Spector acknowledges such issues in his book [88].  Consider the issue of how a 
unitary transform should be stored.  The simplest would be to store its matrix, but 
this will become unmanageable as the number of qubits in a system grows (it 
requires 22n elements to be stored).  A 15-qubit system would require over a billion 
entries to be stored per matrix.  As indicated by [88], for some operations it suffices 
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to use an operation that has the same effect on the state amplitude vector. (Spector 
refers to this as “implicit matrix expansion”.)  For example, it is fairly pointless to 
store a fully lifted NOT operation.  It is simpler to invoke a program that effectively 
swaps corresponding pairs of amplitudes: if |0x〉 has amplitude p0x and |1x〉 has 
amplitude p1x then the NOT operation on the first qubit simply swaps the two 
amplitudes.  Massey et al [65] refer to this particular optimisation as an example of 
row swapping.  Spector’s implicit matrix expansion is more general.  Spector 
provides algorithms for explicit matrix expansion (what we have termed ‘lifting’) 
and for applying implicitly expanded gates.  Explicit matrix expansion of a gate may 
be necessary, e.g. for use in forming some explicit product matrix. 

6 Evolving Quantum Algorithms: results 
In this section we review how evolutionary algorithms have been used to discover 
quantum algorithms. 

6.1 Circuits for Classic Combinatorial Problems 

6.1.1 Spector et al: Deutsch-Josza Promises, Grover’s Search, ORs and AND-
ORs 

A number of papers authored in various combinations by Spector, Bernstein, 
Barnum & Swami established the field of quantum genetic programming [4] [5] [84] 
[85] [86]. 

Some of the earliest work using GP aimed to evolve quantum circuitry to 
determine properties on oracle functions: given a quantum black-box function 
f(q1,…,qn) determine whether it has the property P(f).  We have already seen the 
(non-evolved) Deutsch-Josza algorithm to determine whether a function f is 
balanced or constant (for a 1-input function f this is the parity problem).  [86] 
presents an evolved solution to the corresponding 2-bit promise problem (using 
traditional tree-based GP). 

[86] also describes the evolution using SBLGP (see section 5.1.2) of an 
instantiation of Grover’s algorithm for solving the four-item database problem.  (The 
database is defined by an oracle function f(x) over 0..3 and the aim is to return the 
single index in that range for which f(x) = 1, i.e. there is a single ‘marked’ solution.)  
This is important because Grover had published his algorithm as recently as in 1997.  
Other circuits can be found in [88].  It is not uncommon for human analysts to 
simplify evolved artefacts.  (This is indeed a very good thing to do.)  Figure 14 
shows a hand-simplified version of Grover’s solution to the four-item database. 
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Figure 14. GP evolved (but hand simplified9) Grover’s four-item database search. 
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Figure 15.  Circuit addressing the OR problem. 

Two other simple fundamental properties concern ORs and ANDs of ORs.  The 
OR problem is simple: determine whether any input x gives rise to a true output f(x).  
For a Boolean function f(x) on n variables the AND-OR problem considers a 
complete balanced binary tree with leaves labelled left to right with the function 
values f(0), f(1), …, f(2n−1).  The AND-OR function interprets this tree as a Boolean 
expression tree with root AND node and nodes alternating between OR and AND as 
paths are traversed from root to leaves.  For 1, 2 and 3 inputs the AND-OR(f) 
formulae are: 

( ) ( )
( ) ( )( ) ( ) (( )

1

2

3

/ ( ) (0) (1)
/ ( ) (0) (1) (2) (3)
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AND OR f f f
AND OR f f f f f
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Barnum et al [5] used SLLGP to evolve a faster than classical solution to the OR 
problem.  For the one qubit case an evolved circuit is shown in Figure 15. 

With initial state |00〉, application of the first three gates produces the state 

( ) ( )( ))1()0(1)1()0(02
1 ffff −++  

The measurement gate M1 terminates the computation if a 1 is measured and the 
computation continues otherwise.  The result of the evaluation of f(0) ∨ f(1) is taken 
to be M1 if it returns a 1, or else the result is taken to be M2.  The X(θ) is defined by  
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9 Spector [88] reports that this circuit is a simplification (by Bernstein) of a GP-evolved circuit. 
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Figure 16. Faster than classical solution to 2 Bit AND-OR, theta=0.74909. 

f(00)f(01)f(10)f(11) pe f(00)f(01)f(10)f(11) pe 
0000 0.00560 0101,0110,1001,1010 0.28731 
0001, 0010, 0100,1000 0.28731 1101, 1110, 1011, 0111 0.21269 
0011,1100 0.21269 1111 0.00560 

Figure 17. Error probabilities for 2-bit AND-OR solution. 

Let the four possible functions be f00, f01, f10, and f11.  For f00 and f11 there is zero 
probability of observing a 1 on the first (upper) qubit.  For f01 and f10 there is a 
probability of ½ of (correctly) observing a 1.  If a 0 is measured then the follow 
states result: 

( )1
00 11 01 102

00  for    ; 01  for    ; 0 0 1  for    and     f f f+ f  

After applying I(0) the following states are achieved 

( )1
00 11 01 102

00   for    ; 01   for    ; 0 0 1   for    and     f f f− − f

)

e

 

This is an important theoretical result in its own right.  Previously one-bit XOR 
had been shown to be amenable to faster than classical quantum solution.  One-bit 
OR had now been shown similarly improved by quantum computational means. 

A faster than classical solutions to the two bit AND-OR problem has also been 
evolved using SLLGP.  Again, some hand-tuning was used to improve the evolved 
algorithm.  The circuit diagram is shown in Figure 16 with error probabilities pe for 
the various functions f shown  in Figure 17.  

6.1.2 Leier & Banzhaf: Evolution of Hogg’s Algorithm 

Hogg [45] has demonstrated efficient quantum algorithms for attacking k-sat 
problems.  Let V1, …, Vn  be Boolean literals, and let Li be the literal Vi or its 
negation.  Given a formula that is the conjunction of disjunctions of k Li 

( ) ( ) ( mkmmkk LLLLLLLLL ∨∨∨∧∧∨∨∧∨∨ "…"" 212222111211  

find an assignment for the V1, …, Vn that satisfies the formula.  A simple 2-sat 
formula and an assignment that satisfies it is: 

( ) ( )1 2 1 2 1 2;     ,     V V V V V true V tru∨ ¬ ∧ ¬ ∨ = =  

40 



  H 0 
 H 0 H 1 
H 0 H 1 H 2 
H 1 H 2 H 3 
INP INP INP 
Rx[3/4 Pi] 0 Rx[3/4 Pi] 0 Rx[3/4 Pi] 0 
Rx[3/4 Pi] 1 Rx[3/4 Pi] 1 Rx[3/4 Pi] 1 
 Rx[3/4 Pi] 2 Rx[3/4 Pi] 2 
  Rx[3/4 Pi] 3 

Figure 18. Solutions to 1-Sat on 2, 3 and 4 variables (Rx[θ]  is a rotation). 

Leier & Banzhaf [56] have evolved circuits equivalent to Hogg’s algorithm for 
the simple 1-sat case.  Though classical algorithms for this problem are of O(n), 
Hogg’s algorithm is still more efficient.  Interestingly, they present some “slightly 
hand tuned quantum algorithms” arising form GP searches for 1-sat on 2, 3 and 4 
variables, given in Figure 18. 

We can readily see there is a pattern suggesting extension of the idea.  Indeed, 
Leier & Banzhaf refer to “evidently and ‘visibly’ scalable algorithms, which 
correspond to Hogg’s algorithm”.  This is useful since evolving quantum algorithms 
is likely to be tricky, as they note: 

 
The problems of evolving novel quantum algorithms are evident.  Quantum 
algorithms can be simulated in acceptable time only for very few qubits without 
excessive computer power.  Moreover, the number of evaluations per individual to 
calculate its fitness are given by the number of fitness-cases usually increases 
exponentially or even super-exponentially.  As a direct consequence, automatic 
quantum circuit design seems to be feasible only for problems with sufficiently 
small instances (in the number of required qubits).  Thus the examination of 
scalability becomes a very important topic and has to be considered with special 
emphasis in the future.  — [56] 
 
Using GP (or other search techniques) to evolve small circuits that can be 

analysed by researchers seems a promising way forward. Search needs only to 
augment human ability, it doesn’t need to solve every problem we throw at it. 

6.2 Deterministic to Probabilistic: Massey et al.  
Massey et al [65] report the results of using two quantum genetic programming 
suites: QPACE-II and QPACE-III.  QPACE-II uses a direct encoding, whilst 
QPACE-III uses a second order encoding (where the program is executed to 
generate a circuit).  

Q-PACE II evolved a deterministic full adder circuit using simple and controlled 
versions of the N and H gates, and a non-unitary zeroing gate Z.  Q-PACE II found 
the solution previously designed by Gosset [39].  The authors report that the 
evolution of quantum arithmetic circuitry seems very hard, with more challenging 
problems remaining unsolved by the approach, even after a multi-stage approach 
was adopted.  So they moved away from the search for deterministic circuits to a 
search for probabilistic circuits.  Q-PACE II found a probabilistic half-adder on 3 
qubits using only the H gate and the zeroing gate Z (together with their controlled 
equivalents).  The problem is defined as |x,y,z〉 → |x, x XOR y, x AND y〉, where |x 
XOR y〉 is the sum bit and |x AND y〉 the carry bit. Q-PACE II evolved the circuit 
shown in Figure 19, with results shown in Figure 20. 
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Figure 19. Probabilistic half-adder. 

 

Figure 20. Probabilities of obtaining outcomes for half adder inputs. 

 

Figure 21. Results for Permutation Function Fitness Cases. 

Q-PACE III evolved a number of probabilistic quantum programs which, when 
given a number of suitably encoded [0..3] → [0..3] permutation functions, returned 
for every one of these permutation functions (with a probability > 0.5) the value of x 
that gave the maximum value of f(x) for that function.  (This is called the “PF 
MAX” problem for short.)  Ultimately, Q-PACE III evolved a program that ‘solved’ 
the problem for all 24 possible [0..3] → [0..3] permutation functions, as shown 
below.  

Q-PACE III evolved the program “PF MAX 1” using the following 8 fitness 
cases (expressed as permutations): {(3,1,0,2), (0,2,3,1), (3,0,1,2), (1,2,3,0), (3,2,0,1), 
(2,3,0,1), (2,0,1,3), (2,1,3,0)}.  The result of PF MAX 1 is shown in Figure 21. 
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Figure 22.  Probabilistic PF-MAX circuit. 
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Figure 23. Second PF-MAX circuit. 

PF MAX 1 is a probabilistic solution to all 8 of the fitness cases used, and for 20 
out of the 24 possible permutation functions, it gives the correct answer with a 
probability of more than 0.5; for the other 4 fitness cases, it gives the correct answer 
with a higher probability than any given incorrect answer.  Thus PF MAX 1 seems a 
true MAX algorithm for [0..3] → [0..3] permutation functions, that “works” on all 
24 of these functions.  Although evolved from only 8 fitness cases, the resulting PF 
MAX 1 is much more general. The circuit (after hand removal of 5 gates that have 
no effect) is shown in Figure 22. 

Repeated experiments failed to evolve a program that would give the correct 
solution with p > 0.5 for all 24 fitness cases.  Relaxing the acceptance criterion to p 
> 0.4 enabled  Q-PACE III to evolve a single quantum circuit with p = 0.5 of 
returning the correct answer for all the 24 fitness cases (the probabilities of returning 
incorrect answers are 0.25 or zero).  So the quantum circuit implements a 
probabilistic MAX function that has twice the probability of “guessing”.  The circuit 
generated (after hand removal of several gates that have no effect) is shown in 
Figure 23. 

The system is exploiting the initial set-up very efficiently.  Suppose, for 
example, that the maximum occurs at x=00.  Then |0011〉 has amplitude ½ 
(corresponding to probability ¼) and |0000〉, |0001〉 and |0010〉 all have amplitude of 
0.  Now consider x=10.  We must have f(10)=00, f(10)=01, or f(10)=10 since the 
maximum is already reached uniquely by f(00)=11.  Suppose f(10)=00.  Then the 
state |1000〉 has amplitude ½, while |1001〉, |1010〉 and |1011〉 all have amplitudes of 
0. The application of the CCN operation transforms |1000〉 to |0000〉 with amplitude 
½ whilst |0011〉 remains unaltered with amplitude ½.  We now have two eigenstates 
with x=00 and amplitude ½: |0000〉 and |0011〉.  So the probability of now observing 
one of these eigenstates is ¼ + ¼ = ½.  This is a better than classical algorithm.  
More generally, if f(x)=11 then we can consider the states |x 11〉 and |x' f(x')〉 (where 
x' is obtained from x by flipping the first bit) to obtain a similar result.   
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Furthermore, there would appear to be an obvious generalisation to n qubits: let 
the second negation on qubit 1 be controlled by all the qubits of f(x).  This is another 
example of an evolved circuit generalised by human analysis.10 

6.3 Hitting the Physics: How many pulses does it take to make a 
CN? 

6.3.1 Scaling Down 
All of the above work has used ‘basic’ gates to construct circuits and algorithms.  
However, what counts as ‘basic’ depends on your interests.  In practice, even a 
simple two-qubit gate such as CN may require a multi-stage implementation.  For 
example, Gershenfeld & Chuang [36] describe a Nuclear Magnetic Resonance 
(NMR) scheme for quantum computation based on ensembles of molecules.  They 
show how radio frequency pulse sequences can be used to implement arbitrary 
single-qubit rotations and also the two-qubit CN gate.  (This suffices for all 
computations.)  In computer science terms, we would generally regard the usual 
basic gates as assembly language; the pulse sequence implementation is somewhat 
akin to a firmware instruction sequence.  The series of rotations below is 
Gershenfeld & Chuang’s CN gate implementation (up to phase, which can be 
removed by further rotations): 
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There is a choice of pulse sequences (each implementing a rotation) to 
implement CN.  Where there is choice, there is potential optimisation.  Rethinam et 
al [76] use a basic genetic algorithm (bit string representation with single point 
crossover) to evolve pulse sequences to implement CN.  The chromosome bit string 
is decoded as sequence of (rotational axis, angle) pairs. 9 bits are used for the angle 

                                                 
10 It must be acknowledged that the degree of improvement supplied by this generalisation decreases 
exponentially as n increases.  
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of rotation, allowing an accuracy one degree.  They managed to evolve rotation 
sequences of length 3, more efficient than previously exhibited solutions.  These are 
given below: 

12 2 12 1

12 1 2 12

(270) (90) (90)

(90) (270) (90)

z xz x

x z xz

C N R R R

C N R R R

=

=
 

An important component of one solution to factor N = 15 comprises two 
successive CN gates (acting on qubits 1,2 and 2,3 respectively).  The new CN 
implementation therefore improves the best achieved from 10 to 6 rotations.  
However, by composing the two operations and seeking a more direct 
implementation to this composed circuit a result was found using 5 rotations. 

This field of work is significant.  Efficiency effects integrity, since inefficient 
implementations will be more likely to suffer from environmental interference and 
faults due to the practicalities of carrying out operations.  Thus, there is considerable 
merit in using evolutionary searches to derive excellent low-level implementations 
of gates.  

Rotations have some angle θ as a parameter.  Small changes in θ give rise to 
small changes overall: there is an element of natural continuity, which renders 
guided search particularly appropriate.  CN is not a complex gate and the search 
space is very small compared with those of many problems attacked by evolutionary 
search.  The search space may be too large for humans to derive optimal micro-
circuits but it is clearly within the range of evolutionary search.  The work of [76] is 
an important contribution.   

6.3.2 Higher Level Basic Gates 
What counts as a ‘basic gate’ is something of a moveable feast.  Lukac et al [63] 
present a detailed investigation of how efficient low-level implementations can be 
evolved of some very well-known gates such as Toffoli, Fredkin, and Margolus 
gates.  Their paper provides cost functions that are felt to be more realistic (in terms 
of physical realisation costs).  Gate implementations by previous authors were 
successfully evolved together with several elegant new implementations.  Local 
optimisation rules such as commutativity of certain operators (where the order in 
which gates are applied does not affect the result) are invoked to simplify and reduce 
costs.  This work is a further (and clearly successful) demonstration that evolution, 
or heuristic search more generally, will find fruitful application across the spectrum 
of gate levels. 

6.3.3 Location Matters 
Most published circuits do not take into account where qubits physically reside 
during computation.  Some current implementations may involve a line or small 2D 
lattice of qubits.  In many implementations, two-qubit operations such as CN may 
only take place on neighbouring qubits, requiring qubit values to be progressively 
swapped until the required pair are neighbouring.  These swaps are simply 
overheads to be optimised away [93].  There are also choices to be made as to the 
physical location where gates will be applied.  Van Meter & Binkley [93] précis 
their current work on the allocation of qubits and gates to physical locations and its 
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solution by genetic algorithms and report that the approach produces “better layouts 
than hand-compiled programs for a 90-instruction program on 32 qubits”.  

We believe that issues such as location and reducing the overheads arising due to 
features of specific hardware technologies will benefit further from applications of 
guided search. 

6.3.4 Summary 
We have seen how various evolutionary search techniques had been harnessed to 
explore algorithms and circuits expressed in terms of basic operations or gates.  The 
search space was essentially ‘physics free’, or, more accurately, ‘implementation 
independent’.  It is perfectly sensible for algorithm researchers to work in terms of 
what basic gates achieve rather than how.  As noted earlier, progress in classical 
software development has been marked by a drive to ever-increasing levels of 
abstraction and there seems little reason to believe that quantum software should be 
different.  However, the abstract concepts we manipulate must be implemented in 
some manner and these implementation issues must be addressed.  The emerging 
work on implementation concerns highlights opportunities for evolutionary search.  
Efficient implementation at low levels has a major effect: everything is built on top 
of it.  As Rethinam et al [76] point out, there is “enormous potential for simplifying 
the implementation of working quantum computers”. 

6.4 Starting in the Right Place 
As noted earlier, if you have a fully working circuit you may wish simply to 
optimise some non-functional property or properties.  A common approach to such 
problems in computer science is simply to apply a succession of functionality-
preserving transformations (also termed semantics-preserving transformations) to 
the artefact (e.g. program), each of which improves the property of interest.  (To be 
precise, such transformations sometimes alter the functionality a little, but to an 
extent that does not matter for most purposes.  For example, (a*b)*c = a*(b*c) is a 
mathematical identity, but replacing an instance of the left hand phrase with the right 
hand one might give results of different precision if the variables are floating point 
numbers.) 

In very recent work Maslov et al [64] derive efficient schemes for generating 
and storing identities for use in quantum sub-circuit substitution.  They give 
examples of how repeated substitutions can provide significant optimisations.  
Circuit optimisation is a well-established concept in traditional hardware 
engineering and more recently in reversible circuit engineering.  We believe that 
evolutionary search will find useful application to the (essentially) non-linear 
quantum circuits optimisation problem. 

6.5 Communication, Teleportation and Entanglement 
We can be fairly flexible as to what counts as an algorithm or program.  As Clark & 
Jacob [17] point out, communication protocols can be thought of as programs 
implementing (sometimes unreliable) distributed computation.  Quantum mechanics 
provides us with exciting opportunities to derive new protocols. One such protocol – 
quantum teleportation – has already captured the imagination of many. Several 
evolutionary search researchers have attempted to evolve circuits for it. 
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Figure 24. Teleportation circuit of Brassard [11]. 

6.5.1 Quantum Teleportation 
Quantum teleportation is a means by which unknown quantum states can be 
transferred between locations using only classical channels and pre-existing 
entanglement. Brassard’s original teleportation circuit [11] is shown in Figure 24. 

The single qubit gates are defined by: 
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As is usual in protocols, communication is between Alice and Bob.11  The first 
two gates created a maximally entangled pair of qubits, the lower of which is sent to 
Bob.  The other is sent to Alice.  The next two gates on the send circuit serve to 
entangle all three qubits.  The question marks denote measurements (giving rise to 
|0〉 or |1〉) by the sender Alice.  The results are then communicated via classical 
channels to Bob who feeds them back in as the initial values of the top two qubits of 
his receive circuit. 

Williams & Gray [97] use their list-based GP scheme to attack the design of the 
send and receive circuits.  The work uses a rank based section scheme, to avoid 
premature domination of the population.  There is a fair degree of optimisation 
sophistication in this work and it is unsurprising that this produces circuitry that 
improves on human design.  The approach is able to produce a variety of send 
circuits of similar efficiency to the Brassard circuit and improved receive circuits.  
Furthermore the system used by Williams & Gray allows the user to restrict the 
choice of gates.  A complete evolved circuit using only L, R and CN is shown in 
Figure 25.  

The cost function used by Williams & Gray assumes that one knows the unitary 
transformation to be achieved by a sub-circuit.  It measures deviation of the evolved 
unitary matrix S from the target matrix U: 

8 8

1 1
( , ) ij ij

i j
f S U U S

= =

= −∑∑  

 

                                                 
11 Alice, Bob and Eve (who eavesdrops on communications between Alice and Bob) are the 
traditional actors in descriptions of classical secure communications protocols. 
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Figure 25. Evolved Teleportation circuit of Williams & Gray [97]. 
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Figure 26. Codon interpretation tables for the three stages.12 

Yabuki & Iba [98] also address teleportation.  They use a standard genetic 
algorithm approach, and they evolve a circuit in one go.  They assume (and interpret 
everything in this context) that there are three stages (EPR pair preparation, send, 
and receive), that Alice can operate only on the first and second qubits, that 
measurement is allowed only once, and that the gates are restricted to {CN, L, R}.  
They use a fixed length chromosome comprising a sequence of three letter codons.  
The letters of the codon are chosen form {0,1,2,3}.  In general, the first letter of a 
codon denotes the type of gate, the second identifies the qubits on which it operates.  
The third has a variable interpretation.  The first codon starting with a 3 indicates the 
end of EPR generation and the start of Alice’s send.  The second such codon marks 
the partition between Alice and Bob’s sections.  The interpretation is based on tables 
for each section (Figure 26). 

One chromosome for William & Gray’s circuit (shown in Figure 25) is  

201|002|100|001    |302|221|012|132    |331|001|231|112  
 EPR Alice Bob 

 

                                                 
12 For consistency within this review paper we have adopted the convention of Cij denoting control 
qubit i and target qubit j.  Yabuki & Iba [98] reverse this convention. 
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Figure 27. Yabuki & Iba’s improved teleportation circuit. 

The first codon 112 indicates the element in the major row 1, column indexed 1, 
minor row 2 of the EPR table, i.e. L1. 231 is ignored (empty element), 001 is CN10 
and 331 marks the start of Alice’s part.  132 is ignored, 012 as CN21, 221 as L2.  302 
is interpreted as Alice’s measurement.  Bob’s four codons are interpreted as CN10, 
L0, CN10 and R0.  Yabuki and Iba evolved a simpler circuit, shown in Figure 27.  The 
work also differs from that of Williams & Gray in that the evaluation function is 
based on three fitness cases based on how well the circuit actually teleports, i.e. how 
well it transfers the source qubit state exactly. 

The reader may well be struck by just how small the original and the evolved 
quantum teleportation circuits really are.  It suggests that truly novel quantum 
protocols could be well within reach of evolutionary search.  The circuits (or sub-
circuits) evolved were obtained in full knowledge of the structure of Brassard’s 
original circuit.  The concept of teleportation was known as was the structure of a 
solution.  We believe that current successes suggest that the evolutionary search 
community should co-operate with the quantum information processing community 
to pose new and unsolved problems.  Problem solving seems within our grasp; 
problem finding seems the immediate challenge. 

6.5.2 Communication and Communication Resources 
A variety of quantum protocols mix classical communication with the exploitation 
of entanglement.  Teleportation is a high-profile example. Dense coding is another 
(where the communication of 1 classical bit of information coupled with a pre-
existing entangled qubit pair allows 2 bits of classical information to be 
communicated between sender and receiver, see [70]).  The tradeoffs between 
classical communication and quantum entanglement resources are improperly 
understood.  Bennett has conjectured that a single use of any given two-particle 
transformation has a unique maximum power for entanglement or communication 
(for forward, backward, or two-way communication).  Spector & Bernstein [87] 
report Smolin as suggesting one of the gates below (SMOLIN) as being capable of 
generating entanglement but not classical communication.  
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Spector & Bernstein [87] have evolved a circuit that allows one classical bit to 
be communicated per use of the SMOLIN gate.  This was analysed and simplified, 
and subsequently generalised.  The three stages of circuit derivation are shown in 
Figure 28.  This is another excellent example of small evolved circuits acting as an 
intellectual spur to creativity in the field.  We believe that such ‘concept seeding’ 
will be a major exploitation avenue for GP-based quantum work.  
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Figure 29. One-bit Prior Entanglement Allows Two Classical Bits Communication 

Entanglement is often regarded as a ‘resource’.  There are many measures of 
entanglement and it is not fully understood what entanglements can be achieved.  
Rubinstein [78] uses GP to evolve maximally entangled states for 3, 4 and 5 qubits.  
The system is using the same idea in each case; this is discernible on sight of the 
circuits produced.  (As above, patterns can be recognised.) 

Spector & Bernstein [87] demonstrate an evolved circuit that allows two bits of 
classical information to be communicated with one-bit of prior entanglement, as 
shown in Figure 29.  We believe that the exploration of entanglement and 
communication along the lines of Spector & Bernstein’s work will prove a highly 
fruitful avenue for evolutionary search.  Understanding the fundamental capabilities 
of quantum resources is a necessity. 

6.6 Visualisation 
Visualisation can often help to understand what is going on in complicated cases.  
Can we visualise the execution of a quantum algorithms as an aid to understanding? 

A general single qubit state |Φ〉 = a|0〉 + b|1〉 is characterised by the two complex 
amplitudes a and b.  So at first sight this would appear to require a four-dimensional 
diagram.  However, one of the dimensions reduces to an ignorable phase, leaving 
just three dimensions.  The customary way to visualise this state is by using a Bloch 
sphere, taking the “north pole” to be |0〉 and the “south pole” to be |1〉.  
Superpositions lie elsewhere, but all on the surface of the sphere because of the 
normalisation condition |a|2 + |b|2 = 1.  See, for example, [70, section 1.2] for more 
description.  Note that, although the vectors |0〉 and |1〉 are orthogonal, they appear 
anti-parallel in the Bloch-sphere representation, which can sometimes cause 
confusion. 

It is hard to visualise more than one qubit: an n-qubit state is characterised by 2n 
complex numbers, or 2n+1 real numbers.  Even losing one of these numbers as a 
phase factor is of little help.  

The discussion above shows that small circuits of a few qubits are producing 
valuable results: sometimes new special purpose results, and sometimes small 
results that can then be generalised by a human.  So it would seem worth 
considering the visualisation of just a small number of qubits, to further improve our 
intuition about quantum algorithms.   
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Figure 30.  A 3-qubit Spector cube for (a) the state |000〉  (b) equal superposition of all states 

 

Figure 31.  A 4-qubit complex Spector cube for the state ( )1
6 2 0000 0101 1111i i− +   

Spector [88, section 3.2] uses a cube diagram to represent the state of 3 qubits.  
Each corner of the cube represent one of the eight states, and a small disc drawn at 
each corner represents the amplitude of the respective state.  In Spector’s diagrams, 
the size of the disc represents the absolute value of the amplitude, with a minus sign 
shown if the amplitude is negative: in Spector’s example quantum circuit, all 
amplitudes are real, which simplifies things.  See Figure 30. 

Spector shows the progress of Grover’s algorithm on 3 qubits as a sequence of 
cube diagrams [88, figs 3.4–3.13].  This sequence vividly shows the amplitudes 
initially being smeared out over all the states, and then coming together on the result 
states. 

It seems worthwhile to explore this form of visualisation further, for more 
general cases.  Complex amplitudes could be shown using a small vector in the 
complex plane at each cube corner (in Spector’s example, all such vectors are purely 
leftward or rightward pointing).  Higher numbers of qubits could be shown.  A 2D 
drawing of a 4D hypercube might still allow a sufficiently “natural” representation.  
This is topologically equivalent to a side-by-side pair of cubes.  See Figure 31.  This 
suggests that a pair of hypercubes (or a pair of pairs of cubes) could be used to 
represent a 5-qubit state. 

6.7 Summary 
The use of evolutionary computation to derive quantum artefacts has seen 
substantial progress in a short time.  Since its origins in the late 1990s a considerable 
variety of problems have been attacked by evolutionary computation (and genetic 
algorithms and genetic programming in particular). 
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Even though the evolution of circuits and algorithms seems hard, we have seen 
several examples of novelty.  Some work has pushed the frontiers of knowledge of 
quantum information processing, producing results of interest independent of the 
means of production.  

Evolved artefacts have generally been ‘small’, which might raise worries about 
scalability.  However, small artefacts are amenable to human analysis, and 
generalisations can be found.  

Finally we note that Quantum Information Processing (QIP) is in its infancy.  
Understanding the possibilities and limits of what quantum systems and resources 
such as entanglement can offer will prove of major importance.  It is encouraging to 
se that pieces of work are underway on fundamental problems of the topic. 

7 Conclusions 
The above discussion leads us to the following conclusions: 

There is nothing much new!  There is significant potential for discoveries. 
There are still very few fundamentally different quantum algorithms (however 
discovered). 

The evolution of novel quantum artefacts is possible, but hard.  The search 
landscape would appear to be extremely rugged and complicated, and our ability is 
currently limited to the evolution of small-scale artefacts. 

Small may be beautiful.  Heuristic searches for implementations of even 
‘simple’ gates should prove beneficial.  This is important in the same way that 
improved circuitry for adders and multipliers is important in classical computing. 

From little acorns mighty oaks do grow.  The human analysis of small artefacts 
can lead to general algorithms being discovered and we have seen several examples 
of this. We should aim to make best use of the abilities of highly gifted quantum 
researchers. (They have developed the subject this far.) The ability of heuristic 
searches to reach surprising results will most likely pique the interest in the quantum 
scientific community. Are we moving towards an era of GP-assisted discovery? 

We should get back to basics.  Work seems targeted at the evolution of specific 
circuits, algorithms and protocols.  However, quantum mechanics itself is 
improperly understood.  It is not known for example whether particular 
entanglements are achievable.  There are various measures of entanglement and 
seeking to optimise these for particular circumstances has the potential to surprise 
and outperform the quantum mathematicians (for whom pen-and-paper analysis 
remains dominant.) 

We need to use the power.  All work in the area of evolving quantum artefacts 
seems to have been carried out using very modest hardware.  But there is a 
significant trend to widen access to high-end computing power.  (In the UK there is 
for example a substantial investment in ‘Grid computing’.)  Furthermore, 
programmable hardware is now becoming very cheap, for example, racks of field 
programmable gate arrays (FPGAs) could be used to provide substantial simulation 
power.  Koza has mapped the increasing success of GP to the rise in computing 
power since its emergence.  We are now faced with a similar, if not greater, rise in 
sheer power.  There would seem to be an opportunity to embrace the emerging 
availability of such resources. 

The emergence of practical quantum computational facilities will enable even 
more interesting artefacts to be evolved. 
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8 The Future  
This section is rather more speculative, and, based on the conclusions above, we 
discuss aspects of quantum computation that might show the greatest promise for 
meta-heuristic search techniques, and what work needs to be done to prepare the 
way. 

8.1 Improving the simulation efficiency 
The quantum search space is exponentially huge, which is why meta-heuristic search 
tools are being used.  And the cost function evaluation is in its turn exponentially 
expensive to evaluate, because of the need to evaluate quantum algorithms on 
classical machines.  This requires careful design if any but the most trivial quantum 
circuits are to be evolved.  For example, selection strategies should be carefully 
chosen, and adding some noise may help with certain problems [58].   

Attacking the expense of the cost function offers great potential improvement.  
There are certain techniques that improved the efficiency of classical simulation; 
see, for example, Viamontes et al’s QuIDD approach [94], and Massey et al’s ‘row 
swapping’ optimisation [65].  However, these provide significant speed-up only for 
circuits with a great deal of a certain kind of structure, unlike those that are 
generated by random evolutionary moves. 

It is already common for cases of expensive cost functions (such as complicated 
finite element or fluid flow engineering applications) to use some kind of 
approximation in the early stages of the search, and to use the full cost function only 
towards the end, when the extra precision is necessary.  See, for example [9].  The 
quantum circuit search space appears to be exceptionally rugged [57], which also 
makes search hard.  A choice of approximate cost function that somehow ‘smooths’ 
the search space [18] may help to make search progress more effectively.  The 
challenge with quantum circuits is to find suitable approximations and smoothings. 

Eventually, when quantum computers become a reality, it will be possible to do 
a form of intrinsic evolution: evaluating the cost function directly on a quantum 
computer, thereby gaining exponential speedup over classical simulations.  One 
should remember, however, that a classical simulation can calculate the entire 
probability distribution of the final state, not just provide the single observation that 
would be available intrinsically.  This extra information available classically should 
be exploitable in current work. 

8.2 New areas to explore 

8.2.1 Global quantum properties 
The most novel quantum algorithms (Grover’s, Shor’s) appear to be exploiting 
certain global properties of the quantum state space, rather than acting on localised 
qubits.  What other applications would benefit from this kind of solution?  Should 
we modify search cost functions to reward this kind of solution? 

8.2.2 Probabilistic results 
In addition to the global properties, quantum algorithms are intrinsically 
probabilistic, and this feature should be exploited more.  There is a rich area of 
classical probabilistic algorithms (see for example [69]) that should be carefully 
examined for quantum possibilities and inspiration. 
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There are two different interpretations of what “correct with a probability of p%” 
can mean: (1) for a certain p% of its inputs, the circuit gives the right answer every 
time (2) for all of its inputs, the circuit that gives the right answer with probability 
p% each time.  Each interpretation leads to different kinds of cost functions, and 
different kinds of quantum algorithms. 

8.2.3 Quantum protocols 
The evolutionary search work has tended to concentrate on quantum algorithms. 
Quantum protocols also offer a rich area for search, and evolutionary search has 
been used to some degree to explore quantum teleportation and dense coding, as 
noted above.   

Evolutionary techniques have been used with success to discover efficient 
classical communication protocols, for example [17], using the classical protocol 
reasoning BAN logic [15].  Can this approach be extended to quantum protocols?  
How do we need to extend or change the logics to handle quantum protocols? 

8.2.4 Other computational models  
Most of the work currently evolves quantum circuits of qubits.  There are other 
models of quantum computation that could be explored. 

It is not necessary to restrict the quantum values to be binary qubits: qudits, d-
dimensional quantum values, are worth investigating.  It is not even necessary to 
restrict the quantum values to be discrete: continuous quantum algorithms exist [13], 
and might form a ‘smoother’ search space. 

Non-circuit based models of quantum computation, such as quantum cellular 
automata [14] [81], and measurement-based quantum machines [73], could prove to 
have more tractable search spaces. 

8.3 Other applications 
In addition to searching for particular quantum circuits, meta-heuristic search can be 
used for other applications in the quantum domain. 

8.3.1 Searching for quantum solutions  
Meta-heuristic search has been successfully used to find counter-examples to 
conjectures in classical domains, such as classical cryptography [18].  There are 
many conjectures in quantum computation and quantum information theory (such as 
bounds on entanglement, and channel capacities) that offer suitable targets to meta-
heuristic searches for counterexamples.  For example, Spector & Bernstein [87] use 
genetic programming to discover new bounds on quantum communication. 

Certain quantum states are particularly ‘interesting’, for example, they are highly 
entangled.  These states are known for small quantum systems (2 or 3 particles), but 
not for larger ones.  Search against a suitable cost function can be used to find these 
larger interesting states [12]. 

8.3.2 Quantum random walks  
Quantum random walks [49] are quantum analogues of classical random walks, with 
very different properties.  For example, the probability distribution for a classical 
random walk is binomial, with a peak at the origin, and a width O(√n) after n steps, 
whilst the probability distribution for a quantum random walk is strongly peaked at 
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O(±n/√2).  Childs et al [16] use a quantum random walk algorithm to find a path 
through a graph exponentially faster than classically.  Quantum random walks can 
be used as the basis of efficient search algorithms [82]. 

8.3.3 Quantum genetic algorithms  
Grover’s algorithm uses quantum effects to perform searches more efficiently that 
can classical algorithms.  Quantum random walks offer potential exponential 
speedup of certain searches.  Quantum effects exploit global properties of the state 
space; genetic algorithms, as explained by the schema theorem, perform an 
implicitly parallel search over global hyperplanes in the search space [46].   

Can these two global, parallel processes be combined to produce a quantum 
genetic algorithm?  The quantum “inspiration” may simply be the idea of 
superposition [41] [42].   More detailed work by Rylander et al [80] suggests that 
getting a fruitful combination is non-trivial.  It seems we will need yet further 
intuition priming to understand how to combine quantum inspiration with classical 
results. 
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