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ABSTRACT 
An evolutionary synthesis method to design low-sensitivity IIR 
filters with linear phase in the passband is presented. The method 
uses a chromosome coding scheme based on the graph adjacency 
matrix. It is shown that the proposed chromosome representation 
enables to easily verify invalid individuals during the 
evolutionary process. The efficiency of the proposed algorithm is 
tested in the synthesis of a fourth-order linear phase elliptic 
lowpass digital filter. 

Categories and Subject Descriptors: I.0 General 

General Terms: Algorithms, Design  

Keywords: Circuit, synthesis, digital filters, genetic algorithms. 

1. INTRODUCTION 
The distortion-free transmission of signals requires linear 

phase digital filters. Since digital filters with linear phase along 
the entire frequency response are unrealizable, the linear phase 
requirement is generally limited to the passband. According to the 
length of the impulse response digital filters are classified as 
Finite Impulse Response (FIR) or Infinite Impulse Response 
(IIR). The linear phase requirement can be easily implemented in 
FIR filters. However, FIR filters satisfying the same magnitude 
specifications tend to have higher order than its IIR counterpart. 
Consequently, the design of IIR filters with linear phase is more 
attractive for such applications.  

There are two different approaches to design linear phase IIR 
filters. To design a single filter that realizes the magnitude and 
phase specifications simultaneously [1] or to design a filter that 
meets the desired magnitude followed by a cascade of allpass 
equalizer stages that correct the phase response [2-3]. In this 
paper, the last approach is adopted where the evolutionary 
algorithm is used to synthesize a cascade of second-order low-
sensitivity allpass sections that correct the phase response of an 
IIR filter.  

Low-sensitivity digital filters are of major practical interest 
since any actual implementation of a digital filter will involve 

finite word length arithmetic operations and quantization errors. 
However, the design of low-sensitivity filters is not a 
straightforward task since there are no general analytical methods 
to derive the optimal filter configuration [4]. 

In the synthesis of a digital filter composed of multipliers, 
delays and adders, only the values of the multipliers should be 
optimized. In a large number of works found in the literature [5-
11], a Genetic Algorithm (GA) is used just as an optimization 
method to find the multipliers values for a given fixed filter 
topology. On the other hand, among the works [12-17] addressing 
the evolutionary synthesis methods only a few deal with the low-
sensitivity problem [16-17]. Several equivalent filter structures 
are able to realize the same transfer function. These structures can 
be obtained by different methods, varying significantly with 
respect to complexity and number of elements. A given structure 
may require a large number of multipliers and yet be relatively 
insensitive to the coefficients quantization errors while one with 
fewer elements may generate parasitic oscillations when signals 
are quantized [18]. Thus, low-sensitivity is related to the filter 
topology and it is expected that the evolutionary synthesis 
methods could find better solutions than the deterministic 
approaches [19-22] which are bounded to a limited set of filter 
structures.  

The efficiency of an evolutionary algorithm requires suitable 
representations to detect the generation of anomalous individuals 
[23]. In digital filters domain, there are two possible anomalies: 
structurally invalid individuals and non-computable individuals 
containing delay-free loops. The first category consists of filters 
that have more than one or no component at all incident into a 
circuit node. The second category is composed of physically 
unrealizable filters that would demand digital processors with 
infinite bandwidth to operate properly. In this case, it is shown 
that the computability verification is easily implemented with the 
proposed representation requiring a small amount of computation. 
To verify the performance of the proposed evolutionary algorithm 
an equalizer for an IIR fourth-order lowpass filter is synthesized.  

The content of the paper is outlined as follows. A brief 
introduction on equalizer design is presented in Section 2. The 
quantization effects in digital filters are discussed in Section 3. 
The proposed adjacency matrix representation for digital filters 
and the rules to construct valid individuals including the 
computability and the application of the genetic operators are 
discussed in Section 4. The heuristic of the fitness computation is 
described in Section 5. In Section 6, a numerical example to 
verify the performance of the proposed evolutionary synthesis 
method is presented. Concluding remarks are given in Section 7. 
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2. Design of Allpass Transfer Function 
Equalizer 

The transfer function of a digital filter is the ratio between 
the z-transform of the output node and the z-transform of the 
input node. Fig. 1 illustrates a first-order filter structure, where 1v  

and 5v  are, respectively, the input and output nodes. 

 
Figure 1. First-order digital filter structure. 

The filter transfer function, ( )FH z , is given by: 

5

1 1

1( )F
v zH z
v z m

+
= =

−
  (1) 

The design of linear-phase or constant group-delay digital 
filters is generally accomplished in two steps. In the first step, a 
filter satisfying the magnitude specifications is designed ignoring 
the phase. After that an allpass equalizer, which is placed in 
cascade with the filter, is designed to compensate for the filters 
phase variations. Fig. 2 illustrates the block diagram of a digital 
filter with phase equalization, where FH ( z )  and EH ( z )  are 
the transfer functions of the filter and equalizer, respectively. 

FH ( z ) EH ( z )

 
Figure 2. Structure of group delay equalizer 

The filter and the equalizer group delays are respectively 
given by: 

F
F

dθ (ω )τ (ω )
dω

= −   (2a) 

E
E

dθ (ω )τ (ω )
dω

= −   (2b) 

Where:  

jω
1 jωF

F Fjω
F

Im{ H ( e )}θ (ω ) tg H ( e )
Re{ H ( e )}

−= =  (3a) 

jω
E Eθ (ω ) H ( e )=   (3b) 

Thus: 

jω jω jω
FE F EH ( e ) H ( e ) H ( e )= ⋅   (4a) 

FE F Eτ (ω ) τ (ω ) τ (ω )= +   (4b) 
According to (4), a constant group delay filter can be 

designed using an allpass equalizer that meets the following 
specifications: 

           for 

   for 

 

jω s
E

E F p1 p2

ω
H ( e ) 1 0 ω

2
τ (ω ) τ τ (ω ) ω ω ω

⎧
= ≤ ≤⎪

⎨
⎪ = − ≤ ≤⎩

 (5) 

Where sω , p1ω , p2ω  and τ  are the sampling frequency, the 
lower limit of the passband, the upper limit of the passband and a 
given constant, respectively. To meet the first specification, the 
equalizer transfer function must be of the form: 

N 2
0i 1i

E 2
1i 0ii 1

a z a z 1
H ( z )

z a z a
=

+ +
=

+ +∏   (6) 

Where, N  is the number of second-order sections.  

To insure the stability, the poles of the transfer function in 
(6) must be inside the unit circle. This is obtained by constraining 
the coefficients of each second-order denominator by the 
following relations: 

0i

0i 1i 0i

1 a 1
1 a a 1 a
− < <⎧⎪
⎨− − < < +⎪⎩

  (7) 

Replacing jωz e=  in (6) and taking into account (2b), the 
equalizer group delay for the ith second-order section can be 
written as: 

0i 0i 1i
Ei 2 2

0i 0i 1i 1i 0i 1i

2( a 1)( a a cosω 1)
τ (ω )

2cosω( 2a cosω a a a ) ( a 1) a

− + +
= −

+ + + − +
   (8) 

Therefore, the coefficients 0ia  and 1ia  of each section of 
the transfer function EH ( z )  must satisfy (7). They should be 
optimized so that the equalizer group delay (8) corrects the filter 
group delay, in such way that the overall structure achieves an 
approximately constant group delay in the passband. 

3. Quantization Effects 
Although the fact that a given transfer function can be 

realized by an unlimited number of structures, in general, only a 
few are sufficiently insensitive to the coefficients quantization 
errors. To illustrate the quantization effects in the transfer 
function, consider the first-order structure of Fig. 1. A practical 
implementation of this transfer function requires the coefficients 
quantization due to registers finite word length. After quantization 
the transfer function can be expressed as: 

,
1

1( )F Q
Q

zH z
z m

+
=

− ⎡ ⎤⎣ ⎦
  (9) 

Where , ( )F QH z  and 1 Qm⎡ ⎤⎣ ⎦  are the quantized versions of ( )FH z  

and coefficient 1m  respectively.  

Replacing jz e ω=  in (9), the magnitude and the phase 
responses can be expressed as: 

( )
, 2

1 1

2
1

, 2
1 1

2 cos 1
( )

2 cos 1

1
( )

2 2 cos 1

j
F Q

Q Q

Q
F Q

Q Q

H e
m m

m

m m

ω ω

ω

τ ω
ω

⋅ +
=

− +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−⎡ ⎤⎣ ⎦
= −

⎛ ⎞⋅ − +⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

 (10) 

Where , ( )j
F QH e ω  and , ( )F Qτ ω  are the quantized versions of 

( )j
FH e ω  and ( )Fτ ω . 
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As a consequence, the transfer function differs from the ideal 
response and the poles and zeros are displaced from their original 
locations. If the poles are displaced to a location outside the unit 
circle in the z-plane, the quantized filter will be unstable. 
However, it is possible to minimize these effects by synthesizing 
filter structures that are inherently less sensitive to the coefficients 
quantization. 

An evolutionary approach able to synthesize low-sensitivity 
digital filters is a compelling alternative to the restricted number 
of structures that may be synthesized by deterministic methods. 
However, such an algorithm should be able to overcome some of 
the drawbacks associated with the generation and detection of 
anomalous structures during the evolutionary process.  

It will be shown that, when used to represent digital filters, 
the proposed chromosome coding scheme enables to devise 
computationally efficient procedures to identify such anomalous 
individuals. 

4. The Adjacency Matrix Representation for 
Digital Filters 

The adjacency matrix of an n-node oriented graph is defined 
as [24]: 

Definition 1: Adjacency matrix 

Let G (V, E) be an oriented graph with no parallel edges and 
n vertices sorted out between 1v  and nv , where V and E denote, 
respectively, the set of vertices and edges of the graph. The 
adjacency matrix [ ]ijA a=  of the oriented graph G is the n x n  
matrix defined as: 

i j1, if (v , v )  E

0, otherwiseija
∈⎧⎪= ⎨

⎪⎩
  (11) 

An edge is said to be incident out of its initial vertex and 
incident into its terminal vertex. A vertex is called an isolated 
vertex if no edge is incident on it. 

In Fig. 3(a) the adjacency matrix A  corresponding to the 
graph G of Fig. 3(b) is shown. In this matrix the main diagonal 
non-zero entries represent self-loops or short-circuits as, for 
example, the 33a  entry of the matrix corresponding to the edge 

3e . 

The adjacency matrices corresponding to the three basic 
elements of a digital filter are shown in Table 1. As shown in this 
table, a two-edge representation is used to represent the three-
terminal adders. As a consequence, only the columns containing 
adders will have two entries due to the three-terminal nature of 
this element. The columns corresponding to the other elements 
will have just one entry. 

4.1 Invalid Individuals 
In an evolutionary process invalid individuals can be 

generated in the initial population or after the genetic operator’s 
application. They can be classified in two categories: the 
structurally invalid individuals and the non-computable ones.  

Since the fitness computation is the most time consuming 
task, the algorithm efficiency can be considerably increased if 
checking rules to prevent the evaluation of invalid circuits are 

included [23]. Since in digital filters, the circuit components 
depend on the direction of the signal flow, the topology 
restrictions in a digital filter are particularly severe when 
compared with analog filters. 

(b)(a)

G

A = 

v1 v2 v4

v3

e3

0 1 1 0

0 0 0 1

0 1 1 1

1 0 0 0

v1 v2 v3 v4

v1

v2

v3

v4

 
Figure 3. (a) Adjacency matrix (b) corresponding oriented graph G.  
 

Table 1. Adjacency Matrix Representation for Basic Elements 

 Oriented graph Adjacency matrix 

Adder 

v1 v3

v2

ai

ai

 

0 0 1

0 0 1

0 0 0

v1

v1

v2

v3

v2

v3

 

Multiplier v1 v2mi
 

0 2

0 0

v1

v1

v2

v2

 

Delay v1 v2z-1

 
0 5

0 0

v1

v1

v2

v2

 

The invalid structures that may occur in a digital filter are 
listed in Table 2 with their corresponding adjacency matrix 
representation. The first structure in this table has a delay and a 
multiplier incident into the same node kv  as indicated by the two 
entries in the corresponding column of the matrix. The second 
anomalous structure is the short-circuiting self-loop in some node 

jv  which is represented by a nonzero entry in the corresponding 
position of the matrix main diagonal. Finally, the third anomalous 
structure is that containing an isolated node, such as node jv  in 
the third row of Table 2. This corresponds to an empty line in the 
adjacency matrix.  

Therefore, in order to detect an invalid individual in the 
initial population and during the execution of the evolutionary 
synthesis it is sufficient to apply the following set of rules: 

Rule 1: Each column of the adjacency matrix, except the first 
one, must contain only one type of element. With the proposed 
choice of element numbers, this rule implies that the sum of the 
entries of any column in a valid individual can not be different 
from 2 or 5. 

Rule 2: Since the flow graphs of digital filters have no 
ground node, the main diagonal entries of the adjacency matrix 
must be zero.  

Rule 3: Except for the last line, the adjacency matrix can not 
contain empty lines. Therefore, each node, except the output one, 
must have at least one edge incident out of it.  
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The last necessary step to validate an individual is to verify 
that it is a computable filter structure.  

Table 2. Invalid Structures 

Rule Invalid Structure Adjacency Matrix 

1 vi

vj

vkz-1
 

0 0 5

0 0 2

0 0 0

vi vj vk

vi

vj

vk  

2 
vi

vj  

0 1

0 1

vi vj

vi

vj
 

3 
vi vj vk

z-1

z-1

 

0 2 5

0 0 0

5 0 0

vi vj vk

vi

vj

vk  

4.2 Computable Digital Filters  
To test for the computability of an individual using the 

proposed chromosome coding it will be necessary to introduce the 
concept of path matrix which is derived from the adjacency 
matrix. The path matrix is defined as: 

Definition 2: Path Matrix 

Let G(V, E) be an oriented graph with n vertices 1 2, ,..., nv v v . 
Assuming the usual definition of an oriented path in an oriented 
graph [24], the path matrix of G is a   n x n  matrix  [ ]ijP p=  
given by: 

i j1, if there is a directed path from v  to v

0, otherwiseijp
⎧⎪= ⎨
⎪⎩

       (18) 

The path matrix is obtained from the adjacency matrix 
applying the Warshall algorithm [25]. 

In Fig. 9(a) the path matrix P corresponding to the graph G 
of Fig. 9(b) is shown. As can be seen in the figure, if 1ijp = and 

i j≠  there is a path between vertices iv  and jv  otherwise, if 
i j= , there is a loop. Therefore, a non-zero entry in the main 
diagonal of matrix P  indicates the existence of loops in the filter 
structure. As a consequence, if the delays are eliminated from the 
digital filter and the path matrix corresponding to the new 
adjacency matrix is obtained, the delay-free loops in the structure 
will be indicated by its non-zero main-diagonal entries.  

(b)(a)

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

P =

1

1

1

1

00000

G

v1 v2 v3

v1

v2

v3

v4

v4

v5

v5

v1 v2 v3

v4 v5

 
Figure 4. (a) Path matrix (b) corresponding oriented graph G. 

As a consequence, using the adjacency matrix representation, 
the computability of digital filters is determined by the following 
algorithm: 

Algorithm 2: Computability verification 
S1.  Generate the adjacency matrix following the rules of 

Section 4.2. 
S2.  In this adjacency matrix replace the delays by zeros. 
S3.  Obtain the path matrix P using the Warshall algorithm. 
S4.  If all main diagonal entries of matrix P are zeros the 

filter is computable, otherwise it is non-computable and the 
individual is not valid. 

Fig. 10 illustrates the preceding steps. The first example is a 
computable structure as can be attested by the main diagonal 
entries of its path matrix P given in Fig. 10(d). The second 
example is a non-computable filter with a delay-free loop 
indicated by a dotted line in Fig. 10(e). The delay-free loop 
contains the nodes 2, 4 and 5 as indicated by the main diagonal 
entries of the path matrix in Fig. 10(h). 

4.3 Genetic Operators Using the Adjacency 
Matrix  

The crossover strategy is illustrated in Fig. 5. It consists in 
exchanging two submatrices with randomly chosen dimensions. 
Assume two adjacency matrices of dimensions m and n. If m n< , 
the coordinates of the crossover point (i, j) are chosen on the 
smaller matrix, where i and j are integers inside the intervals: 

[0, -1]i  m∈    (14a) 

[0, -1]j  m∈    (14b) 

In order to define the dimensions of the submatrices to be 
exchanged in the crossover, two integers p and q are randomly 
chosen in the intervals: 

[1, - ]p   m i∈    (15a) 

[1, - ]q   m j∈    (15b) 

Finally, the coordinates of the crossover point on the largest 
matrix are integers randomly chosen in the intervals: 

[0, - ]k  n p∈    (15a) 

[0, - ]l  n q∈    (15b) 
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Figure 5. Verification of the computability for a first-order filters: (a) Digital filter structure (b) corresponding adjacency matrix representation (c) 

delay-free adjacency matrix and (d) path matrix. 

In Fig. 5 the dimensions of the matrices, the coordinates of 
the crossover points and the dimensions of the submatrices are, 
respectively, m 6= , 8n = , i 1= , j 0= , k 2= , l 1= , p 2=  and 
q 4= .  

The mutation operator simply replaces a randomly chosen 
matrix column by a new column containing an also randomly 
chosen element. Fig. 6 shows an example of the proposed 
mutation scheme. In this figure, the delay element that was 
incident out of 3v  became a multiplier incident out of 5v , after 
the mutation. 

X X

X X

X X

X X

X X

X X

X

v1 v2

v1

v2

X X

X

v3 v4

X X

X X

v5 v6

X X

X X

v7 v8

X

X

v3

v4

X

X

X X

X X

X X

X X

X

X

v5

v6

X

X

X X

X X

X X

X X

X X

X X

v7

v8

X X

X X

X X

X X

X X

X X

X X

X X

v1 v2

v1

v2

X X

X X

v3 v4

X X

X X

v5 v6

X X

X X

v3

v4

X X

X X

X X

X X

X X

X X

v5

v6

X X

X X

X X

X X

p

q

i j,( )

(k l, )

p
q

 
Figure 6. Crossover between two adjacency matrices. 

5. Fitness Computation 
The synthesis procedure is performed into two steps. In the 

first step, the equalizer transfer function is extracted from the 
desired filter transfer function. In this stage a genetic algorithm is 
used as an optimizer to adjust the coefficients of the equalizer 
transfer function (10). In the following, the evolutionary 
algorithm using the adjacency matrix representation is employed 
a low-sensitivity topology for the extracted equalizer transfer 
function. The input data for the first step are: the filter transfer 
function to be equalized and the desired group delay quality factor 
Q  of the overall structure. The quality factor Q  is a measure of 
the ripple in the passband group delay FEτ  being giving by [18]: 

100 (max min )
(max min )

FE FE

FE FE
Q τ τ

τ τ
⋅ −

=
+

  (19) 

In order to find the equalizer transfer function which meets 
the quality factor requirement, the algorithm runs an optimizer 
using a fixed length genetic algorithm. Starting with a single 
second-order section, the optimizer will eventually insert 
additional second-order sections until the Q  requirement is 
fulfilled. 

(a)

X X

X X

v1 v2

v1

v2

X 0

X 0

v3 v4

X X

X X

v5 v6

X X

X X

v3

v4

X d

X 0

X X

X X

X X

X X

v5

v6

X 0

X 0

X X

X X

X X

X X

v1 v2

v1

v2

X 0

X 0

v3 v4

X X

X X

v5 v6

X X

X X

v3

v4

X 0

X 0

X X

X X

X X

X X

v5

v6

X m

X 0

X X

X X

(b)  
Figure 7. Adjacency matrix representation of a individual before (a) 

and after (b) mutation. 

In the second step, the topology synthesis, a generational 
genetic algorithm with elitism is employed. The fitness 
computation verifies if an individual generated by the genetic 
process synthesizes the target equalizer transfer function. 

As a fitness computation example, consider the target 
equalizer transfer function for a lowpass filter with normalized 
passband inside the interval 0 ω 0.2≤ ≤  given by: 

2
E 2

0.5z z 1H ( z )
z z 0.5

+ +
=

+ +
  (20) 

Assume that the second-order direct form structure in Fig. 
16(a) is generated by the evolutionary process. In the direct-form, 
the multipliers are the coefficients of the transfer function. The 
adjacency matrix corresponding to the given digital filter structure 
is shown in Fig. 16(b). Each column of the adjacency matrix, 
except the first one, represents one equation of the system in Fig. 
16(c). 

In the actual procedure, a symbolic mathematical package is 
used to perform the operations involved in the fitness 
computation, starting with the extraction of the symbolic 
equalizer transfer function from the text file containing the system 
of equations of Fig. 16(c). 

The symbolic equalizer transfer function corresponding to 
the structure in Fig. 16(a) is given by:  

2
10 1

21 2 3

1( )E
v m z zH z
v z m z m

+ +
= =

− −
  (21) 

The multipliers values ( 1 0.50m = , 2 1.00m = − , 3 0.50m = − ) 
are obtained by solving the system of equations that results from 
equating the coefficients in (20) and (21). If this system has no 
real solution, zero fitness is assigned to the individual. 
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In the following step, the relative sensitivities [20] of the 

transfer function magnitude, E

j

H
mS , and group delay, E

jmSτ  with 

respect to the multipliers are computed by replacing jz e ω=  in 
(21):  

( )
( )

( )
E

j

j
EH j

m j jE

H em
S

mH e

ω
ω

ω

∂
=

∂
  (22) 

( ) ( )
( )

E
j

j E
m

E j

m
S

m
τ τ ω

ω
τ ω

∂
=

∂
  (23) 

Where jm  is the jth multiplier coefficient. 

The previously obtained multipliers values are then replaced 
in equations (22) and (23) resulting in expressions for the 
sensitivities depending only on the frequencyω . Since no other 
symbolic computation is needed, the sensitivities values are 
sampled in 10,000 frequency points and stored in an array. 

Fig. 17 illustrates, for the proposed example, the magnitude 
and the group delay relative sensitivities with respect to each 
multiplier versus the normalized frequency ω . Note that the 
magnitude sensitivity must be considered along the overall 
frequency range, whereas one needs to account for the group 
delay sensitivity only in the passband (shaded areas in Fig. 17). 

The worst case magnitude and group delay sensitivities are, 
respectively, given by: 

( )
1

max
m

E E
wc

j

N
H H

m
j

S S ω
ω

=

=∑   (24) 

( )
1

max
m

E E
wc

j

N

m
j

S Sτ τ ω
ω

=

=∑   (25) 

Where mN  is the number of multipliers. 

The fitness is computed as the inverse of the function: 

1 E E
wc wcEE

H
Hw S w Sττε = + ⋅ + ⋅   (26) 

Where ε  is the objective function and the iw ’s are the 
weighting factors. The symbolic mathematical package returns to 
the evolutionary algorithm the value of the individual’s fitness. 

For the proposed example, the sensitivity values 4.3E
wc
HS =  and 

1.5E
wcSτ =  were obtained for 1

EEHw wτ= =  resulting in a fitness 

of 0.1471. 

Besides the filter transfer function the inputs of the 
evolutionary process are: the maximum number of nodes, the 
desired interval for the multipliers values, the weighting factors 
and the usual genetic algorithm control parameters (population 
size, number of generations, crossover and mutation rates). The 
choice of the weighting factors is generally based on some kind of 
heuristics depending on expert knowledge of the design problem 
[26]. 

 
Figure 8. (a) Direct-form realization of the second-order filter of the 
example (b) corresponding adjacency matrix representation and (c) 

equations system derived from the adjacency matrix. 

 
Figure 9. (a) Magnitude and Group delay relative sensitivity versus 

normalized frequency. 

6. Numerical Results 
Consider the design of a lowpass filter which must satisfy the 

magnitude specifications described in Table 3 and a quality factor 
lower than 2.50 in the passband. Using conventional methods 
[18], a fourth-order elliptic transfer function which meets the 
magnitude specifications is obtained: 

4 3 2
2

4 3 2
2.8048 3.8418 2.8048 1( ) 1.1727 10

3.6048 4.9787 3.1156 0.7447

z z z zH z
z z z z

− − + − +
= ×

− + − +
  (27) 

The magnitude and the group delay of the transfer function 
(27) are shown in Fig. 18, where the shaded areas indicate the 
passband. The quality factor Q , without equalization, is 64.61 in 
the passband. 

The first step of the synthesis procedure, consisting of an 
optimizer, is run. Three sections of second-order allpass transfer 
functions with the coefficients described in Table 4 are cascaded 
with the elliptic filter, resulting in an overall quality factor of 
2.10.  
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Table 3. Specifications for the elliptic filter 

Passband ripple 1dB 

Stopband attenuation 40dB 

Passband edge 0.10 rad/s 

Stopband edge 0.15 rad/s 

Sampling frequency 2.00 rad/s 

Table 4 - Coefficients of the second-order transfer functions 

 Section 1 Section 2 Section 3 

a0 0.856502 0.861843 0.882595 

a1 -1.828910 -1.854456 -1.820200 

The second step of the synthesis procedure which consists of 
the search for low-sensitivity structures using the adjacency matrix 
representation is employed. Table 5 shows the input parameters of 
the second step synthesis. The multipliers values are constrained to 
the interval (-4, +4) in order to increase the number of bits 
representing their fractional part after the quantization process. Fig. 
19 shows the average fitness and the best fitness throughout the 
generations for three sections of the equalizer. As shown in the 
figure, the algorithm responds well to genetic operators, increasing 
considerably the fitness along the generations. This suggests that the 
checking rules included for preventing the evaluation of invalid 
individuals after the genetic operators do not constrain the search 
space and do not reduce significantly the overall evolutionary 
algorithm performance. 

The synthesized topologies after 50 generations are shown in 
Fig. 20. These structures are said to be canonic since the number of 
delays is equal to the order of the transfer function. Moreover, it 
uses a minimal number of multipliers that represents an important 
feature since the multipliers are the most expensive components in 
any digital filter implementation. 

A comparison of the results obtained by the direct-form 
realization and the proposed topologies are given in Table 6. It can 
be observed that the smallest sensitivities were obtained with the 
topologies synthesized by the proposed evolutionary algorithm.  

Fig. 21 shows the transfer function of (27) with a zoom in the 
passband after equalization using direct-form and synthesized 
topologies realizations for 12-bits fixed-point format. In the 
magnitude response, a nonlinear loss has been added to the 
passband in the direct-form realization and a slight deviation of the 
poles can be also observed. In the group delay response, the quality 
factors are 2.47 and 4.10 for synthesized topology and direct-form 
realizations, respectively. Therefore, due to the low-sensitivity of 
the synthesized topologies, the quality factor still meeting the 
desired quality factor specification. 

7. Conclusions 
An evolutionary algorithm able to synthesize low-sensitivity 

digital filters was proposed. It is shown that applying simple rules 
and requiring minimal computational effort, the proposed coding 
scheme representation has the property of detecting the generation 
of structurally invalid individuals and non-computable ones during 
the evolutionary process.  

In order to test the algorithm, a forth-order lowpass digital 
filter was used as example and it was observed that the results 

obtained by the proposed approach compare favorably with the 
straightforward direct-form realization. 
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Table 5. Parameters of the Evolutionary Process 

Population 200 Multipliers interval (-4, +4) 

Generations  50 Max. n° nodes 21 

Crossover rate  70 
EHw  1 

Mutation rate  20 
E

wτ  0.5 

 

 
Figure 10. Magnitude and group delay response of the fourth-order 

elliptic filter. 

 
Figure 11. The average fitness and the best fitness of the proposed 

evolutionary algorithm along the generations. 

Table 6. Sensitivities of the Equalizer Sections 

Section 1 Section 2 Section 3  

EH
wcS  EwcSτ  EH

wcS  EwcSτ  EH
wcS

 

EwcSτ  

Direct-form 592.2 117.0 1470.9 371.7 182.0 92.2 

Top. Fig. 12 45.9 5.9 33.7 8.0 7.8 3.4 

 

 
Figure 12. Topology synthesized by the proposed evolutionary 

process. 

 
Figure 13. Transfer function responses. 
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