
Enhanced Generalized Ant Programming (EGAP)

Tony White

School of Computer Science
Carleton University

Ottawa, Canada
arpwhite@scs.carleton.ca

ABSTRACT
This paper begins by reviewing different methods of automatic
programming while emphasizing the technique of Ant
Programming (AP). AP uses an ant foraging metaphor in which
ants generate a program by moving through a graph. Generalized
Ant Programming (GAP) uses a context-free grammar and an Ant
Colony System (ACS) to guide the program generation search
process. There are two enhancements to GAP that are proposed
in this paper. These are: providing a heuristic for path termination
inspired by building construction and a novel pheromone
placement algorithm. Three well-known problems -- Quartic
symbolic regression, multiplexer, and an ant trail problem -- are
experimentally compared using enhanced GAP (EGAP) and GAP.
The results of the experiments show the statistically significant
advantage of using this heuristic function and pheromone
placement algorithm of EGAP over GAP.

Categories and Subject Descriptors
I.2.2 [Computing Methodologies]: Artificial Intelligence –
program modification, program synthesis.

I.2.11 [Computing Methodologies]: Distributed Artificial
Intelligence – Intelligent agents.

General Terms
Algorithms, Performance, and Design.

Keywords

Automatic Programming, Ant Programming, Heuristic,
Generalized Ant Programming, Enhanced Generalized Ant
Programming.

1. INTRODUCTION
Automatic programming is an active research area that has
stimulated by the Genetic Programming (GP) technique. In
automatic programming, the goal of the desired program is first
specified; then, based upon this goal, programs are generated
according to an algorithm and tested to demonstrate to what
extent they satisfy the desired goal. Genetic programming (GP), a
method of automatic programming, was proposed by Koza [9-11].
GP utilizes an idea similar to that of a genetic algorithm (GA) but

with representational and operator differences. GP represents
genes in a tree structure as opposed to an array of numbers
typically used in a GA. As a consequence of this representation,
there are some other differences in the mutation and crossover
operator of GP in comparison to GA.
According to Koza [9], there are five preparatory steps which
should be completed before searching for a program: selecting of
terminal symbols, choice of functions, fitness function
specification, selection of certain parameters for controlling the
run, and defining the termination criteria. Hence, an automatic
programming approach can be any search method which has the
ability to do these five steps before searching.
While search algorithms inspired by evolution have demonstrated
considerable utility, other learning models are attracting
increasing interest. One model of social learning recently
attracting increasing attention is Swarm Intelligence (SI). There
are two main classes of algorithm in this field: ant colony system
(ACS) and particle swarm optimization (PSO) [1]. The former is
inspired by the collaborative behavior of ants in finding food. The
latter is derived from the flocking behavior of birds and fish and
is often utilized in optimization problems. Both ACS and PSO
exhibit flexibility, robustness and self-organization [1].
ACS and PSO have been used in Automatic Programming.
O’Neill and Ryan present an automatic programming model
called Grammatical Swarm (GS) [12, 13]. In this model, each
particle or real value vector represents choices of program
construction rules specified as production rules of a Backus-Naur
Form (BNF) grammar. In other words, each particle shows the
sequence of rule numbers by applying which a program can be
constructed from the starting symbol of the grammar. GS is based
on the linear Genetic Programming representation adopted in
Grammatical Evolution (GE) [14] that uses grammars to guide the
construction of syntactically correct programs.
O’Neill and Ryan describe several advantages of a grammatical
approach to genetic programming [14], including the ability to
encode multiple data types into the solutions generated as
opposed to tree-based GP in which type information is typically
absent. That is, the non-terminal symbols within a grammatical
approach provide the capability for developing programs with
multiple data types like strings, integers, booleans and so on.
Moreover, it is simply possible to encode the knowledge domain
into the grammar which can be employed to bias the construction
of solutions and also any changes to the language of constructed
program easily can be made by modifying the grammar.
Furthermore, this approach is language independent.
Other researchers have used ACS for automatic programming.
Roux and Fonlupt [15] use randomly generated tree-based
programs. A table of program elements and corresponding values
of pheromone for these elements is stored at each node. Each ant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

Amirali Salehi-Abari
School of Computer Science

Carleton University
Ottawa, Canada

asabari@scs.carleton.ca

Tony White
School of Computer Science

Carleton University
Ottawa, Canada

arpwhite@scs.carleton.ca

111

builds and modifies the programs according to the quantity of an
element’s pheromone at each node. The higher concentration of
pheromone one element has, the higher probability it has for
selection. This approach met with limited success.
Boryczka and Czech have presented two other models of Ant
programming [3, 4, 5 and 6]. They used their model only for
symbolic regression. In the first approach called the expression
approach, they search for an approximating function in the form
of an arithmetic expression written in Polish (Prefix) notation.
They create a graph whose nodes are either an arithmetic operator
or a variable. When an ant goes through these nodes and edges,
the expression is constructed by selecting the nodes visited. Ants
put pheromone on the edges based on the fitness of expression in
order to lead other ants to the specific solutions. In the second
approach, the desired approximating approach is built as a
sequence of assignment instructions which evaluates the function.
In other words, there is a set of assignment instruction defined by
the user; each of these assignment instructions is placed on a node
of graph. Then, ants build their program by selecting the sequence
of these instructions while passing through the graph.
Both expression and instruction approaches showed promise but
they are only applicable to regression or function approximation,
they cannot generate more general types of program. Another
drawback of these approaches is the existence of introns in the
resulting program. Some solutions for these introns are presented
by Boryczka [7].
Keber and Schuster offer a new AP model using a context-free
grammar and an ant colony system. They use this model in
function approximation for the purpose of option valuation [8].
They called it Generalized Ant Programming (GAP) because they
believe that it is applicable to all problems in which the search
space of solutions consists of a computer program. In spite of
their claim, they did not test this approach for anything except
symbolic regression. The lack of termination condition for
generating the path by each ant and generating paths with non-
terminal components cause GAP to have the weak performance in
some domains.
The main contributions of this paper are the introduction of a new
heuristic function for program generation and a different method
of pheromone placement for GAP. We have compared the
performance of the new algorithm with GAP on 3 problems:
Quartic symbolic regression, multiplexer and Santa Fe ant trail.
The results obtained demonstrate a statistically significant
improvement.
The remainder of the paper is structured as follows. In section 2,
the GAP algorithm is presented in some detail. Section 3
highlights areas for improvement in GAP and describes the
enhanced GAP (EGAP) algorithm. Section 4 details the
experimental approach adopted and results. Finally, Section 5
provides conclusions and opportunities for future work.

2. GENERALIZED ANT PROGRAMMING
2.1 Introduction
Generalized Ant Programming (GAP), introduced by Keber and
Schuster, is a new method of Automatic Programming. This
method is inspired by GP and ACS. GAP is an approach designed
to generate computer program by simulating the behavior of ant
colonies; specifically, reinforcement through pheromone

deposition. That is, when ants forage for food they lay pheromone
on the ground that affects the choices they make. Ants have a
tendency to choose steps that have a high concentration of
pheromone. Pheromone trails can be seen as common information
that is modified by ants to show their experience while solving a
given problem.

2.2 Methodology
GAP uses artificial ants to automatically generate computer
programs. By analogy to real ants, artificial ants explore a search
space including the set of all feasible computer programs. The ant
generates a program by moving along a specific path in the graph.
The amount of pheromone deposited by an ant is proportional to
the quality of the solution found by that ant. The quality of a path
is measured using the fitness function which will be described in
the next few paragraphs.
All computer programs are written in a well defined programming
language. In GAP, ࣦ ሺ࣡ሻ is the programming language in which
an automatically generated program is written and it is specified
by the context-free grammar ࣡ ൌ ሺࣨ, ,݉ݎ࣮݁ ࣬, ࣭ሻ. In other
words, ࣦ ሺ࣡ሻ is a set of all expressions that can be produced from
a start symbol ࣭ under application of ܴ rules, a set of non-
terminal symbols ࣨ, and a finite set of terminal symbols, ࣮.
Thus,

ࣦሺ ࣡ሻ ൌ ሼ ࣪ | ࣭ ֜ ࣪ ר א ࣪ ሽ (1)כ݉ݎ࣮݁

Where ࣮݁כ݉ݎ represents the set of all expressions that can be
produced from the ࣮erm symbol set. Given the grammar ࣡, a
derivation of expression ࣪ א ࣦሺ ࣡ሻ consists of a sequence of
,ଵݐ ,ଶݐ … , ௣ of terminal symbols generated from the sequence ofݐ
derivation steps. This derivation is denoted by

࣭
כ

֜ ࣪ (2)

Assume the following ࣡
࣡ ൌ ሺࣨ ൌ ሼܵ, ܶ, ,ሽܨ
݉ݎ࣮݁ ൌ ሼܽ, ൅,כ, ሺ, ሻሽ,
 ܴ ൌ ሼܵ ՜ ܵ ൅ ܶ|ܶ, ܶ ՜ ܶ כ ,ܨ|ܨ ܨ ՜ ሺܵሻ|ܽሽ,
 ࣭ ൌ ሼܵሽሻ
Each derivation in this grammar represents a simple arithmetic
expression including the symbols ܽ, ൅,כ, ሺ, and). The simple
derivation of this grammar is presented below:

ܵ ֜ ܵ ൅ ܶ ֜ ܶ ൅ ܶ ֜ ܨ ൅ ܶ ֜ ܽ ൅ ܶ ֜ ܽ ൅ ܶ כ ܨ
 ֜ ܽ ൅ ܨ כ ֜ ܨ ܽ ൅ ܽ כ ֜ ܨ ܽ ൅ ܽ כ ܽ

In GAP, ࣦ ሺ࣡ሻ is the search space of all possible expressions
(programs) that can be generated by the grammar ࣡, ࣪ א ࣦሺ࣡ሻ is
a path which can be visited by one ant and it is an expression (a
program) and ࣤሺݐሻ ؿ ࣦ is a set of all paths already visited at time
א ࣪ Furthermore, each path .ݐ ࣦሺ࣡ሻ consists of a sequence of
terminal symbols 1ݐ, ,2ݐ … , and the corresponding derivation ݌ݐ
step ݐ௜ ՜ ݅ ݎ݋௜ାଵ ሺ݂ݐ ൌ 1, … , ݌ െ 1ሻ that cause the generation of
the terminal symbols 1ݐ, ,2ݐ … , ,from the start symbol ܵ. Thus ݌ݐ
each path ݌௜ א ࣤሺݐሻ can be seen as a derivation:

112

ܵ
כ

 ௜ (3)݌ ֜
Let us return to the previous example to illustrate these
explanations further. Suppose that an ant is in the starting symbol
S, then it will have two choices, either select the first rule
ܵ ՜ ܵ ൅ ܶ or the second rule ܵ ՜ ܶ. By selecting the first rule,
the ant‘s expression will be ܵ ൅ ܶ and the ant should now seek to
make a substitution for S again; this process continues until the
complete path is formed in the graph. It is worth noting that the
graph in this model is a tree. Figure 1 shows the starting part of
this tree.
In Figure 1, the text inside each oval shows the current expression
which ants have generated by moving through the tree and
selecting the corresponding rules. The numbers on the edges show
the rule’s number which is applied for the first non-terminal
symbol in the previous oval. For instance, to create the expression
ܽ , the ant should first select the second rule of ܵ then the
resulting expression will be ܶ and then by selecting the second
rule of ܶ, i.e. ܶ ՜ and finally ܨ the expression is changed to ,ܨ
the second rule of ܨ ሺܨ ՜ ܽሻ will result in the expression ܽ.
Considering another example, the sequence rules of “1-2-1” can
lead the expression of an ant to become ܨ כ ܶ ൅ ܶ. Thus, the
sequence of numbers determines the final expression of an ant.
Ants select their path in this tree according to the amounts of
pheromone deposited by the other ants on the tree. In GAP, all
derivation steps in the path get an equal amount of pheromone
while an ant puts pheromone on the path.1
The amount of deposited pheromone is stored in the T table. The
T table is a hash table that consists of the string key indicating the
rule numbers that have been selected by ants to reach this edge
and also consist of the amount of pheromone deposited on this
edge. For instance, in Figure 1, for the edge between oval ܨ and
oval ܽ, the “2-2-2” key can be used. To lookup the amount of
pheromone for one edge, if the key of that edge exists in the T
Table, the corresponding value will be returned otherwise the
initial value of pheromone ሺ ଴ܶ) will be returned.2
The amount of pheromone in T table at time t is update by:

1 In section 3, the proposed method discriminates the amount of

pheromone in each edge.
2 These explanations about T table are not mentioned by the GAP

algorithm.

ܶሺݐሻ ൌ ሺ1 െ ሻ݌ כ ܶሺݐ െ 1ሻ ൅ ∆ܶሺݐሻ (4)

Where 0 ൏ ݌ ൑ 1 is the coefficient representing pheromone
evaporation, and

∆ܶሺݐሻ ൌ ෍ ∆ ௞ܶ

௄

௞ୀଵ

ሺݐሻ

is the pheromone increase obtained by accumulating the
contributions ∆ ௞ܶሺݐሻ of each ant ݇ ൌ 1, … , In other words, this .ܭ
is the amount of pheromone deposited on some edges of tree by k
ants at time t. This quantity of pheromone is given by:

∆ ௞ܶሺݐሻ ൌ ൜ܳ. ,ݐ௞ሺܮ ሻ ݂݅ k୲୦ ant pass edge e݌
 ݁ݏ݅ݓݎ݄݁ݐ݋ 0

Where Q is an experimental constant and ܮ௞ሺݐ, ሻ is the value of݌
the objective function obtained by ant k at time t. The expression
found by ants can be seen as a function ݌: ࣟ ՜ transforming ܣ
input data ࣟ into a solution or output data ܣ. Therefore, the
function ܮ௞: ܣ ՜ Թ is defined in a way that it awards higher
values to those paths (programs) that represent a good solution to
the task, and lower values to a less suitable program.
As mentioned previously, ants choose their path in the tree based
on the amount of pheromone deposited on the tree, the formula3
below gives us the probability of each edge to select:

௘ܲ
௞ሺݐሻ ൌ ሾ ೐்ሺ௧ሻሿഀ .ሾఎ೐ሿഁ

∑ ሾ ೐்ሺ௧ሻሿഀ .ሾఎ೐ሿഁ
೐ച಴ሺ೙ᇲሻ

 (5)

Where ௘ܲ
௞ሺݐሻ is the probability of selecting the edge ݁ and ௘ܶሺݐሻ

is the amount of pheromone deposited on the edge e and ߟ௘ is a
heuristic value related to the selection of the edge ݁. The ܥሺ݊ᇱሻ is
the candidate set, the edges which can be selected when the ant is
on the node ݊ᇱ. The experimental parameters ߙ and ߚ control the
relative importance of pheromone trail versus heuristic function.
The pseudo code for GAP can be described as follows:

[0] Program Generalized Ant Programming
[1] t = 0;
[2] Initialization ();
[3] repeat
[4] t = t + 1;

3 This formula is different with the one GAP present. They didn’t

explain enough about their formula.

Figure 1. Part of the tree which ants explore to generate the expression (program)

113

[5] for each ant k do
[6] Build a path p;
[7] Calculate ܮ௞ሺݐ, ሻ݌
[8] end;
[9] Save the best solution found so far;
[10] Update trail levels ܶሺݐሻ;
[11] Shrink ܶሺݐሻ;
[12] Perform global shaking on ܶሺݐሻ;
[13] until termination;
[14] end.

While path creation and pheromone level updates have been
discussed, the Shrink ܶሺݐሻ and Shaking ܶሺݐሻ procedures require
explanation. Shrink ܶሺݐሻ is used to decrease the size of the T
table. In this phase, all the keys that have a value less than the
initial value of ଴ܶ (଴ܶ ൒ 0) are eliminated. The reason that these
edges get values less than ଴ܶ is the existence of evaporation.
Shaking ܶሺݐሻ is used to normalize the amount of pheromone on
the edges. This method is used because the pheromone on a
derivation step (an edge of tree) becomes higher than all others,
then the other will not be selected by ants so the ants will not
explore properly the search space. The formula GAP is using in
this regard is logarithmic one and is given by:

ܶሺݐሻ ൌ ଴ܶ כ ቈ 1 ൅ ln ቆ
ܶሺݐሻ

଴ܶ
ቇ቉

Where ଴ܶ is the minimum value for ܶሺݐሻ.

3. Enhanced GAP (EGAP)
3.1 Introduction
Although section 2 represents a GAP algorithm that is more easily
implementable, there is an important issue that is not addressed by
the GAP algorithm [8]. This is, what is the termination condition
for generating the path by each ant or when the path is complete?
The simple solution to this problem is that the path is complete if
it doesn’t have any non-terminal symbol in its expression. The
other question is under what conditions can an ant seek a path that
hasn’t any non-terminal symbol in it? The simple answer to this
latter question is providing an upper bound on path length.
However, this is not the end of the problem as we need to assign a
fitness value for the paths which have a non-terminal symbol in
their expression and are not still a complete computer program.
When there are recursions in the rules of grammar, this issue
becomes more significant. Consider the following grammar rules:

൏ ݎ݌ݔ݁ ൐ ՜ ൏ ݎ݌ݔ݁ ൐൏ ݌݋ ൐൏ ݎ݌ݔ݁ ൐ | ൏ ݎܽݒ ൐

൏ ݌݋ ൐ ՜ כ | െ | ൅ | / (6)

൏ ݎܽݒ ൐ ՜ ܽ
The starting symbol in this grammar is ൏ ݎ݌ݔ݁ ൐ and the first
rules of this symbol (൏ ݎ݌ݔ݁ ൐ ՜ ൏ ݎ݌ݔ݁ ൐൏ ݌݋ ൐൏ ݎ݌ݔ݁ ൐)
generate an expression that has two recursions to ൏ ݎ݌ݔ݁ ൐ .
Using GAP for this grammar will produce poor results4. We
observed that the expressions usually generated are either just ‘ܽ’
or very long, incomplete and unexecutable expressions.

4 The experiment described in section four demonstrates the

weakness of GAP when using this grammar.

This observation prompts us find a fundamental remedy for this
issue. The basic idea of this work described in this paper is to
encourage ants to build their path in more well-structured way.
In order to motivate the proposed GAP enhancements, consider
building construction. First, civil engineers plan the foundation,
cornerstone and structure of building rather than the internal
decoration and appearance of the building. After that, architects
will consider and think what kind of internal decoration, texture
and lighting is suitable for this structure in order to achieve an
aesthetic goal. As a result of this cooperation, the building will be
well-structured and well-designed.
Drawing an analogy to building construction, the research
described here introduces a heuristic function and a new ant
pheromone placement method in order to encourage ants to first
build a good solution structure and then tune it. Similar to real
programming, programmers exhibit the same behavior; they first
design the schema of their program; for instance, they first
consider where they will have a loop, if or switch structure and
then they think about the conditions and parameters of these
structures.

3.2 Heuristic Function
The heuristic function is designed to have ants expand the
expression for a fraction of the maximum number of allowed rules
and then select completion rules for the remainder. Maximum
number of using rules is a constant specified by the user to limit
the total number of rules which an ant can select to generate its
own expression (program). Expression construction has two
phases: expanding the expression (similar the task which civil
engineers do) and completing and tuning the expression (similar
to the task which an architect does). The first phase will be
performed in a fraction of maximum number of using rules and
the second phase will be done in the remainder.
From this perspective, the rules of a grammar fall into two
categories: expanding rules and finishing rules. Expanding rules
tend to expand the expression by producing some other non-
terminal symbol as opposed to finishing rules which have a
tendency to replace the non-terminal symbols of the expression
with terminal ones. We present an expanding factor (௘݂) that
shows to what extent a rule is an expanding rule. High values of

௘݂ demonstrate the high probability of being an expanding rule
while low values shows the high probability of being finishing
rule.
In order to clarify the above statements, in the grammar shown in
(6), ൏ ݎ݌ݔ݁ ൐ ՜ ൏ ݎ݌ݔ݁ ൐൏ ݌݋ ൐൏ ݎ݌ݔ݁ ൐ has a high value of
(௘݂) as it has more tendency to expand the expression than the
others whereas ൏ ݎܽݒ ൐ ՜ ܽ has a low value of ௘݂ and it is
more a finishing rule. Not only can the rules have an expanding
factor but also the non-terminal symbols have expanding factor
related to their rules’ expanding factors.

To calculate ௘݂ for all the rules, we suggest an iterative algorithm.
This algorithm first initializes the expanding factor (௘݂) of all the
rules and non-terminal variables with a large value. Then it
updates the expanding factor of each rule during every iteration.
Each rule adds together the expanding factor of the non-terminal
symbols that it generates and finally adds them with 1. Each non-
terminal variable updates its expanding factor by calculating the
average over all of its rules. The update formula is:

114

௘݂ሺݔ, ݅ሻ ൌ ൣ∑ ௘݂ሺݕ, 0ሻ ௬ א ௡௧ ൧ ൅ 1 ݅ ൌ 1 … ܰ (7)

௘݂ሺݔ, 0ሻ ൌ ݉݁ܽ݊ ௘݂ሺݔ, ݅ሻ ݅ ൌ 1 … ܰ
Where ௘݂ሺݔ, ݅ሻ is the expanding factor of non-terminal symbol x
for its ݅th rule and ݊ݐ is the set of all non-terminal symbols
included in that specific rule (݅th rule). ௘݂ሺݔ, 0ሻ is the expanding
factor of the non-terminal symbol x. For example, suppose:

ܨ ՜ ܽܨ | ܽܽ | ܾܶܽܵܽܽ
In this rule, S and T are non-terminal symbols while ܽ and ܾ are
terminal symbols. Then, ௘݂ for rules related to F is updated by:

௘݂ሺ"F", 1ሻ ൌ ௘݂ሺ"S", 0ሻ ൅ ௘݂ሺ“ܶ”, 0ሻ ൅ 1

௘݂ሺ"F", 2ሻ ൌ 1

௘݂ሺ"F", 3ሻ ൌ ௘݂ሺ"F", 0ሻ ൅ 1
And ௘݂ of F is updated by:

௘݂ሺ"F", 0ሻ ൌ mean ሺfୣሺ"F", 1ሻ, fୣሺ"F", 2ሻ, fୣሺ"F", 3ሻሻ

The pseudo code of assignment of ௘݂ is presented below:

[0] Initialize ௘݂ሺݔ, ݅ሻ with a high value for all x and i.
[1] for ݅ ൌ 1 to number of non-terminal symbols
[2] for each x belonging to non-terminal symbol set
[5] Update ௘݂ሺݔ, ݅ሻ according to (7);
[6] end
[7] end
Returning to the heuristic function explanation, the heuristic
function should be proportional to ௘݂ when the ant is in the first
phase of path generation (the expanding phase) and should be
reversely proportional to ௘݂ when the ant is in the second phase
(the finishing phase). Then

Hሺ x, i, nሻ ן fୣሺx, iሻ if n ൏ t୬
Hሺ x, i, nሻ ן 1/fୣሺx, iሻ if t୬ ൏ n ൏ maxN (8)
Where x is a non-terminal symbol and ݅ is an index of x’s rules.
Furthermore, ݊ is the number of rules that an ant has applied so
far to reach its current expression and ݐ௡ is the constant threshold
related to changing the phase of the construction (from expanding
phase to finishing phase). Finally, ݉ܽܰݔ is the maximum number
of using rules for all ants.
The following function has the characteristics defined in (8):

,ݔ ሺܪ ݅, ݊ሻ ൌ ݁
೟೙ష ೙

೟೙
 ሺ ୪୭୥ ሺ௙೐ሺ௫,௜ሻ ା ଵሻכ

 (9)

Where x is a non-terminal symbol and ݅ is an index of x’s rules.
Furthermore, ݊ is the number of rules that an ant has applied so
far to reach its current expression and ݐ௡ is the constant threshold
related to changing the phase of the construction (1 ൏ ௡ݐ ൏
 is the maximum number of using rules for ܰݔܽ݉ while (ܰݔܽ݉
ants. In the case of ݊ ൏ ௡ , the fraction ௧೙ି ௡ݐ

௧೙
 is positive then ܪ

and ௘݂ሺݔ, ݅ሻ has a direct relationship. The higher value of ௘݂ሺݔ, ݅ሻ
results the higher value of H but, when ݊ ൐ ௡, H is reverselyݐ
proportional to ௘݂ሺݔ, ݅ሻ. Thus, the higher value of ௘݂ሺݔ, ݅ሻ results
the lower value of H.

3.3 The Pheromone Placement Method
In the GAP model, the amount of pheromone deposited on the
graph by an ant depends on the fitness value ܮ௞ሺݐ, ሻ and the݌
constant Q. This paper presents another method of pheromone
placement. In this method, in addition to ܮ௞ሺݐ, ሻ, the rank of the݌
ants as well as the number of the rules used to reach that edge is
considered.
This method of pheromone placement tends to put more
pheromone in the derivation steps, the steps made at the
beginning of the path. This is based upon the hypothesis that if the
fitness of a path is better than others this path is likely to have
good structure and putting more pheromone on the early
selections can encourage other ants to build this (or similar)
structure(s). A small amount of pheromone in the latter edges of a
path provides this opportunity for ants to explore final edges
better. This is because these edges with a small amount of
pheromone are biased less than the beginning edges.
The total amount of pheromone ant k places on the trail is:
 Θ୩ ؔ f൫rankሺkሻ൯. ,ݐ௞ሺܮ ሻ (10)݌

Where ܮ௞ሺݐ, ሻ is the value of the objective function obtained by݌
ant k at time t and f൫rankሺkሻ൯ is a factor that depends on the rank
of the path (program) found by ant k. Note that ranking is done
with respect to the ܮ௞ሺݐ, .ሻ of ants݌
The contribution of ant k to the update of a trail is computed as
follows. As argued above, the intent of this method is to put more
pheromone at the beginning of the path than at the end of the
path.

 ∆ ௞ܶሺݐሻ ൌ Θ୩ . 2 . Lି୬ାଵ
Lమା L

 (11)

Where L is the total number of rules which ant k has used to
generate its program (path) and n is the number of rules used by
ant k to reach this specific edge whose pheromone is being
updated.

Note that, since ∑ ሺܮ െ ݊ ൅ 1ሻ௅
௡ ୀଵ ൌ Lమା L

ଶ
, it is easy to verify

that the total amount of pheromone placed on the trail by ant k
is Θ୩ .

4. EXPERIMENTAL RESULTS
In this section, the performance of GAP and EGAP will be
compared in three experiments: Quartic Symbolic Regressions,
Multiplexer, and Santa Fe ant trail.
GAP and EGAP have been run with the same parameters. The
evaporation rate ݌ is 0.5 and ߙ and ߚ are considered 2 and 1
respectively. The initial pheromone concentration, ଴ܶ, is 10ି଺ and
maxN is 100. For each algorithm, 10 simulations are run with 100
iterations and, in each iteration, 20 ants have passed through the
graph.
For both of the algorithms (EGAP, GAP), the number of
generated individual is equal. In both EGAP and GAP, 100
iterations for 20 ants (100*20 = 2000) have been considered.

4.1 Quartic Symbolic Regression
The target function is defined as ݂ሺܽሻ ൌ ܽ ൅ ܽଶ ൅ ܽଷ ൅ ܽସ, and
200 numbers randomly generated in the range of ሾെ10,10ሿ are
used as the input for this function and the corresponding output of
them is found. Therefore, the desired output for these 200 input
numbers will be these outputs called ݕ vector. The objective of

115

this experiment is that these two algorithms (EGAP and GAP)
find the expression that has the nearest output to ݕ for x input
vector. The fitness function for all the two algorithms is defined
as follows:

݂ሺ݌, ,ݔ ሻݕ ൌ ଵ
ே

 ∑ – ሺ݊ሻሻݔሺ݌| ሺ݊ሻ|ேݕ
௡ୀଵ (12)

,݌ሺݏݏ݁݊ݐ݅ܨ ,ݔ ሻݕ ൌ ଵ
ଵା௙ሺ௣,௫,௬ሻ

Where ݌ is the expression generated by the automatic
programming algorithm; x and y are the input vector and desired
output vector respectively. Finally, N is the number of the
elements of x. The grammar used in this experiment for EGAP
and GAP is given by

൏ ݎ݌ݔ݁ ൐ ՜ ൏ ݎ݌ݔ݁ ൐൏ ݌݋ ൐൏ ݎ݌ݔ݁ ൐ | ൏ ݎܽݒ ൐
൏ ݌݋ ൐ ՜ כ | െ | ൅ | /
൏ ݎܽݒ ൐ ՜ ܽ
In Figure 2, the plot of the mean best fitness over 10 runs can be
seen. EGAP clearly outperforms the GAP in this experiment. A t-
test comparing these two methods in this experiment gives a score
of 7.562 in the favor of EGAP—significant at the 99% confidence
level.

In Figure 3, the average node branching factor of all the nodes
have visited in 10 runs each of which has 100 iterations can be
observed. By inspection, although we use a heuristic method in
EGAP, the branching factor in both methods looks similar.
Superficially at least, it appears that EGAP has the same ability of
exploration of search space as GAP although it uses the heuristic.

4.2 4-to-1 Multiplexer
The goal of this problem is to find a boolean expression that
behaves as a 4-to-1 Multiplexer. There are 64 fitness cases for the
4-to-1 Multiplexer, representing all possible input-output pairs.
Program fitness is the percentage of input cases for which the
generated boolean expression returns the correct output. The
grammar adopted for this problem is as follows:

൏ ݎ݌ݔ݁݉ ൐ ՜ ൏ ݎ݌ݔ݁݉ ൐൏ 2݌݋ ൐൏ ݎ݌ݔ݁݉ ൐ | ൏ 1݌݋ ൐൏
ݎ݌ݔ݁݉ ൐ | ൏ ݐݑ݌݊݅ ൐
൏ 1݌݋ ൐ ՜ ݎ݋ | ݀݊ܽ
൏ 2݌݋ ൐ ՜ ݐ݋݊
൏ ݐݑ݌݊݅ ൐ ՜
 5ݐݑ݌݊݅ | 4ݐݑ݌݊݅ | 3ݐݑ݌݊݅ | 2ݐݑ݌݊݅ | 1ݐݑ݌݊݅ | 0ݐݑ݌݊݅
A plot of the mean best fitness over 10 runs of 100 iterations for
these two algorithms is illustrated in Figure 4. As shown, EGAP
had the better performance compared to GAP. It is interesting to
note that this problem is not hard and both of these algorithms
could usually find the simple boolean expression generating 40
correct answers out of 64 possible correct results in their first
iteration. Despite the fact that this problem is not a good
benchmark for these two algorithms because of its simplicity,
EGAP represents a statistically significant improvement over
GAP for this problem. A t-test comparing these two methods
gives a score of 3.621 in the favor of EGAP—significant at the
95% confidence level.

4.3 Santa Fe ant trail
The Santa Fe ant trail is a standard problem in the area of GP. The
objective of this problem is to find a computer program to control
an artificial ant in such a way that it finds all 89 pieces of food
that are located on the discrete trail. Furthermore, the ant is
limited to find the food in a maximum number of time steps and
the trail is located on the 32x32 grid. The ant can only turn left,
right, or move one square ahead. Also, it can check one square
ahead in the direction facing in order to recognize whether there is
a food in that square or not. All actions, except checking the food,
take one step for the ant to execute. The ant starts its foraging in
the top-left corner of the grid. The grammar used in this
experiment is:

 ൏ ݁݀݋ܿ ൐ ՜൏ ݈݅݊݁ ൐ | ൏ ݁݀݋ܿ ൐ ൏ ݈݅݊݁ ൐
൏ ݈݅݊݁ ൐ ՜൏ ݊݋݅ݐ݅݀݊݋ܿ ൐ | ൏ ݌݋ ൐
൏ ݊݋݅ݐ݅݀݊݋ܿ ൐ ՜ ݂݅ሺ݂݀݋݋_݄ܽ݁ܽ݀ሺሻሻ
 ሼ ൏ ݈݅݊݁ ൐ ሽ
 ݁ݏ݈݁
 ሼ ൏ ݈݅݊݁ ൐ ሽ

Figure 4. Plot of the mean of the best fitness on the
multiplexer problem during the 100 iterations

Figure 3. The plot of average node branching factor over
10 runs during 100 iterations

Figure 2. Plot of the mean of the best fitness on quartic
symbolic regression problem during the 100 iterations

116

൏ ݌݋ ൐ ՜ ;ሺሻ݁ݒ݋݉ | ;ሺሻݐ݄݃݅ݎ | ;ሺሻݐ݂݈݁
The fitness function for both algorithms is the number of food
items found by ant over the total number of food items, which is
equal to 89.

In Figure 5, the plot of the mean best fitness over 10 runs for ant
trail problem can be seen. EGAP outperforms the GAP in this
experiment. A t-test comparing these two methods gives a score
of 2.195 in the favor of EGAP—significant at the 95% confidence
level.

4.4 Discussion
The main contributions of this paper are the introduction of a new
heuristic function for program generation and a different method
of pheromone placement for GAP. As shown in previous sections,
the results of the experiments reveal the advantage of using this
heuristic function and pheromone placement over GAP. An
intriguing question is that to what extent each of these two
suggested modifications (Heuristic and Pheromone Placement)
contributes to the strength of EGAP. In order to understand this
we devised another experiment, separating the two modifications.
We chose the same parameter setting of quartic symbolic
regression and run two more algorithms, GAP with the proposed
heuristic function (GAP + H) and GAP with the proposed
pheromone placement method (GAP + PP) to solve the quartic
symbolic regression. The result of these two new algorithms and
previous results of GAP and EGAP are shown in Figure 6.

As illustrated in Figure 6, both GAP + H and GAP + PP
outperform GAP in 100 iterations in this experiment; although the
performance of GAP + H was better than the result of GAP + PP.
Interestingly, this experiment shows that although EGAP uses
both heuristic function and pheromone placement methods, its
performance is considerably better than the performance of GAP
+ H and GAP + PP. In other words, the strength of EGAP is not
only because of using these two heuristic function and pheromone
placement but also because of the interaction of these two
methods.

5. CONCLUSIONS AND FUTURE WORK
This paper proposes a novel automatic programming technique
based upon the use of ACS and context free grammars. The
research reported identifies weaknesses in GAP in the areas of
path termination and pheromone placement. To solve these
problems, a new heuristic function which is inspired from the
building construction is presented in this work as well as the new
method of pheromone placement. The heuristic function guides
the ants to first construct a good structure for solution which is
analogy to two phases of building construction, constructing the
structure and decoration. This kind of the thinking exists in other
aspects of life in that we first consider about the whole of object
then we considerate on details and parts.
The results of the experiments reveal the advantage of using this
heuristic function and pheromone placement over GAP.
Furthermore, the results empirically demonstrate that EGAP and
GAP have almost the same node branching factor, and then the
heuristic did not affect the exploration ability of the algorithm in
the solution space.
We plan to compare the result of EGAP with GP in our future
work in order to understand better the performance of EGAP.
 We believe that the heuristics proposed in this paper can be
extended and used in other automatic programming algorithms.
Furthermore, extending the heuristic function so that it has an
adaptive phase duration should be investigated. In this way, based
on the grammar and the fitness of generated program, ants will
decide about the duration of each phase of construction.
The other suggestion for future work is in the use of
heterogeneous ants in EGAP. Agent heterogeneity has been found
to be useful in other search algorithms, including ACS and PSO.
In the context of EGAP, ants would have variability in the
duration of their construction phases. Hence, these ants could
produce programs with different levels of complexity and length.

6. REFERENCES
[1] Bonabeau, E., Dorigo, M. and Theraulaz G. Swarm

Intelligence: From Natural to Artificial Systems. Oxford
University Press, Oxford.1999.

[2] Boryczka, M. and Wiezorek, W. Solving approximation
problems using ant colony programming. In Proceedings of
AI-METH 2003, pages 55-60, 2003.

[3] Boryczka, M. Ant Colony Programming for Approximation
Problems, Proceedings of the Eleventh International
Symposium on Intelligent Information Systems, Sopot,
Poland, June 3–6 2002.

[4] Boryczka, M., Czech, Z. J. Solving Approximation Problems
By Ant Colony Programming, GECCO–2002: Proceedings

Figure 6. Plot of the mean of the best fitness on quartic
symbolic regression problem during the 100 iterations

Figure 5. Plot of the mean of the best fitness on ant
trail problem during the 100 iterations

117

of the Genetic and Evolutionary Computation Conference
(W. B. Langdon, E. Cant´u-Paz, K. Mathias, al., Eds.),
Morgan Kaufmann Publishers, New York, 9–13 July 2002,
ISBN 1–55860–878–8.

[5] Boryczka, M., Czech, Z. J. Solving Approximation Problems
by Ant Colony Programming, Late Breaking Papers at the
Genetic and Evolutionary Computation Conference
(GECCO–2002) (E. Cant´u-Paz, Ed.), AAAI, New York,
NY, 9–13 July 2002.

[6] Boryczka, M., Czech, Z. J. and Wieczorek, W. Ant Colony
Programming for Approximation Problems, Genetic and
Evolutionary Computation— GECCO–2003, Lecture Notes
in Computer Science 2723–2724 (E. Cant´u- Paz, al., Eds.),
Springer–Verlag, Berlin Heidelberg, 2003. Fundamenta
Informaticae 68 (2005) 1–191.

[7] Boryczka, M. Eliminating Introns in Ant Colony
Programming, Fundam. Inform. 68(1-2): 1-19 (2005).

[8] Keber, C. and Schuster, M. G. Option valuation with
generalized ant programming. In W. B. Langdon and E.
Cantii-Paz et al., editors, GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages
74-8 1, New York, 9- 13 July 2002. Morgan Kaufmann
Publishers.

[9] Koza, John R. Genetic Programming: On the Programming
of Computers by Natural Selection. MIT Press, Cambridge,
MA, 1992.

[10] Koza, John R. Genetic Programming II: Automatic
Discovery of Reusable Programs.MIT Press, 1994.

[11] Koza, J. R., Bennet III, F. H., Andre D., and Keane, D.:
Genetic Programming III: Darwinian Invention and Problem
Solving. Morgan Kaufmann, 1999.

[12] O’Neill M., and Brabazon A. Grammatical Swarm. In:
LNCS 3102 Proceedings of the Genetic and Evolutionary
Computation Conference GECCO 2004. Seattle, WA, USA,
pp. 163–174, Springer, Berlin, 2004.

[13] O'Neill, M., and Brabazon, A. Grammatical Swarm: The
generation of programs by social programming. Natural
Computing: an international journal 5, 4 (Nov. 2006).

[14] O’Neill, M., and Ryan, C. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language, Kluwer Academic Publishers, 2003.

[15] Roux, O., and Fonlupt, C., 2000, Ant Programming: Or How
to Use Ants for Automatic Programming, in Proceedings of
ANTS’ 2000, ed. By M. Dorigo et al. pp. 121-129.

118

