
A Grammar-based Evolutionary Approach for
Assessing Deep Neural Source Code Classifiers

Martina Saletta, Claudio Ferretti
Dept. of Informatics, Systems and Communication

University of Milano-Bicocca
Milan, Italy

martina.saletta@unimib.it, claudio.ferretti@unimib.it

Abstract—Neural networks for source code processing have
proven to be effective for solving multiple tasks, such as locating
bugs or detecting vulnerabilities.

In this paper, we propose an evolutionary approach for
probing the behaviour of a deep neural source code classifier
by generating instances that sample its input space.

First, we apply a grammar-based genetic algorithm for evolv-
ing Python functions that minimise or maximise the probability of
a function to be in a certain class, and we also produce programs
that yield an output near to the classification threshold, namely
for which the network does not express a clear classification
preference.

We then use such sets of evolved programs as initial popu-
lations for an evolution strategy approach in which we apply,
by following different policies, constrained small mutations to
the individuals, so to both explore the decision boundary of the
network and to identify the features that most contribute to a
particular prediction.

We furtherly point out how our approach can be effectively
used for several tasks in the scope of the interpretable machine
learning, such as for producing adversarial examples able to
deceive a network, for identifying the most salient features, and
further for characterising the abstract concepts learned by a
neural model.

Index Terms—structured grammatical evolution; evolution
strategy; decision boundaries; deep neural networks; source code
classifiers

I. INTRODUCTION

In recent years, deep neural networks (DNNs), and espe-
cially neural classifiers have become popular and successful
for applications in a wide range of domains. Therefore, being
able to understand how such models make their predictions is
of interest, especially with their internal architectures becom-
ing complex and sophisticated.

Ample research studied how to generate adversarial exam-
ples for networks which classify images, that is pictures that
lead them to wrong predictions. Conceptually, input images
can be considered as points in the domain of the function that
maps each input to the corresponding classification error, and
thus it is possible to move from a correctly classified input
to an adversarial example by examining, and following, the
gradient of such function [1].

Problems arise when this approach has to be applied to
domains where instances, to become input of the neural
network, need to be transformed to numerical vectors. This
is the case of source code, which can be given as input to

neural networks only after being transformed by one of many
available embedding methods. In fact, in such a case we can
apply known methods for moving on the error function only
with respect to the embedding input space. That is, we can for
instance find the embedding vector of adversarial examples,
but we would need to find a way to build the corresponding
adversarial source code [2].

We want to approach this problem by exploring how the out-
put of the network changes, when input source code changes.
The output to be considered will not be the categorical
classification, binary in our experiments, but the real valued
probability that most neural models compute for each possible
classification outcome. Also, the exploration will be aimed at
finding specific values of the probability, namely the maximal
1, the minimal 0, or the 0.5 value, which in the case of
binary classification corresponds to the decision boundary of
the network.

Our proposal is to study how the solution space can be
explored for finding source code snippets that produce the
wanted probability values, and also to find which small per-
turbations quickly change the output values. This will allow
to look for specific features, in the source code, which show
strong correlation to the changes in the network output, in a
way similar to what is done when studying the adversarial
space for numerical input domains.

Our proposal is to efficiently move in the source code input
space by using evolutionary methods, to reach the needed
network output values. In our method, individuals are source
code snippets, fitness is the probability value produced by the
neural classifier, and the genomes are evolved as defined by a
grammar based evolutionary algorithm.

The overall mechanism involves a first phase generating
individuals optimal with respect to the fitness value we look
for, and a second phase deriving from them other instances
which allow us to explore how – and sensitive to which
features – fitness changes around the reached values.

Our contribution is the design of such specific variation on
the evolutionary method, good to search the space of source
code instances. We demonstrate the results of its use on a
state of the art neural classifier. We always obtain source code
snippets inducing the required output from the neural network,
and we also show how our system easily finds sets of derived
snippets, which describe how the classification is changing in

a given area of the input space.

II. RELATED WORK

Essentially, this paper proposes an evolutionary approach
for studying the behaviour of deep neural models in the
source code processing domain with bearing on many issues,
such as identifying blind spots and salient features, analysing
the decision boundary or deceiving a model by generating
adversarial examples. To this end, this section provides a
concise literature overview on the main topics that concern
our work, focusing on the context we are interested in.

A. Machine learning for source code analysis

The recent literature shows how machine learning models
dealing with source code are becoming widespread and ef-
fective for solving multiple tasks, including code classifica-
tion [3], code summarization [4], vulnerability detection [5] or
for addressing classical software engineering issues [6], such
as code completion [7], error fixing [8] or bug location [9].

Besides the use of networks that need as input specific
program representations (e.g. vectors [10] or graphs [11]),
also the models known as transformers [12], widely used for
natural language processing (NLP) applications are becoming
popular in the field of source code processing. For instance, we
can mention CuBERT [13], a source code-specific BERT [14]
model and PLBART [15], a sequence-to-sequence model used
for different program comprehension tasks such as code sum-
marization and generation. One of the advantages in the use
of such kind of networks is their flexibility: in fact, they can
be trained once on generic and large corpora of data and then
fine-tuned for different and more specific tasks. In the rest
work, we will refer to CuBERT as the baseline model for our
discussion.

B. Formal grammars and evolutionary algorithms

Grammatical evolution (GE) [16] is an evolutionary algo-
rithm designed to evolve individuals whose phenotypes are
compliant with a given formal grammar. Since programming
languages are often specified by a context-free grammar
(CFG), this technique is particularly suitable when dealing
with source code.

For its inherent nature, GE has been applied for addressing
the critical problem of program synthesis [17]. For instance,
the authors of [18] show how GE can be effectively used for
evolving programs belonging to different domains, although
pointing out that the knowledge of the problem to solve is
crucial for designing the suitable grammar, while [19] applies
GE in the synthesis of programs that solve the problem of
sorting sequences of integers.

Despite the insightful results obtained, GE suffers from
problems such as redundancy (many genotypes are mapped
into the same phenotype) and locality (a small perturbation in
a genotype leads to significant changes in the corresponding
phenotype) in the genome representation [20]. In order to
face these drawbacks, adjustments on GE have been proposed:
structured grammatical evolution (SGE) [21] and its improved

dynamic version (DSGE) [20] have proven to outperform GE
in solving the problems on which they have been compared.
Therefore, due to the significant reduction in terms of locality
and redundancy, in our experiments we apply DSGE for
exploring the solution space of CuBERT.

C. Explaining machine learning models

Machine learning models based on neural networks classify
input through a non linear mapping of input instances to
output class probabilities. The mapping function is shaped by
the trained weights of internal connections, and classification
errors arise when this function has areas of input space which
generate unexpected outputs.

In the literature, the goal of understanding the overall input
output behavior of a trained network, or just of discovering
input areas where the model delivers wrong predictions, are
pursued by estimating the shape either of the manifold corre-
sponding to the learnt function or of the error function.

In [1] the input space of a network in the regions around
known positive instances is studied to look for adversarial
examples, while authors of [22] look for adversarial example
images against which a defense is harder, by searching input
space for points strategically distant from decision boundaries.
Also working on images as input, [2] develops a method
to generate borderline instances, and also discusses how to
generate instances moving far from decision boundaries to
explore how the classification behavior of the network changes
around that space.

In this work, we sample the input space by evolving source
code snippets leading to chosen output values, and then we
study how the output varies in their neighborhood, explored
by means of small syntactical perturbations.

III. PROPOSED METHOD

In this section we detail how we will build and test our
method. Essentially, we first choose a neural network classify-
ing source code, then we use its output as the fitness evaluator
for an evolutionary algorithm, and finally we look for input
programs leading it to output specific class probabilities. A
similar approach has been already adopted in [23] to evolve
features to be injected in given program instances to produce
adversarial examples able to deceive a neural vulnerability
detector.

In the literature, classifiers have been developed to predict
whether input source code satisfies some given quality proper-
ties, related for instance to good software engineering practices
or to avoid security flaws. We will use a well known and
publicly available neural classifier, based on the transformer
architecture, trained to check some properties of Python source
code snippets. Another publicly available software platform
will be adapted in order to evolve individuals defined through a
formal grammar in accordance to the two phase process we are
proposing. On top of these software systems, it will be required
to integrate them, to make available to the evolutionary system
the class probability computed by the neural network.

The behavior of the neural system will be probed by source
code snippets evolved by using a simplified grammar, but they
will vary enough to discover which code features mostly affect
the classification results.

A. CuBERT source code classifier

Our benchmark source code classifier, CuBERT [13], is
basically a BERT model [14] (the popular transformer for
NLP), modified to effectively deal with source code. For
our experiments, we considered three of the original fine-
tuned classifiers proposed by the authors, to make our results
and investigation more robust with respect to the possible
bias induced by the single accounted downstream task. In
particular, we replicated all our experiments on three fine-
tuned models1 trained on the following binary classification
tasks:

1) Variable misuse: this task is referred to the mistakes
developers could make when dealing with similar code
fragments or similar variable names (e.g. when copy-
paste code snippets but forget to properly renaming
variables) [11]. In this fine-tuned model, it consists in
detecting if there is a variable misuse at any location in
the Python function given as input.

2) Wrong binary operator: this task [24] simply consists
in detecting weather there is a binary operator that
is improperly used in an expression occurring in the
function given as input.

3) Swapped operands: this task consists in detecting if
there are operands of non-commutative binary operators
that are swapped with respect to the correct usage
intention.

Our focus, in this work, is to study how different syntactical
features most influence the evaluation of the different models,
under the hypothesis that the relevance of such features is
related to the problem to solve. We remark that, to this end, we
are mostly interested in the numerical variation of the output
instead of the prediction in terms of classification decision.
This is due to the fact that a ground truth for the described
problems is difficult to establish for programs that do not have
a predetermined functionality, and thus we will not focus on
the creation of adversarial examples, but only on evolving
programs that lead to arbitrary predictions, no matter their
correct label.

B. Two-stage evolutionary search

In our approach, the exploration of the CuBERT behaviour
is performed in two main phases: in the first one, we sample
the CuBERT solution space by applying pure DSGE using
the simplified Python grammar reported in Figure 1 and
different fitness objectives; in the second one, we apply only
“constrained” mutations to such evolved individuals, to point
out how such mutations affect the fitness.

1https://github.com/google-research/google-research/tree/master/cubert

Fig. 1: Simplified Python grammar.

a) DSGE and neural fitness functions: in this first ex-
perimental phase of our approach, we apply an evolutionary
algorithm based on DSGE for sampling the solution space of
the fine-tuned CuBERT models described in Section III-A.

Basically, in DSGE, genotypes are represented by lists of
ordered derivation steps of a given CFG: each genotype is a
sequence S1, . . . , Sn, where for each i ∈ {1, . . . , n}, Si is
referred to a non-terminal symbol of a context-free grammar
G = (N,T,A, P) where N and T are the sets of non-terminal
and terminal symbols, respectively, A ∈ N is the axiom, or
the starting symbol of G, and P is the set of production rules.
Each Si is an ordered list of integers r1, . . . , rk, where k is
the number of times the i-th non-terminal is expanded, and
the values correspond to the indices (in the grammar) of the
applied expansion rules. For a complete explanation of DSGE,
we refer the reader to [20].

In the three considered fine-tuned CuBERT models, which
are binary classifiers, the output is a value 0 ≤ v ≤ 1, and
an individual is predicted to be in the negative class if v ≤
0.5 and in the positive class otherwise. Given this premise,
using the CuBERT output as the fitness, for each fine-tuned
model we evolve programs using DSGE pursuing three fitness
objectives: maximization, minimization, and minimization of
|0.5−v|. The founding idea is to produce pools of individuals
that the network classifies with an high confidence (namely
the program instances whose fitness is very close to 0 or to 1)
or for which the prediction is uncertain, that is the individuals
whose fitness is close to the decision boundary 0.5.

In this experimental phase we evolve programs that comply
with the grammar listed in Figure 1. The grammar formalizes
an extremely minimal Python function definition in which two
variables x and y are fixed parameters, the only control flow
constructs are if, if-else, and while statements, and only
assignments and operations on integers are valid instructions.
We still remark that the choice of a so simplified Python
grammar, which is made for readability reasons, allows us
to effectively produce individuals yielding outputs covering
all the interval between 0 and 1, and thus it suffices for our
discussion. Finally, notice that since the interest here is to

analyse the output changes by varying syntactical elements,
the evolved programs are not supposed, in general, to be
executable or meaningful.

b) Mutations and fitness variations: this second phase is
aimed at exploring how the fitness of individuals changes when
different mutations are applied, to identify which features are
most salient for the network to make its prediction.

In DSGE, the standard mutation operator is defined, for a
position Si = r1, . . . , rk as a random change of an integer
rj into another valid integer r∗j for that gene. In other words,
a mutation is basically the selection of a different expansion
option for a non-terminal symbol. It should be noted that,
in general, r∗j could be referred to a production rule that
contains non-terminal symbols of the grammar. In that case,
for each non-terminal random expansions rules are selected
(and thus added to the genome) until all the non-terminals
are resolved into terminal symbols. Given this definition, it
is possible to specify a different mutation operator in which
only some positions can be altered, meaning that only some
non-terminals can be changed in their expansion rules.

By means of two constrained mutation operators (whose
pseudo-code are reported in Algorithm 1), we explore how
the fitness variation is related to the non-terminals for which
the mutation is enabled, to identify which syntactical features
are the most salient for the network prediction. To this end,
we performed two families of experiments:

1) The exploration of the neighborhood of individuals. For
this investigation, we applied mutations by following
the procedure described by Algorithm 2 and then we
measured the average fitness variation of individuals
generated by the mutations.

2) Following a (µ + λ) evolution strategy approach [25]
(i.e. a population based algorithm in which the best µ
individuals of a population are mutated λ/µ times for
composing the new generation), we measure how the
different constraints affect the fitness variation along a
sequence of mutation steps. This procedure is formally
described by Algorithm 3.

The core difference between the two experimental investiga-
tions is that, while in the first we perform an extensive explo-
ration of the neighborhood of the individuals, in the second
one a similar exploration is performed over many mutation
steps guided by an evolutionary pressure and controlled by the
fitness function. In the first case, the considerations that follow
from the results, which will be fully reported and discussed in
Section IV, are mainly quantitative: we simply observe how
the different constraints in the mutation operator change the
fitness evaluation of the mutated individuals when compared to
the fitness of the original individual. In the second experiment,
indeed, the attempt is more qualitative: we start from a single
individual, we mutate (almost) a single token in each step,
and we detect the features that most influence the prediction
of the network, by observing how the fitness varies along many
mutation steps.

Algorithm 1 Constrained mutation operators
1: ind ← individual to mutate
2: pmut ← mutation probability
3: G← list of genes g1, . . . , gn
4: ▷ each gi = v1, . . . , vm is associated to a non-terminal,

occurring m times in the sentential form, and each vj
specifies the grammatical rule used in each position

5:
6: ▷ The difference between the two operators is that,

while in CNSTR MUTATE 1 each mutable position is
mutated with probability pmut, in CNSTR MUTATE 2
a mutation in a gene occurs with probability pmut and
in that gene only one random position is mutated

7:
8: procedure CNSTR MUTATE 1(ind, pmut, G)
9: for all g ∈ G do

10: V ← values in the genome for the gene g
11: for all v ∈ V do
12: if RANDOM() ≤ pmut then
13: mutate v into another valid integer v∗

14: if rule v∗ contains non-terminals then
15: randomly expand all the non-terminals
16: end if
17: end if
18: end for
19: end for
20: return ind
21: end procedure
22:
23: procedure CNSTR MUTATE 2(ind, pmut, G)
24: for all g ∈ G do
25: if RANDOM() ≤ pmut then
26: V ← values in the genome for the gene g
27: randomly choose v ∈ V
28: mutate v into another valid integer v∗

29: if rule v∗ contains non-terminals then
30: randomly expand all the non-terminals
31: end if
32: end if
33: end for
34: return ind
35: end procedure

IV. RESULTS

In this section we supply the technical details of the
performed investigations, and we discuss the obtained results.
All the experiments have been performed on a Linux machine
with 16GB RAM, 4 CPUs running at 3.60GHz and a Nvidia
GTX 1070 GPU. We used tensorflow over CUDA, with sge3
implementation2 of DSGE.

A. Sampling the solution space

As described in Section III-B, in the first experimental
phase we apply DSGE for evolving Python programs using,

2https://github.com/nunolourenco/sge3

Algorithm 2 Neighborhood exploration
1: P ← initial population
2: G← list of indices of the mutable genes
3: n← number of neighbours
4: E ← empty list ▷ list of errors
5:
6: for all p ∈ P do
7: fp ← FITNESS(p)
8: for i = 1, . . . , n do
9: N ← empty list

10: newInd← CNSTR MUTATE 1(p, 0.5, G)
11: append newInd to N
12: end for
13: for all ind ∈ N do
14: find ← FITNESS(ind)
15: append |fi − find| to E
16: end for
17: end for
18:
19: output the mean of the values in E

Algorithm 3 Fitness variation over mutation steps
1: P ← p1, . . . , pλ ▷ initial population
2: G← list of mutable genes
3: µ← number of parents
4: n← number of mutation steps
5:
6: for n times do
7: sort P according to the fitness of each pi ∈ P
8: B ← p1, . . . , pµ ▷ list of best µ individuals
9: P ← empty list

10: for all p ∈ B do
11: append p to P
12: for λ/µ times do
13: m← CNSTR MUTATE 2(p, 1

|G| , G)
14: append m to P
15: end for
16: end for
17: end for

as the fitness function, the outputs of the three CuBERT fine-
tuned models described in Section III-A, namely the three
binary classifiers trained in detecting variable misuse, swapped
operands and wrong binary operators.

For each of these models, we considered three fitness ob-
jectives (i.e. minimization, maximization and minimization of
the distance between 0.5 and the output) and for each of these
combinations we performed 10 DSGE runs by using as the
reference grammar the one shown in Figure 1. For each run,
we evolved populations of 50 individuals for 50 generations
with tournament selection (3 individuals per tournament),
keeping an elite of 10 individuals at each generation, and by
letting crossover and mutation occur with probability 0.9 and
0.1, respectively. Also, we limited the size of individuals by

imposing a maximum tree depth of 25.
The obtained results, which are fully reported in Figure 2,

show how we are always able to pursue the fitness objective,
even if using an extremely simple and minimal grammar. For
each model, the targeted fitness that seems to require more
generations to be reached is 0.5. This value is indeed the most
interesting for the scope of this work, since it represents the
decision boundary, that is the classification threshold of the
network.

B. Moving across decision boundaries

In this and in the next subsection, we discuss how differ-
ent syntactical features affect the prediction of the network.
Specifically, we defined the two constrained mutation opera-
tors detailed in Algorithm 1, we applied them to the individuals
evolved with DSGE by following different policies, and we
observed the fitness variations.

The first investigation, formally outlined in Algorithm 2,
is aimed at a quantitative assessment of how the different
mutations affect the predictions of the three considered Cu-
BERT models. For each model, we started from the individuals
evolved in the previous phase when pursuing the fitness
objective near the decision boundary. In other words, we
started from a set of 10 evolved individuals for which the
networks outputs a value very close to 0.5. Then, starting from
each of individual, we generated 10 neighbours by applying
the CNSTR MUTATE 1 operator, by setting the mutation prob-
ability to 0.5 and by imposing three different constraints:

1) mutation allowed only for variable identifiers, that is the
only mutable gene is that related to the <varid> non-
terminal;

2) mutation allowed only for the arithmetic operators,
that is the only mutable gene is that related to the
<operator> non-terminal;

3) a less tied constraints set, in which mutation is al-
lowed for the genes related to <int>, <varid>,
<operator> and <condoperator> non-terminals.
These constrains are labeled as “all” in Figure 4a.

Notice that all these constraints imposed for the mutation
operator are related to non-terminal symbols whose expansion
rules lead to terminal symbols, meaning that each mutation do
not alter the syntactical structure but takes action only on the
AST leaves.

We then measured, for each possible pair of constraints and
task, the average fitness variation of the mutated individuals,
as reported in Figure 4a. Figure 3 shows an example of this
neighborhood exploration, along with a graphical representa-
tion of the mutation paths studied in the experiments described
in Section IV-C.

C. Blind spots and salient features

This last set of experiments, formalized in Algorithm 3,
lets the evolutionary machine free to explore how to improve
the fitness of individuals, by changing at most one derivation
from each occurring non-terminal. In our experiments, only

Fig. 2: Plots of the fitness obtained in with DSGE for the considered models and fitness objectives. Blue lines represent the
average population fitness, purple lines the fitness of the best individual. Vertical bars report the variance in over the different
runs.

def sub_xy(x, y):
 y=y+6
 while y!=y:
 x=6-5
 return 5
 while 9<=x:
 return 4-x
 while y!=y:
 while 6==7:
 return 9
 if 4>=y:
 while y>=x:
 while y==x:
 return 5+5

def sub_xy(x, y):
 y=y+6
 while y!=y:
 x=6%5
 return 5
 while 9<=x:
 return 4-x
 while y!=y:
 while 6==7:
 return 9
 if 4>=y:
 while y>=x:
 while y==x:
 return 5**5

def sub_xy(x, y):
 div_=rem_+6
 while y!=sub_:
 x=6-5
 return 5
 while 9<=sub_:
 return 4-x
 while y!=rem_:
 while 6==7:
 return 9
 if 4>=y:
 while y>=rem_:
 while y==div_:
 return 5+5

def sub_xy(x, y):
 y=mod_+6
 while y<x:
 x=6/3
 return 5
 while 9!=mult_:
 return 8**x
 while y!=sum_:
 while 0==6:
 return 9
 if 4>=y:
 while div_>=x:
 while y<x:
 return 0-7

0.6485 0.0125

0.0014

0.49

(a) Neighborhood exploration: single mutation step
where several mutations are allowed.

def sub_xy(x, y):
 w=2
 z=3
 x=z-y

def sub_xy(x, y):
 w=2
 z=3
 x=z-2

def sub_xy(x, y):
 w=2
 z=3
 x=z-x

def sub_xy(x, y):
 w=2
 z=3
 x=2-x

def sub_xy(x, y):
 w=2
 z=3
 x=z-w

def sub_xy(x, y):
 w=2
 z=3
 x=z+x

def sub_xy(x, y):
 w=2
 z=3
 y=z+x

0.4825

0.9803

0.0078

0.9974

0.9948

0.0042 0.0018

(b) Evolution strategy: several mutation steps with one mutation
allowed for each step. Green backgrounds highlight a “winning” path.

Fig. 3: Examples for the mutation-based experimental phase. The numbers on top of the boxes represent the fitness value.

varmisuse swappedop wrongop

<va
rid>

<op
erat

ors>

all

0.445 0.274 0.146

0.186 0.108 0.259

0.470 0.379 0.335

Average fitness variation

(a) Average fitness variation for the three fine-tuned models when
different constraints on the mutation operator are imposed.

varmisuse swappedop wrongop

<at
om>

<in
t>

<va
rid>

<op
erat

or>

<co
ndo

p...>

0.273 0.173 0.052

0.148 0.032 0.084

0.352 0.225 0.085

0.214 0.125 0.062

0.223 0.020 0.202

Average fitness variation

(b) Average fitness variation for the three fine-tuned models when
several steps for mutation operator are possible.

Fig. 4: Results of the mutation-based experimental phase.

a chosen subset of non-terminals were mutable. Also, such
exploration spanned a sequence of at most 5 mutation steps.

These choices aimed at assessing whether the neural net-
work had developed specific sensitiveness for some syntactic
elements.

In analogy to what can be done when exploring a geomet-
rical space, we can consider that in our runs the evolutionary
search moved from a parent individual to a new one by
following a specific direction, here represented by a mutation
involving a given grammar rule.

For instance, in our experiments we considered the grammar
in Figure 1, and our evolutionary exploration moved from
the individuals evolved in the first phase, where we aimed
at receiving from the network a prediction very close to 0.5.
Then, 5 generations of individuals were obtained by mutating
their DSGE representation in terms of choices made when
applying rules of non-terminals <atom>, <int>, <varid>,
<operator>, and <condoperator>. The details of how
such mutation operator works are given in CNSTR MUTATE 2
of Algorithm 1. For each generation, best individuals have
been selected as described in Algorithm 3, with λ = 12
and µ = 3. The optimization goal of this phase, starting
from individuals sited near the decision boundary, has been
either to maximise or to minimise the fitness. This amounts
to ask our system to find individuals that move far from
the decision boundary and across the two sides it separates,
always looking at the network’s behavioural changes on the
individuals belonging to the new generation.

We examined two main resulting sets of data: the fitness
values that can be reached, and the grammar rules that are
more effective in varying the fitness value. These data offer a
view on the behavior of the network, for instance by telling
us which syntactic elements the network is more sensitive
to, and when they impact more than others on varying the
fitness value, namely the probability that the network assigns
to instances for belonging to a certain class.

The results of our evolutionary exploration of the input
space, around instances classified close to the decision bound-
ary, have been revealing with respect to the assessment of the

neural network we tested, namely the CuBERT transformer.
We could determine that:

• even when the evolution applied to the starting individuals
did not modify their class with respect to the chosen tasks,
as guaranteed by the set of changes we allowed in their
derivation, our system could always derive individuals
with fitness close to the desired value, 1 or 0; this means
that we can find adversarial examples for the network,
when in context where the ground truth is known;

• each task was a different challenge for our evolutionary
system, for instance requiring more steps to reach the
optimal fitness when checking for swapped operands,
than for variable misuse, or forcing the evolution of
longer individuals when aiming to fitness close to 0, than
for the opposite goal;

• for each of the three classification tasks, the networks
showed higher sensitiveness for specific sets of non-
terminals (see Figure 4b), in details:

– variable misuse: <atom> and <varid>;
– swapped operator: <atom> and <varid>, with

overall impact from the other non-terminals different
from what happens with variable misuse;

– wrong operator: <condoperator>.
The last remarks, on which non-terminals induced the fastest
variation of fitness for a single evolutionary step, deserve some
considerations, in relation to the understanding of the actual
behavior of the network. In our experiments, we are seeing
how the classifier reacts to small, and specific, variations in
the input it receives. This information can be compared to what
we expect from the trained network, with respect to the task
at hand. In our experiment, for instance, we can see that even
if we were allowed to evolve individuals by changing integer
constants (being allowed to mutate the use of the <int> non-
terminal), this was mostly not affecting classifications, and this
seems correct. Also, having the network of the variable misuse
task impacted by changes related to <varid> is expected.
On the other hand, we discover that the network for the
wrong operator task is more sensitive to changes in the choice
of conditional operators, than in changes among arithmeti-

cal operators (<condoperator> VS <operator> non-
terminals). And this could be somewhat unexpected; it could
perhaps point to a bias in the training process.

An interesting visualization of what our system allows to
describe, concerning how the classification of the network
changes when choosing, guided by fitness, instances in the
space around the border is shown in Figure 3b, where we can
follow the generation of individuals with fitness starting from
0.5 and ending close to 0, during our second phase. Figure 4
shows indeed how different grammar rules act differently on
fitness variations.

V. CONCLUSION AND FUTURE WORK

With our grammar-based evolutionary approach, we are able
to search the input space of a neural network looking for
instances leading to arbitrary probability predictions. Also, we
can explore their neighborhood and look for salient variations
in the input-output mapping that characterizes the classifier.
Our method has been tested on a state of the art source code
neural classifier, namely the CuBERT transformer, allowing us
to produce the input source code snippets we needed, and to
identify which syntactical features of the source code mostly
impact the classification. This way to probe the behavior of a
network, in important input space areas, can be used to look
for adversarial examples, but also to derive deeper information
about the sensitiveness of the classifier with respect to features
of input instances; the ease is to operate directly on source
code and not necessarily on its vectorial representation, as
other methods require.

To further this line of research, this approach can be applied
to check the robustness of defense proposals in the area of
adversarial attacks. A broader application area will be that
of neural network understandability, for any neural model and
also under a black-box approach, only assuming to have access
to the predicted class probabilities. Searching the input space
for instances located in key areas, with respect to the neural
model decisions, could give insight to what the classifier is
actually taking as key feature of the input, or to where it has
blind spots or distorted evaluation of source code snippets.

REFERENCES

[1] F. Tramèr, N. Papernot, I. J. Goodfellow, D. Boneh, and P. D.
McDaniel, “The space of transferable adversarial examples,” 2017.
[Online]. Available: http://arxiv.org/abs/1704.03453

[2] H. Karimi, T. Derr, and J. Tang, “Characterizing the decision
boundary of deep neural networks,” 2019. [Online]. Available:
http://arxiv.org/abs/1912.11460

[3] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
2016, pp. 1287–1293.

[4] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML, 2016,
pp. 2091–2100.

[5] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. M. Ellingwood, and M. W. McConley, “Automated
vulnerability detection in source code using deep representation learn-
ing,” in Proceedings of 17th IEEE International Conference on Machine
Learning and Applications, ICMLA. IEEE, 2018, pp. 757–762.

[6] A. F. Del Carpio and L. B. Angarita, “Trends in software engineering
processes using deep learning: A systematic literature review,” in 46th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), 2020, pp. 445–454.

[7] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A self-attentional neural
architecture for code completion with multi-task learning,” in Proceed-
ings of the 28th International Conference on Program Comprehension,
ICPC. ACM, 2020, pp. 37–47.

[8] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “Deepfix: Fixing
common C language errors by deep learning,” in Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, S. P. Singh and
S. Markovitch, Eds. AAAI Press, 2017, pp. 1345–1351.

[9] X. Huo, F. Thung, M. Li, D. Lo, and S. Shi, “Deep transfer bug
localization,” IEEE Trans. Software Eng., vol. 47, no. 7, pp. 1368–1380,
2021.

[10] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 40:1–40:29, 2019.

[11] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in Proceedings of 6th International
Conference on Learning Representations, ICLR 2018, 2018.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems (NIPS), 2017, pp. 5998–6008.

[13] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in Proceedings of the
37th International Conference on Machine Learning, ICML 2020, 12-
18 July 2020, ser. Proceedings of Machine Learning Research. PMLR,
2020.

[14] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT. Association for Computational Linguistics,
2019, pp. 4171–4186.

[15] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Online:
Association for Computational Linguistics, Jun. 2021, pp. 2655–2668.

[16] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Trans. Evol.
Comput., vol. 5, no. 4, pp. 349–358, 2001.

[17] D. Sobania and F. Rothlauf, “Challenges of program synthesis with
grammatical evolution,” in Proceedings of Genetic Programming - 23rd
European Conference (EuroGP), held as Part of EvoStar, ser. Lecture
Notes in Computer Science, vol. 12101. Springer, 2020, pp. 211–227.

[18] E. Hemberg, J. Kelly, and U. O’Reilly, “On domain knowledge and
novelty to improve program synthesis performance with grammatical
evolution,” in Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO, A. Auger and T. Stützle, Eds. ACM, 2019, pp.
1039–1046.

[19] M. O’Neill, M. Nicolau, and A. Agapitos, “Experiments in program
synthesis with grammatical evolution: A focus on integer sorting,” in
Proceedings of the IEEE Congress on Evolutionary Computation, CEC.
IEEE, 2014, pp. 1504–1511.

[20] N. Lourenço, F. Assunção, F. B. Pereira, E. Costa, and P. Machado,
“Structured grammatical evolution: a dynamic approach,” in Handbook
of Grammatical Evolution. Springer, 2018, pp. 137–161.

[21] N. Lourenço, F. B. Pereira, and E. Costa, “Unveiling the properties of
structured grammatical evolution,” Genetic Programming and Evolvable
Machines, vol. 17, no. 3, pp. 251–289, 2016.

[22] W. He, B. Li, and D. Song, “Decision boundary analysis of adversarial
examples,” in 6th International Conference on Learning Representa-
tions, ICLR. OpenReview.net, 2018.

[23] C. Ferretti and M. Saletta, “Deceiving neural source code classifiers:
finding adversarial examples with grammatical evolution,” in GECCO
’21: Genetic and Evolutionary Computation Conference, Companion
Volume. ACM, 2021, pp. 1889–1897.

[24] M. Pradel and K. Sen, “Deepbugs: a learning approach to name-based
bug detection,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp.
147:1–147:25, 2018.

[25] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013, available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

