Skip to main content

Site Characterization Using GP, MARS and GPR

  • Chapter
Book cover Handbook of Genetic Programming Applications

Abstract

This article examines the capability of Genetic Programming (GP), Multivariate Adaptive Regression Spline (MARS) and Gaussian Process Regression (GPR) for developing site characterization model of Bangalore (India) based on corrected Standard Penetration Test (SPT) value (Nc). GP, MARS and GPR have been used as regression techniques. GP is developed based on genetic algorithm. MARS does not assume any functional relationship between input and output variables. GPR is a probabilistic, non-parametric model. In GPR, different kinds of prior knowledge can be applied. In three dimensional analysis, the function\( {\mathrm{N}}_{\mathrm{c}}=\mathrm{f}\left(\mathrm{X},\mathrm{Y},\mathrm{Z}\right) \) where X, Y and Z are the coordinates of a point corresponding to N value, is to be approximated with which N value at any half space point in Bangalore can be determined. A comparative study between the developed GP, MARS and GPR has been carried out in the proposed book chapter. The developed GP, MARS and GPR give the spatial variability of Nc values at Bangalore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Yaglom AM (1962) Theory of stationary random functions. Prentice-Hall, Inc., Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Lumb P (1975) Spatial variability of soil properties. In: Proc. Second Int. Conf. on Application of Statistics and Probability in Soil and struct. Engrg, Aachen, Germany, p 397–421.

    Google Scholar 

  • Vanmarcke EH (1977) Probabilistic Modeling of soil profiles. Journal of Geotechnical Engineering, ASCE 102(11):1247–1265

    Google Scholar 

  • Tang WH (1979) Probabilistic evaluation of penetration resistance. Journal of Geotechnical Engineering, ASCE 105(GT10):1173–1191

    Google Scholar 

  • Wu TH, Wong K (1981) Probabilistic soil exploration: a case history. Journal of Geotechnical Engineering, ASCE 107(GT12):1693–1711

    Google Scholar 

  • Asaoka A, Grivas DA (1982) Spatial variability of the undrained strength of clays. Journal of Geotechnical Engineering, ASCE 108(5):743–745

    Google Scholar 

  • Vanmarcke EH (1983) Random fields: Analysis and synthesis. The MIT Press, Cambridge, Mass

    MATH  Google Scholar 

  • Baecher GB (1984) On estimating auto-covariance of soil properties. Specialty Conference on Probabilistic Mechanics and Structural Reliability, ASCE 110:214–218

    Google Scholar 

  • Kulatilake PHSW, Miller KM (1987) A scheme for estimating the spatial variation of soil properties in three dimensions. In: Proc. Of the Fifth Int. Conf. On Application of Statistics and Probabilities in Soil and Struct Engineering, Vancouver, British Columbia, Canada, p 669–677

    Google Scholar 

  • Kulatilake PHSW (1989) Probabilistic Potentiometric surface mapping. Journal of Geotechnical Engineering ASCE 115(11):1569–1587

    Article  Google Scholar 

  • Fenton GA (1998) Random field characterization NGES data. Paper presented at the workshop on Probabilistic Site Characterization at NGES, Seattle, Washington

    Google Scholar 

  • Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Canadian Geotechnical Journal 36(4):612–624

    Article  Google Scholar 

  • Uzielli M, Vannucchi G, Phoon KK (2005) Random filed characterization of stress-normalised cone penetration testing parameters. Géotechnique 55(1):3–20

    Article  Google Scholar 

  • Kulatilake PHSW, Ghosh A (1988) An investigation into accuracy of spatial variation estimation using static cone penetrometer data. In: Proc. Of the First Int. Symp. On Penetration Testing, Orlando, Fla., p 815–821

    Google Scholar 

  • Soulie M, Montes P, Sivestri V (1990) Modelling spatial variability of soil parameters. Canadian Geotechnical Journal 27:617–630

    Article  Google Scholar 

  • Chiasson P, Lafleur J, Soulie M et al (1995). Characterizing spatial variability of clay by geostatistics. Canadian Geotechnical Journal 32:1–10

    Article  Google Scholar 

  • Degroot DJ (1996) Analyzing spatial variability of in situ soil properties. In: ASCE proceedings of uncertainty ’96, uncertainty in the geologic environment: from theory to practice, vol 58, ASCE, geotechnical special publications, p 210–238

    Google Scholar 

  • Juang CH, Jiang T, Christopher RA (2001) Three-dimensional site characterisation: neural network approach. Géotechnique 51(9):799–809

    Article  Google Scholar 

  • Samui P, Sitharam TG (2010) Site characterization model using artificial neural network and kriging. Int. J. Geomech 10(5):171–180

    Article  Google Scholar 

  • Park D, Rilett LR (1999) Forecasting freeway link travel times with a multi-layer feed forward neural network. Computer Aided Civil and Infra Structure Engineering 14:358–367

    Google Scholar 

  • Kecman V (2001) Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT press, Cambridge, Massachusetts, London, England

    Google Scholar 

  • Samui P, Das S (2011) Site Characterization Model Using Support Vector Machine and Ordinary Kriging. Journal of Intelligent Systems 20(3):261–278

    Article  Google Scholar 

  • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn 1:211–244

    MATH  MathSciNet  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge.

    MATH  Google Scholar 

  • Londhe S, Charhate S (2010) Comparison of data-driven modelling techniques for river flow forecasting. Hydrological Sciences Journal 55(7):1163–1174

    Article  Google Scholar 

  • Guven A, Kişi O (2011) Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming. Water Resources Management 25(2):691–704

    Article  Google Scholar 

  • Alavi AH, Gandomi AH (2011) A Robust Data Mining Approach for Formulation of Geotechnical Engineering Systems.” International Journal for Computer-Aided Engineering-Engineering Computations, Emerald, 28(3): 242–274

    Google Scholar 

  • Alavi AH, Gandomi AH (2012) Energy-based numerical models for assessment of soil liquefaction. Geoscience Frontiers 3(4):541–555

    Article  Google Scholar 

  • Danandeh Mehr A, Kahya E, Olyaie E (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. Journal of Hydrology 505: 240–249

    Article  Google Scholar 

  • Zahiri A, Azamathulla HM (2014) Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Computing and Applications 24(2):413–420

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. The Annals of Statistics 19(1):1–67

    Article  MATH  MathSciNet  Google Scholar 

  • Harb R, Su X, Radwan E (2010) Empirical analysis of toll-lane processing times using proportional odds augmented MARS. Journal of Transportation Engineering 136(11):1039–1048

    Article  Google Scholar 

  • Mao HP, Wu YZ, Chen LP (2011) Multivariate adaptive regression splines based simulation optimization using move-limit strategy. Journal of Shanghai University 15(6):542–547

    Article  Google Scholar 

  • Zhan X, Yao D, Zhan X (2012) Exploring a novel method among data mining methods and statistical methods to analyse risk factors of peripheral arterial disease in type 2 diabetes mellitus. International Journal of Digital Content Technology and its Applications 6(23): 243–253

    Article  Google Scholar 

  • Kumar P, Singh Y (2013) Comparative analysis of software reliability predictions using statistical and machine learning methods. International Journal of Intelligent Systems Technologies and Applications 12(3-4):230–253

    Article  Google Scholar 

  • García Nieto PJ, Álvarez Antón JC (2014) Nonlinear air quality modeling using multivariate adaptive regression splines in Gijón urban area (Northern Spain) at local scale. Applied Mathematics and Computation 235(25):50–65

    Article  Google Scholar 

  • Shen Q, Sun Z (2010) Online learning algorithm of gaussian process based on adaptive natural gradient for regression. Advanced Materials Research 139-141:1847–1851

    Google Scholar 

  • Xu Y, Choi J, Oh S (2011) Mobile sensor network navigation using Gaussian processes with truncated observations. IEEE Transactions on Robotics 27(6):1118–1131

    Article  Google Scholar 

  • Kongkaew W, Pichitlamken J (2012) A Gaussian process regression model for the traveling salesman problem. Journal of Computer Science 8(10):1749–1758

    Article  Google Scholar 

  • Fairchild G, Hickmann KS, Mniszewski SM et al (2013) Optimizing human activity patterns using global sensitivity analysis. Computational and Mathematical Organization Theory 1–23

    Google Scholar 

  • Holman D, Sridharan M, Gowda P et al (2014) Gaussian process models for reference ET estimation from alternative meteorological data sources. Journal of Hydrology 517:28–35

    Article  Google Scholar 

  • Sekulic S, Kowalski BR (1992) MARS: A tutorial. Journal of Chemometrics 6(4):199–216

    Article  Google Scholar 

  • Yang XS, Gandomi AH, Talatahari S et al (2013) Metaheuristis in Water, Geotechnical and Transportation Engineering. Elsevier, Waltham, MA

    Google Scholar 

  • Fister I, Gandomi AH, Fister IJ et al (2014) Soft Computing in Earthquake engineering: A short overview. International Journal of Earthquake Engineering and Hazard Mitigation 2(2):42–48

    Google Scholar 

  • Gandomi AH, Alavi AH (2012) A New Multi-Gene Genetic Programming Approach to Nonlinear System Modeling. Part II: Geotechnical and Earthquake Engineering Problems. Neural Computing and Applications 21(1):189–201

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations 28(3):242–274

    Article  MATH  Google Scholar 

  • Langdon W (2013) Hybridizing Genetic Programming with Orthogonal Least Squares for Modeling of Soil Liquefaction. International Journal of Earthquake Engineering and Hazard Mitigation 1(1):2–8

    Google Scholar 

Download references

Acknowledgement

Authors thank to T.G. Sitharam for providing the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijush Samui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samui, P., Dalkiliç, Y., Jagan, J. (2015). Site Characterization Using GP, MARS and GPR. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics