
1

Error Mitigation using Approximate Logic Circuits:
A Comparison of Probabilistic and Evolutionary

Approaches
Antonio J. Sanchez-Clemente, Luis Entrena, Radek Hrbacek, Lukas Sekanina

Abstract—Technology scaling poses an increasing challenge to
the reliability of digital circuits. Hardware redundancy solutions,
such as Triple Modular Redundancy, produce very high area
overhead, so partial redundancy is often used to reduce the
overheads. Approximate logic circuits provide a general frame-
work for optimized mitigation of errors arising from a broad
class of failure mechanisms, including transient, intermittent and
permanent failures. However, generating an optimal redundant
logic circuit that is able to mask the faults with the highest
probability while minimizing the area overheads is a challenging
problem. In this work we propose and compare two new
approaches to generate approximate logic circuits to be used in a
TMR schema. The probabilistic approach approximates a circuit
in a greedy manner based on a probabilistic estimation of the
error. The evolutionary approach can provide radically different
solutions that are hard to reach by other methods. By combining
these two approaches, the solution space can be explored in depth.
Experimental results demonstrate that the evolutionary approach
can produce better solutions, but the probabilistic approach is
close. On the other hand, these approaches provide much better
scalability than other existing partial redundancy techniques.

Index Terms—Approximate logic circuit, error mitigation,
evolutionary computing, Single-Event Transient, Single-Event
Upset.

ACRONYMS AND ABBREVIATIONS

CGP Cartesian Genetic Programming
DWC Duplication With Comparison
EDAC Error Detection And Correction
MA Mandatory Assignment
SAT Satisfiability
SMA Set of Mandatory Assignments
SET Single-Event Transient
SEU Single-Event Upset
TMR Triple Modular Redundancy

NOTATION

EP Total Error Probability

This work was supported by the Ministry of Economy and Competitiveness
of Spain under project ESP2015-68245-C4-1-P, and by the Czech science
foundation project GA14-04197S and the Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sustainability
(NPU II); project IT4Innovations excellence in science - LQ1602.

A. J. Sanchez-Clemente and L. Entrena are with the Electronic Technology
Department, Universidad Carlos III de Madrid, Madrid 28911, Spain (e-mail:
ajscleme@ing.uc3m.es; entrena@ing.uc3m.es).

R. Hrbacek and L. Sekanina are with the Faculty of Information Tech-
nology, IT4Innovations Centre of Excellence, Brno University of Technol-
ogy, Brno 61266, Czech Republic (e-mail: ihrbacek@fit.vutbr.cz; sekan-
ina@fit.vutbr.cz)

EA Estimated Area
P (f) Probability of testing a fault f
G Original circuit with no approximation
H Over-approximate circuit
F Under-approximate circuit

I. INTRODUCTION

The impact of transient, intermittent and permanent failures
on digital circuits is steadily increasing with technology scal-
ing. Circuits manufactured on advanced technologies are more
prone to errors due to several reasons, which are primarily
related to the shrinking of transistor dimensions and the
increase in the total number of gates per chip [1].

On the one hand, manufacturing process variations are a
dominant source of static variability which may significantly
affect yield. As a consequence, it is now common practice
to use error correction codes or hardware redundancy in
circuits with a regular internal structure, such as memories or
programmable logic devices (FPGAs). In the past, variations
were mostly due to imperfect process control, but now in-
trinsic atomistic effects, such as Random Dopant Fluctuations
(RDF) or Line Edge Roughness (LER) have become relevant
in sub-45-nm technologies, as devices of atomic sizes are
achieved [2]. Due to the increasing difficulty of testing, some
defects may escape manufacturing test and may cause inter-
mittent failures resulting in errors during normal operation.
Furthermore, transistor aging effects, such as negative-bias
temperature instability (NBTI), also increase intermittent gate
failures during the lifetime of a chip. Manufacturing variations,
supply voltage variations, temperature variations and aging-
related effects in digital circuits pose an increasing challenge
to reliability [3].

Radiation-induced soft errors caused by ionizing particles,
mainly neutrons at the atmospheric level and other particles
in space environments have also become a big concern. In the
past, transient effects in memory elements, known as Single-
Event Upsets (SEUs), were the primary concern. However,
for advanced technologies SEU protection is not enough, as
transient effects in combinational logic gates, known as Single-
Event Transients (SETs), are becoming very relevant [4].
Protection against SETs is much more difficult to achieve and
typically involves a large amount of redundancy. Finally, post-
silicon technologies such as carbon nanotubes are intrinsically
less robust and require fault-tolerance [5].

Hardware redundancy is often used in safety- and mission-
critical applications to mitigate the effects of transient errors,



2

permanent errors or configuration errors in FPGAs. Duplica-
tion With Comparison (DWC) or Triple Modular Redundancy
(TMR) are well-known examples of techniques that provide
concurrent error detection and correction capabilities, respec-
tively. However, these techniques typically introduce very large
overheads, which is more than 200 % in the case of TMR.
When such overhead is not acceptable, partial redundancy is
used in order to find a good balance between the reliability
requirements and the area, power and performance require-
ments [6].

Approximate logic circuits provide a general framework
for optimized mitigation of errors arising from a broad class
of failure mechanisms, including transient, intermittent and
permanent failures. An approximate logic circuit is a circuit
that performs a possibly different but closely related logic
function to the original circuit. As it is not required to exactly
match the original circuit, the approximate circuit can be
smaller but it can still be used to detect or correct errors where
it overlaps with the original circuit. Approximate logic circuits
can be used in TMR instead of exact copies of the original
design and the designer can select the level of approximation.
A closer approximation provides higher fault tolerance but
also increases the area and power. In contrast, this continuous
trade-off is not possible when exact TMR is used. However,
generating an optimal redundant logic circuit that is able to
mask the faults with the highest probability while minimizing
the area and power overheads is a challenging problem.

In this work we propose and compare two new approaches
to generate approximate logic circuits to be used in TMR.
First of all, a probabilistic approach is proposed which is
based on dynamic probability estimations. This approach takes
advantage of strongly coupling the approximation method and
the error estimation method by using stuck-at faults. Departing
from the original target circuit, approximate logic circuits are
built by iteratively forcing original circuit lines to constant
values. The reduction in error mitigation that is produced by
this type of transformations can be related to the probability
of detecting associated stuck-at faults, which is the metric
commonly used to estimate the error coverage. This approach
can be used in a greedy manner to remove the logic with the
lowest probability of producing an error while the required
reliability target is met. However, it is well-known that greedy
algorithms may often produce suboptimal results because they
may get stuck in local minima. The second approach we
propose in this work is based on evolutionary algorithms.
Evolutionary algorithms are used in many applications to
solve hard optimization and design problems. As the method
is intrinsically based on the trial and error approach, it is
usually very time consuming, but, on the other hand, capable
of discovering solutions hard to reach by other methods. One
of the major advantages of evolutionary algorithms is the
ability to get out from local minima and increase the chances
to reach global minima. Thus, evolutionary algorithms can
provide radically different solutions. A comparison with the
probabilistic approach is carried out in this work in order to
contrast their respective capabilities.

This paper is organized as follows. Section II summarizes
previous work and introduces approximate logic circuits and

evolutionary circuit design. Section III describes the prob-
abilistic approach. Section IV deals with the evolutionary
approach. Experimental results are presented in Section V.
Conclusions are given in Section VI.

II. PREVIOUS WORK

Fault-tolerance techniques are classically classified into
hardware redundancy, information redundancy and time re-
dundancy techniques [7]. Among the hardware redundancy
techniques, Triple Modular Redundancy (TMR) is a well-
known error masking technique that is widely used in critical
applications. TMR can be used at different levels of abstrac-
tion, from system to transistor level, and can protect against
transient and permanent errors. Information redundancy tech-
niques, such as Error Detection and Correction (EDAC) codes,
can be very effective for single or double errors. Thus, EDAC
codes are typically applied to memories or communication
protocols, but they cannot be used in the general case because
a low multiplicity of errors cannot be guaranteed. Finally, time
redundancy is intrinsically non-robust to permanent failures
and may introduce severe performance penalties.

The capability of TMR to mitigate both transient and
permanent errors makes it a good technique to tackle the
variety of potential failure mechanisms that must be con-
sidered for advanced technologies. However, TMR suffers
from high overhead in terms of area and power (more than
200 %). To alleviate this overhead, alternative techniques have
been proposed based on partial error masking. Without loss
of generality, we will focus on combinational circuits. The
extension to sequential circuits is trivial by applying TMR to
the sequential elements along with the combinational elements.

An early partial error masking approach is proposed in [8]
which consists on triplicating and voting the nodes with
the highest soft error susceptibility. Subsequent approaches
attempt to insert redundancies that protect against the most
common errors or to resynthesize the circuit to improve reli-
ability. In [9], an approach is proposed to provide protection
for the most common output combinations. In [10], the authors
propose the use of implications to build redundant logic that
checks for violation of behavioural constraints.

In a recent work [11], small sub-circuits have been ex-
tracted and resynthesized using two-level techniques and fast
extraction algorithm. The resynthesized circuits have been then
merged to produce the final fault-tolerant circuit. Combina-
tional restructuring has been used in [12] to improve the
masking properties of a circuit. This approach takes advantage
of conditions already present in the circuit, such as observ-
ability don’t-cares. Other approaches use wire addition and
removal for combinational restructuring [13]. Finally, there are
approaches that use approximate logic circuits [14] for partial
error detection and masking. These approaches are reviewed
in the following section.

A. Approximate logic circuits

The concept of approximate logic circuit or function pro-
vides a systematic framework for the implementation of fault-
tolerant combinational logic circuits. Given a logic function G,



3

an approximate logic function is a function Ĝ that performs
a possibly different but closely related function. The approxi-
mation divides the input space into two subspaces: the subset
of input vectors for which G and Ĝ produce the same output
(correct subspace) and the subset of input vectors for which
G and Ĝ produce different outputs (incorrect subspace). The
quality of an approximation is evaluated as the relative size of
the correct subspace.

Approximations can be classified as unidirectional or bi-
directional [15]. An approximation is called unidirectional if
the incorrect subspace is either a subset of the on-set or a
subset of the off-set of G. In the first case, Ĝ is called an under-
approximation or on-set unidirectional approximation of G.
Similarly, in the second case Ĝ is called an over-approximation
or off-set unidirectional approximation of G. In the sequel, the
under-approximations and over-approximations of a function
G will be denoted respectively as F and H .

By definition, a unidirectional approximation satisfies an
implication relationship. If F is an under-approximation of
G, then F = 1 ⇒ G = 1 and, conversely, G = 0 ⇒ F = 0.
The incorrect subspace corresponds to the input vectors that
produce G = 1 and F = 0, i.e., all input vectors in the
incorrect subspace produce unidirectional 1 → 0 errors. If
H is an over-approximation of G, then H = 0⇒ G = 0 and,
conversely, G = 1 ⇒ H = 1. In this case, the incorrect sub-
space corresponds to the input vectors that produce G = 0 and
H = 1, i.e., all input vectors in the incorrect subspace produce
unidirectional 0 → 1 errors. Bidirectional approximations do
not satisfy an implication relationship and can produce both
0→ 1 and 1→ 0 errors.

Partial logic masking can be obtained by using a TMR
schema in which two of the copies are replaced by ap-
proximate logic circuits, as shown in Fig. 1. Note that the
approximate logic circuits may produce incorrect outputs even
in the absence of faults. To ensure these incorrect outputs are
masked, it is required that the incorrect subspaces of the two
approximations do not overlap, so that at most one of the
circuits is allowed to produce an incorrect output for any input
vector. This condition is met by using an under-approximation
F and an over-approximation H in the TMR schema.

Fig. 1. Error masking schema using approximate logic circuits

The error masking capabilities of this schema can be better
explained using the diagram shown in Fig. 2 [14], where the
on-sets of the original and the approximate logic functions are
represented. In the areas where the original and the approx-

imate logic functions overlap (correct subspace), all circuits
produce the same output value. Because the three circuits are
implemented separately, a single fault can only affect one of
them at a time and its effect will be masked. In the areas where
the approximate functions do not overlap (incorrect subspace),
one of the approximate functions produces an incorrect result.
This incorrect result is masked, but a fault in any of the
other two circuits may cause an additional incorrect result
which cannot be masked by the majority voter. Therefore,
the probability of error is directly related to the probability of
faults that can propagate errors to the outputs for input vectors
in the incorrect subspace of any of the approximate circuits.
The goal is to find approximate circuits that minimize this
probability and can be implemented with a reduced amount
of logic.

It must be noted that approximate logic circuits are suscep-
tible to errors that may not be masked. This may happen in the
incorrect subspace, if a fault in an approximate circuit causes
the two approximate circuits to agree on an incorrect result.
However, this situation is detectable, because it is impossible
by construction that the two approximate circuits disagree with
the original circuit unless there is a fault. Thus, all errors
produced in the approximate logic circuits are either masked
or detectable. Generally, the contribution of the approximate
logic circuits to the error rate is compensated by the error
masking on the original circuit. However, if this is not the
case, the voter can be complemented with an error detector.
This way, it is guaranteed that the failure probability always
reduces as the quality of the approximation increases.

Fig. 2. Graphical representation of the relationship among the original and
the approximate functions

An algorithm for technology-independent synthesis of ap-
proximate logic functions is proposed in [16]. This algorithm
utilizes technology-independent networks and tries to approx-
imate the local logic function of a node by moving minterms
from its off-set or on-set into don’t-cares. Minterm selection is
based on the logic function of the node or, alternatively, local
observability don’t-cares can be used to expand the space from
which minterms can be selected. However, as this approach
may lead to an incorrect approximation, a SAT solver is used
to ensure correctness. This approach is extended in [15] by
considering predictor-indicator bidirectional approximations.
This type of approximations use a predictor function, that pre-
dicts the value of the function, and an indicator function, that
indicates uncertainty about the predicted value. The advantage
of this approach is that the predictor and indicator functions are
not required to have implication relationships with the original



4

function G. However, predictor-indicator bidirectional approx-
imations cannot be used when the bidirectional approximate
circuit is vulnerable to errors [15].

Other implication-based approximation methods are pro-
posed in [14], [17]–[20]. The approach in [18] considers
the failure probabilities of the gates and uses a two-level
representation. Finally, [19] approximates a circuit by remov-
ing circuit lines with low testability. However, this method
does not allow to estimate the error probability produced by
the approximation transformations. An improved probability
estimation method is proposed in [20], but it does not take into
account the possible faults that may occur in the approximate
circuits. The probabilistic approach proposed in this work
extends these techniques by considering a dynamic probability
analysis and considering all faults that may occur in the
original and the approximate circuits to estimate the total error
probability.

B. Evolutionary Circuit Design

Since the very beginning of the research in evolutionary
computation, evolutionary algorithms have been applied for
purposes of hardware optimization. Several monographs [21],
[22] summarize the applications from the field of electronic
circuits design, diagnostics, and testing. Later, evolutionary
algorithms were applied to generate complete circuit structures
(i.e., not only to optimize parameters of existing circuits)
and dynamically adapt circuit structures [23]. For example,
in the area of dependability, an evolutionary repair method
was proposed for TMR implemented into FPGAs [24]. It
employs an evolutionary algorithm to repair one damaged
module of TMR by using the two healthy modules as sources
of golden data for the fitness function. An analysis has shown
a significant improvement of reliability for small benchmark
circuits.

The evolutionary design of combinational circuits has been
well established in the past. Majority of designs in this area
is conducted by Cartesian genetic programming (CGP) or
methods similar to CGP. CGP is a branch of genetic program-
ming (GP) introduced by Miller and Thomson [25]. Unlike
GP, which uses tree representation, an individual in CGP is
represented by a directed acyclic graph of a fixed size. The
candidate circuits can have multiple outputs and intermediate
results can be reused (see details in Sect. IV). CGP can be
used to design various types of circuits as surveyed in [26].

The trickiest component of the evolutionary circuit design is
formulating the fitness function. It usually contains several ob-
jectives (functionality, area, delay etc.) where the functionality
is typically understood as the quality of the candidate circuit
measured as the number of correct output bits compared to
a specified truth table (i.e. the Hamming distance). In order
to obtain a fully working circuit, all combinations of input
values have to be evaluated. For a circuit with ni inputs and
no outputs, 2ni test vectors need to be fetched to the primary
inputs and no · 2ni output bits have to be verified so as to
compute the fitness value. The fitness calculation is computa-
tionally very intensive, since the number of test vectors grows
exponentially with the number of primary inputs. Recently,

it has been sped up by applying parallelism at various levels
(data, thread, process) [27] or by introducing formal methods
based on, for example, SAT solving [28].

When designing digital circuits with respect to multiple
secondary objectives, e.g. area, latency, power consumption,
or with the goal to approximate circuit behavior, one can
make use of several approaches. The single-objective approach
can be extended to deal with multiple objectives either by
combining the objectives in a single fitness function just by
summing the particular fitnesses weighted with a constant or,
in a more sophisticated way, by introducing a multi-stage
fitness function activating the particular objectives step by
step. Thanks to the fixed size of the CGP genotype, resources
can be constrained in order to find circuits with smaller area
or power consumption [29]. Recently, a truly multi-objective
approach to the design of (approximate) digital circuits has
been proposed [30]. None of these methods, however, has been
used to approximate TMR circuits.

III. PROBABILISTIC GENERATION OF APPROXIMATE
LOGIC CIRCUITS

In our proposed approach, approximate logic circuits are
obtained from the original circuit by iteratively performing
some logic transformations. Note that these transformations
are not required to preserve the original logic functionality, but
rather to simplify the logic at the expense of deviating from the
original behaviour and hence reduce the error coverage. Thus,
the quality of an approximation transformation is characterized
by two major parameters: the error probability increment and
the area savings. Previous works mostly focus on the latter and
use synthesis techniques to simplify the logic. However, the
impact of approximations on the final error probability can
hardly be estimated during the synthesis process and hence
these methods offer limited scalability.

In our approach, the error probability and the synthesis
transformations are linked through the stuck-at fault concept.
The stuck-at fault model is commonly used to model per-
manent faults. Stuck-at fault simulation is also a common
approach to estimate the error rate [11], [16]. For each fault,
the error probability is estimated as the fraction of input
vectors that test the fault. For a set fi of N possible faults,
the total error probability EP can be computed as the average
probability of testing every possible fault:

EP =

∑
P (fi)

N

This average can be weighted by the probability of each
fault occurrence, if such information can be estimated. In the
case of SETs, we can use derating factors to take into account
timing and electrical masking.

On the other hand, the stuck-at fault concept is in the foun-
dation of a class of powerful logic synthesis techniques [31],
[32]. If a line stuck-at fault cannot be tested by any input vec-
tor, then the line is redundant and can be removed. Otherwise,
if a line stuck-at fault is testable, the removal of the line creates
a discrepancy with the original circuit. In exact synthesis,
such discrepancy must be removed by adding some logic
elsewhere [32], [33]. However, in approximate synthesis, the



5

discrepancy is allowed. A preliminary approach that exploits
this technique has been proposed in [19].

A. Line approximation

If a stuck-at fault in a line has low testability, it means
that there are few input vectors that can test the fault. Then,
a good approximate circuit can be built by assigning the
line to a constant value. We refer to this transformation as
line approximation. The error probability associated to this
transformation is proportional to the probability of the input
vectors which test the stuck-at fault. On the other hand, the
area savings can be estimated as the logic that is removed by
assigning the line, including the logic previously used to drive
the line and the logic that can be simplified by propagating
the constant value from the line.

The error produced by a line approximation is unidirectional
if all the propagation paths from the line to the primary
outputs have either an even or odd number of inversions.
A line that meets this condition is said to have parity. The
approximation of a line with no parity does not produce an
under-approximation or an over-approximation. However, it is
possible to approximate a circuit in lines with no parity by
applying a simple transformation to the circuit. All lines in a
circuit can be forced to have parity, except for possibly the
primary inputs, by duplicating the gates and splitting the lines
with no parity into two subsets with even and odd parities
respectively [34]. This temporarily creates a larger circuit that
allows the application of line approximations. Duplications
that are not removed after approximation can be removed later
on by resynthesizing the approximate logic circuit.

If a line l with even parity is approximated by assigning
it to a logic 0, then the incorrect subspace is made up of
the input vectors that test the fault l stuck-at 0. For these
vectors, a 1 → 0 error is propagated without inversion to at
least one output. Thus, the result is an under-approximation. If
the line is assigned to a logic 1, then the incorrect subspace is
made up of the input vectors that test the fault l stuck-at 1. In
this case a 0→ 1 error may be propagated without inversion
and the result is an over-approximation. If the line l has odd
parity, the under-approximation and over-approximation are
obtained with the opposite logic assignments. In conclusion,
the two stuck-at faults of each line in a unidirectional circuit
can be associated to either the under-approximation or the
over-approximation, respectively.

Fig. 3 shows a logic circuit example and its K-map. Two
approximations are shown on the right of the figure. The
first one is obtained by making d = 1 and the incorrect
subspace is highlighted in the resulting K-map. The result is
an over-approximation because all errors are 0 → 1 errors.
The second one is obtained by making g1 = 0. This is an
under-approximation because all errors are 1→ 0 errors.

Approximate circuits can be built in this way by selecting a
subset of lines for approximation. In [19], all lines whose fault
probability is below a selected threshold are approximated. In
this work we follow an iterative approach. In each iteration,
the least testable fault is selected for approximation and the
effect of the line approximation on the error probability EP

Fig. 3. Circuit approximation example

and the area are estimated. Iterations continue until the error
probability or the area estimation reach the required target.
The approximation space can be traversed with fine resolution,
because each single line approximation produces a small
impact on both the error probability and the area.

B. Dynamic Probability Analysis
It must be noted that after performing an approximation

by making a line of the circuit constant, the testability of the
remaining faults change. This can be illustrated with a very
simple example.

Consider a 4-input AND gate, as shown in Fig. 4, and
assume all of the 16 input vectors are equally likely. For a
stuck-at 1 fault at any of the inputs, there is only one input
vector that can test the fault, so that the detection probability
is 1/16. We can then approximate the circuit by forcing one
of the lines to a constant 1. The resulting approximate circuit
is a 3-input AND gate. If we want to approximate additional
inputs, we must take into account that the detection probability
of the stuck-at 1 faults at the remaining inputs is no longer
1/16 but 1/8. Subsequent approximations at the inputs will
further increase the probability to 1/4, 1/2 and 1 (when all
the inputs are removed). Thus, the initial error probability
estimation is less and less accurate as more approximations
are taken. This requires a dynamic probability update every
time an approximation is taken.

Fig. 4. Dynamic probability with successive approximations.

The problem of estimating the probability of testing a
fault is generally related to testability analysis. The goal



6

of testability analysis is to measure the difficulty of testing
a fault. This measure is typically used to identify hard-to-
test faults and to predict the quality of random test pattern
generation. Many algorithms for testability analysis have been
proposed [35]–[38] which mainly use probabilistic approaches.
As the estimation of probabilities has to be updated for
every circuit approximation, we need a fast and incremental
algorithm. The approach used in this work was originally
proposed in [20]. We summarize it here for the sake of
completeness.

The notions of signal probability were established by Parker
and McCluskey in [39] and are well-known in the literature.
The probability that a stuck-at fault is detected by a random
input vector, also called detectability, can be formulated in
terms of signal probabilities [40]. The detection of a fault
requires an input vector that is able to set a control value
at the fault site (controllability) and to sensitize at least
one propagation path (observability). These conditions can
be expressed as Mandatory Assignments (MAs), so that the
probability of testing a fault f can be computed as the joint
probability of these MAs [41].

For instance, let us consider again the example in Fig. 3
and the fault d stuck-at 1. For this fault, the controllability
assignment is d = 0 and the observability assignments are
b = 1, c = 1 and g0 = 0. Thus, the probability of testing this
fault can be expressed as

P (f) = P (SMAf ) = P (b = 1, c = 1, d = 0, g0 = 0)

where SMAf is the Set of Mandatory Assignments for the
fault f . From here on we will use indistinctly P (f) or
P (SMAf ) to denote the probability of testing a fault f .

Signal probabilities in a combinational network can be
easily computed by traversing the circuit from inputs to
outputs [39]. At each node, the signal probability of the output
is obtained as a function of the probability of the input signals
according to the node type. Fault detectability can be computed
as the product of the probabilities of all MAs [42]. However,
this approach is only correct if all MAs are independent.
To improve the accuracy of probability estimations, we use
implication reasoning. Implications are actually a consequence
of the existence of signal dependencies, so that signal depen-
dencies can be removed by implying the MAs backward and
forward. Then, the fault detection probability is computed as
the joing probability of the final set of backward implications
which cannot be further justified. If the implication of the
SMA leads to an inconsistency, then we can conclude that the
fault is redundant and its probability is 0. The experimental
results shown in [20] demonstrate that this approach produces
good estimations in comparison with stuck-at fault simulation.

In the example of Fig. 3, let us consider now the fault g1

stuck-at 0. In this case we have SMAf = {g0 = 0, g1 = 1}. If
all inputs are equally likely, then P (g0 = 0) = 0.75, P (g1 =
1) = 0.125 and P (f) = P (SMAf ) = 0.75 · 0.125 = 0.09375.
This result is not accurate, but we can use implications to
obtain the correct probability. In particular, g1 = 1 implies
b = c = d = 1 and b = 1 justifies g0 = 0. Therefore, SMAf =
{b = 1, c = 1, d = 1}. The product of the probabilities of these
MAs gives the correct result P (f) = 0.125.

C. Probability-based approximation

To generate approximate logic circuits, we depart from a
TMR circuit using three exact copies of the original circuit.
In this circuit, when no approximation has been taken yet, any
error is masked by the voter and EP = 0.

Consider the circuit in Fig. 1 which consists of the
original circuit G, an under-approximation F and an over-
approximation H . F and H have been obtained from G by
approximating some lines. Let AF and AH be the set of faults
that have been approximated to obtain F and H , respectively.
The incorrect subspace is the set of input vectors that test a
fault in AF or AH . Note that the test vectors for the faults in
AF and AH do not overlap. Because of the approximations,
some input vectors can produce a 0→ 1 error in F and some
others can produce a 1→ 0 error in H , but it is guaranteed by
construction that at least one of the two approximate circuits
produces the correct value. Therefore, no error is observed in
the absence of faults even though one of the approximations
may produce a wrong value for some input vectors.

When a fault occurs in one of the three circuits, it may
produce an error. In the correct subspace, this error is masked
because the other two circuits are correct. However, in the
incorrect subspace, one of the two approximate circuits, F
or H , is also producing an error. Therefore, two of the three
circuits are wrong and the error is unmasked. More precisely,
errors may happen in the following three cases:

1) A fault fG in the original circuit G may produce an error
only if it propagates to the output for an input vector that
tests a fault in AF or AH . The error probability in this
case is P (fG ∩ (AF ∪ AH)). Because AF and AH are
disjoint, this probability can be computed as the sum of
two terms, P (fG ∩AF ) + P (fG ∩AH).

2) A fault fF in F that produces an error 0 → 1 in F
for an input vector that tests a fault in AH . The error
probability in this case is P (fF ∩AH).

3) A fault fH in H that produces an error 1 → 0 in H
for an input vector that tests a fault in AF . The error
probability in this case is P (fH ∩AF ).

Note that faults that occur in an approximate circuit, F
or H , may contribute to an unmasked error only in one
direction. It is guaranteed by construction that faults that
occur in the opposite direction either correct the error created
by the approximation or cannot propagate in the incorrect
subspace. On the other hand, the number of faults in F and H
becomes smaller as more approximations are performed. As a
consequence, the contribution of the last two cases is typically
smaller than the first one. Notwithstanding, we consider all
three cases in our algorithm.

To compute the probabilities in each case, we keep the
SMA of each approximated line. Then, the probability of the
incorrect subspaces given by AF and AH can be computed
as the probability of the union of these SMAs. When a new
approximation is performed, the new SMA is added to the set.

Fig. 5 shows the pseudo-code of the approximation algo-
rithm. In the initialization step, we create F and H which are
exact copies of the original circuit, so the total error probability
EP is 0 and the estimated area EA is three times that of



7

Fig. 5. Probabilistic approximation algorithm

the original circuit. We also compute the initial SMA of each
fault and the fault probabilities, which are equivalent in the
three circuits. Then, we enter the approximation loop. In each
iteration, we select for approximation the fault fA with the
minimum probability. This fault can result either in an under-
approximation or in an over-approximation. Depending on the
type of fault, we add it to AF or AH , respectively. Then we
compute the new fault probabilities for all possible faults and
update the total probability estimation. Note that if the fault
results in an under-approximation, the second case does not
apply and only one of the terms in the first case needs to be
computed because the other does not vary. Similarly, if the
fault results in an under-approximation, the third case does
not apply and only the other term in the first case needs to

be computed. Finally, the approximation is performed and we
update the SMA of all faults in the approximate circuit. Along
this process we also eliminate possible redundancies that the
approximation may have created elsewhere. The process is
repeated until the EP target and the EA target are met.

IV. EVOLUTIONARY DESIGN OF APPROXIMATE LOGIC
CIRCUITS

The proposed method is based on CGP, in which a circuit
is represented as a fixed-sized cartesian grid of nr×nc nodes
interconnected by a feed-forward network (see Figure 6). Node
inputs can be connected either to one of ni primary inputs or
to an output of a node in preceding L columns. Each node has
a fixed number of inputs na (usually na = 2) and can perform
one of the logic functions from a predefined set Γ. Each of no

primary circuit outputs can be connected either to a primary
input or to a node’s output. The area and delay of the circuit
can be constrained by changing the grid size and the L-back
parameter.

F

nc columns

n
r r

ow
s

n
o 

pr
im

ar
y 

ou
tp

ut
s

n
i p

ri
m

ar
y 

in
pu

ts
F F F F

F F F F F

F F F F F

Fig. 6. Cartesian genetic programming schema.

While the search is conducted at the level of genotypes
(arrays of integers representing the circuit), the fitness function
evaluates phenotypes (circuits established according to the
genotypes). The actual encoding is as follows: The primary
inputs and the outputs of nodes are labeled 0 . . . nc ·nr+ni−1
and considered as addresses which connections can be fed
to. In the genotype, each two-input node is then encoded
using three integers (an address for the first input; an address
for the second input; a node function). Finally, for each
primary output, the genotype contains one integer specifying
the connection address. The genotype size is (na+1)nrnc+no
genes (integers). While the genotype is of fixed length, the size
of the phenotype depends on the number of inactive nodes,
i.e. nodes whose output is not used by any other node or
primary output. Since the inactive nodes have no influence on
the phenotype, there are individuals with different genotypes
but the same phenotypes.

An example of a CGP individual with its chromosome can
be seen in Figure 7. It has three inputs, one output and three
active nodes.

CGP uses a simple mutation based (1 + λ) evolutionary
strategy as a search mechanism. The population size 1 + λ is
mostly very small, typically, λ = 4. The maximum number of
generations created in a single run is Ng. The initial population



8

AND XOR NOT ORi0

i1

i2

o0 = (i1&i0)|(i2^(i1&i0))(1, 0, 2), (2, 3, 4), (4, 3, 1), (3, 4, 3), (6)

3 4 5 6

Fig. 7. CGP individual example.

is constructed either randomly (in the case of evolutionary
design) or by mapping of a known solution to the CGP
chromosome (in the case of evolutionary optimization). In
each generation, the best individual is passed to the next
generation unmodified along with its λ offspring individuals
created by means of a point mutation operator. In case more
individuals with the best fitness exist, a randomly selected
one is chosen. The mutation rate m is usually set to modify
up to 5 % randomly selected genes. The role of mutation is
significant in CGP (see detailed analysis in [43], [44]).

Based on our previous experiences, we decided to use
a multi-stage single-objective approach with constrained re-
sources to obtain desired approximations. The fitness function
funder used to find under-approximations is defined as follows:

funder :=


fmax

hamm + (fmax
area − farea) if fhamm = 0,

fmax
hamm − fhamm if foff = 0,
fmax

off − foff otherwise,
(1)

where fhamm is the total Hamming distance between the
outputs generated by the candidate solution and the original
circuit for all possible input combinations, fmax

hamm = no2ni ,
farea is the area of the circuit, fmax

area is the maximum area
according to chosen number of rows nr and columns nc, foff is
the number of 0→ 1 errors for all possible input combinations
and fmax

off is the number of zeros in the truth table of the
original circuit. All individuals with fitness funder ≥ fmax

off

represent a valid under-approximation.
Similarly, the fitness function fover used to find over-

approximations is defined as follows:

fover :=


fmax

hamm + (fmax
area − farea) if fhamm = 0,

fmax
hamm − fhamm if fon = 0,
fmax

on − fon otherwise,
(2)

where fon is the number of 1 → 0 errors for all possible
input combinations and fmax

on is the number of ones in the
truth table of the original circuit. All individuals with fitness
fover ≥ fmax

on represent a valid over-approximation. One
can observe that since all possible input vectors have to be
generated, the approach is not scalable. In order to speed
up the design, the parallelism at various levels (data, thread,
process) can be introduced [27]. In practice, it is applicable for
circuits containing less than approximately 20 inputs and 200
gates. More complex circuits can be optimized by introducing
formal methods, e.g. SAT solvers or Binary Decision Diagrams
(BDD), however, an initial fully working solution is needed
in this case [45].

V. EXPERIMENTAL RESULTS

A. Experimental setup

The experiments were conducted with two groups of bench-
marks extracted from LGSynth93 set. The first group was
intended to compare the results of both probabilistic and
evolutionary approaches. Therefore, the size of the circuits in
this group was limited to the capabilities of the evolutionary
approach. With the second group of benchmarks the goal was
to show the efficiency of the probabilistic approach for other
circuits and to compare it with other approaches. Benchmarks
b12, rd73 and t481 were selected for the first group, and apex3,
apex4, m3, misex3, table3 and table5 for the second. The orig-
inal version of each benchmark was obtained by synthesizing
the circuit with Synopsys using the Nangate15nm synthesis
library [46]. Table I shows the size of each benchmark as
provided by the synthesis tool both in the number of cells and
the area, as well as the number of primary inputs (PIs) and
outputs (POs).

TABLE I
SYNTHESIS RESULTS FOR SELECTED BENCHMARKS

Benchmark #PIs #POs #cells area
apex3 54 50 799 192.77
apex4 9 18 1191 279.77
b12 15 9 58 12.93
m3 8 16 205 46.55

misex3 14 14 1285 290.14
rd73 7 3 20 5.90
t481 16 1 32 6.98

table3 14 14 478 116.59
table5 17 15 420 103.61

The generation of approximate logic circuits for the experi-
ments was done in the following way. For the probabilistic ap-
proach, a set of arbitrary error targets was set for each circuit,
covering a significant range of cases between conventional
TMR (full protection) and trivial approximation (no redundant
logic). Each error target generated a pair of approximate
circuits (over-approximation and under-approximation), which
were resynthesized in order to remove logic constants. Each
pair of approximate circuits was combined with the original
circuit to build an error masking schema.

With respect to the evolutionary approach, a large set
of approximate circuits was generated for each benchmark.
Table II summarizes the CGP parameters whose values were
set up as recommended in the literature [26].

TABLE II
CGP PARAMETERS

Parameter b12 rd73 t481
ni 15 7 16
no 9 3 1
nc 6 5 5
nr 1 . . . 10
L 6 5 5
Γ all 2-input gates
λ 4
m 5 %
Ng 2000000 2000000 1000000

For each configuration of the CGP grid (as nr varies from
1 to 10), a total of 100 over-approximations and 100 under-



9

approximations were generated. In total, 1000 approximate
circuits of each type were generated for each benchmark.
According to the fundamentals of the proposed technique,
any over-approximation can be combined with any under-
approximation to conform a valid error masking scheme.
Therefore, there are 106 possible solutions to test for each
benchmark. Testing the whole set of solutions would take
too much time, and therefore it was studied if there was any
representative data that allowed to select the best solutions
in terms of error masking capabilities. This is discussed in
section V-B. Figures 8 and 9 show, in the form of box plots, a
statistical analysis of multiple CGP runs for selected circuits
evolved as the under-approximations and over-approximations.
The box plots give the Hamming distances obtained for in-
creased amount of resources available for the implementation.
A clear trade-off between the Hamming distance (quality) and
the area can be observed.

1 2 3 4 5 6 7 8 9 10
number of rows

0

10000

20000

30000

40000

50000

60000

70000

h
a
m

m
in

g
 d

is
ta

n
ce

b12 over-approximations

0

20

40

60

80

100

120

140

a
v
e
ra

g
e
 a

re
a

1 2 3 4 5 6 7 8 9 10
number of rows

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

h
a
m

m
in

g
 d

is
ta

n
ce

b12 under-approximations

0

50

100

150

a
v
e
ra

g
e
 a

re
a

Fig. 8. Statistical results for b12 approximations evolved by CGP.

Once approximate circuits were generated, masking
schemas were built for testing. Voters were placed at the output
of circuits, and the list of stuck-at faults was generated for each
circuit. This list included all faults on every input of each gate
in the circuit, plus the faults on the outputs of the circuit before
the voter. This allowed to introduce simple voters, as there is
full control of fault injection points.

For each error masking schema under test, a fault simulation
with random input vectors was performed by means of the
parallel simulator HOPE [47]. A total of 50000 randomly
generated input vectors were applied for each design under

1 2 3 4 5 6 7 8 9 10
number of rows

0

50

100

150

200

h
a
m

m
in

g
 d

is
ta

n
ce

rd73 over-approximations

0

20

40

60

80

100

120

140

a
v
e
ra

g
e
 a

re
a

1 2 3 4 5 6 7 8 9 10
number of rows

0

50

100

150

200

h
a
m

m
in

g
 d

is
ta

n
ce

rd73 under-approximations

0

20

40

60

80

100

120

140

a
v
e
ra

g
e
 a

re
a

Fig. 9. Statistical results for rd73 approximations evolved by CGP.

test, and all faults in the list previously generated were tested
for each input vector. The total error probability was computed
as the average number of faults detected per input vector,
divided by the size of the fault list. For simplicity, all faults
were considered equally likely.

At the time of estimating the probability of circuit failure,
it must be taken into account that the number of faults
hitting a circuit is correlated with the circuit area. Thus,
as the area increases by using larger approximations, the
fault probability increases as well. However, all faults in the
approximate circuits are either masked or detectable, so that
the probability of circuit failure always decreases as the quality
of the approximation increases.

B. Selection of candidate Approximate Logic Circuits from
evolutionary approach

As stated before, 1000 approximate circuits of each type
were generated with the evolutionary approach for the experi-
ments, which made a total of 106 combinations to test. For the
first benchmark (b12) an exhaustive analysis was performed.
The whole process is very time consuming, therefore data
collected for b12 were studied in order to properly select the
most promising candidates for the rest of the benchmarks.
The objective was to find the combination with the highest
error masking rate. The more functionally similar are the
approximate circuits with respect to the original circuit, the
more protection against faults is achieved. Therefore, approx-



10

imate circuits with low Hamming distance compared with the
original circuit are good candidates, in principle. To validate
this hypothesis, the correlation between the sum of Hamming
distances of both approximate circuits and the experimental
error probability was computed. The results are shown in
Table III, grouped according to the size of the configuration
matrix for both under- and over-approximate circuits. The
results show that there is a significant correlation between both
metrics. The average correlation index is 0.831. Therefore, for
the rest of the benchmarks only the circuits with a Hamming
distance below the average of each group were selected for
experiments.

C. Comparison between probabilistic and evolutionary ap-
proaches

First, the results of experiments aimed to compare both
techniques are shown here. Fig. 10 graphically represents
the tradeoff between error probability and area overhead for
several solutions found by using either the probabilistic or the
evolutionary approach. This probability is related to the num-
ber of faults in the original circuit in order to take into account
the area increase. For the latter technique, only the cases with
the best error masking rate for each possible combination in
the sizes of under-approximate and over- approximate circuits
are represented. The same applies for Fig. 11 and 12 with
respect to rd73 and t481 benchmarks, respectively.

Analyzing the results in Fig. 10, it can be seen that
the evolutionary approach achieves in general slightly better
results than the probabilistic one for b12 benchmark. This
is reasonable, because evolutionary approach can explore a
much larger range of solutions, although at a much larger
computational cost. However, the probabilistic approach can
still obtain good solutions, close to the evolutionary approach.

0%

2%

4%

6%

8%

10%

12%

14%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Er
ro

r 
p

ro
b

ab
ili

ty

Area overhead

Evolutionary logic

Probability-based

Fig. 10. b12 Simulation Results

Results for rd73 benchmark are shown on Fig. 11. This is an
example of a circuit with a high degree of binateness, which
means that small expansions on either the on-set or the off-set
have a high cost in terms of resources. This leads to sub-
optimal solutions with overheads greater than 200 % in both
approaches, which are uninteresting. On the other hand, under
the 200 % overhead limit the same tendency is observed. The

evolutionary approach produces slightly better solutions than
the probabilistic approach, but with much more computational
effort.

0%

5%

10%

15%

20%

25%

0% 50% 100% 150% 200% 250% 300% 350%

Er
ro

r 
p

ro
b

ab
ili

ty

Area overhead

Probability-based

Evolutionary logic

Fig. 11. rd73 Simulation Results

With respect to t481 benchmark (Fig. 12), it can be observed
that the probabilistic approach presents more scalability than
the evolutionary one. This is due to the fact that t481 is a
circuit with just one output with high onset probability. Under
such conditions, the evolutionary approach tends to generate
onset circuits which behave like logic constants due to the
limited size of the configurable logic array, thus limiting both
area overhead and error masking rate. On the other hand, the
probabilistic approach is based on gradually degrading the
logic function of the circuit, which allows to reach more robust
solutions in the region close to conventional TMR.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0% 50% 100% 150% 200%

Er
ro

r 
p

ro
b

ab
ili

ty

Area overhead

Probability-based

Evolutionary logic

Fig. 12. t481 Simulation Results

D. Comparison with other approaches

A second group of experiments was performed with the aim
of showing the applicability and scalability of the probabilistic
approach for larger circuits. In addition, the results from
this group were compared with the sub-circuit resynthesiz-
ing method recently proposed in [11]. The results of the
experiments are shown in Fig. 13. The graphics show for
each benchmark the tradeoff between the EP improvement,
i.e., the improvement in the EP with respect to the original



11

TABLE III
ERROR MASKING RATE VS. HAMMING DISTANCE CORRELATION INDEXES

Over/Under 1 2 3 4 5 6 7 8 9 10

1 0.700 0.686 0.739 0.754 0.708 0.707 0.674 0.646 0.688 0.667

2 0.792 0.772 0.803 0.843 0.818 0.840 0.838 0.820 0.845 0.839

3 0.717 0.626 0.653 0.732 0.704 0.766 0.770 0.763 0.786 0.797

4 0.802 0.734 0.820 0.875 0.833 0.867 0.890 0.879 0.887 0.875

5 0.806 0.737 0.799 0.847 0.815 0.849 0.867 0.857 0.868 0.861

6 0.836 0.818 0.871 0.903 0.885 0.900 0.916 0.910 0.914 0.913

7 0.823 0.814 0.861 0.897 0.882 0.897 0.913 0.905 0.911 0.912

8 0.811 0.805 0.853 0.893 0.880 0.896 0.912 0.902 0.911 0.914

9 0.795 0.751 0.795 0.854 0.834 0.867 0.887 0.875 0.888 0.893

10 0.815 0.840 0.865 0.901 0.900 0.913 0.929 0.923 0.930 0.938

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

EP
 im

p
ro

ve
m

en
t

Area overhead

Apex3

Probability based

Synthesis

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

EP
 im

p
ro

ve
m

e
n

t

Area overhead

Apex4

Probability based

Synthesis

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

EP
 im

p
ro

ve
m

en
t

Area overhead

M3

Probability based

Synthesis

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100% 120%

EP
 im

p
ro

ve
m

en
t

Area overhead

Misex3

Probability based

Synthesis

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100% 120% 140%

EP
 im

p
ro

ve
m

en
t

Area overhead

Table3

Probability based

Synthesis

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100% 120% 140%

EP
 im

p
ro

ve
m

en
t

Area overhead

Table5

Probability based

Synthesis

Fig. 13. Simulation results and comparison with synthesis-based approach [11]

unprotected circuit, and the area overhead for different targets.
For the probabilistic approach, the additional area due to the
approximate circuits and single voters is taken into account.
The graphics also include data from [11] for the sake of
comparison. It must be noted that these data were obtained
with a different synthesis tool and a different technology.
Notwithstanding, with the necessary precautions, the results
can be used for a general comparison.

The results show that the synthesis approach tends to
produce slightly more efficient solutions with respect to the
probabilistic approach, although the probabilistic approach can
produce better results in some cases. On the other hand, the
synthesis approach evinces a very limited scalability, while
the probabilistic approach is able to reach any level of error
protection, as high as desired. As a matter of fact, the synthesis
approach cannot significantly improve the EP by increasing
the area overhead.

Finally, it must be noted that a single particle strike can
generate a multiple fault in adjacent cells due to charge
sharing. This effect is critical in the synthesis approach, as
a multiple fault can invalidate the logical masking. However,
our approach provides protection against this effect by con-

struction, because the three circuits are built separately. Thus,
a multiple fault caused by charge sharing can only affect one
of the circuits and the multiple error can be masked at the
voter.

VI. CONCLUSIONS

In this work we proposed and compared two different
approaches to generate approximate logic circuits for error
mitigation using a TMR schema. The probablilistic approach
uses a greedy algorithm based on line approximations and
dynamic error probability estimations. The evolutionary ap-
proach is based on CGP and can generate radically different
solutions. The experimental results show that the evolutionary
approach is generally able to find slightly better results, but
at the expense of a higher computational effort. On the other
hand, the probabilistic approach can handle large circuits in
an efficient manner. Notwithstanding, the current progress in
evolutionary computing techniques suggests that they will be
able to process larger circuits in the near future [45].

The two proposed methods are widely scalable and can
provide solutions for any required trade-off between reliability



12

and area overhead. This is a major advantage to cover a variety
of application scenarios and technologies. In comparison,
recently proposed synthesis-based methods can occasionally
produce slightly better results but they cannot explore the
design space in depth.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” Device and Materials Reliability, IEEE Transactions
on, vol. 5, no. 3, pp. 305–316, 2005.

[2] G. Neuberger, G. Wirth, and S. O. service), Protecting Chips Against
Hold Time Violations Due to Variability. Dordrecht :: Springer
Netherlands :, 2014. [Online]. Available: http://dx.doi.org/10.1007/
978-94-007-2427-3

[3] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” Micro, IEEE,
vol. 25, no. 6, pp. 10–16, 2005.

[4] V. Ferlet-Cavrois, L. W. Massengill, and P. Gouker, “Single event tran-
sients in digital cmosâĂŤa review,” Nuclear Science, IEEE Transactions
on, vol. 60, no. 3, pp. 1767–1790, 2013.

[5] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong,
and S. Mitra, “Carbon nanotube computer,” Nature, vol. 501, no. 7468,
pp. 526–530, 2013.

[6] I. Polian and J. P. Hayes, “Selective hardening: Toward cost-effective
error tolerance,” IEEE Design & Test of Computers, no. 3, pp. 54–63,
2010.

[7] B. W. Johnson, Design & analysis of fault tolerant digital systems.
Addison-Wesley Longman Publishing Co., Inc., 1988.

[8] K. Mohanram, N. Touba et al., “Partial error masking to reduce soft
error failure rate in logic circuits,” in Defect and Fault Tolerance in
VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium
on. IEEE, 2003, pp. 433–440.

[9] A. H. El-Maleh and F. C. Oughali, “A generalized modular redundancy
scheme for enhancing fault tolerance of combinational circuits,” Micro-
electronics Reliability, vol. 54, no. 1, pp. 316–326, 2014.

[10] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar, “Using implications
for online error detection,” in Test Conference, 2008. ITC 2008. IEEE
International. IEEE, 2008, pp. 1–10.

[11] A. El-Maleh and K. Daud, “Simulation-based method for synthesizing
soft error tolerant combinational circuits,” Reliability, IEEE Transactions
on, vol. PP, no. 99, pp. 1–14, 2015.

[12] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes, “En-
hancing design robustness with reliability-aware resynthesis and logic
simulation,” in Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM
International Conference on. IEEE, 2007, pp. 149–154.

[13] S. Almukhaizim and Y. Makris, “Soft error mitigation through selective
addition of functionally redundant wires,” Reliability, IEEE Transactions
on, vol. 57, no. 1, pp. 23–31, 2008.

[14] B. D. Sierawski, B. L. Bhuva, and L. W. Massengill, “Reducing soft
error rate in logic circuits through approximate logic functions,” Nuclear
Science, IEEE Transactions on, vol. 53, no. 6, pp. 3417–3421, 2006.

[15] M. Choudhury and K. Mohanram, “Low cost concurrent error masking
using approximate logic circuits,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 32, no. 8, pp. 1163–
1176, Aug 2013.

[16] M. R. Choudhury and K. Mohanram, “Approximate logic circuits for
low overhead, non-intrusive concurrent error detection,” in Design,
Automation and Test in Europe, 2008. DATE’08. IEEE, 2008, pp.
903–908.

[17] I. Gomes, M. Martins, F. Lima Kastensmidt, A. Reis, R. Ribas, and
S. Novales, “Methodology for achieving best trade-off of area and fault
masking coverage in atmr,” in Test Workshop - LATW, 2014 15th Latin
American, March 2014, pp. 1–6.

[18] H. Xie, L. Chen, R. Liu, A. Evans, D. Alexandrescu, S.-J. Wen, and
R. Wong, “New approaches for synthesis of redundant combinatorial
logic for selective fault tolerance,” in On-Line Testing Symposium
(IOLTS), 2014 IEEE 20th International, July 2014, pp. 62–68.

[19] A. Sanchez-Clemente, L. Entrena, M. Garcia-Valderas, and C. Lopez-
Ongil, “Logic masking for set mitigation using approximate logic
circuits,” in On-Line Testing Symposium (IOLTS), 2012 IEEE 18th
International, June 2012, pp. 176–181.

[20] A. Sanchez-Clemente, L. Entrena, and M. Garcia-Valderas, “Error
masking with approximate logic circuits using dynamic probability
estimations,” in On-Line Testing Symposium (IOLTS), 2014 IEEE 20th
International, July 2014, pp. 134–139.

[21] R. Drechsler, Evolutionary Algorithms for VLSI CAD. Boston: Kluwer
Academic Publishers, 1998.

[22] E. Larsson, Introduction to Advanced System-on-Chip Test Design and
Optimization. Springer, 2005.

[23] M. A. Trefzer and A. M. Tyrrell, Evolvable Hardware: From Practice
to Application. Springer, 2015.

[24] M. Garvie and A. Thompson, “Scrubbing away transients and jiggling
around the permanent: long survival of fpga systems through evolution-
ary self-repair,” in Proc of the 10th IEEE International On-Line Testing
Symposium IOLTS 2004, 2004, pp. 155–160.

[25] J. Miller and P. Thomson, “Cartesian genetic programming,” in Genetic
Programming, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2000, vol. 1802, pp. 121–132. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-46239-2_9

[26] J. F. Miller, Ed., Cartesian Genetic Programming, ser. Natural
Computing Series. Springer Verlag, 2011. [Online]. Available:
http://www.fit.vutbr.cz/research/view_pub.php?id=7299

[27] R. Hrbacek and L. Sekanina, “Towards highly optimized cartesian
genetic programming: From sequential via simd and thread to massive
parallel implementation,” in GECCO ’14 Proceedings of the 2014
conference on Genetic and evolutionary computation. Association for
Computing Machinery, 2014, pp. 1015–1022.

[28] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[29] ——, “Evolutionary approach to approximate digital circuits design,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 3, 2015.
[Online]. Available: http://www.fit.vutbr.cz/research/view_pub.php?id=
10406

[30] R. Hrbacek, “Parallel multi-objective evolutionary design of approximate
circuits,” in GECCO ’15 Proceedings of the 2014 conference on Genetic
and evolutionary computation. Association for Computing Machinery,
2015, pp. 687–694.

[31] M. Iyer, M. Abramovici et al., “Fire: a fault-independent combina-
tional redundancy identification algorithm,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 4, no. 2, pp. 295–301, 1996.

[32] L. Entrena, K.-T. Cheng et al., “Combinational and sequential logic
optimization by redundancy addition and removal,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 14, no. 7, pp. 909–916, 1995.

[33] S.-C. Chang, M. Marek-Sadowska, and K.-T. Cheng, “Perturb and sim-
plify: multilevel boolean network optimizer,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 15, no. 12,
pp. 1494–1504, 1996.

[34] H. Kim and J. Hayes, “Realization-independent atpg for designs with
unimplemented blocks,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 20, no. 2, pp. 290–306, Feb
2001.

[35] F. Brglez, “On testability of combinational networks,” in IEEE Interna-
tional Symposium on Circuits and Systems, 1984.

[36] S. C. Seth, L. Pan, and V. D. Agrawal, “PREDICT-probabilistic es-
timation of digital circuit testability,” in Proceeding of International
Symposium on Fault-Tolerant Computing, Jun. 1985, pp. 220–225.

[37] S. Chakravarty and I. Hunt, H.B., “On computing signal probability and
detection probability of stuck-at faults,” Computers, IEEE Transactions
on, vol. 39, no. 11, pp. 1369–1377, Nov 1990.

[38] S. Jain and V. Agrawal, “Statistical fault analysis,” Design Test of
Computers, IEEE, vol. 2, no. 1, pp. 38–44, Feb 1985.

[39] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general
combinational networks,” Computers, IEEE Transactions on, vol. 100,
no. 6, pp. 668–670, 1975.

[40] J. Savir, G. S. Ditlow, and P. H. Bardell, “Random pattern testability,”
Computers, IEEE Transactions on, vol. 100, no. 1, pp. 79–90, 1984.

[41] S.-C. Chang, W.-B. Jone, and S.-S. Chang, “Tair: Testability analysis by
implication reasoning,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 19, no. 1, pp. 152–160, 2000.

[42] K. Parker and E. McCluskey, “Analysis of logic circuits with faults using
input signal probabilities,” Computers, IEEE Transactions on, vol. C-24,
no. 5, pp. 573–578, May 1975.

[43] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency
in cartesian genetic programming,” IEEE Trans. Evolutionary Compu-
tation, vol. 10, no. 2, pp. 167–174, 2006.

[44] B. W. Goldman and W. F. Punch, “Analysis of cartesian genetic program-
ming’s evolutionary mechanisms,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 3, pp. 359–373, 2015.



13

[45] Z. Vasicek and L. Sekanina, “How to evolve complex combinational
circuits from scratch?” in 2014 IEEE International Conference
on Evolvable Systems Proceedings. Institute of Electrical and
Electronics Engineers, 2014, pp. 133–140. [Online]. Available:
http://www.fit.vutbr.cz/research/view_pub.php?id=10673

[46] “Nangate freepdk15 open cell library,” 2014. [Online]. Available:
http://www.nangate.com/?page_id=2328

[47] H. K. Lee and D. S. Ha, “Hope: an efficient parallel fault simulator for
synchronous sequential circuits,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 15, no. 9, pp. 1048–
1058, Sep 1996.


