Skip to main content

Advertisement

Log in

GP-based methods for domain adaptation: using brain decoding across subjects as a test-case

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Research on classifier transferability intends that the information gathered in the solution of a given classification problem could be reused in the solution of similar or related problems. We propose the evolution of transferable classifiers based on the use of multi-objective genetic programming and new fitness-functions that evaluate the amount of transferability. We focus on the domain adaptation scenario in which the problem to be solved is the same in the source and target domains, but the distribution of data is different between domains. As a real-world test case we address the brain decoding problem, whose goal is to predict the stimulus presented to a subject from the analysis of his brain activity. Brain decoding across subjects attempts to reuse the classifiers learned from some subjects in the classification of the others. We evolved GP-based classifiers using different variants of the introduced approach to test their effectiveness on data obtained from a brain decoding experiment involving 16 subjects. Our results show that the GP-based classifiers evolved trying to maximize transferability are able to improve classification accuracy over other classical classifiers that incorporate domain adaptation methods. Moreover, after comparing our algorithm to importance-weighted cross validation (in conjunction with many ML methods), we conclude that our approach achieves state of the art results in terms of transferability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. To refer to classifiers able to deal with the covariate shift problem, we consider that “transferable classifier” is a more precise definition than “adaptable classifier”.

  2. The implementation is available from http://www.makotoyamada-ml.com/RuLSIF.html.

  3. A maximization problem can be posed as as \(\min \ -{\textit{F}}({\textit{x}})\).

References

  1. I.M. Alvarez, W.N. Browne, M. Zhang, Reusing learned functionality in XCS: code fragments with constructed functionality and constructed features, in Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation (ACM, 2014), pp. 969–976

  2. I. Arnaldo, U.-M. O’Reilly, K. Veeramachaneni, Building predictive models via feature synthesis, in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (ACM, 2015), pp. 983–990

  3. U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evolut. Comput. 17(3), 368–386 (2013)

    Article  Google Scholar 

  4. U. Bhowan, M. Johnston, M. Zhang, X. Yao, Reusing genetic programming for ensemble selection in classification of unbalanced data. IEEE Trans. Evolut. Comput. 18(6), 893–908 (2014)

    Article  Google Scholar 

  5. S. Bickel, M. Brückner, T. Scheffer, Discriminative learning for differing training and test distributions, in Proceedings of the 24th International Conference on Machine learning (ACM, 2007), pp. 81–88

  6. J. Blitzer, R. McDonald, F. Pereira, Domain adaptation with structural correspondence learning, in Proceedings of the 2006 conference on empirical methods in natural language processing (Association for Computational Linguistics, 2006), pp. 120–128

  7. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  8. Q. Chen, B. Xue, M. Zhang, Generalisation and domain adaptation in GP with gradient descent for symbolic regression, in Proceedings of the IEEE Congress on Evolutionary Computation CEC-2015 (IEEE, 2015), pp. 1137–1144

  9. S. Dalhoumi, G. Derosiere, G. Dray, J. Montmain, S. Perrey, Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs, in Information Processing and Management of Uncertainty in Knowledge-Based Systems (Springer, 2014), pp. 294–303

  10. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. T.T.H. Dinh, T.H. Chu, Q.U. Nguyen, Transfer learning in genetic programming, in Proceedings of the IEEE Congress on Evolutionary Computation CEC-2015, Sendai, Japan (IEEE Press, 2015), pp. 1145–1151

  12. P.G. Espejo, S. Ventura, F. Herrera, A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(2), 121–144 (2010)

    Article  Google Scholar 

  13. L. Feng, Y. Ong, M. Lim, I. Tsang, Memetic search with inter-domain learning: a realization between CVRP and CARP. IEEE Trans. Evol. Comput. 19(5), 644–658 (2014)

    Article  Google Scholar 

  14. P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  15. M.W. Hauschild, M. Pelikan, K. Sastry, D.E. Goldberg, Using previous models to bias structural learning in the hierarchical BOA. Evol. Comput. 20(1), 135–160 (2012)

    Article  Google Scholar 

  16. J.D. Haynes, G. Reeves, Decoding mental states from brain activity in humans. Nat. Revi. Neurosci. 7, 523–534 (2006)

    Article  Google Scholar 

  17. R.N. Henson, D.G. Wakeman, V. Litvak, K.J. Friston, A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. (2011). https://doi.org/10.3389/fnhum.2011.00076

    Google Scholar 

  18. H. Huttunen, T. Manninen, J.-P. Kauppi, J. Tohka, Mind reading with regularized multinomial logistic regression. Mach. Vis. Appl. 24(6), 1311–1325 (2013)

    Article  Google Scholar 

  19. V. Ingalalli, S. Silva, M. Castelli, L. Vanneschi, A multi-dimensional genetic programming approach for multi-class classification problems, in European Conference on Genetic Programming (Springer, 2014), pp. 48–60

  20. M. Iqbal, W. Browne, M. Zhang, Reusing building blocks of extracted knowledge to solve complex, large-scale Boolean problems. IEEE Trans. Evol. Comput. 18(4), 465–480 (2014)

    Article  Google Scholar 

  21. M. Iqbal, B. Xue, M. Zhang, Reusing extracted knowledge in genetic programming to solve complex texture image classification problems, in Proceedings of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Part II, vol. 9652 (Springer, New York, 2016), pp. 117–129

  22. M. Iqbal, M. Zhang, B. Xue, Improving classification on images by extracting and transferring knowledge in genetic programming, in Proceedings of the IEEE Congress on Evolutionary Computation CEC-2016 (IEEE, 2016), pp. 3582–3589

  23. W. Jaskowski, K. Krawiec, B. Wieloch, Knowledge reuse in genetic programming applied to visual learning, in Proceedings of the 9th annual conference on Genetic and evolutionary computation (ACM, 2007), pp. 1790–1797

  24. H. Kang, Y. Nam, S. Choi, Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process. Lett. 16(8), 683–686 (2009)

    Article  Google Scholar 

  25. K.N. Kay, T. Naselaris, R.J. Prenger, J.L. Gallant, Identifying natural images from human brain activity. Nature 452(7185), 352–355 (2008)

    Article  Google Scholar 

  26. W. La Cava, J.H. Moore, Ensemble representation learning: an analysis of fitness and survival for wrapper-based genetic programming methods, in Proceedings of the Genetic and Evolutionary Computation Conference (ACM, 2017), pp. 961–968

  27. W. La Cava, S. Silva, K. Danai, L. Spector, L. Vanneschi, J.H. Moore, Multidimensional genetic programming for multiclass classification. Swarm Evol. Comput. 44, 260–272 (2019)

    Article  Google Scholar 

  28. M. Lebedev, M. Nicolelis, Brain-machine interfaces: past, present and future. TRENDS Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  29. X. Li, W. He, K. Hirasawa, Learning and evolution of genetic network programming with knowledge transfer, in Proceedings of the IEEE Congress on Evolutionary Computation CEC-2014 (IEEE, 2014), pp. 798–805

  30. M. Loog, Nearest neighbor-based importance weighting, in IEEE International Work Learning for Signal Processing (IEEE, 2012), pp. 1–6

  31. F. Lotte, C. Guan, Learning from other subjects helps reducing brain computer interface calibration time, in Proceedings of the IEEE 35th International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2010), pp. 614–617

  32. J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, G. Zhang, Transfer learning using computational intelligence: a survey. Knowl. Based Syst. 80, 14–23 (2015)

    Article  Google Scholar 

  33. E. Olivetti, S.M. Kia, P. Avesani, MEG decoding across subjects, in Proceedings of the 2014 International Workshop on Pattern Recognition in Neuroimaging (2014), pp. 1–4

  34. D. O’Neill, H. Al-Sahaf, B. Xue, M. Zhang, Common subtrees in related problems: A novel transfer learning approach for genetic programming, in Proceedings of the IEEE Congress on Evolutionary Computation CEC-2017, San Sebastian, Spain (IEEE, 2017), pp. 1287–1294

  35. S. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  36. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  37. H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  38. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabilit. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  39. W. Samek, F.C. Meinecke, K.R. Müller, Transferring subspaces between subjects in brain-computer interfacing. IEEE Trans. Biomed. Eng. 60(8), 2289–2298 (2013)

    Article  Google Scholar 

  40. R. Santana, A. Mendiburu, J. A. Lozano, Structural transfer using EDAs: an application to multi-marker tagging SNP selection, in Proceedings of the 2012 Congress on Evolutionary Computation CEC-2012, Brisbane, Australia. (IEEE Press, 2012), pp. 3484–3491 (Best Paper Award of 2012 Congress on Evolutionary Computation)

  41. S. Satpal, S. Sarawagi, Domain adaptation of conditional probability models via feature subsetting, in Proceeding of the Knowledge Discovery in Databases Conference. PKDD-2007 (Springer, 2007), pp. 224–235

  42. H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Inference 90(2), 227–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Silva, L. Muñoz, L. Trujillo, V. Ingalalli, M. Castelli, L. Vanneschi, Multiclass classification through multidimensional clustering, in Genetic Programming Theory and Practice XIII, ed. by R. Riolo, W. P. Worzel, M. Kotanchek, A. Kordon (Springer, Berlin, 2016), pp. 219–239

    Chapter  Google Scholar 

  44. M. Sugiyama, M. Krauledat, K.-R. Müller, Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. 8(May), 985–1005 (2007)

    MATH  Google Scholar 

  45. V. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  46. H. Wang, L. Jiao, X. Yao, An improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)

    Article  Google Scholar 

  47. J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, T. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  48. D. Xing, W. Dai, G. Xue, Y. Yu, Bridged refinement for transfer learning, in Proceeding of the Knowledge Discovery in Databases Conference. PKDD-2007 (Springer, 2007), pp. 324–335

  49. M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, M. Sugiyama, Relative density-ratio estimation for robust distribution comparison. Neural Comput. 25(5), 1324–1370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. H.-F. Yu, F.-L. Huang, C.-J. Lin, Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 85(1–2), 41–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R. Santana acknowledges support by the Basque Government (ELKARTEK programs), and Spanish Ministry of Economy and Competitiveness MINECO (project TIN2016-78365-R). This work started thanks to a Thelxinoe Grant granted to R. Santana in the context of EMA2/S2 THELXINOE: Erasmus Euro-Oceanian project, 545783-EM-1-2013-ES-ERA MUNDUS-EMA22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Santana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 236 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, R., Marti, L. & Zhang, M. GP-based methods for domain adaptation: using brain decoding across subjects as a test-case. Genet Program Evolvable Mach 20, 385–411 (2019). https://doi.org/10.1007/s10710-019-09352-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-019-09352-6

Keywords

Navigation