
Title: Evolutionary algorithms in modeling and animation

Authors: Anargyros Sarafopoulos1 and Bernard F. Buxton 2

1 Media School, Bournemouth University, asarafop@bournemouth.ac.uk

2 Computer Science, University College London, B.Buxton@cs.ucl.ac.uk

Contents:

1 Introduction

2 Biological Background

2.1 Evolution

2.2 Fitness Landscapes

3 Evolutionary Algorithms

3.1 Artificial evolution in search and optimisation

3.2 Genetic Algorithm (GA)

3.3. Genetic Programming (GP)

3.4 Evolutionary Strategies (ES)

4 Case Studies

4.1 Interactive evolution of 2D textures

4.1.1 Encoding of procedural textures

4.1.2 Interactive Selection

4.1.3 GP architecture

4.1.4 Results

4.2 Evolutionary Morphing and Iterated Function Systems

4.2.1 Hierarchical evolution strategy

4.2.2 Strongly typed genetic programming

4.2.3 Iterated function systems and the inverse problem

4.2.4 Architecture using the hierarchical evolution strategy

4.2.5 Fitness function

4.2.6 Control parameters

4.2.7 Results

5 Conclusions

Bibliography

1 Introduction

Generating computer animation involves two interwoven components. The first component is the

set of tools (tools) used to generate and render computer animation. Tools consist of software and

hardware that allow the creation of abstract geometric models, modification of these models over

time, as well as their rendering. The second component is the sequence of instructions to be

carried out by the software and hardware tools, to generate and render a specific animation

sequence, here referred to as execution plan or execution. Execution usually resides in the

thoughts, story-boards, and drawings of director and animators that have to carry out the task of

creating a specific sequence. Most modern software and hardware focus on the creation of tools

that allow for the generation and rendering of realistic looking models and motion. Modeling and

rendering tools are very important as they provide the materials used by the computer animator.

Novel tools/materials often create new avenues for visual exploration. However, the quality of an

animation sequence depends equally on the quality of the work carried out by the director and

animators in terms of using the tools available, i.e. that quality of execution. Sometimes the vision

of the director and animator exhausts the capacity of the tools at hand so new tools and materials

need to be employed or invented to assist execution. Execution as noted above, formed in the

mind of the director and animators, often results to a chain of sampling of data (scanning of

images or film), button presses, menu selections, and/or evaluation of scripts. However, an

execution plan is not conceived in an instant or in a moment of inspiration. The director/animator

will usually test and research a large number of forms and motions until they decide on how the

final work will be made. The making of an execution plan often proceeds by trial and error,

searching through many options open to the animator in terms of creating a sequence. Animators

often compose using a process of progression through trial and error. Models and animation are

initially created using a given set of tools. The newly created temporal and spatial forms are

typically tested against goals set at the beginning of the development process. The models or

animation are then modified in order to fulfill preset requirements more closely and the process is

repeated until the development time has been exhausted or the goals have been reached. Often

there is a recurrent production cycle, where the fitness of execution is tested against the given set

of goals. This results in a gradual improvement of execution plans through a “survival of the

fittest” approach to creative design.

A parallel can thus be drawn between organic evolution and the human creative design process.

Based on this analogy, new software is starting to emerge that focuses on assisting creative design

in engineering [Furuta, Maeda, Watanabe, 1995] [Koza, Bennett, Andre, Keane, 1999] and in the

arts [Todd, Latham, 1992] [Lund, Pagliarini, Miglino, 1995] [Bentley 1999] [Bentley, Corne,

2001]. This software is developed as a tool to assist with the invention of new algorithms, or the

exploration of complex spaces generated by mathematical or procedural tools and can therefore

be seen as a meta-tool. Such Evolutionary Algorithms (EAs) applied to computer animation are

often used as a meta-tool made to assist in the second important component of computer

animation mentioned above, the generation of execution plans. Evolutionary algorithms are an

interdisciplinary research field that connects computer science, artificial intelligence, and biology.

EAs are based on simulation of natural evolution on the computer and form a computational

search technique. “They combine survival of the fittest with structured yet randomized

information exchange to form a search algorithm with some of the innovative flair of human

search” [Goldberg, 1989]. Steven Dawkins describes his seminal work on generating two

dimensional (2D) branching forms (bioforms) using interactive evolution on the computer

[Dawkins, 1986-7]. Dawkins’ idea was extended and applied to the field of computer graphics by

Todd, Latham [Todd, Latham, 1991-2] and Sims [Sims, 1991-3, 1997]. Latham and Sims use

evolutionary algorithms for the generation of procedural models and animation. Reynolds

[Reynolds, 1992, 1994a-e] uses EAs for the evolution of the behavior of artificial agents in 2D

environments, whilst other researchers present work for the evolution of behavioral animation

[Zhao, Wang, 1998] [Griffiths, Sarafopoulos, 1999] [Lim, Thalmann, 1999]. Gruau, Gritz, and

Kang describe the evolutionary design of controllers for articulated structures [Gruau, 1996a]

[Gritz, Hahn, 1995, 1997] [Gritz, 1999] [Kang, Cho, Lee, 1999]. Sims describes the evolution of

behavior and topology using EA [Sims, 1994a-b]. Evolution of shaders and textures is

investigated by [Ibrahim, 1998], and [Wiens, Ross, 2000-1]. Using high-level commercial

animation tools (like Houdini, and Maya) to evolve models and textures is described by [Lewis,

2000]. Today there are numerous [Lewis, 2001] [Bentley, 1999] interactive systems available for

the evolution of models and animation.

This chapter provides some biological background and describes the main evolutionary

algorithms as general optimization and search tools. We then concentrate on presenting two case

studies applied to computer graphics and animation based on research carried out by one of the

authors [Sarafopoulos 1995, 1999 and 2001]. The first case study involves interactive selection

and the evolution of 2D procedural textures the second focuses on the evolution of iterated

function systems.

2 Biological Background

2.1 Evolution

Evolutionary algorithms are based on the simulation of a model of organic evolution formulated

by Charles Darwin [Darwin, 1895]. The Darwinian theory of evolution explains the emergence of

complex living organisms as the result of gradual improvements through a recurrent process of

selection and reproduction with variation. Selection is the processes of assigning fitness to

individual organisms under a given environment. Individual organisms better equipped to survive

and breed are said to have higher fitness. For living organisms to persist through the aeons,

characteristics of parent individuals are transmitted to offspring through the process of

reproduction. Reproduction is not a procedure of exact replication from parent to offspring. A

controlled amount of variation is involved during the process of reproduction so offspring are not

identical to the parents. Variation leads to random and undirected changes between phenotypes,

i.e. the behaviour and embodiment of individual organisms.

Natural selection favours individual organisms that are better adapted to their environment; in

environments with finite resources better-adapted individuals exploit scarce resources more

effectively and therefore survive to produce offspring. Individuals that are not adequately adapted

constantly die off. Over many generations of individuals, natural selection continually filters out

and eventually kills off unfit organisms. Since more individuals are born than survive to breed,

natural evolution progressively amplifies fitness. Individuals with variations that are favoured by

the environment gain an adaptive advantage. Advantageous variations accumulate over time

leading to highly adapted populations. A “natural selection” occurs resulting in populations of

highly adapted living organisms.

The modern theory of evolution known as the synthetic theory of evolution, modern synthesis, or

neo-Darwinism [Ridley, 1996] unifies the Mendelian and molecular theory of inheritance with

the Darwinian theory of natural selection. According to the Mendelian theory of inheritance

characteristics from parent to offspring are transmitted in the form of discrete particles called

genes. Genes control the development of living organisms and encode their phenotype. The

genetic make up of an organism, that is, all phenotypic characteristics encoded in genes, is

referred to as genotype. It is well known today that DNA (deoxyribonucleic acid) stores the

genetic information of living organisms. The synthetic theory of evolution describes evolution in

nature, as a process of selection and reproduction with variation, where: selection is a process

that operates on phenotypes and variation a process that operates on genotypes. That is, where

selection acts on an individual’s physical embodiment and behaviour, variation operates on the

molecular level of DNA strands. Variation is a stochastic process that results from random errors

during reproduction (mutations), and by the shuffling of genetic information passed from parent

to offspring during sexual reproduction (recombination). Selection, however, is predominantly

deterministic. To survive and procreate individuals depend on specific phenotypic characteristics

(traits) that render useful skills in exploiting resources available under a given environment.

Hence, selection can be seen as a function of the traits of an individual organism.

2.2 Fitness Landscapes

Through the process of natural selection populations evolve over time that become better adapted

to their environment. The most common way to visualise evolutionary change is by depicting

individual organisms as points in a multidimensional space, where one axis corresponding to each

biological trait and an additional dimension is used to depict fitness. This abstraction is usually

referred to as a fitness landscape, and was originally coined by the biologist Sewall Wright

[Wright, 1931] in the context of population genetics. In the simple three-dimensional (3D) case,

individuals are represented as points on a 3D surface, having two trait co-ordinates and a fitness

value. Such a 3D surface resembles a natural landscape with peaks and valleys depicting areas of

high and low fitness (see figure 1). However, from the biological point of view the concept of a

static fitness landscape is often not realistic. There are several reasons why this might be so.

Firstly, fitness in nature can be measured only indirectly (by the propensity of individual

organisms to survive and procreate), since the exact biological traits and how they affect fitness is

usually not known. The fitness of phenotypes may depend on their frequency [Ridley, 1996].

Secondly, populations often modify the resources of their environment, and consequently the

mapping from traits to fitness may also vary as a function of time. Such environment population

interactions are a process that is inadequately understood.

Apart from natural selection, there are other factors that can change the way populations evolve

[Ridley, 1996]; variation in small populations and changes of the state of the environment due to

chance can cause the increase or decrease of certain traits, a phenomenon known as genetic drift

[Provine, 1986]. Motto Kimura proposed the neutral theory of molecular evolution [Kimura,

1983] where he argues that “most evolutionary changes at the molecular level are due to the

random process of genetic drift acting on mutations, rather than natural selection. While

recognising the importance of selection in determining functionally significant traits, he holds

that the great majority of the differences in macromolecular structures observed between

individuals in a population are of no adaptive significance and have no impact on the

reproductive success of the individual in which they arise. This contrasts with the orthodox neo-

Darwinian view that nearly all evolutionary changes have adaptive value for the organism and

arise through natural selection” [Martin, Hine, 2000].

Trait 1

Trait 2

Fitness

Figure 1. 3D fitness landscape schematic. Evolution guides populations along the fitness

landscape in certain ways, for example, adaptation makes a population move towards local

maxima, i.e. peaks in the landscape. According to Sewall Wright’s shift balance theory, genetic

drift can cause sub-populations to step across ridges from a low fitness end of the landscape to

another.

3 Evolutionary Algorithms

“The problem of how to solve problems is unsolved-and mathematicians have been working on it
for centuries.”

Evolution and optimum seeking, Hans-Paul Schwefel

3.1 Artificial evolution in search and optimisation

The problem of finding solutions to problems is itself a problem with no general solution. In

computer science and artificial intelligence finding the solution to a problem is often thought of

as a search through the space of possible solutions. The set of possible solutions defines the

search space for a given problem. Solutions or partial solutions to a problem are viewed as points

in the search space. In engineering and mathematics finding the solution to a problem is often

thought of as process of optimisation. Problems at hand are often formulated as mathematical

models expressed in terms of functions, or systems of functions. Hence, in order to find a

solution, we need to discover the parameters that optimise the model or the function components

that provide optimal system performance. There are several well-established search/optimisation

techniques in the literature. These are usually classified in three broad categories, enumerative,

calculus based, and stochastic [Langdon, 1998].

Enumerative methods are based on the simple principle of searching through potentially all points

in the search space one at a time. In the field of artificial intelligence enumerative methods

subdivide into two categories, uninformed and informed methods. Uninformed or blind methods

like the minimax algorithm (used in game playing) search all points in the space in predefined

order. Informed methods like Alpha-Beta and A* perform a more sophisticated search using

domain specific knowledge in the form of a cost function or heuristic in order to reduce the cost

of the search [Russell, Norvig, 1995, chapters 3 and 4].

Calculus based techniques, are also often classified into two sub-categories: direct and indirect.

Indirect or analytic methods stem form the origins of mathematical optimisation in the calculus

and are based on discovering values that take function derivatives to zero. Direct or numerical

methods like Newton-Raphson and Fibonacci are usually iterative techniques that navigate the

fitness landscape using gradient/function information to move in the direction of the solution.

Like a sightless climber that feels his way to the highest peak, they are also known as hill

climbing strategies. For an overview of hill climbing strategies, see [Schwefel, 1995].

Stochastic methods are iterative methods that navigate through the search space using

probabilistic rather than deterministic rules. A popular random method is simulated annealing. It

was developed in explicit analogy with natural annealing, the process whereby, in order to harden

steel, low energy crystals are formed in copper by heating copper to liquid state and then

gradually cooling until it freezes [Kirpatrick, Gelatt, Vecchi, 1983].

In the 1950s and 1960s several researchers introduced stochastic search algorithms based on a

simulation of Darwinian theory of natural selection, in order to solve search and optimisation

problems. Evolutionary Algorithms (EAs) are stochastic search techniques based on a computer

simulation of the genetics of natural selection. EAs operate on a population of points in the search

space. The population is able collectively to learn better solutions by a process of selection and

reproduction with variation. Individuals in the population gradually accumulate advantageous

variations through a selection pay-off that leads the search to, or close to, a solution. Evolutionary

algorithms allow us effectively to search spaces in which other traditional calculus or

enumerative-based techniques fail. This is because EAs often operate on a coding of the problem

not the problem itself, they use selection pay-off, as opposed to other quality information (such as

derivatives), and they also operate a parallel search by simultaneously sampling many points of

the search space [Goldberg, 1986]. There are four main variations of evolutionary algorithms:

genetic algorithm (GA), genetic programming (GP), evolution strategies (ES), and evolutionary

programming (EP). The main difference between the above variations of evolutionary algorithms

are on the encoding of an individual, and therefore in the representation or definition of the nature

of the search space. A different encoding also implies a different method to stochastically modify

individuals. Thus, each paradigm has a set of dedicated operations that allow for mutation and

recombination of individuals in the population.

3.2 Genetic Algorithm (GA)

Holland first of conceived genetic algorithms as a theoretical framework for investigating

artificial and natural evolution [Holland, 1992]. The theoretical framework specified by Holland

was based on adaptation of a population of structures described as strings made out of characters

of a discrete alphabet. A GA probably resembles natural evolution more closely than other

evolutionary algorithms. GA genotypes are defined as strings made out of a binary alphabet,

analogous to the 4-letter alphabet made out of A (adenine), C (cytosine), G (guanine), and T

(thymine) nucleotide bases that make up the genetic code of living organisms [Sedivy, Joyner,

1992]. The genotypes of individuals are defined as fixed-length binary strings. In order to encode

a problem, the free variables have to be represented as fixed-length binary substrings of the string

that represents the genotype. The analogy between natural evolution and a genetic algorithm may

be described as follows:

• A chromosome or genotype in the context of genetic algorithms thus refers to a binary string

that is a coding of some aspect of a candidate solution to the problem.

• A gene is a bit or a short sequence of adjacent bits in the chromosome that encodes for a

particular feature or features of the problem. (In the context of function optimisation for

example, genes usually encode the parameters of the function to be optimised.)

• A locus is the position of binary digit or the position of adjacent binary digits along the

chromosome.

• Alleles are all the possible configurations of binary digits in a locus i.e. the alleles of a 2-bit

string segment are 00, 01, 10, and 11.

• The phenotype or candidate solution to the problem is the decoded structure. (For example, in

the context of function optimisation, the decoded structure is often the function parameter

set.)

Variation on binary strings as originally conceived by Holland operates in three modes (see

figures 2 and 3).

• Recombination that is based on the exchange of genetic material between two parent

individuals and is modelled in explicit analogy to the homologous recombination in nature.

• Inversion, modelled by analogy with inversions of DNA during replication, acts on a segment

of the chromosome by inverting the sequence of bits along that segment.

• Mutation is a random change of the state of a digit along the chromosome.

The selection scheme used by Holland was one where each individual was selected

probabilistically in proportion to observed performance (i.e. fitness proportional selection).

Fitness is calculated by evaluating an objective or fitness function, which assesses the

performance of the candidate solution.

1 0

1 0

1 1 0 0 0 1

1 10 01 1

1 0

1 0

1 0 1 1 1 0

1 01 10 0

Parent #1

Parent #2 Offspring #2

Offspring #1

Figure 2: One point cross over in SGA

1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0

Parent Offspring

Figure 3: Mutation in SGA

The procedure that is the basis of most modern incarnations of the genetic algorithm is detailed in

Goldberg’s textbook “Genetic Algorithms in Search, Optimisation, and Machine Learning”

[Goldberg, 985] and it is usually referred to as the simple genetic algorithm (SGA). The outline of

SGA is shown at figure 4.

Simple genetic algorithm (SGA) outline

(1) Randomly create an initial population of fixed-length binary string

chromosomes, set generation count to zero.

(2) For each individual chromosome in the population first decode and then

calculate its fitness.

(3) Select the fittest individuals in the current population in order to create

the new population through reproduction and variation using

recombination and mutation operations.

(4) Replace the current population with the new population, and increment

generation count.

(5) If termination criteria are satisfied stop, otherwise go to step 2.

Figure 4: Pseudo-code for the outline of simple genetic algorithm

Given a decoding function d, a fitness function f, a set of control parameters {n, l, Pc, Pm –

whose meaning will become clear below} and, a termination criterion t, the SGA can be

described (more precisely) as follows:

1. Randomly create an initial population of n l-bit chromosomes.

The algorithm starts by initialising the gene pool (all genes in the population) randomly, in order

to scatter (using a uniform distribution) individuals across the landscape of all possible (l2)

binary string configurations.

2. For each individual chromosome c in the population first decode and then calculate its

fitness by evaluating f(d(c)).

Assigning fitness involves the decoding icd →)(and the evaluation of the fitness function

)(if , for each individual structure i. The nature of the encoding (problem representation), and

therefore the decoding, depends on the task at hand. Sometimes the encoding is almost identical

with the decoded structure. For example, in function optimisation the binary coding is often a

sequence of equally sized binary strings that represent the parameter set of the function to be

optimised. The representation of the parameter set might be Boolean or it might use the so-called

Gray code [Hollstien, 1971] [Caruana, Schaffer, 1988]. Other problems where it is not just a set

of parameter values that is being optimised the representation may be less direct. One interesting

example is encoding solutions for the artificial ant problem [Collins, Jefferson, 1991] in which

the objective is to evolve an agent (ant) that is able to traverse a terrain which contains food

pellets and gather these pellets in optimal time.

3. Select the fittest individuals in the current population in order to create the new population

through reproduction with recombination probability Pc, and mutation probability Pm.

The selection scheme used, referred to as roulette wheel or fitness proportional selection, is

meant to be analogous with selection in nature where fitter individuals have greater chance to

survive and breed. Hence, the probability p(x) of an individual structure x to be selected for

reproduction depends on its fitness in relation to the fitness of other individuals in the

population and is given by:

.
)(

)(
)(

1
∑

=

=
n

i

if

xf
xp

The simple genetic algorithm uses two operations to introduce variation in the gene pool:

recombination or crossover (see figure 2), and mutation (see figure 3). Inversion, originally

proposed by Holland, is typically excluded from the SGA. Fitness proportional selection of two

parent individuals with replacement (that is, a parent individual can be selected more than once

from the current population) is followed by recombination with probability Pc to produce two

new offspring. If no recombination takes place (with probability 1-Pc) the offspring are replicated

from the parents. This is followed by mutation of the offspring at each locus with probability Pm.

The new offspring are subsequently copied into the new population. The process repeats until the

new population contains n new chromosomes. In Goldberg’s original description of the SGA, the

genetic operations of crossover and mutation are applied probabilistically on chromosomes

during reproduction with crossover probability Pc = 1 (i.e. crossover is always performed), and

mutation probability Pm = 0.001. The probabilities of crossover and mutation can vary but it is

important that there is high crossover and low mutation probability. When the crossover

probability is less than one, for example Pc = 0.8, it is possible for individuals to be copied

verbatim (reproduced) to the next generation, thus implicitly gaining a longer life span.

4. Replace the current population with the new population.

This is often referred to as generational GA, that is, progress is achieved through a series of well-

defined and separate populations of individuals. However other algorithms exist such as “steady

state” algorithms where there are no distinct population intervals [Syswerda, 1991].

5. If the termination criterion t is satisfied stop, otherwise go to step 2.

The algorithm iterates several times through steps 2 and 5, and a single iteration is referred to as a

generation. Typically we need many generations (e.g. form 50 to 500) in order to find an

individual structure that is a solution to the problem. A complete sequence of generations through

to termination is usually referred to as a run. The termination criterion is usually specified as a

fixed number of generations, or an execution time limit. When the algorithm terminates one

hopes to arrive either at a solution(s) or at a near solution to the problem, as the population

usually tends to converge in exploiting a specific area of the search space that appears to provide

optimal solutions or near-optimal solutions for that run. In order to solve a problem we usually

perform several runs, typically executed by starting the search anew from a fresh set of uniformly

distributed individuals in order to minimise the effects of random initial conditions and premature

convergence. Premature convergence occurs when the population is trapped in local minimum, by

becoming fixated on particular gene combinations and virtually losing almost all other gene

variations. (Premature convergence can be regarded as analogous to the phenomenon of niche

pre-emption in nature where a biological niche tends to be dominated by a single species

[Magurran, 1988] [Koza, 1992, pages 191-192].)

GAs rely mostly on recombination to provide improvements in fitness, whilst mutation is used

mainly to maintain variation within the population. The emphasis on recombination is based on

Holland’s schemata theorem. Holland argues ibid. the schemata theorem [Holland, 1973] that, in

certain cases, GAs provide near optimal use of the information provided by the search so far in

order to guide the search in the next generation. By using an analogy with natural evolution, the

notion of schemata can be thought of as a collection of certain configurations of genes. A

collection of configurations of genes that combine well together to effect an increase in the

performance of an individual is known as a “building block”. The supposition that recurrent

crossover, and sampling through selection pay-off, of short and fit schemata leads to strings of

high fitness, is known as the building block hypothesis. Given the existence of building blocks,

the genetic algorithm can progressively evolve from a random initial population of mostly unfit

structures, individuals with chromosomes that contain exponentially larger numbers of useful

building blocks, thus evolving fitter structures.

Many of the early practical studies of GA investigated problems of function optimisation

[Hollstien, 1971] [De Jong, 1975] [Bethke, 1981] with applications to engineering. Today the

GAs have being applied to a wide range of fields, from biology and engineering, to sociological

sciences [Gen, Cheng, 1999] [Man, Tang, Kwong, 1999] [Mitchell, 1996]. Several extensions of

the SGA exist such as messy-variable length GA, and hierarchical GA, that include new

operations, selection methods, and representations [Mitchell, 1996].

3.3 Genetic Programming (GP)

Genetic programming is an extension of the genetic algorithm employed for the automatic

generation of computer programs. Several researchers have investigated the induction of

computer programs using evolutionary algorithms via different representations [Cramer, 1985]

[Fogel, 1999]. However it was John Koza who systematically tested and formalised the use of

LISP symbolic expressions (S-expressions) as the representation of choice for “the programming

of computers by means of natural selection” [Koza, 1992]. Koza claims genetic programming to

be the most general search paradigm in machine learning [Koza, 1992]. Perhaps the most

important and most characteristic feature of genetic programming is the fact that solutions to

problems are encoded directly as computer programs via the use of hierarchical, LISP-like,

symbolic expressions. This feature is responsible for much of the generality of the genetic

programming paradigm [Banzhaf, Nordin, Keller, and Francone, 1998, pages 21-22] and, in fact,

it can be shown that under certain conditions genetic programming is computationally complete

[Teller, 1994].

In order to demonstrate the nature of the encoding in GP, consider the task of program induction

where we are asked to discover a program that calculates the area of a circle given its diameter.

We could trivially write such a program using C, or LISP as follows:

/* calculate the area of a circle in C */

double area(double diameter) {

double Pi = 3.14;

return (Pi*(diameter*diameter))/4;

}

;;; calculate the area of a circle in LISP

(defun area (diameter)

(setf Pi 3.14)

(/ (* Pi (* diameter diameter)) 4))

Apart form the syntactical differences between the two languages, the important part of the

program is the fragment where the calculation (Pi*(diameter*diameter))/4 in C, or

(/(*Pi (*diameter diameter)) 4) in LISP, takes place. In both cases the above two

fragments of code perform the same task and in both cases the order of execution of the

calculation involved is the same and can readily be visualised using a hierarchical tree graph (see

figure 5). This graph is in fact equivalent to the data structure that most compilers generate

internally to represent computer programs before translation into machine code and is usually

referred to as a parse tree. LISP S-expressions, because of their simple prefix syntax, can be

directly depicted as parse trees. The internal nodes of the tree are referred to as non-terminal

functions (functions that accept arguments), and the external nodes or leaves as terminal functions

(functions that accept no arguments or constants) like Pi and variable diameter in figure 5. The

root of the tree is the function appearing first after the left-most parenthesis of the S-expression.

Execution of the tree is carried out in a recursive, depth first way, starting from the left. In genetic

programming the terms parse tree and S-expression are used to mean the same thing. In GP the

encoding of a solution, and hence the gene pool is made out of parse trees. The nature of the

encoding is inherently hierarchical and of variable length in contrast to the SGA where the

encoding is linear and of fixed length. It is interesting to notice that, at least, in the case of

program induction there is no distinction between genotypes and phenotypes, i.e. between the

encoding and the decoded structures.

 /

 4 *

 Pi *

 diameter diameter

Figure 5. Depicts the parse tree for the S-expression (/(*Pi(*diameter diameter))4) used to
calculate the area of a circle. The set of functions used in internal nodes of the tree constitutes the
non-terminal function set (or function set) F = {/, *} for this S-expression, whilst the functions used as
leaf nodes compose the terminal function set (or terminal set) T = {2, 4, Pi, diameter}. Discovering a
function that calculates the area of circle, can therefore be though of as search through the space of
all possible S-expressions generated by composition of functions and terminals that belong to the
combined set C = F U T.

The algorithm that forms the basis of most modern incarnations of GP (including Koza’s own,

ongoing research on GP [Koza, 1994] [Koza, Bennett, Andre, Keane, 1999]) is outlined in [Koza,

1992] and it is, here, referred to as standard genetic programming (standard GP).

Standard genetic programming (standard GP) outline

(1) Set generation count to zero. Generate an initial population of n S-

expressions of initial maximum depth Di made out of random

compositions of functions from the combined set C = T U F, where T is a

set of terminals and F is a set of non-terminal functions.

(2) For each individual S-expression in the population evaluate its fitness.

(3) Select the fittest individuals in order to create a new population of

symbolic expressions through reproduction with probability Pr,

recombination with probability Pc, and mutation with probability Pm,

where Dc is the maximum allowed depth size of S-expressions created

during the run.

(4) Replace the current population with the new population, and increment

generation count.

(5) If the termination criterion t is satisfied stop, otherwise go to step 2.

Figure 6. Pseudo-code for the standard genetic programming (GP) algorithm outline

Given (the provision of five ingredients) a terminal function set T, a non-terminal function set F,

a fitness function f, a set of control parameters {n, Pc, Pm, Pr, Dc, Di – the necessity of which

will become clearer below}, and a termination criterion t standard GP is outlined in figure 6.

Maybe the most important decision that needs to be made (apart from the selection of a fitness

function) before starting a GP run is choosing the functions and terminals that are required for the

representation of a problem. The choice of functions and terminals is often referred to as the

architecture or representation of a GP run. In standard GP, the composite set C, made out of the

union of function and terminal sets, has to meet two requirements: The first requirement is that

the set C is adequate to solve the problem, a property known as completeness. The second is that

the set is closed; that is, all functions and terminals (and all their compositions) return values

and/or accept arguments of the same data type, a property known as closure. The first

requirement ensures that the search space contains solutions to the problem and the second

ensures that genetic operations (as described below) produce legal parse trees. For example, if we

assume that the variable diameter is a positive real number other than zero, the composite set C as

specified in figure 5 is both closed and complete.

A more precise description with discussion of particular aspects of the algorithm follows.

1. Generate an initial population of n S-expressions of initial maximum depth Di made out of

random compositions of functions from the combined set C = T U F.

In order to spread the population across a wide variety of parse trees of various sizes and shapes

the generation of the new population may be initialised, according to Koza [Koza, 1992], using

either “full”, “grow” or “ramped half and half ” methods.

The full generation method is based on creating the initial population out of S-expressions with

each non-backtracking path between a leaf node and the root equal to maximum depth Di. The

grow method involves generating parse trees with branches extending at variable depths from the

root, but with no path between a leaf and the root allowed to exceed depth Di. Finally according

to the ramped half and half method the population is divided into equally sized groups. Each

group has a unique associated depth value that belongs to an interval ranging from a minimum

depth to the maximum specified depth. Half of the members of each group are created using the

grow method and the other half are created using the full method. For example, a population

made of 1000 S-expressions, where the minimum depth value is 2 and maximum depth value is 6,

will be divided into 5 groups, each group comprising of 200 members and each group associated

with maximum depth values 2, 3, 4, 5, and 6 respectively. One hundred members of each group

will be generated using “grow”, the rest using the “full” method, where the maximum depth for

the full and grow methods is the group’s associated depth value.

2. Calculate the fitness of each S-expression x in the population by evaluating f (x).

Assignment of fitness is explicitly provided by a problem dependent user defined fitness function.

Fitness is often evaluated over a set of fitness tests. For example, consider devising a method that

tests the performance of evolved S-expressions for the problem of program induction mentioned

above; the calculation of the area of a circle given its diameter. The fitness function has to be

representative of the problem domain as a whole. We cannot simply test the quality of evolved

programs against the area of one circle of specified diameter. Instead we have to test newly

generated programs against circles of varying diameters in order to estimate the quality of

evolved solutions. Each such comparison, against observed data, is usually referred to as a test

case or fitness case. Sometimes a predefined number of fitness cases are adequate for assessing

the quality of a program. For example, we can sample 50 (x, y) pairs so that 4/2xy ⋅= π , each

pair acting as a fitness case. In situations where the problem domain is vast or infinite, new

fitness cases may have to be sampled for each generation of a GP run. In our example, this would

imply sampling a different set of (x, y) pairs at each generation of the GP run.

A common method of measuring fitness in GP is the so-called standardised fitness, according to

which the fittest individual is assigned a value of zero. In effect, standardised fitness measures

error, the less erroneous an individual the better. For example, we could specify the standardised

fitness sf of an S-expression f calculating the area of a circle, for each (x, y) pair described above,

as follows:

∑
=

−=
n

i
s xfyf

1

|)(| ,

where n is the number of fitness cases, x the diameter, and f(x) is the area returned by the S-

expression f. This problem can be seen as a symbolic regression problem, that is, given a

sampling of data points we are asked to find a function (in symbolic form) that matches the given

data, in this case a series of data points generated by the well-known relation 4/2xy ⋅= π (see

figure 7).

0

50

100

150

200
250

300

350

400

450

500

0 2 4 6 8 10

Diameter

A
re

a (/ (* x x) Pi)

(/ (* x (* x x)) 2)

(/ (* Pi (* x x)) 4)

Figure 7. Plots of three S-expressions made out of the functions and terminals specified in figure 5. S-
expression (/ (* Pi (* x x)) 4) is a 100% correct solution to the problem of calculating the area of a
circle given its diameter, and therefore has standardized fitness 0. The S-expression (/ (* x (* x x)) 2)
has standardized fitness 5157.175 thus performing much worse than the S-expression (/ (*x x) Pi)
whose standardized fitness is 801.029. The dots of the (/ (* Pi (* x x)) 4) plot represent the fitness
cases generated by sampling 50 equally spaced (diameter) values between 0 and 10.

3. Select the fittest individuals in order to create a new population of symbolic expressions

through reproduction with probability Pr, recombination with probability Pc, and mutation

with probability Pm, where Dc is the maximum allowed depth size of S-expressions created

during the run.

Selection in standard GP is performed mainly using fitness proportional selection with

replacement, as in the SGA, actually the user can, if desired, specify other selection methods,

such as tournament selection [Koza, 1992, pages 604-606]. Tournament selection is based on

competitions or tournaments between a small number of individuals in the population. The

number of individuals taking part in a tournament is referred to as the tournament size.

Tournament individuals are chosen at random and the best individual in a tournament is selected

for reproduction. In the simplest case, two individuals are selected at random (tournament size of

two) and the best of the two is kept for reproduction. Selection proceeds with replacement, i.e.

parents can be re-selected. The fitness pressure can thus be adjusted when using tournament

selection, by modifying the tournament size, the larger the tournament size the greater the

selection pressure.

Creation of the new population proceeds by choosing one genetic operation amongst the group of

available genetic operations, where operations are chosen stochastically depending on their

associated probabilities. If reproduction or mutation is chosen, one individual is selected from the

current population to create one new offspring. Two individuals are selected from the current

population to breed two new offspring in the case of recombination. The new offspring is/are then

added to the new population. The process repeats until the new population contains n new S-

expressions.

The genetic operation of reproduction is defined as replication without modification of an

individual from the current population. Corresponding to crossover and mutation in the SGA, the

genetic operations of crossover (see figure 8), and mutation (see figure 9) are modified in GP to

work with S-expressions. The GP crossover operation, as in GA, is claimed to provide the

creative/innovative transformations that lead to adaptation with mutation used as a secondary

operation in order to introduce variation within the population of S-expressions. This claim is

based on extending the schemata theorem and building block hypothesis from GA to GP where

schemata are made out of S-expression templates [Langdon, Poli, 2001]. However the notion of

building blocks in GP is problematic [O’Reilly, Oppacher, 1995]. This is because GP crossover

incurs large changes in the structure of programs. These changes can be substantial enough to

disturb building blocks frequently. Empirical observations indicate that GP crossover often

behaves as a macro-mutation rather than a structured information exchange akin to the GA one-

point crossover [Banzhaf, Nordin, Keller, Francone, 1998, pages 148-156]. As opposed to GA

one-point crossover which leads to lexical convergence (since crossing identical individuals

produces identical offspring), the lexical structure of S-expressions does not converge via the use

of GP crossover even though the behaviour of S-expressions may converge. GP crossover

maintains diversity within a population of individuals since crossing identical individuals is likely

to produce different offspring [Koza, 1992]. Several new crossover operations have thus been

proposed that allow a more structured information exchange between parse trees such as: context

sensitive crossover [D’haeseleer, 1994], one-point GP crossover [Poli, Langdon, 1997], and the

use of crossover templates [Jacob, 1996].

In Koza’s original description of GP [Koza, 1992] a number of secondary genetic operations are

also described. These include (apart from mutation), permutation, editing, encapsulation and

decimation. Permutation is a generalisation of the inversion operator, described by Holland (see

section on GA). Editing provides the means of simplifying symbolic expressions. Encapsulation

allows automatic identification and reuse of potentially useful code segments in S-expressions.

 /

4 *

Pi * diameter

Pi

2

/

*

*

/

4 *

Pi *

diameter

Pi

diameter

/

*

*

2

Parents

Offspring

diameter

diameter diameter /

2

diameter

/

2 diameter

Figure 8. Consider S-expressions made out from the function set F = {*, /} and terminals set T = {Pi,
diameter, 2, 4}. The two parent expressions at the top recombine to produce two new offspring
depicted at the bottom of the figure. The operation of crossover is defined as selecting a node (usually
at random) that marks a sub-tree for each parent individual and then swapping the sub-trees
emanating from the selected nodes to create the offspring. The left parent S-expression swaps the
sub-tree (/ diameter 2) with the terminal (diameter) from the right parent to form two offspring each
of which is an expression that calculates the area of a circle. Since most nodes of a tree are leaf nodes,
selecting nodes is usually biased so that a greater proportion of internal nodes is selected during
crossover.

Decimation is used to destroy very low fitness and expensive (in terms of use of computational

resources) individuals in a specified generation of a run, typically the first generation. However,

only reproduction and crossover are used in the majority of the work by [Koza, 1992], as the

initial population is deemed to be large enough to contain enough variation for crossover alone to

build working programs. Hence only few experiments described therein use mutation or other

secondary operations.

4. Replace the current population with the new population.

Like to the SGA algorithm, the standard GP algorithm is generational, although variations of GP

exist where the bounds between generations are not distinct, such as steady state GP

implementations [Reynolds, 1994e] [Banzhaf, Nordin, Keller, Francone, 1998, pages 134-135].

5. If the termination criterion t is satisfied stop, otherwise go to step 2

Typically the algorithm terminates after a given number of generations, or when a solution has

been found (i.e. an individual found with zero standardised fitness). At this stage the output of the

algorithm is the best individual(s) in the population.

diameter

Pi

diameter 2

/

*

* Parent

Pi

diameter 2

/

*

*

*

2

Offspring

2

Figure 9. The mutation operation is specified as selecting a node at random from the parent parse-
tree and then replacing the sub-tree emanating from that node with a new randomly composed S-
expression. In the above the terminal node (diameter) is selected from the parent (on the left) and is
replaced with the expression (* 2 2) in the offspring on the right.

Koza and others have proposed many extensions to the standard GP algorithm. These include,

encapsulation mechanisms that allow for hierarchical problem solving using function

decomposition such as automatically defined functions (ADFs) [Koza, 1994]. Strongly typed

genetic programming (STGP) [Montana, 1995] allows the evolution of programs that do not obey

closure, whilst syntactically constrained systems that allow extensions of closure have been

proposed by [Koza, 1992, pages 479-526] [Whigham, 1996] [Gruau, 1996b]. Langdon presents a

study of GP using data structures [Langdon, 1998]. Koza et al. [Koza, Bennett, Andre, Keane,

1999] describe a set of genetic operations referred to as architecture altering operations that

allow the evolution of an S-expression’s architecture (i.e. function set, terminal set, and ADFs) as

well as its topology. Hybrid algorithms have also been proposed such as GP-ES hybrids

[Sarafopoulos, 2001] [Keller, Banzhaf, Mehnen, Weinert, 1999].

Koza’s original genetic programming system was written in LISP [Koza, 1992, pages 735-755].

However, the relative simplicity and generality of the paradigm, allowed genetic programming

systems to be implemented in many high-level (imperative, object oriented, and logic)

programming languages [Langdon, 1998, page 38], as well as in low-level machine code

[Banzhaf, Nordin, Keller, Francone, 1998]. An in-house GP system in C++ was used to carry out

the experiments described in this chapter.

3.4 Evolution Strategies (ES)

Rechenberg and Schwefel jointly developed evolution strategies as a method for function

optimisation inspired by the Darwinian theory of evolution and natural selection. The technique

was originally applied to discrete hydrodynamical problems, such as drag minimisation of a joint

plate [Rechenberg, 1965], and structure optimisation of a two-phase flashing nozzle [Schwefel,

68] [Klockgether, Schwefel, 1970] [Herdy, 2001]. The application of the technique was initially

based on experimental set-up. In the case of the flashing nozzle, for example, joints of the nozzle

segments were physically adjusted and the performance of the adjusted nozzle was evaluated.

When current adjustment of the construction performed better than previous ones it was used as

the basis for further trials. Each adjustment was viewed as mutation of the previous construction,

and, founded on the observation that in nature large mutations appear more rarely than small

ones, the discrete mutations were sampled by means of a binomial distribution with constant

variance. Where traditional optimisation methods failed to provide sufficiently good results this

apparently, simple technique was surprisingly successful.

Schwefel was the first to simulate such ES using computers by testing different versions of the

strategy for the optimisation of continuous functions of real variables [Schwefel, 1995]. Different

types of ES are known as (1+1)-ES, (µ + λ)-ES, and (µ, λ)-ES, in a notation that describes the

selection method applied during a generation of individuals where µ parent individuals selected

from the current population produce λ offspring. An early incarnation of ES [Schwefel, 1995] is

the (1+1)-ES or two membered ES, where each generation consists of one n-dimensional real

valued vector and variation is introduced by normally distributed mutations with expectation zero

and given variance. The parent vector is modified using normally distributed mutations with the

same standard deviation for each component to generate one offspring. The offspring replaces its

predecessor in the event that it improves performance.

Here we concentrate on the (µ + λ)-ES and (µ, λ)-ES that are the most commonly used and

which, as opposed to the (1+1)-ES, are population based. In the (µ + λ)-ES case, µ parent

individuals produce λ offspring that subsequently compete against themselves and the parents

(i.e. µ+λ individuals compete) to form the new generation of µ parent individuals. In the case of

(µ, λ)-ES only the λ offspring compete to form the new generation of parent individuals and each

individual therefore has a life span of one generation only. The outline of the (µ, λ)-ES algorithm

is shown in figure 10. In the case of the (µ + λ)-ES, step (2) of the algorithm outline (in figure 10)

has to be modified so that the intermediate population, Pop(t’), is generated from parents and

offspring, i.e. Pop(t’) comprises of µ + λ individuals, where parents are copied verbatim into

Pop(t’) form the current population Pop(t).

Out line of the (µ, λ)-ES algorithm

(1) Set generation count to zero, i.e. 0=t , and create initial population of µ parent

individuals Pop(0). Where each member of the population is a vector

},,1{ ,),(nnwhereRRxIa nn
K

rrr ∈×==∈ + σ
σσ . Component x

r
 is a real

valued vector that holds n object variables encoding the problem at hand. σr is

also a real valued vector of strategy parameters storing the standard deviations

that specify the mutation step lengths for components of x
r

.

(2) Create an intermediate population Pop(t’) made out of λ new offspring, where

each new offspring },1{, λK
r ∈′′ iai is generated by: firstly using recombination

operation r on Pop(t) to generate ia
r′ , i.e.))((),(tPoprxa iii =′′=′ σrrr

, and

subsequently mutating offspring ia
r′ , i.e.)(),(iiii amxa

rrrr ′=′′′′=′′ σ .

(3) Select the most promising µ individuals from Pop(t’) and store them in the new

population of parent individuals Pop(t+1).

(4) Increment generation count, 1+= tt .

(5) If the termination criterion is met stop, otherwise go to step (2).

Figure 10. Pseudo-code for (µ, λ)-ES algorithm outline

ES focus on mutation where recombination is deemed as a secondary operation [Beyer, 1995].

Mutation is usually introduced as normally distributed mutation of the components of the vector

to be optimised, where each component is mutated separately. The step lengths (i.e. standard

deviations) can be constant or can be adapted during a run. Step length control of mutations is

very important. If the step lengths are too long, mutations can produce long random jumps across

the fitness landscape that may step over nearby by minima of the landscape. If on the other hand,

step lengths are too small, the system might never get close to a distant solution in a reasonable

amount of time. If we constantly reduce the step length during the run, we might improve

performance towards the end of the run, when arriving close to a possible solution. However, in

doing so we run the risk of damaging performance at the beginning of the run, and may need

more steps in order to come sufficiently close to a solution that could have been required with a

fixed step length.

Clearly there is an exploration-exploitation trade-off, when step control is small we can

efficiently search for potential solutions that exist in the vicinity of the current solution, but we

lose out on solutions that exist in other parts of the search space. On the other hand, when the step

length is long, we explore the fitness potential of the whole landscape more efficiently but we

cannot efficiently “fine-tune” the search in order to exploit promising areas. Ideally adaptive

mutations learn how big the step length has to be at each stage of the run, so we can maximise

performance accordingly.

An example of an adaptive method for controlling the step length was introduced by Rechenberg

[Rechenberg, 1973] and is known as the 1/5 success rule [Back, 1996, pages 83-87] which states:

“The ratio of successful mutations to all mutations should be 1/5. If it is greater than 1/5, increase

the standard deviation, if it is smaller, decrease the standard deviation” [Back, 1996]. Rechenberg

derived the 1/5 rule from convergence rate results by analysis of the behaviour of two model

objective functions:

,)()(

and ,2/2/:},,2{,)()(

2
10

1

2*
102

11011

rccxxccxf

bxbnxccxFxf
n

i
ii

ii

⋅+=−+=

≤≤−∈∀⋅+==

∑
=

r

K
r

1f , is the so-called corridor model, where progress is achieved by moving only along the

direction of the x-axis in a corridor of width b. 2f , is the sphere model, which represents a

hypersphere or radius r, where the minimum *x
r

 is located at the centre of the hypersphere.

Convergence rate ϕ is defined as the expectation of the distance k’ covered by mutation, that is;

∫ ′′′= ,)(kdkkpϕ

where)(kp ′ is the probability of a mutation moving an individual structure distance k ′ closer to

the optimum [Back, 1996, pages 83-87]. According to the 1/5 success rule, the mutation operation

on individual),(σ ′′=′ rrr
xa is specified as:



























=′

>′

<′

=′′

∈′+′=′′

5

1
 if

5

1
 if

5

1
 if

},,,1{),,0(

r

rc

rc

andnjNxx

j

jb

jd

j

jjj

σ

σ

σ

σ

σ K

where N(0,σ) is a normal distribution with mean zero and standard deviation σ. r is the relative

frequency of successful mutations (given by the ratio of successful mutations over all mutations)

sampled over an interval of a small number of past generations, e.g. 10. Schwefel suggests

[Schwefel, 1995, pages 110-113] that constants dc and bc should take values within the interval

[0.817, 1].

In self-adaptive (µ, λ)-ES a vector of standard deviations (that represents mutation step lengths) is

attached to object variables [Schwefel, 1995, pages 142-145], as described in figure 10. It acts as

a set of strategy parameters. An individual’s object variables as well as step lengths are then

subject to mutations. The expected result of mutations of the step lengths without selection is

neutral; increase of step length is as likely as decrease; and, if we sample using a log-normal

distribution, small changes occur more often than large ones (sampling using log-normal

distribution). Good mutations of step lengths gain, therefore, adaptive advantage through

selection pay-off, and poor ones are filtered out. Using this plan an individual),(σ ′′=′ rrr
xa is

mutated by:

},,,1{),,0(

)1,0(

niNxx

, ande

iii

N
ii

K∈′′+′=′′
⋅′=′′

σ
σσ τ

where τ is a constant that represents an overall learning rate, Schwefel suggests [Schwefel, 1995,

page 144] that; τ should be inversely proportional to the square root of the number of object

variables

.
1

n
∝τ

This equation was also studied by Beyer [Beyer, 1996][Beyer, 2001] who provides an improved

formula (based on analysis of spherical models) to calculate τ for (µ, λ)-ES, given by:

,,

n

c λµτ =

where λµ ,c is the so-called “progress coefficient”, which can be computed numerically for

different µ and λ. A table of λµ ,c values, for selected (µ, λ)-coefficients, is provided in [Beyer,

1996].

Schwefel proposed a similar method for self-adapting not only the size of mutation step lengths

but also potential linear correlation of mutations of object variables, by introducing another vector

of rotation angles as part of the representation [Schwefel, 1995, pages 240-242]. There are

2/)1(−nn such rotation angles that correspond to linear correlation of mutations of n object

variables. Rotation angles are self-adapted using additive, normally distributed mutations [Back,

1996, pages 68-73].

Hansen et al. [Hansen, Ostermeir, Gawelczyk, 1995] propose generating set adaptation (GSA) as

a method that is independent of the co-ordinate system of standard deviations vector σr . This is

carried out by linear modification of the basis vectors of σr . A history of successful mutation

steps is stored and the weighted sum of all mutation steps of the individual’s history is used to

alter the co-ordinate basis of σr . This strategy was extended by Hansen and Ostermeir [Hansen,

Ostermeir, 1996] with the introduction of covariance matrix adaptation (CMA). The use of a

covariance matrix allows the technique to be invariant to linear transformations of the search

space such as scaling and rotation.

Recombination is often used in ES when µ > 1. Recombination can be applied to object variables

as well as strategy parameters. There are several recombination techniques in ES. They are

subdivided into sexual and panmictic. In both cases, partners are selected randomly from the

parent population. In sexual recombination two parents are randomly selected to generate a new

offspring, whereas in panmictic recombination one individual is randomly selected which remains

fixed and, for each component (of its vectors), a new partner is selected randomly from the

population. Recombination methods are also divided into discrete and intermediate. Discrete

recombination of the object variables of individuals in the parent population is defined as:

,},,1{,
50 if

0.5 if

,

 ,
,1





∈∀
>
≤

=′ + nj
. ux

ux
x

jj

jj

j K
β

α
µ

where ju are uniform random variables, sampled for each pair of corresponding components (of

parent vectors). The parents are selected once in the case of sexual recombination, whilst the

second parent is selected anew for each component in the case of panmictic recombination.

Strategy parameters can also be recombined in the same fashion. Intermediate recombination of

the object variables of individuals in the parent population is defined as:

), - (,, ,,1 jjjj xxxx αβαµ χ ⋅+=′ +

where χ takes a value within the range [0,1]. Typically χ = 0.5, in which case the result obtained

is the intermediate value between the two parents. In general intermediate recombination

performs a linear interpolation of the two parents. Strategy parameters can also be interpolated in

the same fashion. Again, the parents are selected once in the case of sexual recombination, and

the second parent is selected anew for each component in the case of panmictic recombination.

However, object and strategy parameters don’t have to be recombined using the same method.

Back suggested that empirically better results are obtained when discrete recombination is

performed on object variables, and intermediate recombination is performed on strategy

parameters [Back, 1996, pages 73-76].

Although the representation and genetic operations of GA and ES appear very different, i.e. GA

operate on binary strings as opposed to ES operating on real valued vectors, the emphasis of both

techniques is on an adaptive search viewed as an exploration-exploitation trade-off. This trade-off

in ES is based on the selection of mutation step lengths. In the case of GAs the trade off is “built-

in” within the crossover operation. This may be seen, for example, by looking at Holland’s

analysis for the optimal allocation of trials for the two-armed bandit problem using GA

[Goldberg, 1989, pages 36-39] [Holland, 1992, pages 75-88]. Alternatively, one could view GA

crossover as an adaptive mutation. To do so, we start with the observation that an initial

population of randomly generated binary strings will contain individuals that are lexically very

different. This implies that crossover operations will produce very different individuals i.e.

mutation step lengths will be very high. However, via selection pressure schemata, (i.e. bit-string

templates) that perform well will appear more often in the population. The population is thus

likely to start converging, and crossover will produce individuals that are likely to be lexically

more similar, i.e. mutation step lengths will progressively reduce.

4 Case studies

We use two case studies to demonstrate the applicability of EAs to computer animation and

computer graphics in general. The first case study is based on the evolution of procedural

textures, the second on the evolution of iterated function systems. The emphasis in both case

studies is on the use of evolutionary algorithms as a tool for the artist and the application of such

as tool (using techniques described in the above sections) to the generation of aesthetically

pleasing and challenging visual content.

4.1 Interactive Evolution of 2D procedural textures

Here we present an application of evolutionary algorithms to the automatic generation and

evolution of procedural textures. This is a popular application of EAs to computer graphics (and

animation) and leads to interesting visual results. The images and work presented here are based

on the animation sequence “textures” generated by one of the authors [Sarafopoulos, 1995]. In

order to use an evolutionary algorithm to generate procedural textures we need to decide on an

encoding, fitness function, and genetic operations. In this case we choose genetic programming as

the EA of choice and therefore the encoding and genetic operations are based on S-expressions

(see section on genetic programming). Using a “conventional” fitness function as in standard GP

however can prove problematic. To avoid this we will use “interactive selection” as explained

later in this section.

4.1.1 Encoding of procedural textures

Procedural textures [Perlin, 1985][Ebert, Musgrave, Peachey, Perlin, Worley, 1998] in computer

graphics are simply functions whose domain is 2ℜ (in the case of two-dimensional textures) and

range is a vector of intensity or color values. Typically we are looking for a function that maps

coordinates to intensity or color values of the form:

),,,(: 2 BGRIf →ℜ

where the color components R, G, B belong to the interval [0,1] and correspond to red, green and

blue intensities of a pixel at a given location of an image. A procedural texture can readily be

coded as an S-expression. Thus, genetic programming could be used to explore the space of such

functions. Karl Sims originally proposed this method of generating procedural textures using

genetic programming [Sims, 1991]. There are several examples of systems that use a similar

approach to generating textures including some commercial applications [Ibrahim, 1998][Wiens,

Ross, 2000][Wiens, Ross, 2001].

4.1.2 Interactive selection

In order to drive the evolutionary process we need a way of assigning fitness to individual

textures. In our case a small number of textures are originally generated randomly and displayed

on the computer screen and the user is asked interactively to assign fitness to the texture(s) they

consider to be the most pleasing, for example using mouse-driven interaction. Interactive

selection avoids the problem of providing a conventional fitness function. Such a fitness function

would probably have to quantify what is seen as visually pleasing (under some context), which is

itself a very difficult task.

4.1.3 GP architecture

Here, for simplicity, we are looking at expressions that generate gray-scale images. In order to

define the components of symbolic expressions using genetic programming we need to decide on

function and terminals sets. In our case we chose the following function set F:

sqrt}./,,*,,sin,{cos, −+=F

That is, the function set consists of simple arithmetic expressions and few simple functions. The

terminal set T consists of:

},,,{ ephemeralyxT =

where x and y are variables that denote pixel coordinates of an image, and ephemeral is a terminal

that is initialized to contain a random floating-point constant.

Figure 11. The texture on the left is generated by the S-expression (y), the texture in the middle of the
figure is made out of the S-expression (sin x), and the one on the right is generated by (* x y).

(* (cos (* (cos -38.81) (+ -75.55 (sqrt (+ (+ (sqrt (+ (cos-
38.81) x)) -38.81) (* (cos (cos (cos (* (cos 38.81) (+-75.55 (+
(sqrt (+ (+ (sqrt (+ (cos -38.81) x)) x) (* (cos(cos (cos (sqrt
(+ (+ (sqrt (+ (cos 38.81) x)) x) (* (cos(cos (cos (* (cos -
38.81) (+ -75.55 (+ (sqrt (+ (+ (sqrt (+(cos -38.81) x)) x) (*
(cos(cos (cos (* (cos -15.13) (+-75.55 (+ -75.55 (sqrt (+ -75.55
(* (cos -38.81) y)))))))))y)))(cos (*(cos-38.81) (+ -75.55 (sqrt
(+ (+ (sqrt (+ (cos-38.81) x)) x) (* (cos (cos (cos (* (cos -
15.13) (+ -75.55(+ -75.55 (sqrt (+ -75.55 (* (cos -38.81)
y)))))))))y)))))))))))) y)))))) y))) (cos (* (cos -38.81)
(+75.55(sqrt (+ (+ (sqrt (+ (cos -38.81) x)) x) (* (cos (cos
(cos(* (cos -15.13) (+ -75.55 (+ -75.55 (sqrt(+ -75.55 (* (cos-
38.81) y))))))))) y)))))))))))) y)))))) 12.40)

Figure 12. This complex combination of function nodes and terminals results in the liquid-like
texture of figure 13.

Figure 13.

Resulting expressions can be used to generate a wide variety of textures. However, textures

produced by simple S-expressions (made out of one or two function nodes) are also simple see

figure 11. The challenge is to discover combinations of functions and terminals that produce

pleasing elaborate patterns and textures. Generation of a texture that corresponds to an individual

expression proceeds by evaluating that expression for every pixel of the image holding the

texture.

4.1.4 Results

After forty or fifty generations, textures that are visually complex start to emerge. A liquid-like

texture is presented in figure 13 and the S-expression that generated that texture is given in figure

12. Figure 14 is a screen shot of the interactive system written by one of the authors in order to

generate such 2D textures using genetic programming.

Figure 14.

4.2 Evolutionary Morphing and Iterated Function Systems

Here we focus on the generation of interesting visual content without the use of interactive

selection. The question then arises as to how we can guide the generation of images automatically

since very little is really known (in scientific terms) about the reasoning underpinning aesthetic

judgments. The approach adopted here is one used throughout the history of art, namely “visual

representation”. An evolutionary algorithm is asked to evolve/generate a shape or a form that is

the same as or resembles a shape in nature (in the same way a painter may be asked to represent a

natural scene or to draw a portrait, a figure, etc.). If we choose this approach interesting results

may be obtained in two respects. First, we don’t have to ask for the representational goal to be

achieved exactly, thereby allowing for variations on a given theme. Second, the process of

reaching the representational goal might itself be interesting, since it will portray a path starting

from noise (a random generation of individuals) to a well-defined outcome, i.e., a type of

“evolutionary morphing” (between noise and a specific representational goal) could be achieved.

The next challenge is to decide on a symbolic technique that will allow us to approximate a shape

or form. There are several options. However, for simplicity and because it is well understood

model we use iterated function systems. An iterated function system (IFS) is a fractal

mathematical model that can be used to represent natural shapes and structures. IFSs provide a

procedural tool for modeling natural objects in computer graphics applications. 2D and 3D

objects can be modeled. However, here we restrict ourselves to the representation of 2D fractal-

like shapes that are well studied and whose IFS representation is known [Barnsley, Hurd, 1993,

pages 82-88].

In order to achieve our aim we use an evolutionary algorithm that is a GP and ES hybrid.

Because of the nature of IFSs as arrays of floating point numbers we need an optimization

technique well suited to dealing with real valued vectors (i.e. ES). On the other hand, we require a

variable length representation since we don’t know beforehand the number of codes needed to

represent a shape using an IFS (i.e. GP). We call this hybrid approach a “hierarchical evolution

strategy”.

4.2.1 Hierarchical evolution strategy

Evolution Strategies (ES) operate on real valued vectors. The elements of these real valued

vectors that correspond to the coding of a (optimization) problem are referred to as object

variables (see section on ES). Here using notation from [Back, 1996] an ES individual is defined

as a vector a, such as:

},2/)1)(2(,0{

},,1{

,],[),,(

−−∈
∈

−××=∈= +

σσα

σ

ασ ππ

nnnn

nn

RRIrsva nnn

K

rrrr

 (Equation 1)

 where vector v represents object variables. Each individual also incorporates the standard

deviation vector s, as well as the correlation coefficient vector r. One of the most important

features of ES is variation of object variables, which is represented by use of normally distributed

mutations (other distributions may also be used for the mutation of object variables). Equally

important is the self-adaptation of the standard deviations and correlation coefficients of the

normally distributed mutations [Back, 1996, pages 68-73].

We combine GP and ES by using a method that allow us to encode an ES individual as a LISP

symbolic expression (S-expression). In the light of this one could implement ES within a GP

system by simply allowing ES individuals to be coded as symbolic expressions, comprised of GP

functions and terminals. The structure of an ES program can be seen as a hierarchical tree as

illustrated in figure 15. Such a tree representation allows to incorporate ES individuals into GP

seamlessly. We call this tree an evolution strategies’ individual (ES individual). We allow ES

style mutation as described by Back [Back, 1996] to operate on ES individuals. We implemented

ES individuals, using strongly typed genetic programming (STGP) [Montana, 1995] (see

following section). STGP recombination can also be applied to ES individuals.

Evolution strategies individual

Object variables Standard deviations Correlation coefficients

σnsss ... 21

αnrrr ... 21 nvvv ... 21

Figure. 15 Tree that defines an ES individual, corresponding to vector a of Equation 1

A hierarchical evolution strategy (HES) is defined as an S-expression that contains ES

individuals. According to this definition, ES itself is a subset of the hierarchical evolution

strategy, defined by a single ES individual. Such a structure (as in ES) will be of fixed size. GP

architectures that contain scalar terminals could code these terminals as ES individuals. The

potential benefit of this is that each ES individual can be fine-tuned separately using ES style

mutation operations.

The hierarchical evolution strategy has two major potential benefits: a) it provides a GP

architecture that contains a self adapting mechanism, in terms of mutating scalar terminals; b) it

provides a modified ES that is variable length. Variable length coding has been reported in early

work using ES [Schwefel, 68]. Nevertheless the architecture has to be described in terms of ES

individuals, which have to remain of constant length within the evolutionary simulation cycle.

4.2.2 Strongly typed genetic programming

In GP as described by Koza [Koza, 1992] individuals are S-expressions composed of two types of

functions. Functions that accept arguments called non-terminal functions, and functions that

accept no arguments called terminal functions. For brevity we use the term function to mean non-

terminal function. One important constraint of GP is the property of closure. That is, all functions

have to accept arguments and return values of the same data type. Koza [Koza, 1992] has

proposed a method to relax closure using constrained syntactical structures. We use strongly

typed GP [Montana, 1995] to allow S-expressions that are comprised of functions that accept

arguments and return values of different data types. The hierarchical evolution strategy is

implemented using a STGP system. In STGP we need three sets to describe S-expressions: a set

of data types D, a set of functions F, and a set of terminals T. In GP as described by Koza only

two sets are needed (functions and terminals). The notation

},,,1{,

,

),,,(1

niDa

Dr

whereaafr

i

n

K

K

∈∈
∈
←

describes a function f that accepts n arguments and returns a value of data type r, where D is the

set of data types. If the number of arguments n is equal to zero, the above notation describes a

terminal returning data type r. We use this notation in order to simplify the description of STGP

functions and terminals.

4.2.3 Iterated function systems and the inverse problem

IFS offer a method of generating fractal shapes. J. Hutchinson originally developed the idea of

IFS [Hutchinson 1981]. An affine IFS is a finite set of contractive affine transformations

[Barnsley, 1993] [Barnsley, Hurd, 1993]. Points in space affected by contractive transformations

are placed always closer together. It has been shown that a shape can be represented using IFS by

discovering a set of contractive transformations that take that shape onto itself. That is, in order to

represent a shape A using an IFS, the union (collage) of the shapes of A under the transformations

has to generate A. This is known as the collage theorem. The notation for an IFS is {wn,

n=1,2,…,n}. Application of an IFS to finite shape A is defined as a transformation W:

).()(
1

AwAW
n

i
nU

=

= (Equation 2)

A fractal shape can be constructed by calculating the attractor of an IFS. The attractor of an IFS

is defined by:

),(o AWLim n

n ∞→
 (Equation 3)

where nW o is defined by:

)).(()(,)),(()(),(, 12 AWWAWAWWAWAWA nn −==
���

K

There are two well-known methods of constructing IFS fractals: the photocopy algorithm, and the

chaos game algorithm [Lu, 1997, pages 34-41]. For a detailed description of IFS see Barnsley

[Barnsley, 1993]. A challenging problem when constructing IFS fractals is the inverse or

inference problem. This problem can be seen as a restricted form of the general representation

problem we mention in the opening section of this case study.

According to the inverse or inference problem for IFS we are asked to find an unspecified number

of contractive affine transformations whose attractor is a given image. Here we attempt solve the

inference problem for the Barnsley Fern [Barnsley, Hurd, 1993, pages 98-99]. The Barnsley Fern

was chosen because of its complex self-similar shape. The fern shape was also chosen because it

has a well-known solution that contains four transformations, each different from the others, one

of which is singular (i.e. non-invertible). The shape of the fern leaf is one many natural forms

whose geometry can be represented using IFSs [Barnsley, Jacquin, Mallassenet, Rueter, Sloan

1988].

4.2.4 Architecture using the hierarchical evolution strategy

An IFS does not contain a predefined number of contractive affine transformations. Encoding is

based on S-expressions that represent a list of ES individuals (see figure 15), each ES individual

representing an affine transformation. Therefore we use a coding that allows the representation of

a variable length list of affine transformations. The coding is based on S-expressions that contain

a list of ES individuals.

The set of data types D for this problem consists of

}.15,1{},6,1{

},,,,,,,,{

KK ∈∈

=

ji

ephRotephDevephObjrotdevobjmapifsD jii

The data type obj stores the object variables (see figure 15) of an ES individual. The object

variables in this case correspond to floating-point coefficients {a, b, c, d, e, f} of an affine

transformation. dev is the data type that stores the standard deviations of an ES individual. rot is

the data type that stores rotations that stand for linearly correlated mutation coefficients of an ES

individual. We have six object variable coefficients, and six standard deviation coefficients.

Finally we have n(n-1)/2 correlation coefficients, where n is the number of object variables.

ephObj data types, ephDev data types, and ephRot data types store an ephemeral floating point

variable each, that corresponds to an object variable, a standard deviation, and a correlation

coefficient respectively. Each coefficient of an ES individual is given a different data type so it

could be recombined only with the same coefficient of a different individual.

ifs stores a list of two or more transformations. ifs is the return data type of a S-expressions for

this problem. The data type map stores a list of one or more ES individuals (see figure 15).

 The function set F for this problem consists of

)}.,,,(_

),,,,(_

),,,,(_

),,,(_

),,(_

),,(_{

1521

621

621

ephRotephRotephRotrotfrot

ephDevephDevephDevdevfdev

ephObjephObjephObjobjfobj

rotdevobjmapfmap

mapmaplistfmap

mapmapifsfifsF

L

L

L

←
←
←
←
←

←=

The function f_ifs is used to ensure that IFS have two or more affine transformations. Function

f_list is used to connect affine transformations in a list.

The terminal set T for this problem consists of

}.15,1{},6,1{

},) (_

,) (_

,) (_{

KK ∈∈

←
←

←=

ji

rottephRot

devtephDev

objvtephObjT

jj

ii

ii

Functions, terminals, and data types are designed to construct S-expressions that mirror the graph

in figure 15.

4.2.5 Fitness function

Two fitness functions were tested, the Nettleton fitness, and the overlap fitness. The Nettleton

fitness was also used in [Sarafopoulos, 1999][Sarafopoulos, 2001], and was originally proposed

by Nettleton, and Garigliano [Nettleton, Garigliano, 1994]. The overlap fitness combines the

Nettleton fitness with a calculation of the pixel overlap of affine transformations of an IFS.

Here we deal with (fractal) shapes that are black-on-white drawings. Strictly speaking fractal

shapes are defined as compact subsets of 2D Euclidean space [Barnsley, 1993]. However, in

terms of the fitness function the universal set U is the set of pixels of a 128x128 bitmap. A shape

is defined as a subset of the set pixels of a 128x128 bitmap. We are searching though the set H of

all subsets of U. The target shape or target for this experiment is the shape of the Barnsley Fern.

Let N(a) be the number of pixels of shape a. Let collage, for a given IFS wn, be the shape

created by applying transformation W (see Equation 2) to the target shape.

We calculate the standardized fitness of individuals, in the Nettleton case by:

),()()(1 targetcollageNtargetcollageNtargetNerror ∩−∩+= − (Equation 4)

where 1−a is the complement of set a. That is, each individual in the population strives to produce

a collage that covers pixels of the target shape. The more pixels of the target an individual covers

and the less of the rest of the image, the greater the reward. Nettleton fitness can lead to the

evolution of "opportunistic" transformations. That is, transformations that cover a large portion of

the target will tend to spread quickly among the population. However, such transformations are

not necessarily optimal, nor do they necessarily lead to a solution. One way to reduce this effect

is to introduce a term in the fitness function which punishes individuals that contain

transformations that overlap, thus reducing the spread of a transformation that just happens to

cover many pixels of the target and therefore encouraging transformations that cover a small

number of pixels.

We calculate the standardized fitness in the overlap case as error + sharing, where error is

defined in Equation 4, and sharing is defined by:

,))()((
1 1

∑∑
=

≠
=

∩=
n

j

n

ji
i

ij tagretwtargetwNsharing (Equation 5)

where n is the number of affine transformations of a given IFS.

In order to avoid non-contractive IFS individuals, any IFS individual with contractivity greater

than 0.85 was not selected for reproduction.

4.2.6 Control parameters

In the case of the HES coding, the selection scheme was a (µ, λ)-ES type elitist selection with

µ=9, and λ=16000. Affine transformations for individuals in the initial population were generated

by ES mutation of an affine transformation with {a, b, c, d, e, f} = {0.2, 0.0, 0.0, 0.2, 0.0, 0.0}.

Standard deviations were initialized to 0.4. The initial values for correlation coefficients were set

to 0. ES style mutation operation was allowed to help fine-tune the parameters of transformations

within a given IFS. The ES mutation operation was applied to a randomly selected ES individual

of an S-expression. The affine transformations were not directly constrained, and therefore were

not forced to be contractive after mutation. However, in order to reduce mutations that produce

non-contractive maps we repeated the mutation operation until a contractive individual was found

or a maximum number of iterations were reached. The population number was set to 16000, the

generation number was set to 30, and the number of runs to 6.

4.2.7 Results

The results of a successful run are shown in the following figure and they depict the evolution of

the fern shape starting with noise, i.e. a random initial population. Each section/image of figure

16 represents the best individual in a generation. Generations increment form top to bottom, and

left to right. The only exception to this rule is the image at the top left corner of figure 16, which

depicts the target shape. The attractors of the evolved IFSs have been rendered and then posted-

processed using a chamfer distance mask [Borgefors, 1984] which creates the shading effect for

visualizing the distance of points in an image from the IFS attractor.

5 Conclusions

We demonstrated how evolutionary algorithms could be used in the context of computer graphics

as an artistic meta-tool. Only still images are presented here, however the techniques can be

extended to generate animation sequences (this could be achieved by interpolation between

texture representations or IFS codes). Currently there are two major pathways being explored.

The first is the use of EA as a tool for interactive exploration of procedural models, such as

textures. The second path involves automatic exploration of features important to computer

animation using EA as an optimization tool. In this case strict criteria need to be applied to evolve

new forms. This is usually considered problematic if these forms are to claim some aesthetic

visual quality. We propose a method that avoids this problem; that is “visual representation”. The

aesthetic judgment is made indirectly before starting the process of evolving new forms by

deciding on a subject matter and a method of (symbolic) representation that is aesthetically

pleasing. We demonstrated this approach by generating a sequence of images that gradually

approximate the shape of a fern. This provides a proof of principle that our method can be applied

in practice. Currently we are working on techniques that will allow us to improve the efficiently

of the EA so shapes and images of greater complexity can be depicted.

Figure 16. The figure shows the attractors of the best individuals for 24 generations. With the
exception of the image at the top left corner, which depicts the target shape, generations increment
form top to bottom, and left to right.

Bibliography

[Angeline, 1996] Angeline, J. P. Evolving Fractal Movies, Genetic Programming 1996
Proceedings of the first Annual Conference, pages 503-511, 1996, MIT Press

[Ashlok, D., and Golden, 2000] Ashlok, D., and Golden, J. Iterated Function Systems Fractals for
the Detection and Display of DNA Reading Frame, Proceedings of the 2000 Congress on
Evolutionary Computation, pages 1160-1167, 2000

[Back, 1996] Back, T. Evolutionary Algorithms in Theory and Practice, 1996, Oxford University
Press

[Baluja, Pomerleau, Jochem, 1994] Baluja, S., Pomerleau, D., and Jochem, T. Towards
Automated Artificial Evolution for Computer-generated Images, Connection Science, Vol. 6,
Number 2 and 3, pages 325-354, 1994

[Banzhaf, Nordin, Keller, Francone, 1998] Banzhaf, W., Nordin, P., Keller, R., and Francone, F.
D. Genetic Programming an Introduction, 1998, Morgan Kaufmann

[Barnsley, Jacquin, Mallassenet, Rueter, Sloan 1988] Barnsley, M. F., Jacquin, A., Mallassenet,
F., Rueter, L., and Sloan, A. D. Harnessing chaos for image synthesis, Computer Graphics 22(4),
pages 131-140, 1988

[Barnsley, 1993] Barnsley, M. F. Fractals Everywhere: 2nd edition, 1993, Academic Press

[Barnsley, Hurd, 1993] Barnsley, M. F., and Hurd, L. P. Fractal Image Compression, 1993, AK
Peters

[Bentley, 1999] Bentley, P.J. (ed.) Evolutionary Design by Computers, 1999, Morgan Kaufmann

[Bentley, Corne, 2001] Bentley, P. J. and Corne, D. W. (eds.) Creative Evolutionary Systems,
2001, Morgan Kaufmann

[Bethke, 1981] Bethke, A. D. Genetic Algorithms as Function Optimizers, Ph.D. Dissertation,
University of Michigan, Ann Arbor, 1981

[Beyer, 1995] Beyer, H. -G. Toward a theory of evolution strategies: On the benefit of sex - the
(µ/µ, λ) - theory, Evolutionary Computation, 3(1), pages 81-111, 1995

[Beyer, 1996] Beyer, H. -G. Toward a theory of evolution strategies: Self-adaptation,
Evolutionary Computation, 3(3), pages 311-347, 1996

[Beyer, 2001] Beyer, H. -G.: The Theory of Evolution Strategies, Natural Computing Series,
2001, Springer

[Borgefors, 1984] Borgefors, G. Distance Transformation in arbitrary dimension, Computer
Vision, Graphics, and Image Processing 27, pages 231-345, 1984

[Caruana, Schaffer, 1988] Caruana, R. A., and Schaffer, J. D. Representation and Hidden Bias:
Gray vs. Binary Coding for Genetic Algorithms, Proceedings of the 5th International Conference
on Machine Learning, 1988, Morgan Kaufmann

[Collet, Lutton, Raynal, Schoenauer, 1999a] Collet, P., Lutton, E., Raynal, F., and Schoenauer,
M. Individual GP: an alternative viewpoint for the resolution of complex problems, Proceedings
of the Genetic and Evolutionary Computation Conference, volume 2, pages 974-981, 1999,
Morgan Kaufmann

[Collet, Lutton, Raynal, Schoenauer, 1999b] Collet, P., Lutton, E., Raynal, F., and Schoenauer,
M. Polar IFS + Individual Genetic Programming = Efficient IFS Inverse Problem Solving,
Rapport de Recherche INRIA No 3849, December 1993

[Collet, Lutton, Raynal, Schoenauer, 2000] Collet, P., Lutton, E., Raynal, F., and Schoenauer, M.
Polar IFS + Parisian Genetic Programming = Efficient IFS Inverse Problem Solving, Genetic
Programming and Evolvable Machines Journal, Volume 1, Issue 4, pages 339-361, October 2000

[Collins, Jefferson, 1991] Collins, R., and Jefferson, D. Ant farm: toward simulated evolution,
Artificial Life II, Santa Fe Institute studies in the Sciences of the Complexity, Langton C. et al.
(eds.), 1991, Addison Wesley

[Cramer, 1985] Cramer, N. L. A representation for the Adaptive Generation of Simple Sequential
Programs, Proceedings of an International Conference on Genetic Algorithms and the
Applications, pages 183-187, 1985

[Cretin, Lutton, Levy-Vehel, Glevarec, Roll, 1996] Cretin, G., Lutton, E., Levy-Vehel, J.,
Glevarec, P. and Roll, C. Mixed IFS: Resolution of the inverse problem using genetic
programming, Artificial Evolution, volume 1063 of LNCS, pages 247-258, 1996, Springer Verlag

[Darwin, 1895] Darwin, C. The Origin of Species, New American Library, 1859, Mentor
paperback

[Dawkins, 1986] Dawkins, R. The Blind Watchmaker, 1986, Harlow Logman

[Dawkins, 1987] Dawkins, R. The Evolution of Evolvability, Artificial Life Proceedings, pages
201-220, 1987

[De Jong, 1975] De Jong, K. A. An analysis of the behavior of a class of genetic adaptive
systems, Ph.D. thesis, University of Michigan, Ann Arbor, 1975

[Desmond, 1994] Desmond, S. T. N. An introduction to genetic engineering, 1994, Cambridge
University Press

[D’haeseleer, 1994] D’haeseleer, P. Context preserving crossover in genetic programming,
Proceedings of the 1994 IEEE World Congress on Computational Intelligence, pages 256-261,
vol. 1, 1994, IEEE Press

[Ebert, Musgrave, Peachey, Perlin, Worley, 1998] Ebert, D. S., Musgrave, F. K., Peachey, D.,
Perlin, K., Worley, S. Texturing and Modeling: A Procedural Approach, Second Edition, 1998,
AP Professional

[Fisher, 1995] Fisher, Y. (ed.), Fractal Image Compression: Theory and Application to Digital
Images, 1995, Springer Verlag

[Fogel, 1998] Fogel, D. B. Evolutionary Computation, Second edition, 1998, IEEE Press

[Fogel, 1999] Fogel, L. J. Intelligence through Simulated Evolution, 1999, John Wiley & Sons

[Foley, van Dam, Feiner, Huges, 1990] Foley, J. D., van Dam, A., Feiner, S. K., and Huges, J. F.
Computer Graphics Principle and Practice, 1990, Addison-Wesley

[Furuta, Maeda, Watanabe, 1995] Furuta, H., Maeda, K. and Watanabe, W. Apllication of
Genetic Algorithm to Aesthetic Design of Bridge Structures, In Microcomputers in Civil
Engineering, pages 415-421, 1995, Blackwell Publishers, MA, USA

[Graf, Banzhaf, 1995] Graf, J., and Banzhaf, W. Interactive Evolution of Images, Proceedings of
Int. Conference on Evolutionary Programming, San Diego, 1995

[Graf, Banzhaf, 1996] Graf, J., and Banzhaf, W. Interactive Evolution for Simulated Natural
Evolution, Artificial Evolution, Alliot, J. -M., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D.
(eds.), LNCS, Vol. 1063, pages 259-272, 1996, Springer Verlag

[Garigliano, R., Purvis, A., Giles, P. A., and Nettleton, 1993] Garigliano, R., Purvis, A., Giles, P.
A., and Nettleton, D. J. Genetic algorithms and shape representation, In D. B. Fogel and W.
Atmar, editors, Proceedings of the 2nd Annual Conference on Evolutionary Programming, pages
40-47, Evolutionary Programming Society, 1993

[Gen, Cheng, 1999] Gen, M., and Cheng, R. Genetic Algorithms and Engineering Optimization,
1999, John Wiley & Sons

[Goldberg, 1989] Goldberg, D. E. Genetic Algorithms in Search, Optimization, & Machine
Learning, 1989, Addison Wesley

[Goertzel, Miyamoto, Awata, 1994] Goertzel, B., Miyamoto, H., Awata, Y. Fractal Image
Compression with the Genetic Algorithm, Complexity International, 1:25-28, 1994,
http://www.csu.edu.au/ci/vol1/goertzel.html

[Griffiths, Sarafopoulos, 1999] Griffiths, D. and Sarafopoulos, A. Evolving Behavioural
Animation Systems, Artificial Evolution, volume 1829 of LNCS, pages 217-230, 1999, Springer
Verlag

[Gritz, Hahn, 1995] Gritz, L. and J. K., Hahn, J. K. Genetic Programming for Articulated Figure
Motion, Journal of Visualization and Computer Animation, 6(3), pages 129-142, 1995

[Gritz, Hahn, 1997] Gritz, L. and James K. Hahn, J. K. Genetic Programming Evolution of
Controllers for 3-D Character Animation, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages. 139-146, 1997, Morgan Kaufmann

[Gritz, 1999] Gritz, L. Evolutionary Controller Synthesis for 3-D Character Animation, Ph.D.
Thesis, The George Washington University, 1999

[Gruau, 1996a] Gruau, F. Modular Genetic Neural Networks for Six-Legged Locomotion,
Artificial Evolution, Alliot, J. -M., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.),
LNCS, Vol. 1063, pages 201-219, 1996, Springer Verlag

[Gruau, 1996b] Gruau, F. On using Syntactic Constraints with Genetic Programming, Advances
in Genetic Programming 2, pages 377-394, 1996, MIT Press

[Hamda, Jouve, Lutton, Schoenauer, Sebag, 2000] Hamda, H., Jouve, F., Lutton, E., Schoenauer,
M., and Sebag, M. Unstructured Representations in Evolutionary Topological Optimum Design,
IJAI, The International Journal of Artificial Intelligence, Neural Networks, and Complex
Problem-Solving Technologies, Special Issue on Creative Evolutionary Systems, Bentley, P. and
Corne, D. W. (eds.), 2000

[Hansen, Ostermeir, Gawelczyk, 1995] Hansen, N., Ostermeir, A., and Gawelczyk, A. On the
adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set
adaptation, In Eshelman, L.J. (ed.) Proceedings of the Six International Conference on Genetic
algorithms, pages 57-64, 1995

[Hansen, Ostermeir, 1996] Hansen, N., and Ostermeir, A. Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation, In Proceedings of IEEE
1996 International Conference on Evolutionary Computation, pages 312-317, 1996

[Herdy, 2001] Herdy, M. Optimization of a Two-Phase Nozzle with an ES, EvoNet Flying Circus
Demo, http://www.wi.leidenuniv.nl/~gusz/Flying_Circus/3.Demos/Movies/Duese/index.html,
2001

[Holland, 1973] Holland, J. Genetic algorithms and the optimal allocation of trials, SIAM Journal
on Computation, vol. 2, pages 88-105, 1973

[Holland, 1992] Holland, J. H.: Adaptation in Natural and Artificial Systems, Second edition,
1992, MIT Press

[Hollstien, 1971] Hollstien, R. B. Artificial genetic adaptation in computer control systems, Ph.D.
thesis, University of Michigan, Ann Arbor, 1971

[Hoskins, Vagners, 1992] Hoskins, D. A., and Vagners, J. Image Compression Using Iterated
Function Systems and Evolutionary Programming: Image Compression without Image Metrics,
Proceedings of the 26th Asilomar Conference on Signals, Systems, and Computers, Vol. 2, pages
705-711, 1992, IEEE Press

[Hutchinson 1981] Hutchinson, J.E. Fractals and Self-Similarity, Indiana University Journal, Vol.
35, No. 5, 1981

[Ibrahim, 1998] Ibrahim, A. E., Genshade: An Evolutionary Approach to Automatic and
Interactive Procedural Texture Generation, Doctoral Thesis, Office of Graduate Studies of Texas
A&M University, 1998

[Jacob, 1996] Jacob C. Evolving Evolution Programs: Genetic Programming and L-Systems,
Genetic Programming 1996: Proceedings of the first Annual Conference, pages 107-115, 1996,
MIT Press

[Kang, Cho, Lee, 1999] Kang, Y. -M., Cho, H. –G., and Lee, E –T. An efficient control over
human running animation with extension of planar hopper model, The Journal of Visualization
and Computer Animation, 10(4), pages 215-224, 1999

[Keller, Banzhaf, Mehnen, Weinert, 1999] Keller, R.E., Banzhaf, W., Mehnen, J., and Weinert,
K. CAD surface reconstruction from digitized 3D point data with a genetic
programming/evolution strategy hybrid, Advances in Genetic Programming 3, pages 41-65, 1999,
MIT Press

[Kimura, 1983] Kimura, M. The Neutral Theory of Molecular Evolution, 1983, Cambridge Univ.
Press

[Kirpatrick, Gelatt, Vecchi, 1983] Kirpatrick, S., Gelatt, C. D., Vecchi, M. P. Optimization by
simulated annealing, Science 220, pages 671-680, 1983

[Klockgether, Schwefel, 1970] Klockgether, J. and Schwefel, H.-P. Two-phase nozzle and hollow
core jet experiments, In D. G. Elliott, (ed.), Proc. 11th Symp. Engineering Aspects of
Magnetohydrodynamics, California Inst. of Technology, Pasadena CA, pages 141-148, March
1970

[Koza, 1992] Koza, J.R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection, 1992, MIT Press

[Koza 1994] Koza, J.R. Genetic Programming II: Automatic Discovery of Reusable programs,
1994, MIT Press

[Koza, Bennett, Andre, Keane, 1999] Koza, J.R., Bennett III, F. H., Andre, D., and Keane, M. A.
Genetic Programming III: Darwinian Invention and Problem Solving, 1999, MIT Press

[Langdon, 1998] Langdon, W. B. Genetic Programming and Data Structures, 1998, Kluwer
Academic Publishers

[Langdon, Poli, 2001] Langdon, W. B., and Poli, R. Foundations of Genetic Programming, 2001,
Springer

[Lankhorst, 1996] Lankhorst, M. M. Genetic Algorithms in Data Analysis, Ph.D. thesis,
University of Groningen, 1996

[Levy-Vehel, Lutton, 1993] Levy-Vehel, J., and Lutton, E. Optimization of Fractal Functions
using Genetic Algorithms, Rapport de Recherche INRIA No 1941, June1993

[Levy-Vehel, Lutton, 1994] Levy-Vehel, J., and Lutton, E. Optimization of Fractal Functions
using Genetic Algorithms, Proceedings of Fractal'93, London, Sept 1993, Fractals in the Natural
and Applied Science (A-41), Novak, M. M. (ed.), pages 275-285, 1994, Elsevier Science

[Lewis, 2000] Lewis, M. Aesthetic Evolutionary Design with Data Flow Networks, presented at
4th International Conference and Exhibition on Generative Art 2000, http://www.accad.ohio-
state.edu/~mlewis/

[Lewis, 2001] Lewis, Visual Aesthetic Evolutionary Design Links, http://www.accad.ohio-
state.edu/~mlewis/aed.html, 2001

[Lim, Thalmann, 1999] Lim, I. S., and Thalmann, D. How Not to Be a Black-Box: Evolution and
Genetic Engineering of High-Level Behaviours, Proceedings of the Genetic and Evolutionary
Computation Conference, Vol. 2, pages 1329-1335, 1999, Morgan Kaufmann

[Lu, 1997] Lu, N. Fractal Imaging, 1997, Academic Press

[Lutton, Cretin, Levy-Vehel, Glevarec, Roll, 1995] Lutton, E., Cretin, G., Levy-Vehel, J.,
Glevarec, P., Roll, C. Mixed IFS: resolution of the inverse problem using Genetic Programming,
Complex Systems, Vol. 9, No 5, pages 375-398, 1995

[Lutton, 1999a] Lutton, E. Genetic Algorithms and Fractals - Algorithmes Génétiques et
Fractales, Dossier d'Habilitation à diriger des recherches, Université Paris XI Orsay, Spécialité
Informatique, 11 February 1999

[Lutton, 1999b] Lutton, E. Genetic Algorithms and Fractals, In Evolutionary Algorithms in
Engineering and Computer Science, K. Mietttinen, M. M. Mäkelä, P. Neittaanmaki, J. Périaux,
(eds, 1999), John Wiley & Sons

[Lund, Pagliarini,Miglino, 1995] Lund, H., Pagliarini, L., and Miglino, O. Artistic Design with
GA and NN, Proc. of the 1st Nordic Workshop on Genetic Algorithms and Their Applications
(1NWGA), Uni. Vaasa, Finland, xiii+417 pages 97-105, 1995

[Magurran, 1988] Magurran, A. E. Ecological diversity and its measurement, 1988, Princeton
University Press

[Man, Tang, Kwong, 1999] Man, K. F., Tang, K. S., and Kwong, S. Genetic Algorithms, 1999,
Springer

[Martin, Hine, 2000] Martin, E. and Hine, R. S. (eds.), A Dictionary of Biology, 2000, Oxford
University Press Market House Books

[Mitchell, 1996] Mitchell, M. An introduction to Genetic Algorithms, 1996, MIT Press

[Montana, 1995] Montana, J. D. Strongly Typed Genetic Programming, Evolutionary
Computation, 3(2), pages 199-230, 1995

[Nettleton, Garigliano, 1994] Nettleton, D. J. and Garigliano, R. Evolutionary algorithms and the
construction of fractals: solution of the inverse problem, Biosystems (33), pages 221-231, 1994,
Elsevier Science

[Nettleton, 1995] Nettleton, D. J. Evolutionary Algorithms in Artificial Intelligence: A
Comparative Study through Applications, Ph.D. thesis, University of Durham, Department of
Computer Science, UK, 1995

[Nettleton, Garigliano, 1995] Nettleton, D. J. and Garigliano, R. Evolving fractals, Jour. of
Computers and Graphics, Vol. 19, No. 5, pages 779-782, 1995, Pergamon Press

[Nettleton, Garigliano, 1996] Nettleton, D. J. and Garigliano, R. Reductions in the search space
for deriving a fractal set of an arbitrary shape, Jour. of Mathematical Imaging and Vision, Vol. 6,
No. 4, pp. 379-393,1996, Kluwer

[O’Reilly, Oppacher, 1995] O’Reilly, U-.M., and Oppacher, F. The Troubling Aspects of a
Building Block Hypothesis for Genetic Programming, In L. D. Whitley, and M. D. Vose, (eds),
Foundations of Genetic Algorithms 3, pages 73-88, 1995, Morgan Kaufmann

[Peachey, 1985] Peachey, D. Solid Texturing of Complex Surfaces, Computer Graphics Vol.19,
No.3, pages 279-286, 1985

[Pelikan, Goldberg, Tsutsui, 2001] Pelikan, M., Goldberg, D. E. and Tsutsui, S. Combining the
Strengths of the Bayesian Optimization Algorithm and Adaptive Evolution Strategies, IlliGAL
Report No. 2001023, University of Illinois, 2001.7

[Perlin, 1985] Perlin, K. An Image Synthesizer, Computer Graphics, Vol.19, No.3, pages 287-
296, 1985

[Poli, R., and Cagnoni, 1997] Poli, R., and Cagnoni, S. Evolution of Psuedo-colouring
Algorithms for Image Enhancement with Interactive Genetic Programming, Proceedings of the
Second International Conference on Genetic Programming, GP’97, pages 269-277, 1997, Morgan
Kaufmann

[Poli, Langdon, 1997] Poli, R., and Langdon, W. B. Genetic Programming with One-Point
Crossover, In P. K. Chawdhry and R. Roy and R. K. Pan, (eds), Soft Computing in Engineering
Design and Manufacturing, pages 180-189, 1997, Springer Verlag London

[Provine, 1986] Provine, W. B. Sewall Wright and Evolutionary Biology, 1986, The University
of Chicago Press

[Racine, Hamida, Schoenauer, 1999] Racine, A., Hamida, S.B., and Schoenauer, M. Parametric
coding vs genetic programming: A case study, In W. B. Langdon, Riccardo Poli, Peter Nordin,
and Terry Fogarty (eds.), Late-Breaking Papers of EuroGP-99, pages 13-22, Goteborg, Sweeden,
1999

[Raynal, Lutton, Collet, Schoenauer, 1999] Raynal, F., Lutton, E., Collet, P., Schoenauer, M.
Manipulation of Non-Linear IFS attractors using Genetic Programming, CEC99, Proceedings of
the Congress on Evolutionary Computation, Washington DC, USA, Vol. 2, pages 1171-1177,
1999, IEEE Press

[Rechenberg, 1965] Rechenberg, I. Cybernetic solution path of an experimental problem, Royal
Aircraft Establishment, Library translation No. 1122, Farnborough, Hants., UK, August 1965

[Rechenberg, 1973] Rechenberg, I., Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution, 1973, Frommann-Holzboog, Stuttgart

[Redmill, Bull, Martin, 1996] Redmill, D. W. Bull, D. R. and Martin, R. R. Genetic algorithms
for fast search in fractal image coding, In R. Ansari and M. J. Smith, editors, Visual
Communications and Image Processing ’96, volume 2727, pages 1367-1376, SPIE Proceedings,
1996

[Reynolds 1992] Reynolds, C. W. An Evolved, Vision-Based Behavioral Model of Coordinated
Group Motion, From Animals to Animats (Proceedings of Simulation of Adaptive Behaviour),
1992, MIT Press

[Reynolds 1994a] Reynolds, C. W. An Evolved Vision-Based Behavioral Model of Obstacle
Avoidance Behaviour, Artificial Life III, SFI Studies in the Sciences of Complexity, Vol. XVII,
pages 327-346, 1994, Addison-Wesley

[Reynolds 1994b] Reynolds, C. W. Evolution of Obstacle Avoidance Behaviour: Using Noise to
Promote Robust Solutions, Advances in Genetic Programming, pages 221-241, 1994, MIT Press

[Reynolds 1994c] Reynolds, C. W. The difficulty of roving eyes Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, pages 262-267,1994, IEEE Press

[Reynolds 1994d] Reynolds, C. W. Competition, Coevolution and the Game of Tag, Proceedings
of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages
59-69, 1994, MIT Press

[Reynolds 1994e] Reynolds, C. W. Evolution of Corridor Following Behavior in a Noisy World
Simulation of Adaptive Behaviour (SAB-94), 1994

[Ridley, 1996] Ridley, M. Evolution, Second edition, 1996, Blackwell Science

[Russell, Norvig, 1995] Russell, S., Norvig, P. Artificial Intelligence a Modern Approach, 1995,
Prentice Hall International

[Sarafopoulos, 1995] Sarafopoulos, A. Textures, Animation sequence shown at the “Cabaret
électronique” during the Sixth International Symposium on Electronic Art in Montreal, Canada,
1995

[Sarafopoulos, 1999] Sarafopoulos, A. Automatic generation of affine IFS and strongly typed
genetic programming, Genetic Programming Proceedings of EuroGP1999, volume 1598 of
LNCS, pages 149-160, 1999, Springer-Verlag

[Sarafopoulos, 2001] Sarafopoulos, A. Evolution of Affine Transformations and Iterated Function
Systems Using Hierarchical Evolution Strategy, Genetic Programming Proceedings of
EuroGP2001, volume 2038 of LNCS, pages 176-191, 2001, Springer-Verlag

[Saupe, Ruhl, 1996] Saupe, D. and Ruhl, M. Evolutionary fractal image compression, In
Proceedings ICIP-96 (IEEE International Conference on Image Processing), volume I, pages129-
132, Lausanne, Switzerland, September 1996

[Schoenauer, Lamy, Jouve, 1995] Schoenauer, M., Lamy, B., and Jouve, F. Identification of
mechanical behaviour by genetic programming part II: Energy formulation, Technical report,
Ecole Polytechnique, 91128 Palaiseau, France, 1995

[Schoenauer, Sebag, Jouve, Lamy, Maitournam, 1996] Schoenauer, M., Sebag, M., Jouve, F.,
Lamy, B., and Maitournam, H. Evolutionary identification of macro-mechanical models,
Advances in Genetic Programming 2, pages 467-488, 1996, MIT Press

[Schwefel, 68] Schwefel, H.-P. Experimentelle Optimierung einer Zweiphasend\"use Teil I, AEG
Research Institute, Berlin, Technical Report No.~35 of the Project MHD-Staustrahlrohr,
No.11.034/68, 1968

[Schwefel, 1995] Schwefel, P. H. Evolution and Optimum Seeking, 1995, John Wiley & Sons

[Sedivy, Joyner, 1992] Sedivy, J. M., and Joyner, L. A. Gene Targeting, 1992, Oxford University
Press

[Shonkwiler, Mendivil, Deliu, 1991] Shonkwiler, R., Mendivil, F., Deliu, A. Genetic Algorithms
for the 1-D Fractal Inverse Problem, Proceedings of the Fourth International Conference on
Genetic Algorithms, San Diego, pages 495-501, 1991

[Sims, 1991] Sims, K. Artificial Evolution for Computer Graphics, Computer Graphics Siggraph
’91 proceedings, pages 319-328, 1991

[Sims, 1992] Sims, K. Interactive Evolution of Dynamical Systems, Towards a Practice of
Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pages
171-178, 1992, MIT Press

[Sims, 1993] Sims, K. Interactive Evolution of Equations for Procedural Models, The Visual
Computer, pages 466-476, 1993

[Sims, 1993] Sims, K. Genetic Images, Media installation allowing the interactive evolution of
abstract still images, Exhibited at the Centre Georges Pompidou in Paris, Ars Electronica in Linz,
Austria, and the Interactive Media Festvial in Los Angeles, 1993

[Sims, 1994a] Sims, K. Evolving Virtual Creatures, Computer Graphics Siggraph ’94
Proceedings, pages 15-22, 1994

[Sims, 1994b] Sims, K. Evolving 3D Morphology and Behavior by Competition, Artificial Life
IV Proceedings, Brooks and Maes (eds.), pages 28-39, 1994, MIT Press

[Sims, 1997] Sims, K. Galápagos, Media installation allowing museum visitors to interactively
evolve 3D animated forms, Exhibited at the ICC in Tokyo and the DeCordova Museum in
Lincoln Mass, 1997

[Sharman, Esparcia-Alcazar, Li, 1995] Sharman, K. C., Esparcia-Alcazar, A. I., and Li, Y.
Evolving signal processing algorithms by genetic programming, First International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA, IEE,
volume 414, pages 473-480, 1995

[Syswerda, 1991] Syswerda, G. A Study of Reproduction in Generational and Steady-State
Genetic Algorithms, in Foundations of Genetic Algorithms, Rawlins G. J. E. (ed.), pages 94-101,
1991, Morgan Kaufmann

[Teller, 1994] Teller, A. Turing Completeness in the Language of Genetic Programming with
Indexed Memory, Proceedings of the 1994 IEEE World Congress on Computational Intelligence,
Vol. 1, pages 136-141, 1994, IEEE Press

[Todd, Latham, 1991] Todd, S., and Latham, W. Mutator, a Subjective Human Interface for
Evolution of Computer Sculptures, IBM United Kingdom Scientific Centre Report 248, 1991

[Todd, Latham, 1992] Todd, S. and Latham, W. Evolutionary Art and Computers, 1992,
Academic Press

[Vences, Rudomin, 1994] Vences, L. and Rudomin, I. Fractal Compression of single images and
image sequences using genetic algorithms, The Eurographics Association, 1994

[Vrscay, 1990] Vrscay, E. Moment and Collage Methods of the Inverse Problem of Factal
Construction with Iterated Function Systems, Proceedings of 1st IFIP Conference on Fractals,
FRACTAL 90, Lisbon 1990

[Vrscay, 1991] Vrscay, E. Iterated Function Systems: Theory, Applications and the Inverse
Problem, in Fractal Geometry and Analysis, Belair, J. Dubuc, S. (eds.), pages 405-468, 1991,
Kluwer Academic

[Watt, Watt, 1992] Watt, A., and Watt, M. Advanced Animation and Rendering Techniques
Theory and Practice, 1992, Addison-Wesley

[Whigham, 1996] Whigham, P. A., Grammatical Bias for Evolutionary Learning, Ph.D. Thesis,
School of Computer Science, University College University of New South Wales, Australian
Defence Force Academy, 1996

[Wiens, Ross, 2000] Wiens, A. L., and Ross, B., J. Gentropy: Evolutionary 2D Texture
Generation, late breaking papers at the 2000 Genetic and Evolutionary Computation Conference,
pages 418-424, 2000

[Wiens, Ross, 2001] Wiens, A. L., and Ross, B., J.Gentropy: Evolutionary 2D Texture
Generation, Computers and Graphics Journal (in press), 2001

[Wright, 1931] Wright, S. Evolution in Mendelian populations, Genetics, vol. 16, pages 97-159,
1931

[Xuan, Dequn, 1996] Xuan, Y., and Dequn, L. An improved genetic algorithm of solving IFS
code of fractal image, In Proceedings of the 3rd International Conference on Signal Processing,
volume 2, pages 1405-1408, Beijing (China), October 1996, IEEE, New York

[Zhao, Wang, 1998] Zhao, K., and Wang, J. Path Planning in Computer Animation Employing
Chromosome-Protein Scheme, Genetic Programming 1998, Proceedings of the Third Annual
Conference, pages 439-447, 1998, Morgan Kaufmann

