
Regular Paper

Improved sampling using loopy belief propagation for probabilistic
model building genetic programming

Hiroyuki Sato a,n, Yoshihiko Hasegawa b, Danushka Bollegala c, Hitoshi Iba b

a The Graduate School of Engineering, The University of Tokyo, Japan
b The Graduate School of Information Science and Technology, The University of Tokyo, Japan
c Department of Computer Science, The University of Liverpool, United Kingdom

a r t i c l e i n f o

Article history:
Received 26 February 2013
Received in revised form
2 January 2015
Accepted 20 February 2015

Keywords:
Genetic programming
Estimation of distribution algorithms
Loopy belief propagation
Probabilistic model building GP

a b s t r a c t

In recent years, probabilistic model building genetic programming (PMBGP) for program optimization has
attracted considerable interest. PMBGPs generally use probabilistic logic sampling (PLS) to generate new
individuals. However, the generation of the most probable solutions (MPSs), i.e., solutions with the highest
probability, is not guaranteed. In the present paper, we introduce loopy belief propagation (LBP) for PMBGPs
to generate MPSs during the sampling process. We selected program optimization with linkage estimation
(POLE) as the foundation of our approach and we refer to our proposed method as POLE-BP. We apply POLE-
BP and existing methods to three benchmark problems to investigate the effectiveness of LBP in the context
of PMBGPs, and we describe detailed examinations of the behaviors of LBP. We find that POLE-BP shows
better search performance with some problems because LBP boosts the generation of building blocks.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper, we introduce loopy belief propagation
(LBP) in probabilistic model building GPs (PMBGPs) in order to
generate the most probable solutions in sampling process. We call
our novel method as POLE-BP.

Estimation of distribution algorithms (EDAs) are promising evolu-
tionary algorithms and attract much attention from a lot of practical
fields. EDAs optimize solution candidates represented by one dimen-
sional arrays as well as Genetic Algorithms (GAs). Although EDA and
GA employ the same chromosome representation, EDAs are different
from GAs in the sense that EDAs generate new individuals by
estimation of probabilistic models and sampling, whereas GAs gen-
erate them using genetic operators. EDAs can solve deceptive pro-
blems more efficiently than GAs by estimating dependencies between
loci [27], which is one of the notable features of EDAs. Because of their
effectiveness, many EDAs have been devised by incorporating many
distinct statistical and machine learning approaches. Recently, EDAs
using loopy belief propagation (LBP) as sampling were proposed in
order to improve the sampling process [24,21]. LBP approximately
infers marginal and the highest joint probabilities with configurations,
and has been applied to a wide range of real world problems [7,6]. In
EDAs, the individual with the highest joint probability in learned
probabilistic models describes the models most and is often called as
most probable solution (MPS). MPS is the individual which most

reflects the learned models, and generation of it is important to take
advantage of the models efficiently. However, traditional sampling
methods used in EDAs, e.g. probabilistic logic sampling (PLS) [15] and
Gibbs sampling, do not always generate MPS, and EDAs using only
those samplings cannot make the best use of the models. In order to
solve this problem, [24,21] generate MPS by LBP in addition to
traditional sampling and showed better search performance than
existing methods using only traditional samplings (PLS or Gibbs
sampling) in benchmark problems.

The estimation of distribution concept employed in EDAs has been
applied to the optimization of tree structures, which is traditionally
addressed using GP. GP optimizes tree structures using operators, such
as crossover and mutation, as well as GA. Numerous improved genetic
operators have been proposed because it is difficult to deal with tree
structures using only these simple operators. EDAs for tree structures
are often called as Genetic Programming-EDAs (GP-EDAs) [11] or
Probabilistic Model Building GPs (PMBGPs) [32], and the present
paper adopts the latter abbreviation throughout the paper. PMBGPs
are broadly classified into two types. One type uses probabilistic
context free grammar (PCFG) to represent distributions of promising
solutions and learns production rule probabilities. The other type is a
prototype tree based method, which converts trees to one dim-
ensional arrays and applies EDAs to them. From the viewpoint of
probabilistic models, the prototype tree-based method is essentially
equivalent to EDAs and hence it can easily incorporate techniques
devised in the field of EDA.

We propose POLE-BP [34], the novel prototype tree-based PMBGP
with LBP. POLE-BP generates MPS at every generation in addition to
normal samplings (i.e. PLS) and makes the optimal use of the learned

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2015.02.002
2210-6502/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ81 3 5841 6751.
E-mail addresses: sato@iba.t.u-tokyo.ac.jp, umkn.smag@gmail.com (H. Sato).

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
mailto:sato@iba.t.u-tokyo.ac.jp
mailto:umkn.smag@gmail.com
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

probabilistic model. We compare our proposed method against
existing methods on three benchmark problems: the problem with
no dependencies between nodes (MAX problem), the deceptive
problem (Deceptive MAX problem) and the problem with depen-
dencies between nodes (Royal Tree Problem). From results of the
experiments, we show that the proposed method competes with the
existing method in the deceptive problem and beats the existing
method in the problems with no deceptiveness from the point of the
number of fitness evaluations to get an optimum solution. Moreover,
we investigate behaviors of LBP in the context of PMBGP by obs-
erving fitness values and structures generated by LBP, and show
reasons why the proposed method does not exhibit search perfor-
mance improvement in deceptive problems whereas it does in other
benchmark problems.

The present paper extends our prior work [34] by studying the
effectiveness of LBP in detail. The remainder of the paper is organized
as follows. Section 2 introduces related work. Section 3 explains details
of the proposedmethod. Section 4 presents the experimental condition
and results, which is followed by the discussion in Section 5. Finally
Section 6 concludes the paper.

2. Related work

We introduce existing PMBGPs and methods using loopy belief
propagation as sampling in this section.

2.1. PMBGP: Probabilistic Model Building GP

PMBGPs are extensions of EDAs for tree structures that generate
the next population by estimating probabilistic distributions from
better individuals and sampling individuals from them. For recent
surveys on EDAs, interested reader is directed to [18,14]. PMBGPs are
superior to GP in the sense that PMBGPs can search for solutions
with a smaller number of fitness evaluations and they can solve
problems that conventional GP cannot [10]. Two types of methods
are known in the field of PMBGPs.

� Prototype tree-based method.
� PCFG-based method.

The prototype tree-based method translates trees into one dimen-
sional arrays and applies conventional EDAs to them. By contrast, the
PCFG-based method expresses individuals with derivation trees and
learns their production rules as well as their parameters. Because
derivation trees naturally derive functions and programs, PCFG-based
methods can estimate position-independent substructures, and so
many approaches have been proposed based on these approaches
[2,29,30,35,36,13]. However, the prototype tree-based methods have
advantages over PCFG-based methods because they can readily
utilize existing EDAs. Furthermore, the prototype tree-based methods
are computationally reasonable even when we consider the depen-
dencies between nodes, whereas PCFG-based methods that consider
them are very computationally intensive. In addition, the probabil-
istic distribution concept is also applied to genetic network program-
ming (GNP) [16,23], which expresses programs using directed graphs
as chromosomes [19,20].

2.1.1. Prototype tree-based method
Prototype tree-based methods regard all individuals as α-ary

perfect trees, where α is the maximum number of arguments
among function nodes, and translate them to one dimensional
arrays, and then tree structures are optimized by applying EDAs to
the translated arrays. Prototype tree-based methods attract con-
siderable attention because they can easily exploit existing EDAs.

The first prototype tree-based method is probabilistic incremental
program evolution (PIPE) [31], which is an extension of population-
based incremental learning (PBIL) [1] for tree structures. PIPE is weak
against problems with dependencies between nodes because PIPE
assumes that each node is independent of the others. Estimation of
distribution programming (EDP) [38] estimates dependencies
between nodes, using Bayesian networks. However, EDP is weaker
than other methods with structural learning because EDP estimates
only fixed parent–child relationships in tree structures. Extended
compact GP (ECGP) [33] bases on extended compact GA (ECGA) [9].
ECGP estimates the multivariate dependencies among nodes using
the minimum description length (MDL) principle but ECGP cannot
estimate building blocks with practical size because of the large
number of symbols in GP. Bayesian optimization algorithm (BOA)
programming (BOAP) [22] is an application of BOA to tree structures
and it uses a zigzag tree as chromosome. Program optimization with
linkage estimation (POLE) [12] also estimates the multivariate
dependencies among nodes using Bayesian networks.

The conventional prototype tree-based methods listed above
employ PLS as sampling. Therefore, those methods waste a part of
learning because PLS does not guarantee that MPSs, which best
reflect the learned probabilistic models, will be generated at each
generation. In order to overcome this deficiency, we propose an
efficient sampling method to generate MPSs at each generation.

2.2. EDAs and PMBGPs with loopy belief propagation

In a field of EDAs, several algorithms using LBP have been hitherto
proposed. Those methods focus on sampling the solution with the
highest joint probability. It is difficult to calculate joint probabilities
directly for graphical models with complex graph structure, which
appear frequently in EDA and PMBGP. However, we can calculate
approximate joint probability from approximate local joint probabil-
ity easily for those complex graphs. The approximate local joint
probability is often called as message. The key idea of LBP is message
passing, iteration of message updating for getting more accurate
approximation of joint probabilities.

Ref. [24] uses EBNA [5] as a foundation and simply applies LBP
to generate one individual (MPS) whereas the rest of individuals
are generated by PLS. Ref. [24] applies normal EBNA and EBNA-LBP
to the Ising problem and shows that LBP boosts the best fitness
value in the latter part of the search. Ref. [21] proposes Loopy
Substructural Local Search (Loopy SLS), which employs local
fitness as the values of factors and all possible individuals are
carried over to the next generation if message passing does not
converge. Ref. [21] uses BOA [27] as a base method and applies
normal BOA, BOA with standard LBP (the same as in [24]) and BOA
with Loopy SLS to the trap function. Ref. [21] concludes that Loopy
SLS is better than standard LBP when population size is large.

We have already proposed the application of LBP in the
contexts of PMBGPs [34], however, the prior work has only shown
the effectiveness of LBP in view of the number of fitness evalua-
tions and has not studied how LBP works. In order to discuss roles
of LBP in the search process of PMBGP, the present paper applies
POLE-BP to three benchmark tests and analyzes not only the
number of fitness evaluations but also fitness and tree structures
generated by LBP. One of the main contributions in the present
paper is the detailed analysis of fitness and tree structures that has
not been examined in our prior work [34].

3. The proposed method: POLE-BP

We briefly describe POLE-BP [34] in this section. POLE-BP is the
first approach combining PMBGP and LBP. POLE-BP introduces LBP
to the sampling process of Program Optimization with Linkage

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

estimation (POLE) [12] and guarantees that population includes
MPS, which is an individual having the highest joint probability, in
each generation.

Prototype tree-based PMBGPs use more symbols than EDAs,
which causes the following problems:

1. require more population size and the number of evaluations;
2. difficult to generate MPS by conventional sampling methods

because the number of candidate of individual increases extremely.

Using expanded parse tree (EPT) [37], POLE solves the first
problem directly and the second problem indirectly. By pushing
terminal nodes on trunks to leaves, EPT reduces the number of
candidates of the trunk nodes. The reduced number of candidate
makes model building easier and requires lesser population size
and the lesser number of evaluations. POLE solves the first
problem directly in this manner.

In addition, POLE solves the second problem indirectly as follows.
The lesser number of candidate of the trunk nodes leads to lesser
number of candidate of individuals. This reduced number of candi-
date of individuals alleviates the difficulty of sampling MPS with
conventional sampling algorithms such as PLS or Gibbs sampling.

However, the second problem is not solved completely because
the conventional sampling algorithms do not necessarily generate
MPS. We focus on solving the second problem completely and
improve the search performance using LBP, which is an algorithm
that guarantees PMBGPs to generate MPS.

First, we introduce the basic concepts behind our approach and
then describe the proposed algorithm.

3.1. POLE: program optimization with linkage estimation

POLE [12] is a conventional PMBGP which employs EPT [37] as
its chromosome to solve problems caused by the large number of
symbols. Using a special function node Lðx; y;…Þ ¼ x, EPT pushes
terminal nodes on trunk to leaves. Let F and T be sets of function
and terminal nodes, respectively. This operation reduces the
number of symbols on trunk from jF [Tj to jF [fLgj and makes
learning of Bayesian networks easier. We show the difference of
normal tree and EPT in Figs. 1 and 2, respectively.

3.2. Loopy belief propagation (loopy max-sum)

Belief Propagation (BP) [26] is an inference algorithm for tree
structured graphical models and has some variants depending on
objectives. For example, max-sum is the instance of BP and calculates

the highest joint probability of those models effectively. LBP is the
application of BP to graphical models with arbitrary loopy graph
structure and approximately and speedily infers MPS or marginal
probabilities. LBP works successfully in many real world applications
[7,6], including EDAs. In the present paper, we use the term loopy
max-sum to refer to the application of max-sum algorithm to loopy
graphs. Loopy max-sum repeatedly updates messages, which are
locally calculated joint probabilities, and finally approximately gen-
erates MPS from the messages.

In order to apply loopy max-sum to Bayesian networks, we must
transform them to equivalent Factor graphs, which are a type of
graphical models. It is possible to transform Bayesian networks to
equivalent Factor graphs. The transformation we used in our pro-
posed method is illustrated in Fig. 3. In Bayesian networks, variable
nodes with no parents have prior probabilities, and directed edges
represent conditional probabilities. On the other hand, in Factor
graphs, factor nodes represent prior and conditional probabilities,
and undirected edges represent only the connectivity.

We apply loopy max-sum to the transformed factor graph. Let
xi be ith symbol in prototype trees, and θ and G be a set of
parameters and Bayesian networks, respectively. Then individuals
and MPS are represented by

x¼ ðx1; x2;…Þ ð1Þ

xMPS ¼ argmax
x

Pðx;θ;GÞ: ð2Þ

Let μf-x and μx-f be messages from factor nodes to variable nodes
and those from variable nodes to factor nodes, respectively, and ne
(X) and neðXÞ n Y be the set of adjacent nodes to X and the set of
adjacent nodes to X except Y, respectively. f ðx0;…; xnÞ represents
the value of factor f when its adjacent variable nodes are x0;…; xn.
The details of loopy max-sum are described next.

Step 1 : Initialization.
All messages are initialized to 0.

Step 2 : Message passing.Message passing is repeatedly exe-
cuted, using Eqs. (3)–(6). Eqs. (3) and (4) represent
messages from leaf nodes, and Eqs. (5) and (6) represent
messages from nodes except leafs:

μf-xðxÞ ¼ lnf ðxÞ; ð3Þ

μx-f ðxÞ ¼ 0; ð4Þ

μf-xðxÞ ¼ max
x1 ;…;xN � neðf Þnx

2
4lnf ðx; x1;…; xNÞ:

þ
X

mAneðf sÞnx
μxm-f ðxmÞ

3
5; ð5Þ

Fig. 1. Symbols on normal GP tree

Fig. 2. Symbols on EPT

Fig. 3. (a) Bayesian network and (b) Factor graph. Dotted lines represent tree
structures. Circles are variable nodes and lozenges are factor nodes. (b) is
equivalent to (a).

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

μx-f ðxÞ ¼ αxf þ
X

lAneðxÞnf
μf l-xðxÞ; ð6Þ

where αxf is a normalization constant chosen such thatX
xn

μx-f ðxÞ ¼ 0:

Step 3 : Check termination criteria.
If termination criterion is satisfied, message passing
terminates. Otherwise, message passing continues.

Step 4 : Get the most probable solution (MPS).
Get the MPS, using Eqs. (7) and (8). xmax

i is the most
probable instance of an ith and calculated from messages
around an ith variable node:

xmax
i ¼ argmax

xi

X
sAneðxiÞ

μf s-xi ðxiÞ
" #

ð7Þ

xMPS � xmax ¼ ðxmax
1 ; xmax

2 ;⋯Þ ð8Þ

3.3. Algorithm

POLE-BP introduces the simplest application of LBP [24] in EDA
to PMBGP. As well as [24], POLE-BP transforms estimated Bayesian
networks to equivalent Factor graphs and creates MPS by running
LBP on them. In addition, although [24] uses max-product, POLE-
BP uses max-sum because PMBGP deals with problems accom-
panied by more symbols than EDA, which results in a underflow
problem during the message passing. The details of POLE-BP is
described in Algorithm 1.

Algorithm 1. POLE-BP.

1: g’0
2: Pg ’Initialize M individuals by GROW
3: Evaluate Pg
4: while terminate criterion is False
5: g’gþ1
6: Sg ’Select NðNrMÞ superior individuals by truncate

selection
7: Bg ’Construct Bayesian networks from Sg by K2

algorithm
8: Pg ’Sampling M�1 individuals from Bg by PLS
9: Fg ’Translate Bg to equivalent Factor graph
10: Pg ’Generate MPS by LBP on Fg
11: Evaluate Pg
12: end while

POLE-BP estimates dependencies between varied nodes using
Bayesian networks which are learned from scratch at each gen-
eration. The process of sampling and probability maximizing is
almost same as POLE except generating MPS by LBP.

It is time consuming to calculate posterior probability for
complex graph structures. Therefore, we calculate BIC score
instead of posterior probability and search the graph structure
which maximizes BIC score. Because searching graph structure
with the highest BIC score is NP hard problem, we employ K2
algorithm [3] which is one of the greedy search algorithms. Let d, S
and r be the number of data, the number of nodes and the number
of symbols for a node, respectively. As described in [3], time
complexity of K2 algorithm is OðdS4rÞ in the worst case. In POLE-
BP, d is N and the upper bound of r is jTj because terminal nodes

have more variation than functional nodes usually. Therefore, the
complexity of Bayesian networks construction is OðNS4 jTj Þ.

The main sampling method is PLS, which is standard sampling
method for Bayesian networks. PLS determines the root symbol
firstly, and sample symbols of descendants recursively. PLS
requires O(MS).

After PLS, POLE-BP samples MPS using LBP. As we illustrate
in Fig. 3, the number of nodes in factor graph is smaller than OðS2Þ.
Message passing for a node considers only adjacent nodes (see
Eqs. (5) and (6)) and needs smaller calculation than OðS2Þ. If we
update message C times for each node, time complexity of LBP is
OðCS4Þ multiplying above quantities in the worst case.

Although the difference between POLE and POLE-BP is the way to
generate only one individual among several hundreds or thousands
individuals, we show that POLE-BP has much higher search perfor-
mance than POLE on benchmark problems in Section 4.

Let teval be time complexity of fitness evaluation. Adding time
complexity of each step, time complexity of whole POLE-BP per
generation is OðNS4 jTj þtevalÞ because C is much smaller than
NjTj in practice. teval is problem dependent, and we cannot
describe generally. We believe that fitness evaluation becomes
dominant considering real world applications which require com-
plex fitness calculation.

4. Experiments

In order to evaluate the search performance of the proposed
method, we apply POLE-BP, POLE and simple GP (SGP) to three
benchmark problems, MAX problem, deceptive MAX (DMAX) pro-
blem and royal tree problem and compare their performances. Com-
mon parameters in POLE-BP and POLE are described in Table 1, and
parameters of SGP are described in Table 2. In POLE-BP, message
passing schedule of loopy max-sum is that messages are sent from all
factor nodes and variable nodes by turns. A termination criterion is
that all nodes send messages 100 times.

4.1. Experimental settings

This section describes two types of experiments: one describes
the effect of LBP in view of the number of fitness evaluations
(Section 4.1.1), and the other investigates how LBP works and
analyzes observed results in detail (Section 4.1.2).

4.1.1. Experiments to show the effects of LBP
First, we compare the average number of fitness evaluations

required to obtain an optimum solution by the proposed and
existing methods. Because population size M significantly influ-
ences the search performance, the optimal M is different for
various problems and algorithms. Therefore, the population size
of each method is determined in the following manner. We start
from M¼100, and increase the population size by

ffiffiffiffiffiffi
105

p
times. For

each population size, we execute 20 runs. If the algorithm obtains
the optimum solution 20 times from the 20 runs, we stop
increasing the population size and calculate the average number

Table 1
Common parameters in POLE-BP and POLE.

Parameters Meaning Value

M Population size –

Ps Selection rate 0.1(MAX, DMAX)
0.2(Royal Tree)

Pe Elite rate 0.005
PF Function selection rate while initialization 0.8(MAX,DMAX)

0.9(Royal Tree)

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

of fitness evaluations Favr. This method of determining the popula-
tion size has previously been used in [5,27,12]. Because Favr has a
large variance, we operated the above procedure 20 times and
calculated average of Favr and performed t-test (Welch, two-tailed)
for each experiment. We calculate the P-value for the obtained
data (e.g., the average of POLE-BP and the average of POLE) to
verify any statistically significant differences between the result
obtained with the different approaches. All algorithms are termi-
nated when they converge to an optimum solution. Furthermore,
we also adopt another termination criterion. Because POLE-BP and
POLE tend to converge faster than SGP, these algorithms terminate
when the best fitness value at each generation is not improved for
10 consecutive generations. In contrast, SGP terminates when the
fitness values are not improved from generation g to generation
2g ðg410Þ. This method of calculating P-value and terminate
criterion has previously been used in [12].

4.1.2. Experiments to examine function and operation of LBP
Along with the comparison of the number of fitness evalua-

tions, we also study functionalities of LBP by observing behaviors
of POLE-BP, which can make the effectiveness of LBP in the context
of PMBGP clear. Because mathematical analysis of LBP in arbitrary
loopy graphs used in PMBGP is difficult, we empirically analyze
individuals generated by LBP. Using M defined by the above
procedure, we perform additional 100 runs of POLE and POLE-BP
to measure the following quantities:

� the average fitness of the best individual at each generation;
� the frequencies that LBP generates the best individual and that

individuals generated by LBP are used for construction of
Bayesian networks for the next generation (individuals reach-
ing better MnPsÞ;� building-block-satisfying-rate at each generation. We define it
as ((the number of building blocks of the best individual at each
generation)/(the number of building blocks which an optimum
solution contains)).

We hypothesize that LBP boosts the search performance for
building blocks and fitness during searching because LBP gener-
ates the individual reflecting Bayesian networks that estimate
building blocks in the middle of learning. Therefore, we consider
that these measurements can clarify behaviors of LBP on POLE-BP.

4.2. MAX problem

MAX problem [8,17] is designed to investigate the mechanism
of crossover in GP, and is widely used as a benchmark test for
PMBGPs [36,38,12]. The purpose of the MAX problem is to search a
function that returns the largest real value within the limits of a
maximum tree depth. In this problem, three symbols described in
Eq. (9) are used:

F¼ fþ ; ng; T¼ f0:5g ð9Þ
An optimum solution can be obtained by the following procedure.
First, create the value “2” using four “0.5” symbols and three “þ”

symbols. Then, multiply the created “2”s using “n” symbols. 22Dp �3

represents the optimum value for a given maximum depth Dp.

4.2.1. Result and analysis
Tables 3 and 4 respectively show the average and standard

deviation, and the reduction rate of the average number of
evaluations ((the average number of fitness evaluations of POLE-
�that of POLE-BP)/that of POLE n 100), over 20 trails. Fig. 4
visualizes Tables 3 and 4, where tree size is the number of nodes
contained in the optimum structure (2Dp �1 in the MAX problem).
Furthermore, we carried t-test to see the statistical significance of
the results (Table 5). According to Table 5, the P-value for POLE-BP
and POLE is smaller than 1% in Dp ¼ 6;7;8, and the difference
between POLE and POLE-BP for Dp ¼ 6;7;8 is statistically signifi-
cant at 1% significant level. In Dp ¼ 6, 7, 8, LBP reduces the number
of fitness evaluations by 27.4% on average.

In Dp¼8, POLE-BP and POLE obtain the optimum solution 20
times from the 20 runs with M¼630. On this condition, we run
POLE-BP and POLE additional 100 runs and analyse how LBP
works. Figs. 5 and 6 visualize the average fitness of the best
individual and the number of better individuals generated by LBP,
building-block-satisfying-rate at each generation and the number
of better individuals generated by LBP, respectively. According
to Fig. 5, LBP generates individuals with high fitness values more
frequently in POLE-BP. Overall, the average fitness of POLE-BP is
better than that of POLE. Moreover, the more the LBP generates
better individuals, the bigger the difference of fitness is. As can be
seen from Fig. 6, POLE-BP generates individuals containing more
building blocks at earlier generations than POLE. First, LBP boosts
the creation of shallow building blocks with depth 3 or 4. Bayesian
networks suitable for such shallow building blocks are learned
until the 5th generation. After 6th generation, the number of
better individuals found by LBP decreases temporarily. During this
interval, it is considered that POLE-BP learned Bayesian networks
for deeper building blocks with depth 5 or 6 to increase fitness
values. The number of better individuals found using LBP dropped
again at 14th generation, indicating that Bayesian networks capable of
generating building blocks with depth 5 or 6 are refined to generate
those with depth 7 or optimum solutions. Putting Figs. 4–6 together,
the superior performance of POLE-BP is achieved by LBP first boosting
the generation of building blocks. Once the building blocks are
increased, these building blocks improve average fitness values, which
eventually leads to the reduction of the number of fitness evaluations
to obtain an optimum.

4.3. Deceptive MAX (DMAX) problem

The deceptive MAX problem (DMAX problem) [12] is a deceptive
extension of the MAX problem using complex values as terminal
nodes. The DMAX problem has the same objective as the MAX
problem: to find functions which return the largest real value under
the limitation of a maximum tree depth Dp. Symbols used for this

Table 2
Parameters of SGP.

Parameters Meaning Value

M Population size –

Pe Elite rate 0.005
Pc Crossover rate 0.995
Pm Mutation rate 0

Table 3
The number of fitness evaluations for the MAX problem.

Dp: Maximum tree depth of the problem Dp ¼ 5 Dp ¼ 6 Dp ¼ 7 Dp ¼ 8

POLE-BP
Average 380 1272 3475 10,238
St. dev. (87) (310) (918) (1567)

POLE
Average 435 1648 4900 14,679
St. dev. (85) (263) (307) (1353)

SGP
Average 1416 3208 8513 59,950
St. dev. (249) (442) (1136) (4801)

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

experiments are described in Eqs. (10)–(13):

F¼ fadd5;multiply5g T¼ fλ3;0:95g ð10Þ

add5ða0;…; a4Þ ¼
X4
i ¼ 0

ai ð11Þ

multiply5ða0;…; a4Þ ¼ ∏
4

i ¼ 0
ai ð12Þ

λ3 ¼ �1
2
þ i

ffiffiffi
3

p

2

 !
ð13Þ

Let us consider the optimum value for the DMAX problem with
Dp ¼ 3. In order to get the maximum absolute value, first, create 5λ3,
using five λ3 and add5. Then, create ð5λ3Þ5 ¼ 55λ23, using 5λ3 and
multiply5. However, Reð55λ23Þ is negative, and 55λ23 is not a optimum
solution. Therefore, substituting two 5n0:95 for two 5λ3 makes the
optimum value, ð5λ3Þ3ð0:95n5Þ2 ¼ 2820:3125. We can find that the
optimum value with Dp ¼ 4 is ð5λ3Þ24ð0:95n5Þ ¼ 2:83n1017 in a
similar way.

4.3.1. Results and analysis
Table 6 presents the average number of fitness evaluations and

standard deviations in 20 trials. Note that SGP could not obtain an
optimum solution at Dp ¼ 4. Table 7 shows the reduction rate of
the average number of evaluations by LBP, which is visualized
in Fig. 7. We additionally carried t-test to confirm the statistical
significance of the results (Table 8). Because each P-value between
POLE-BP and POLE is larger than 1 %, the performance of POLE-BP
may not surpass POLE.

In Dp¼4, POLE-BP and POLE obtain the optimum solution 20
times from the 20 runs with M¼6300. Under this condition, we
run POLE-BP and POLE additional 100 runs and analyze the
behavior of LBP. Figs. 8 and 9 visualize the average fitness of the
best individual and the number of better individuals generated by
LBP, and building-block-satisfying-rate and the number of better
individuals generated by LBP at each generation, respectively. The
strong deceptiveness of DMAX problem is caused by rotation on a
complex plane using function nodes, and consequently, estimation
of function nodes is important. Therefore, Fig. 9 visualizes not only
frequency of building blocks but also correct part of function

Table 4
The reduction rate of the number of fitness evaluations by LBP in MAX problem.

Dp: Maximum tree depth of the problem Dp ¼ 5 Dp ¼ 6 Dp ¼ 7 Dp ¼ 8

Reduction rate (%) 12.64 22.82 29.08 30.26

Fig. 4. The number of evaluations required for the MAX problem.

Table 5
t-test. The values represent P-values for the MAX problem.

Dp: Maximum tree depth of
the problem

Dp ¼ 5 Dp ¼ 6 Dp ¼ 7 Dp ¼ 8

POLE-BP vs POLE 5.02E�2 2.0E�4 1.02E�06 Underflow
POLE-BP vs SGP 3.33E�15 Underflow Underflow Underflow

Fig. 5. The average fitness of the best individual at each generation in MAX
problem (M ¼ 630, Dp ¼ 8).

Fig. 6. Building block satisfying rate of the best individual at each generation in
MAX problem (M ¼ 630, Dp ¼ 8).

Table 6
The number of fitness evaluations for the DMAX problem.

Dp: Maximum tree depth of the problem Dp ¼ 3 Dp ¼ 4

POLE-BP
Average 1539 120,708
St. dev. (276) (10,569)

POLE
Average 1517 122,031
St. dev. (283) (5819)

SGP
Average 34,875 –

St. dev. (4533) (–)

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

nodes. From Fig. 8, fitness of the individual generated by LBP is not
high. Although the average fitness of POLE-BP is temporarily
higher than that of POLE during LBP generating relatively better
individuals, there is no difference between generations when two
methods finally obtain an optimum solution. As can be seen in
Fig. 9, although POLE-BP generates the individual with more
building blocks and/or correct function nodes at earlier generation
than POLE, POLE catches up with POLE-BP in mid-course. For
example, LBP boosted the creation of correct parts of function
nodes until 4th generation, however, POLE got to the same level at
5th generation. Regarding building blocks with depth 3, although
POLE-BP generated them more frequently from 10th to 15th
generations , POLE became to create them as frequently as POLE-
BP at 16th generation. Finally, POLE-BP obtained optimum solu-
tions about 90 times at 18th generation whereas POLE did not at
all. However, POLE succeeded to obtain optimum solutions at the
next generation. Putting Figs. 7–9 together, although LBP works as
local search and increases fitness temporarily by finding local
optima, LBP does not reduce the number of fitness evaluations to
obtain an optimum solution. In deceptive problems because the
learned probabilistic model reflects the nature of problems that
may lead algorithms to local optima, LBP of such a model is likely
to generate locally optimal solutions. POLE-BP, the hybrid
approach of POLE and LBP, have shown restrictive power in the
deceptive problem, however, we want to note that PMBGPs are
originally a powerful method in the deceptive problem.

4.4. Royal tree problem

The royal tree problem [28] is an extension of the royal road
function [25] to GP. In the royal tree problem, the optimum
structure is gotten by combining the building blocks. Symbols
used in royal tree problem are described as

F¼ fA;B;C;D; E; Fg; T¼ fxg; x¼ 1 ð14Þ
The goal of the royal tree problem is to search a tree structure with
the largest score within the limits of a maximum tree depth. An
optimum solution is call as Perfect Tree, where each trunk node has

the previous alphabet of children (e.g. children nodes of a function
D are C). We describe the score function in Algorithm 2. We define
that all function nodes take two arguments, so n at line 5
in Algorithm 2 is 2. childOf ðnode; iÞ returns the ith child of node,
and correct at line 6 means child is x if node is A, or child is the
previous alphabet if node is a function except A.

Algorithm 2. The score function of Royal tree Problem: scoreðnodeÞ
1:if node is x then
2: return 1
3:else
4: s’0
5: for i¼1 to n do
6: child’childOfðnode; iÞ
7: if child is correct then
8: if child is Perfect Tree then
9: bonus’Full Bonus

Table 7
The reduction rate of the number of fitness evaluations by LBP.

Dp: Maximum tree depth of the problem Dp ¼ 3 Dp ¼ 4

Reduction rate (%) �1.45 1.08

Fig. 7. The number of evaluations required for the DMAX problem.

Table 8
t-test. The values represent P-values for the DMAX problem.

Dp: Maximum tree depth of the problem Dp ¼ 3 Dp ¼ 4

POLE-BP vs POLE 5.78E�1 2.75E�1
POLE-BP vs SGP Underflow –

Fig. 8. The average fitness of the best individual at each generation in DMAX
problem (M ¼ 6300, Dp ¼ 4).

Fig. 9. Building block satisfying rate of the best individual at each generation in
DMAX problem (M ¼ 6300, Dp ¼ 4).

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

10: else
11: bonus’Partial Bonus
12: end if
13: else
14: bonus’Penalty
15: end if
16: s’sþscoreðchildÞnbonus
17: end for
18: if node is Perfect Tree then
19: s’snComplete Bonus
20: end if
21: return s
22:end if

We use Full Bonus¼2, Partial Bonus¼1, Penalty¼1/3, Complete
Bonus¼2. Let maximum depth be Dp, and the fitness of the
optimum solution is 23ðDp �1Þ.

4.4.1. Results and analysis
Table 9 presents the average number of fitness evaluations and

standard deviations in 20 trials. Table 10 shows the reduction rate
of the average number of evaluations by LBP. Fig. 10 shows some of
the data in Tables 9 and 10. Table 11 represents the results of the t-
test, which indicates that POLE-BP is superior to POLE and SGP.
According to Table 11, the P-value for POLE-BP and POLE is smaller
than 1% in Dp ¼ 6;7, and the difference between POLE and POLE-
BP for Dp ¼ 6;7 is statistically significant at 1% significance level. In
Dp ¼ 6;7, LBP reduces the number of fitness evaluations by 35.5%
on average.

In Dp¼7, POLE-BP and POLE obtain the optimum solution 20 times
from the 20 runs with M¼2500. On this condition, we run POLE-BP
and POLE additional 100 runs and analyze the behavior of LBP. Figs. 11
and 12 visualize the average fitness of the best individual and the
number of better individuals generated by LBP, building-block-
satisfying-rate and the number of better individuals at each genera-
tion, respectively. From Fig. 11, we see that LBP generates the best or
better individuals, and the average fitness of POLE-BP is higher than
that of POLE. A distinguishing point of this result is that LBP generates
more better individuals but not the best individual compared to the
cases in MAX and DMAX problems. According to Fig. 12, POLE-BP
generates the individual with more building blocks at earlier genera-
tion than POLE. Until the 10th generation, LBP boosts the generation
of shallow building blocks with depths 3, 4, and 5, and Bayesian
networks suitable for generation of those shallow building blocks
have been learned. After the 10th generation, the number of better
individuals found by LBP decreased temporarily. The reason of the
decrease is considered that Bayesian networks, capable of generating
both deeper building blocks with depth 6 and an optimum solution,
are learned during the decreasing interval. From Figs. 10–12, the
superiority of POLE-BP against POLE in the royal tree problem can be
accounted for by the same mechanism as in the MAX problem:

boosting of building block generation due to LBP first improves the
average fitness values, which result in the reduction of the number of
evaluations to obtain an optimum solution.

5. Discussion

In the previous section, for respective problems, we displayed the
reduction of the average number of fitness evaluations by LBP and
the behaviors of LBP in a PMBGP. Up to this point, we summarize the

Table 9
The number of fitness evaluations for the Royal tree problem.

Dp: Maximum tree depth of the problem Dp ¼ 4 Dp ¼ 5 Dp ¼ 6 Dp ¼ 7

POLE-BP
Average 260 1352 14720 67250
St. dev. (66) (413) (2844) (3250)

POLE
Average 290 1560 25375 94600
St. dev. (54) (469) (1431) (4432)

SGP
Average 420 3000 29520 119800
St. dev. (144) (316) (2115) (6750)

Table 10
The reduction rate of the number of fitness evaluations by LBP in Royal Tree
problem.

Dp: Maximum tree depth of the problem Dp ¼ 4 Dp ¼ 5 Dp ¼ 6 Dp ¼ 7

Reduction rare (%) 10.3 13.3 42.0 28.9

Fig. 10. The number of evaluations required for the Royal tree problem.

Table 11
t-test. The values represent P-values for the Royal tree problem

Dp: Maximum tree depth of
the problem

Dp ¼ 4 Dp ¼ 5 Dp ¼ 6 Dp ¼ 7

POLE-BP vs POLE 1.24E�1 1.45E�1 6.88E�15 Underflow
POLE-BP vs SGP 1.11E�5 2.22E�16 Underflow Underflow

Fig. 11. The average fitness of the best individual at each generation in the Royal
tree problem (M ¼ 2500, Dp ¼ 7).

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎8

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

function of LBP in a PMBGP as the following: although LBP stimulates
generation of building blocks, degree of the effectiveness differs
dependent on the nature of problems. In the MAX problem, the best
individual at each generation is apt to be generated by LBP. The MAX
problem has no dependencies between nodes, and it is easy to learn
probabilistic models for PMBGPs. Because LBP generates the indivi-
dual which most reflects a good probabilistic model, it often becomes
the best individual. From this result, we see that LBP works well in
the problem with no dependencies between nodes. However, this is
not the case in DMAX problem where strong deceptiveness exists. In
DMAX problem, local optima and a global optimum are very distinct
in their structures, whereas their fitness values differ only slightly.
Although the global optimum of DMAX problem with depth 4 is
gotten by combining optimumwith depth 3 and the structure whose
fitness is a negative value, LBP tends to generate local optima because
the probabilistic model that reflects the nature of deceptiveness is
learned. Those local optima have somewhat large fitness and con-
tribute to the increase of the average fitness and are used for the
construction of probabilistic model for the next generation, which
finally gives rise to the acceleration of convergence to local optima.
Nevertheless, because DMAX problem requires large population size
and LBP generates only one individual, the negative effect is limited
and POLE-BP holds the same performance as POLE. The royal tree
problem has dependencies between nodes, i.e. deep building blocks
are created by combining shallow building blocks, and an optimum
solution is eventually obtained by combining these deep building
blocks. In the royal tree problem, for a start, probabilistic model for
shallow building blocks is learned, and probabilistic model is
gradually refined to generate deeper building blocks in the process
of learning. Because deep building blocks are gotten by combining
shallow building blocks, by generating the individual which reflects
probabilistic model in the middle of learning, LBP contributes to the
construction of probabilistic models for deep building blocks, which
become to create an optimum solution.

In problems without deceptiveness, good probabilistic models
toward the global optimum are always learned. Therefore, LBP
generates the individual with high fitness, which contributes to
the increase of the average fitness and obtaining the global
optimum at earlier generation. On the other hand, since probabil-
istic models that tend to generate local optima are often learned in
deceptive problems, LBP generates locally optimal individuals. This
is a reason for delay in obtaining the global optimum, however, the
delay remains in limited extent because LBP generates only one
individual. In addition, we note that LBP works better in problems
with more symbols. In the condition of statistically significant Dp

(Dp ¼ 6;7;8 for the MAX problem and Dp ¼ 6;7 for the royal tree
problem), LBP reduces more the number of fitness evaluations in
royal tree problem (average 35.5%) than MAX problem (average
27.4%). This is considered that royal tree problem has more
symbols than MAX problem, and it is more difficult for royal tree
problem than MAX problem to generate better solutions by PLS,
therefore LBP works better in royal tree problem.

Finally, we discuss the number of optima. Ref. [4] closely
examines the behavior of EDA on problems with different numbers
of optimal solutions. Ref. [4] shows that although the probability of
generation of optima increases monotonically and finally reaches
1 on unimodal problems, multimodal problems make the prob-
ability of generation of optima distributed among optima. In other
words, multimodality reduces the probability of generation of
MPS. Therefore, generation of MPS by LBP should be more effective
on multimodal problems than unimodal problems because of the
low probability of generation of MPS. However, our experiments
show contradictory results. In our experiments, MAX and Royal
tree problems are unimodal, and DMAX problem is multimodal.
Although LBP improves all measures: the number of evaluations,
fitness and building block satisfaction rate on unimodal MAX and
Royal tree problems, LBP only improves fitness and building block
satisfaction rate on multimodal DMAX problem. We conclude that
this contradiction is caused by the strong deceptiveness of DMAX.
Because the deceptiveness, which leads MPS to a local optima, is
more dominant than multimodality of the DMAX problem, the
performance of multimodal DMAX problem does not improve
more than the unimodal MAX and Royal tree problem.

6. Conclusion

We proposed POLE-BP, a variant of PMBGP that uses LBP for
sampling to generate MPS at each generation. We compared the
proposed POLE-BP against existing methods using the number of
fitness function evaluations required as the evaluation criterion.
Our experimental results showed that POLE-BPB's performance is
statistically comparable with that of the existing methods for
deceptive problems. Moreover, POLE-BP significantly outper-
formed other methods in non-deceptive problems. We analyzed
the fitness and tree structure of individuals produced by our
proposed method against that by existing methods and found
that LBP often generates local optima in deceptive problems and
does not contribute to obtaining an optimum solution. However,
LBP generates individuals with many building blocks and con-
tributes to obtaining an optimum solution in non-deceptive
problems. So far, almost all of the prototype tree-based PMBGPs
have focused only on the of learning probabilistic models. How-
ever, we showed that by improving the sampling method we can
improve the search performance of PMBGPs, without any mod-
ifications to the learning algorithm. We conclude that both the
sampling method and the learning algorithm are equally impor-
tant for improving the search performance.

References

[1] S. Baluja, Population-based Incremental Learning: A Method for Integrating
Genetic Search Based Function Optimization and Competitive Learning,
Technical Report, 1994.

[2] P.A.N. Bosman, E.D. de Jong, Grammar Transformations in an EDA for genetic
programming, in: GECCO 2004 Workshop Proceedings, 2004.

[3] G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic
networks from data, Mach. Learn. 9 (1992) 309–347.

[4] C. Echegoyen, A. Mendiburu, R. Santana, J.A. Lozano, Toward understanding
EDAs based on Bayesian networks through a quantitative analysis, IEEE Trans.
Evol. Comput. (2012) 173–189.

[5] R. Etxeberria, P. Larrañaga, Global optimization using Bayesian networks, in:
Proceedings of 2nd Symposium on Artificial Intelligence (CIMAF-99), 1999,
pp. 332–339.

Fig. 12. Building block satisfying rate of the best individual at each generation in
Royal tree problem (M ¼ 2500, Dp ¼ 7).

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref3
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref3
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref4
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref4
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref4
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

[6] A. Farinelli, A. Rogers, A. Petcu, N.R. Jennings, Decentralised coordination of
low-power embedded devices using the max-sum algorithm, in: Proceedings
of the 7th international joint conference on Autonomous agents and multia-
gent systems, vol. 2. AAMAS '08. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2008, pp. 639–646.

[7] P.F. Felzenszwalb, D.P. Huttenlocher, Efficient belief propagation for early
vision, Int. J. Comput. Vis. 70 (October) (2006) 41–54.

[8] C. Gathercole, P. Ross, S. Bridge, An adverse interaction between the crossover
operator and a restriction on tree depth, in: Proceedings of 1st Annual
Conference on Genetic Programming, 1996, pp. 291–296.

[9] G. Harik, Linkage Learning via Probabilistic Modeling in the ECGA, Technical
Report, 1999.

[10] Y. Hasegawa, H. Iba, Estimation of Bayesian network for program generation,
in: Proceedings of The Third Asian-Pacific Workshop on Genetic Programming,
2006, pp. 35–46.

[11] Y. Hasegawa, H. Iba, Estimation of distribution algorithm based on probabil-
istic grammar with latent annotations, in: Proceedings of IEEE Congress of
Evolutionary Computation (CEC 2007), 2007, 1043–1050.

[12] Y. Hasegawa, H. Iba, A Bayesian network approach to program generation, IEEE
Trans. Evol. Comput. 12 (6) (2008) 750–764.

[13] Y. Hasegawa, H. Iba, Latent variable model for estimation of distribution
algorithm based on a probabilistic context-free grammar, Trans. Evol. Comput.
13 (August) (2009) 858–878. http://dx.doi.org/10.1109/TEVC.2009.2015574.

[14] M. Hauschild, M. Pelikan, An introduction and survey of estimation of
distribution algorithms, Swarm Evol. Comput. 1 (3) (2011) 111–128.

[15] M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic
logic sampling, in: UAI, 1986, pp. 149–164.

[16] K. Hirasawa, M. Okubo, J. Hu, J. Murata, Comparison between genetic network
programming (GNP) and genetic programming (GP), in: Proceedings of the
2001 Congress on Evolutionary Computation CEC2001, IEEE Press, Seoul,
Korea, 27–30 May 2001, pp. 1276–1282.

[17] W.B. Langdon, R. Poli, An analysis of the max problem in genetic program-
ming, in: Advances in Genetic Programming, vol. 3, MIT Press, 1997, pp. 301–
323 (Chapter 13).

[18] P. Larra naga, H. Karshenas, C. Bielza, R. Santana, A review on probabilistic
graphical models in evolutionary computation, J. Heuristics 18 (October (5))
(2012) 795–819.

[19] X. Li, B. Li, S. Mabu, K. Hirasawa, A continuous estimation of distribution
algorithm by evolving graph structures using reinforcement learning, in: IEEE
Congress on Evolutionary Computation, 2012, pp. 1–8.

[20] X. Li, S. Mabu, K. Hirasawa, A novel graph-based estimation of distribution
algorithm and its extension using reinforcement learning, IEEE Trans. Evol.
Comput. (1) (2013) 99.

[21] C.F. Lima, M. Pelikan, F.G. Lobo, D.E. Goldberg, Loopy substructural local search
for the Bayesian optimization algorithm, in: Proceedings of the Second
International Workshop on Engineering Stochastic Local Search Algorithms.
Designing, Implementing and Analyzing Effective Heuristics. SLS '09. Springer-
Verlag, Berlin, Heidelberg, 2009, pp. 61–75.

[22] M. Looks, B. Goertzel, C. Pennachin, Learning computer programs with the
Bayesian optimization algorithm, in: Proceedings of the 2005 Genetic and
Evolutionary Computation Conference, 2005, pp. 747–748.

[23] S. Mabu, K. Hirasawa, J. Hu, A graph-based evolutionary algorithm: genetic
network programming (gnp) and its extension using reinforcement learning,

Evol. Comput. 15 (Sep. (3)) (2007) 369–398. http://dx.doi.org/10.1162/
evco.2007.15.3.369.

[24] A. Mendiburu, R. Santana, J.A. Lozano, Introducing Belief Propagation in Estimation
of Distribution Algorithms: A Parallel Framework, Technical Report, 2007.

[25] M. Mitchell, S. Forrest, J.H. Holland, The royal road for genetic algorithms:
fitness landscapes and ga performance, in: Proceedings of the First European
Conference on Artificial Life, 1992, pp. 245–254.

[26] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Francisco, CA, USA, 1988, ISBN:
1558604790.

[27] M. Pelikan, D.E. Goldberg, E. Cantu-Paz, Boa: The Bayesian optimization
algorithm. IlliGAL Report No. 98013: Illinois Genetic Algorithm Laboratory,
University of Illinois at Urbana-Champaign, Urbana, IL, 1999.

[28] W.F. Punch, How effective are multiple populations in genetic programming,
in: John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, Rick
Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third Annual
Conference: 308–313308–313. 1998.

[29] A. Ratle, M. Sebag, Avoiding the bloat with probabilistic grammar-guided
genetic programming, in: P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, M.
Schoenauer (Eds.), Artificial Evolution 5th International Conference, Evolution
Artificielle, EA 2001, Lecture Notes in Computer Science, 29–31 October 2001,
vol. 2310, Springer Verlag, Creusot, France, 2001, pp. 255–266.

[30] E.N. Regolin, A.T.R. Pozo, Bayesian automatic programming, in: Genetic
Programming, Lecture Notes in Computer Science, vol. 3447, 2005, pp. 38–49.

[31] R.P. Sałustowicz, J. Schmidhuber, Probabilistic incremental program evolution,
Evol. Comput. 5 (1997) 123–141.

[32] K. Sastry, D.E. Goldberg, Probabilistic model building and competent genetic
programming, in: Genetic Programming Theory and Practise, 2003, pp. 205–220
(Chapter 13).

[33] K. Sastry, D.E. Goldberg, Probabilistic model building and competent genetic
programming, in: Genetic Programming Theory and Practise, Kluwer,
Springer, US. ISBN: 978-1-4613-4747-7, 2003, pp. 205–220, http://dx.doi.org/
10.1007/978-1-4419-8983-3_13 (Chapter 13).

[34] H. Sato, Y. Hasegawa, D. Bollegala, H. Iba, Probabilistic model building GP with
belief propagation, in: X. Li (Ed.), Proceedings of the 2012 IEEE Congress on
Evolutionary Computation, Brisbane, Australia, 10–15 June 2012, pp. 2089–
2096.

[35] Y. Shan, R.I. Mckay, H.A. Abbass, D. Essam, Program evolution with explicit
learning: a new framework for program automatic synthesis, in: Proceedings
of the 2003 Congress on Evolutionary Computation CEC2003, 2003, pp. 1639–
1646.

[36] Y. Shan, R.I. Mckay, R. Baxter, Grammar model-based program evolution, in:
Proceedings of the 2004 IEEE Congress on Evolutionary Computation, 2004,
pp. 478–485.

[37] M. Wineberg, F. Oppacher, A representation scheme to perform program
induction in a canonical genetic algorithm, in: Proceedings of the Interna-
tional Conference on Evolutionary Computation. The Third Conference on
Parallel Problem Solving from Nature, 1994, pp. 292–301.

[38] K. Yanai, H. Iba, Estimation of distribution programming based on Bayesian
network, in: Proceedings of the Congress on Evolutionary Computation, 2003,
pp. 1618–1625.

H. Sato et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎10

Please cite this article as: H. Sato, et al., Improved sampling using loopy belief propagation for probabilistic model building
genetic programming, Swarm and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swevo.2015.02.002i

http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref7
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref7
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref12
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref12
http://dx.doi.org/10.1109/TEVC.2009.2015574
http://dx.doi.org/10.1109/TEVC.2009.2015574
http://dx.doi.org/10.1109/TEVC.2009.2015574
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref14
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref14
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref18
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref18
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref18
http://dx.doi.org/10.1162/evco.2007.15.3.369
http://dx.doi.org/10.1162/evco.2007.15.3.369
http://dx.doi.org/10.1162/evco.2007.15.3.369
http://dx.doi.org/10.1162/evco.2007.15.3.369
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref26
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref26
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref26
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref31
http://refhub.elsevier.com/S2210-6502(15)00017-6/sbref31
dx.doi.org/10.1007/978-1-4419-8983-3_13
dx.doi.org/10.1007/978-1-4419-8983-3_13
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002
http://dx.doi.org/10.1016/j.swevo.2015.02.002

	Improved sampling using loopy belief propagation for probabilistic model building genetic programming
	Introduction
	Related work
	PMBGP: Probabilistic Model Building GP
	Prototype tree-based method

	EDAs and PMBGPs with loopy belief propagation

	The proposed method: POLE-BP
	POLE: program optimization with linkage estimation
	Loopy belief propagation (loopy max-sum)
	Algorithm

	Experiments
	Experimental settings
	Experiments to show the effects of LBP
	Experiments to examine function and operation of LBP

	MAX problem
	Result and analysis

	Deceptive MAX (DMAX) problem
	Results and analysis

	Royal tree problem
	Results and analysis

	Discussion
	Conclusion
	References

