
STOCHASTIC PROGRAM OPTIMIZATION FOR x86 64 BINARIES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Eric Schkufza

August 2015



 

 

 

 

 

 

 

 

 

 

 

 

                      

 

 

 

This dissertation is online at: http://purl.stanford.edu/fw184nf4136

 

© 2015 by Eric D Schkufza. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/fw184nf4136


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alex Aiken, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Pat Hanrahan

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



c© Copyright by Eric Schkufza 2015

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Alex Aiken) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Pat Hanrahan)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Mark Horowitz)

Approved for the Stanford University Committee on Graduate Studies

iii



Acknowledgments

This thesis and the little bits of sanity that I still lay claim to having made it through grad school,

would not be possible without the love and support of my friends and family. In keeping with the

spirit of this work, the ordering of names that I’ve used below was chosen uniformly at random, so

that none may feel slighted. Special dispensation — and the honor of being named first— is given

to my advisor Alex Aiken, and to those who will never have the chance to read these words, Nancy

Schkufza, Walter Lyba, and Sumit Mallik.

To everyone else, Lori Schkufza, Liz Fornero, Zach Ernst, Mark Horowitz, Jake Herczeg, Grant

Toeppen, Pat Hanrahan, Zach DeVito, Paul Merrell, Kristen Bashaw, Percy Liang, Mike Spivack,

Eva Lyba, Evan Cox, Aaron Apple, David Cook, Oliver Hardt, Chie Kawahara, Stefan Heule, Joe

Schkufza, James Larus, Pat Hanrahan, Mike Bauer, Brion Spensieri, Trishul Chilimbi, Deian Stefan,

Tara Bott, Peter Hawkins, Mike Genesereth, Niels Joubert, Matt Fornero, Sean Treichler, Berkeley

Churchill, Alex Pagliere, Adam Oliner, Noah Goodman, Ben Handy, Madeline Roe, Rahul Sharma,

Joana Ngo, Vladlen Koltun, Gleb Denisov, Ian Vo, thank you for everything.

iv



Contents

Acknowledgments iv

1 Introduction 1

2 Formalism 3

2.1 Code Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Synthesis and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 STOKE: A Stochastic Optimizer for x86 64 13

3.1 Code Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Synthesis and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Fixed-Point Code Sequences 20

4.1 Fixed-Point Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Floating-Point Code Sequences 36

5.1 Floating-Point Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



6 Loops 57

6.1 Loop Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Higher-Order Synthesis 69

7.1 Random Number Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Shellcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusion 85

Bibliography 87

vi



List of Tables

6.1 Performance results for the loop failure benchmarks from Chapter 4. Stoke+Ddec is

able to produce shorter rewrites than Stoke alone. Verification runtimes are tractable

and the resulting code outperforms the output of gcc -O0 and gcc -O3. . . . . . . . 65

vii



List of Figures

2.1 Enforcing a fixed-length on code sequences. A length 2 code sequence (left) in the

x86 64 hardware instruction set is transformed into a length 5 code sequence (right)

by inserting three copies of the PASS instruction. . . . . . . . . . . . . . . . . . . . . 5

2.2 Generalized random search procedure. A transformation kernel (F(·)) is used to re-

peatedly modify an initial rewrite (R). Transformations are accepted or rejected

based on an acceptance function (α(·)) and a set of preferable rewrites is returned

when a computational budget is exhausted. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Stoke transforms applied to a representative (original) code. Instruction moves

(insert) or (delete) and instruction, (opcode) moves change opcodes, (operand) moves

change operands, (swap) moves interchange the location of two instructions, and

(resize) moves move PASS instructions between basic blocks. . . . . . . . . . . . . . 14

4.1 Montgomery multiplication kernel from the OpenSsl Rsa library. Compilations

shown for gcc -O3 (left) and a Stoke (right). . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Strict versus relaxed equality functions for a target in which ax is live out and the

correct result appears in an incorrect location. . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Strict versus relaxed cost functions during synthesis for the Montgomery multiplica-

tion benchmark. Random search results shown for reference. . . . . . . . . . . . . . . 23

4.4 Proposals evaluated per second versus test cases evaluated prior to early termination,

for the Montgomery multiplication synthesis benchmark. Cost function shown for

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Predicted versus observed runtimes for selected code sequences. Outliers are charac-

terized by instruction level parallelism and memory effects. . . . . . . . . . . . . . . 25

4.6 Cycling Through 3 Values benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Saxpy benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Linked List Traversal benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



4.9 Speedups over llvm -O0 versus Stoke runtimes. Benchmarks for which an algo-

rithmically distinct rewrite was discovered are shown in bold; synthesis timeouts are

annotated with a −. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.10 Search space for the Montgomery multiplication benchmark: O0 and O3 codes are

densely connected, whereas expert code is reachable only by an extremely low prob-

ability path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.11 Cost over time versus percentage of instructions that appear in the final zero-cost

rewrite for the Montgomery multiplication synthesis benchmark. . . . . . . . . . . . 33

5.1 IEEE-754 double-precision floating-point standard. . . . . . . . . . . . . . . . . . . 38

5.2 Error functions computed for adjacent double-precision values. Absolute error di-

verges for large inputs; relative error for sub-normal inputs. Neither are defined for

infinity or NaN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Platform-dependent C code for computing ULP distance between two double-precision

values. Note the reordering of negative values. . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Representative kernels from Intel’s implementation of math.h. Increasing η produces

rewrites that interpolate between double- single- and half-precision (vertical bars,

shown for reference) (a-c). Errors functions introduced by reduced precision are well-

behaved (d-f) and amenable to Mcmc sampling. . . . . . . . . . . . . . . . . . . . . 46

5.5 The diffusion leaf task from the S3D direct numeric simulation solver. Increasing η

allows Stoke to trade precision for shorter code and higher performance (a). The

task can tolerate a less-than-double-precision implementation (vertical bar, shown for

reference), which produces a a 27% overall speedup. Errors are well-behaved (b). . . 47

5.6 Vector dot-product. Stoke is unable to make full use of vector intrinsics due to the

program-wide data structure layout chosen by gcc. The resulting code is nonetheless

faster, and amenable to verification using uninterpreted functions. . . . . . . . . . . 48

5.7 Speedups for aek. Bit-wise correct optimizations produce a cumulative speedup of

30.2%. Lower precision optimization to the camera perturbation kernel, ∆(·), pro-

duces an additional 6.4% speedup. More aggressive optimization, ∆′(·), produces

further latency reduction, but is unusable. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.8 Random camera perturbation. Stoke takes advantage of the bit-imprecise associa-

tivity of floating point multiplication, and the negligibly small values of some terms

due to program-wide constants to produce a rewrite which is 7 cycles faster than the

original code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Images generated using bit-wise correct (a) and lower precision (b) optimizations.

The results appear identical, but are in fact different (c). Further optimization is

possible but incorrectly eliminates depth of field blur (d,e). In particular, notice the

sharp horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



5.10 Alternate implemenatations of the search procedure used by Stoke for optimiza-

tion: random search (rand()), greedy hill-climbing (hill()), simulated annealing

(anneal()) and Mcmc sampling (mcmc()). Mcmc sampling outperforms the alter-

natives for optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.11 Alternate implemenatations of the search procedure used by Stoke for validation:

random search (rand()), greedy hill-climbing (hill()), simulated annealing (anneal())

and Mcmc sampling (mcmc()). Mcmc is not clearly better-suited to validation. . . . 54

6.1 Equivalence checking for two possible compilations: (X) no optimizations applied

either by hand or during compilation, (Y ) optimizations applied. Cut points (a,b,c)

and corresponding paths (i-vi) are shown. . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Partial inductive proof of equivalence for the code sequences shown in Figure 6.1. . . 60

6.3 Live register values at b for the code sequences shown in Figure 6.1 for a test input

where edi = 0 and esi = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Simplified versions of the optimizations discovered by Stoke+Ddec. The iteration

variable in (a) is cached in a register (a’). The computation of the 128-bit constant

in (b) is removed from an inner loop (b’). . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Synthesis results for three random number generator kernels: normal (a), exponential

(b) and lognormal (c). The kernels produced by Stoke generate distributions that

are a close fit to those produced by the reference implementations (libstdc++) and

represent a 2–3.5× performance improvement and a substantial reduction in code size.

The kernels produced by Stoke require fewer invocations of the underlying random

number generator kernel and no invocations of transcendental functions. . . . . . . . 73

7.2 Synthesis results for ten shellcode payloads that are designed to execute Linux system

calls. In all cases, Stoke is able to produce rewrites that are free of null-bytes, and

in all but one, smaller than the original. The rewrites produced by Stoke are an

average of 17% smaller than the reference implementations. . . . . . . . . . . . . . . 76

7.3 Detailed comparison of a shellcode payload for executing the execve Linux system

call and the equivalent null-byte free rewrite discovered by Stoke (top). Bit-wise

representations of both codes are shown for reference (bottom). . . . . . . . . . . . . 77

7.4 Two representative user-defined data-types: a stack type (left) and a heap type (right).

The stack type is a concatenation of randomly generated primitive data-types and the

heap type is a randomly sized linked list structure. . . . . . . . . . . . . . . . . . . . 81

x



7.5 Synthesis results for hash functions for the two user-defined data-types shown in

Figure 7.4. The functions generated by Stoke produce a smaller standard deviation

and range in number of observed collisions (top) than the reference implementation

(SipHash). Similar results are observed under the added constraint that collisions

with a pre-existing hash function be minimized (bottom). . . . . . . . . . . . . . . . 82

xi



Chapter 1

Introduction

This thesis is about the aggressive optimization of high-performance code. We describe a non-

traditional approach to the problem and focus on application domains where every choice of in-

struction and register matters. The key result of this work is that the high volume application of

small random transformations is sufficient for producing very highly optimized code sequences that

are capable of outperforming both the code produced by production compilers, and in many cases

expert hand-written assembly.

While there is considerable value in producing the most performant code possible, the traditional

structure of a compiler’s optimization phase is ill-suited to this task. Factoring the optimization

problem into a collection of small subproblems that can be solved independently — although suitable

for generating consistently good code — in general leads to sub-optimal results. In most cases, the

very best code sequences can only be obtained through the simultaneous consideration of mutually

dependent issues that span multiple levels of abstraction and require cross-domain expertise. This

process can require a deep understanding of a target architecture and how it interacts with machine

resources, mutually dependent issues such as instruction selection and register allocation, and even

the ability to leverage application-level requirements that affect how correctness and precision can

be traded in favor of additional performance improvements.

The primary alternative to this approach is the use of search-based enumeration techniques. In

contrast to a traditional compiler, which uses performance constraints to drive the generation of a

single sequence, these systems consider multiple sequences and select the one that is best able to

satisfy those constraints. An attractive feature of these approaches is completeness: if a sequence

exists that meets the desired constraints then it is guaranteed to be found. However, completeness

also places a severe limitation on the type of code that can considered in practice. The applicability

of these techniques is either limited to sequences that are shorter than the threshold at which

many interesting optimizations take place, or to code sequences written in simplified languages that

1



CHAPTER 1. INTRODUCTION 2

correspond to a more limited class of kernels than can be formed with a general-purpose hardware

instruction set.

In this thesis, we describe a method that overcomes these limitations through the use of incom-

plete random search. This method is presented in the abstract in Chapter 2 where we reformulate

the competing constraints of correctness and performance improvement as terms in a cost function

defined over the space of all code sequences, and recharacterize the optimization task as a cost

minimization problem. Although the resulting search space is highly irregular and not amenable to

exact optimization techniques we survey a family of random search procedures – notably Markov

Chain Monte Carlo (Mcmc) sampling – and describe how they can be used to rapidly generate

low-cost samples corresponding to high-quality code sequences. In Chapter 3 we describe a concrete

implementation of these concepts for the x86 64 instruction set.

Beginning with Chapter 4, we describe the application of this technique to increasingly more

complex application domains. In Chapter 4 we describe the optimization of loop-free code se-

quences that contain entirely fixed-point computations and require the preservation of full bit-wise

correctness for all possible inputs. In Chapter 5 we consider the optimization of code sequences that

contain mixed fixed- and floating-point computations and show that we are able to obtain substantial

performance improvements by relaxing the requirement that optimizations preserve floating-point

semantics exactly as written. In Chapter 6, we examine the problem of optimizing code sequences

that contain loop constructs and extend the results of the previous chapters to this new domain.

Finally, in Chapter 7 we consider the optimization of code sequences with semantic requirements

that transcend the traditional compiler’s definition of correctness such as hash functions, random

number generators, and malware attack strings.

We conclude briefly in Chapter 8 with a summary of our contributions. While much of the work

in this thesis may seem crazy and beyond practical application, it is our hope that by its end the

reader will be convinced that only the former is true.



Chapter 2

Formalism

In this thesis we describe the non-standard approach of using incomplete random search as a method

for rapidly exploring the extremely high-dimensional space of all possible code sequences. Although

the chapters that follow deal exclusively with the x86 64 instruction, we begin with a discussion of

the underlying formalism in the abstract. In addition to providing the formal background for the

chapters that follow, this material has value in itself as a generalization of many of the apparently

disparate ideas that appear in the area of compiler research.

We start by introducing the idea of an abstract space of code sequences, and the application

of code transformations as a mechanism for navigating that space. Once we have established the

idea of a search space, we introduce the idea of cost functions over code sequences. Using these

definitions we examine the idea that two apparently unrelated compiler tasks – program synthesis

and optimization – are simply search problems, and reformulate each in terms of the definitions that

we have developed.

2.1 Code Sequences

Defining the abstract space of all possible code sequences requires that we first have an abstract

definition of hardware states. This definition should be simple enough to generalize to most practical

implementations, but also expressive enough to serve as an underlying data-structure for defining

the semantics of code sequences in terms of the transformations that they produce. A simple choice

that serves this purpose is an abstract collection of memory cells that contain sequences of bit values.

Definition 1 (Bit-vector). A bitvector (b ∈ Bk) of arity k is a sequence of k zeros or ones. We omit

the k superscript when its use is clear.

Definition 2 (Hardware Location). A hardware location (` ∈ L) is a architecture-specific nameable

machine address. We refer to the set of all possible sets of hardware location as L.

3



CHAPTER 2. FORMALISM 4

Definition 3 (Machine State). A machine state (m(·) : L → B) is a mapping from a set of hardware

locations to bit-vectors of appropriate width. A machine state may not contain values for all possible

hardware locations. Locations that do not appear in a machine state are said to be undefined. We

refer to the set of all possible machine states as M.

Using this abstraction we define a hardware instruction set as a collection of instructions that

can both modify machine states and induce control flow by modifying a program counter. For the

purpose of applying standard dataflow analyses we provide a general characterization of the effects

that an instruction can produce on a machine state, and for reasoning about runtime behavior we

define the dynamic sequence of transformations that a code sequence produces on machine states

when executed.

Definition 4 (Instruction). An instruction (i(·) : M→M×Z) is a statement written in a hardware

instruction set (H). Instructions produce both a transformation in machine state and an integer

program counter displacement. We refer to the application of an instruction to a machine state as

an execution.

Definition 5 (Code Sequence). A code sequence (S) is an ordered list of instructions. We refer to

the jth element of a code sequence ij as Sj .

S =
〈
i1, i2, . . . in

〉 ∣∣ i1, i2, . . . in ∈ H (2.1)

Definition 6 (Dataflow Sets). An execution may read from, write to, or undefine (remove) one

or more of the locations in a machine state. We refer to these sets of locations using the read set

(ρ(·) : H×M→ L), write set (ω(·) : H×M→ L), and undef set (υ(·) : H×M→ L) functions.

Definition 7 (Runtime Sequences). An execution sequence (ES,m) is an ordered list of instructions

that results from executing a code sequence S beginning with its first instruction in m. A machine

sequence (MS,m) is the corresponding ordered list of machine states. We refer to the jth element

of a dynamic sequence as ES,mj or MS,mj , and the final element as ES,mend or MS,mend . Both sequences

may have unbounded length due to the presence of loops.

ES,m =
〈
S1, i2, i3 . . .

〉
MS,m =

〈
m,m2,m3 . . .

〉
where (m2, δ1) = S1(m)

i2 = S1+δ1

(m3, δ2) = i2(m2)

i3 = S1+δ1+δ2

. . .

(2.2)
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1 # Length 2 Sequence 1 # Length 5 Sequence

2 2

3 xorq rax , rax 3 PASS

4 ret 4 xorq rax , rax

5 PASS

6 retq

7 PASS

Figure 2.1: Enforcing a fixed-length on code sequences. A length 2 code sequence (left) in the
x86 64 hardware instruction set is transformed into a length 5 code sequence (right) by inserting
three copies of the PASS instruction.

Although our goal is to characterize the set of all possible code sequences, it is useful to preemp-

tively rule out as many semantically ill-formed sequences as possible by construction. Although the

notion of semantic well-formedness is difficult to define in general, and different application areas

may impose additional or different constraints, we provide a definition here that will suffice for the

remainder of this thesis. Our discussion is limited to code sequences of bounded length that do not

perform reads from undefined hardware locations.

Definition 8 (Pass Instruction). PASS is a distinguished instruction that does not appear in any

hardware instruction set. It has no observable semantics with respect to machine states other than

to advance the program counter and serves only to take the place of an instruction.

PASS(m) =
(
m, 1

)
(2.3)

Definition 9 (Fixed-Length Code Sequence). A fixed-length code sequence (Sk) is a code sequence

of arity k. Code sequences with arity less than k can be given a fixed-length by inserting one or

more copies of the PASS instruction as shown in Figure 2.1. We omit the PASS instruction and the

superscript k when their use is clear.

Sk =
〈
i1, i2, . . . ik

〉 ∣∣ i1, i2, . . . ik ∈ H ∪ PASS (2.4)

Definition 10 (Undefined Read). An undefined read (undef(·) : H×M→ {>,⊥}) is an execution

of an instruction i in a machine state m that results in a read from an undefined location.

undef(i,m) = ∃`. ` ∈ ρ(i) ∧ ` /∈ Dom(m) (2.5)

Definition 11 (Compatible Machine States). A machine state is compatible with a set of locations

if it contains a mapping for each element of that set. We use the compatibility function (compat(·) :
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L→M) to represent the set of machine states that are compatible with a set of locations.

compat(L) =
{

m
∣∣ L ⊆ Dom(m)

}
(2.6)

Definition 12 (Well-Formed Code Sequences). A well-formed code sequence (S ∈ Sk,L) is a fixed-

length code sequence for which the execution sequences defined by machine states compatible with

L do not contain an undefined read.

Sk,L =
{
S
∣∣ ∀m ∈ compat(L). ¬∃j. undef(ES,mj ,MS,mj )

}
(2.7)

Using this formal characterization of the abstract space of all code sequences we define a simple

notion of connectivity in terms of transformations over elements in the space; any two elements that

can be transformed into one another are considered to be adjacent. As a final bit of terminology, we

introduce the notion of a target – a code sequence of interest for a particular application – and the

set of all of other code sequences, which we refer to as rewrites.

Definition 13 (Target). The target (T ) is an application-dependent distinguished code sequence.

Definition 14 (Transformation). A transformation (F(·) : Sk,L → Sk,L) is any mapping over

well-formed code sequences. Transformations may be composed using the standard notation:

(F1 ◦ F2)(x) ≡ F2(F1(x)) (2.8)

Definition 15 (Rewrite). A rewrite (R) is any well-formed code sequence that can be produced

through some repeated application of transformations to the target.

R ∈
{
r
∣∣ r = (F1 ◦ F2 ◦ . . .Fn)(T )

}
(2.9)

2.2 Cost Functions

Given the formalism developed above, it is straightforward to define a cost function over the elements

in the abstract space of code sequences. Although we have considerable flexibility in how we choose

to do so, for the purposes of this thesis it is sufficient that our definition simply capture the distinction

between hard constraints (which must be satisfied) and soft constraints (for which better solutions

are preferable, but not required). To preserve full generality, both hard and soft constraints may be

defined in terms of both the target and an arbitrary code sequence.

Definition 16 (Hard Constraint). A hard constraint (hard(·) : Sk,L×Sk,L → Z+) is a non-negative

function that represents an application-specific constraint that must be satisfied. A return value of
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zero indicates success whereas all other values indicate failure.

hard(T ,S) =

0 constraints satisfied

> 0 otherwise
(2.10)

Definition 17 (Soft Constraint). A soft constraint (soft(·) : Sk,L × Sk,L → Z+) is a non-negative

function that represents an application-specific constraint for which all code sequences are permis-

sible, but some are preferable. Lower return values correspond to more preferable sequences.

Definition 18 (Cost Function). A cost function (cost(·) : Sk,L × Sk,L → Z+) is a weighted combi-

nation of hard and soft constraint terms. We refer to the hard and soft constraints of a cost function

as costhard and costsoft, and the set of all cost functions as C.

cost(T ,S) = wh · hard(T ,S) + ws · soft(T ,S) (2.11)

Using this notation we define two useful relations over the abstract space of code sequences with

respect to the target. One identifies the set of code sequences that satisfy the hard constraints of

an application domain, and the other identifies the set of code sequences that additionally improve

the soft constraints of an application domain.

Definition 19 (Sufficient Rewrites). A rewrite is sufficient (suff(·) : C × Sk,L × Sk,L → {>,⊥}) if

it produces a hard constraint cost of zero when evaluated with respect to the target.

suff(cost, T ,R) =
(

costhard(T ,R) = 0
)

(2.12)

Definition 20 (Preferable Rewrites). A rewrite is preferable (pref(·) : C × Sk,L × Sk,L → {>,⊥})
if it is both sufficient and produces a soft constraint cost that is less than the one that is obtained

when the target is evaluated with respect to itself.

pref(cost, T ,R) =
(

suff(cost, T ,R) ∧
(

costsoft(T ,R) ≤ costsoft(T , T )
))

(2.13)

2.3 Synthesis and Optimization

We are now ready to state the non-standard but hopefully obvious assertion that many apparently

disparate tasks in the area of compiler design are instances of cost minimization problems. To do so,

we must first introduce two concrete instances of cost function constraints: a hard constraint that

represents equality with respect to the target, and a soft constraint that represents the performance

properties of a rewrite. To aid in defining the former, we introduce terminology for describing the

side effects of a code sequence.
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Definition 21 (Lifted Write Set). We lift the definition of the write set function to well-formed

code sequences (ω(·) : Sk,L ×M→ L) as follows.

ω(S,m) = wn

where n = |ES,m|

w1 = ω(ES,m1 ,MS,m1 )− υ(ES,m1 ,MS,m1 )

w2 =
(

w1 ∪ ω(ES,m2 ,MS,m2 )
)
− υ(ES,m2 ,MS,m2 )

. . .

(2.14)

Definition 22 (Side Effects). The side effects (σ(·) : Sk,L×M×L → B) of a code sequence are the

bit-vector values that it places in the elements of its lifted write set.

σ(S,m, `) =

M
S,m
end (`) ` ∈ ω(S,m)

undefined otherwise
(2.15)

Definition 23 (Live Outputs). The live outputs (λ(·) : Sk,L × M → L) of a code sequence are

a distinguished subset of its lifted write set that may be dereferenced by subsequent instruction

executions.

Definition 24 (Equality Term). An equality term (eq(·) : Sk,L × Sk,L → Z+) is a hard constraint

that compares two code sequences and returns zero if and only if they are equal. For our purposes

we define equality as the property of preserving all bit-vector side effects in the live output locations

defined by the target. This definition allows us to ignore functional differences in the use of temporary

values that do not affect a code sequence’s input output semantics.

eq(S1,S2) =

0 ∀m. ∀` ∈ λ(S1,m). σ(S1,m, `) = σ(S2,m, `)

> 0 otherwise
(2.16)

Definition 25 (Performance Term). A performance term (perf(·) : Sk,L × Sk,L → Z+) is a soft

constraint that quantifies the application-specific performance improvement (e.g. runtime, power

consumption, etc.) of a code sequence with respect to a reference implementation. The extent

to which this term is an accurate representation of the behavior of the underlying architecture

determines the extent to which it can adequately represent the performance trade-offs associated

with program transformations.

Using these constraints, the connection to program synthesis and optimization as defined by

a traditional compiler is straightforward. Program synthesis is the search for functionally correct

rewrites and optimization is the search for rewrites that are both functionally correct and represent a

performance improvement over the target. We explore solutions to both of these tasks in subsequent
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chapters, program synthesis in Chapters 4 and 7 and program optimization in Chapters 4, 5, 6, and

7.

Definition 26 (Program Synthesis). The goal of program synthesis is to produce elements from the

set of code sequences that are functionally equivalent to the target. This set consists of rewrites

that are sufficient with respect to the target and the equality term described above.

result ⊆
{
r ∈ Sk,L

∣∣ suff(cost, T , r)
}

where cost = wh · eq(T , r)
(2.17)

Definition 27 (Program Optimization). The goal of Program Optimization is to produce elements

from the set of functionally correct code sequences that represent a performance improvement over

the target. This set consists of rewrites that are preferable with respect to the target and both the

equality and performance terms described above.

result ⊆
{
r ∈ Sk,L

∣∣ pref(cost, T , r)
}

where cost = wh · eq(T , r) + ws · soft(T , r)
(2.18)

2.4 Solution Methods

Generating elements from either of the sets described above requires the use of a cost minimization

procedure. Although many such approaches exist, in general we expect cost functions that capture

complicated features such as semantic equality and performance improvement to be highly irregular

and not amenable to exact optimization techniques. For functions of this form which are highly non-

convex and characterized by sharp discontinuities and many local minima, the only know solution

methods that are also tractable involve the use of a random search procedure.

Despite the apparent variety, most random search procedures can be shown to be instances of

the generalized algorithm shown in Figure 2.2. The basic idea is simple. The algorithm maintains

a current rewrite R and uses a transformation kernel (F(·)) to propose a modified rewrite. The

proposal (R′) is then either accepted or rejected based on the evaluation of an acceptance function

(α(·)) which is defined in terms of the cost function. If the proposal is accepted then R′ becomes the

current rewrite. Otherwise, another proposal based on R is generated in its place. The algorithm

iterates until its computational budget is exhausted, and the set of preferable rewrites that were

discovered in the process is returned as a result.

Most random search procedures are agnostic with respect to transformation kernel and require

only that it be ergodic (sufficient to transform any rewrite into any other through some repeated

sequence of applications). Empirically, it is also desirable for a transformation kernel to produce a

wide variety of modifications that strike a balance between inducing small local changes and large

global changes to the current rewrite. In practice, transformation kernels that have this property
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1: procedure Search(T , R, F, α, cost)
2: result = {T }
3: repeat
4: R′ ∼ F(R)
5: if α(T ,R,R′, cost) then
6: R = R′
7: if pref(cost, T ,R) then
8: result = result ∪R
9: end if

10: end if
11: until timeout
12: return result
13: end procedure

Figure 2.2: Generalized random search procedure. A transformation kernel (F(·)) is used to repeat-
edly modify an initial rewrite (R). Transformations are accepted or rejected based on an acceptance
function (α(·)) and a set of preferable rewrites is returned when a computational budget is exhausted.

tend to produce a higher volume of lower cost rewrites in a smaller number of proposals. We describe

the implementation of a transformation kernel for x86 64 that satisfies these criteria in Chapter 3.

Random search procedures differ primarily in their definition of acceptance function. Before

describing Mcmc sampling, the search procedure that we focus on in this thesis, we discuss the

acceptance function for several other well known procedures and briefly characterize the formal

guarantees that they provide. In principle, nothing prevents the use of these other methods for

solving the optimization problem described above. In our experience, Mcmc sampling simply offers

an attractive trade-off between complexity of implementation of quality of experimental results. We

compare the performance of Mcmc sampling and these alternative methods in Chapters 4 and 5.

Any of the random search procedures shown below can be generalized to the simultaneous mod-

ification of multiple rewrites by lifting R to a set, and extending F to include both point- and

pair-wise transforms. Algorithms of this form are collectively referred to as population-based meth-

ods. Although we do not consider their use in this thesis they are a common choice for extending

the applicability of random search techniques and will almost certainly find use in future work.

Definition 28 (Pure Random Search). The simplest implementation of a random search procedure

is pure random search, which is characterized by an acceptance function that always returns true.

Pure random search is guaranteed in the limit to enumerate the set of all preferable rewrites. How-

ever, for even modestly sized domains the number of proposals that must be evaluated to enumerate

even a small fraction of that set is so prohibitively large as to be useless in practice. For most

applications, pure random search offers extremely slow runtimes and poor overall performance.

αpure(T ,R,R′, cost) = > (2.19)
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Definition 29 (Greedy Hill Climbing). A small refinement to pure random search results in greedy

hill climbing, which is characterized by an acceptance function that returns true if and only if a

proposal results in a reduction in the value of the cost function. In contrast to pure random search,

greedy hill climbing generally produces better overall results in much less time, but is prone to

becoming stuck in local minima. Greedy hill climbing is extremely sensitive to initial conditions;

once the lowest cost code sequence in the immediate vicinity of the initial rewrite has been discovered,

no further progress can be made.

αgreedy(T ,R,R′, cost) =
(

cost(T ,R′) ≤ cost(T ,R)
)

(2.20)

Definition 30 (Simulated Annealing). Another small refinement to greedy hill climbing results in

simulated annealing, which is characterized by an acceptance function that sometimes also returns

true for proposals that result in an increase in the value of the cost function. Although there are

many ways to define such a function, a common method for doing so is shown below. The important

properties of this function are the following. If R′ produces a lower cost than R, the proposal is

always accepted. If R′ produces a larger cost than R, the proposal may still be accepted with a

probability that decreases as a function of the ratio between costs associated with R′ and R. This

property prevents simulated annealing from becoming trapped in local minima while remaining less

likely to accept a proposal that is much worse than the available alternatives.

Simulated annealing derives its name from the temperature constant (β) which decays over time

and controls the likelihood with which the acceptance function will accept a proposal that increases

the value of the cost function. Intuitively, simulated annealing can be thought of a method for

interpolating between pure random search and greedy hill climbing. If βinit is chosen large enough

to overwhelm the costs associated with R′ and R, then early evaluations of the acceptance function

will always return true. As time goes on and the value of β decays, the acceptance function evolves

towards only accepting proposals that decrease the value of the cost function. In contrast to either

alternative, simulated annealing tends to produce far superior results and is generally as effective as

any other random search procedure that has some mechanism for dealing with local minima.

αannealing(T ,R,R′, cost) =
(
x ≤ min(1, exp(k)

)
where k = − 1

βi
·
(

cost(T ,R′)− cost(T ,R)
)

x ∼ uniform(0, 1)

β0 = βinit

βi+1 = wdecay · βi

(2.21)

Definition 31 (Mcmc Sampling). Mcmc sampling is a technique for drawing elements from a

probability density function in direct proportion to its value: regions of higher probability are
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sampled more often than regions of low probability. When applied to cost minimization, it has two

attractive properties. In the limit, the most samples will be taken from the minimum (optimal)

values of a function. And in practice, well before that behavior is observed, it functions similarly to

simulated annealing as an intelligent hill climbing method which is robust against irregular functions

that are dense with local minima. A common method [38] for transforming an arbitrary cost function

into a probability density function is shown below, where β is a constant and Z is a partition function

that normalizes the resulting distribution.

p(T ,R) =
1

Z
exp

(
− β · cost(T ,R)

)
(2.22)

Although computing Z is generally intractable, the Metropolis-Hastings acceptance function is

designed to explore density functions such as p(·) without having to do so directly, and will in the

limit produce a sequence of samples that are distributed in proportion to their cost [48]. In the

equation shown below, we use the notation q(R′|R,F) to represent the proposal distribution from

which a new rewrite R′ is sampled given the current rewrite R and the transformation kernel F(·).

αmh(T ,R,R′, cost) =

(
x ≤ min

(
1,
p(T ,R′) · q(R|R′,F)

p(T ,R) · q(R′|R,F)

))
where x ∼ uniform(0, 1)

(2.23)

In the event that the proposal distribution is symmetric (q(R′|R,F) = q(R|R′,F)) and rewrites

have fixed length — this simplifying assumption is crucial as it places a constant value on the

dimensionality of the resulting search space [1] — the acceptance function can be reduced to the

much simpler Metropolis ratio, which can be computed directly from cost(·). Under these conditions,

Mcmc sampling can be shown to be a special case of simulated annealing in which the temperature

constant remains fixed. Intuitively, it can be thought of as occupying a fixed point in the space

between pure random search and greedy hill climbing.

αmh(T ,R,R′, cost) =

(
x ≤ min

(
1,
p(T ,R′)
p(T ,R)

))

=

(
x ≤ min

(
1, exp(k)

))
where k = −β ·

(
cost(T ,R′)− cost(T ,R)

)
x ∼ uniform(0, 1)

(2.24)



Chapter 3

STOKE: A Stochastic Optimizer

for x86 64

Beginning with this chapter, we transition from discussing code sequences in the abstract to the

x86 64 instruction set. We start by describing the high-level design of Stoke, a prototype imple-

mentation of the concepts described in the previous chapter, and focus on techniques for improving

efficiency. Random search procedures such as Stoke are generally effective only insofar as they

are able to maintain a high throughput rate of proposals. As a result, the time spent proposing

modifications to a rewrite and evaluating the terms of a cost function must be kept to an absolute

minimum. While subsequent chapters build on the material described below to apply Stoke to an

increasingly complex set of application domains, the implementation described here forms the core

of what is necessary to successfully apply the use of random search procedures to exploring the space

of all possible x86 64 code sequences.

3.1 Code Sequences

Stoke uses an in-memory data structure to represent code sequences as finite length vectors of

x86 64 instructions. As described in the Chapter 2, the distinguished instruction PASS is used to

enforce the constraint that all code sequences have fixed-length. For x86 64 code sequences, the

semantics of PASS are identical to the nop instruction. Stoke additionally uses a dataflow model

of the semantics of the x86 64 instruction set to maintain a control flow graph data structure on

top of code sequences. These views are used for keeping track of basic block boundaries, identifying

loops, and performing standard dataflow analyses.

Several components of Stoke require information related to the set of live or defined registers at

a program point. For the most part these sets are computed using the standard fixed-point dataflow

13
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1 # Original 1 # Insert 1 # Delete 1 # Opcode

2 2 2 2

3 # BB 1 3 # BB1 3 # BB1 3 # BB1

4 xorq rax , rax 4 xorq rax , rax 4 PASS 4 xorq rax , rax

5 addq rax , rdi 5 addq rax , rdi 5 addq rax , rdi 5 addq rax , rdi

6 PASS 6 sbbq rdi , rdi 6 PASS 6 PASS

7 jmp .L0 7 jmp .L0 7 jmp .L0 7 jmp .L0

8 8 8 8

9 # BB2 9 # BB2 9 # BB2 9 # BB2

10 .L0: 10 .L0: 10 .L0: 10 .L0:

11 subq rdi , rsi 11 subq rdi , rsi 11 subq rdi , rsi 11 cmpq rdi , rsi

12 retq 12 retq 12 retq 12 retq

1 # Operand 1 # Swap 1 # Resize

2 2 2

3 # BB1 3 # BB1 3 # BB1

4 xorq rax , rax 4 xorq rax , rax 4 xorq rax , rax

5 addq r15 , rdi 5 subq rdi , rsi 5 addq rax , rdi

6 PASS 6 PASS 6 jmp .L0

7 jmp .L0 7 jmp .L0 7

8 8 8 # BB2

9 # BB2 9 # BB2 9 .L0:

10 .L0: 10 .L0: 10 PASS

11 subq rdi , rsi 11 addq rax , rdi 11 subq rdi , rsi

12 retq 12 retq 12 retq

Figure 3.1: Stoke transforms applied to a representative (original) code. Instruction moves (in-
sert) or (delete) and instruction, (opcode) moves change opcodes, (operand) moves change operands,
(swap) moves interchange the location of two instructions, and (resize) moves move PASS instruc-
tions between basic blocks.

algorithm. However we note that both general purpose and Sse vector registers can be decomposed

into sub-registers. For example, dil, di, and edi refer to the lowest 8, 16, and 32-bits of rdi,

respectively:

dil ⊂ di ⊂ edi ⊂ rdi (3.1)

To account for this register aliasing when calculating the read set of an instruction Stoke includes

the registers that it reads, along with all subsets of those registers. An instruction that reads di

for example, also reads dil. Analogously, when calculating the write set of an instruction Stoke

includes the registers that it writes, along with all super- and subsets of those registers. Finally,

some instructions produce undefined values and are treated as having the effect of killing any live

or defined registers.

Stoke uses the set of transformations show in Figure 3.1 to define the connectivity of the space
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of x86 64 code sequences. The proposal distribution chooses from five possible moves: the first

three are designed to induce major changes in the underlying code sequence whereas the last two

are designed to induce minor changes. The distribution contains redundancy. For example, an

instruction move can be decomposed into opcode and operand moves. However as described in the

Chapter 2, there is empirical evidence to suggest that a combination of transformations that induce

both minor and major changes can improve the performance of random search techniques.

• Instruction. An instruction is randomly selected and replaced either by a random instruction

or the PASS instruction. As shown in Figure 3.1, proposing PASS corresponds to deleting an

instruction and replacing PASS by an instruction corresponds to inserting an instruction.

• Swap. Two lines of code are randomly selected and interchanged.

• Resize. Two basic blocks are randomly selected and if a PASS instruction appears in one it

is moved to the other. As shown in Figure 3.1, this corresponds to changing the number of

instructions that can appear in a basic block while preserving a fixed length on code size.

• Opcode. An instruction is randomly selected and its opcode is replaced by a random opcode.

• Operand. An instruction is randomly selected and one of its operands is replaced by a random

operand.

These transformations are simple to implement and satisfy the ergodicity property described

in the previous chapter: any code sequence can be transformed into any other through repeated

application of instruction moves. These moves also satisfy the symmetry property. To see why,

note that the probabilities of performing all five moves are equal to the probabilities of undoing

the transformations they produce using a move of the same type: opcode and operand moves are

constrained to sample from identical equivalence classes before and after acceptance, and swap,

resize, and instruction moves are unconstrained in either direction. Regardless of type, Stoke

uses dataflow information to guarantee that a transformation never produces a code sequence that

contains a read from an undefined register location. Stoke is similarly constrained in its inability

to modify control flow. No sequence of transformations is permitted to insert, delete, or modify a

label, jump, or function call.

We note briefly that the transformations shown above all have the potential to modify both

Stoke’s control flow graph view of a code sequence and the dataflow values that are derived from

that graph. Because recomputing these data structures is expensive, Stoke takes a lazy approach

to maintaining their values. For example, Stoke only recomputes the structure of a control flow

graph after performing a resize move. Similarly, because an instruction move does not require the

computation of every dataflow value in a graph, Stoke only recomputes the values at the program

points that follow that instruction.
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3.2 Cost Functions

For any reasonably sophisticated application domain, a satisfactory definition of the hard(·) and

soft(·) constraint terms is likely to be prohibitively slow to compute in Stoke’s inner-most proposal

loop. Our implementation of Stoke takes a practical approach to this problem by using a two-tiered

method for computing the terms of a cost function. This approach is formalized in the equations

shown below which expand both the hard(·) and soft(·) constraint terms into fast and slow variants.

In general, we expect the majority of the random transformations proposed by Stoke to either

violate a hard constraint or disimprove a soft constraint. As a result, the fast variants of each term

are tuned to quickly identify those cases, whereas the slow variants of each term are reserved for

code sequences that pass the fast variants and warrant a more computationally intensive evaluation.

hard(T ,S) =

hardslow(T ,S) hardfast(T ,S) = 0

hardfast(T ,S) otherwise

soft(T ,S) =

softslow(T ,S) hard(T ,S) = 0

softfast(T ,S) otherwise

(3.2)

Many of the cost functions that we discuss in subsequent chapters have the property that they can

be partially computed once when Stoke is initialized rather than from scratch for every proposed

rewrite. We capture this property formally using the notion of function parameterization.

Definition 32 (Parametrization). A function f(x; y) takes arguments x and is parameterized by

y. Any function f(x, y) that can be partially computed in terms of a constant argument y can be

promoted to a parameterized function f(x; y).

In the chapters that follow, we also make use of the following notation when describing application-

specific cost function definitions. Recall that σ(·) is the side effect that appears in a location after

executing a code sequence S in state t. We say that valT(x, t) is the value of the bits at location

x in state t when interpreted to have type T . For notational convenience we also define functions

that represent the return value produced by executing a code sequence and interpreting the value in

an x86 64 Abi-specified location in a manner that is appropriate for the expected type (e.g. 64-bit

unsigned integer (fixed) or 64-bit double-precision floating-point (double)).

retfixed(S, t) = valfixed(σ(S, t, rax))

retdouble(S, t) = valdouble(σ(S, t, xmm0[63 : 0]))
(3.3)

In many cases, the most natural way to define the fast versions of the hard and soft constraint
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terms is with respect to evaluation of both the target and rewrite on test cases (τ). For our purposes,

we define a test case as a machine state that consists of assignments to the general purpose, Sse

vector, and condition registers of the x86 64 architecture along with a set of values for defined

locations in either the stack or the heap. Although a hand-written set of test cases is always

preferable, Stoke has a mechanism for automatically generating test cases from a user’s application.

For large software projects, we expect that a representative set of whole-program tests will exist and

Stoke may simply observe the behavior of the code during normal program execution. When no

such inputs exist a user must provide a small unit test harness that will establish whatever input

values are necessary to enable the target to execute correctly. In either case, Stoke generates test

cases using Intel’s PinTool [65]; it executes the binary provided by the user and for every invocation

of the target records both initial register state and the set of values dereferenced from memory.

Because test case evaluation must be performed in Stoke’s inner-most proposal loop, it is

crucial that the time required to do so be minimized. Our implementation of Stoke evaluates

rewrites using a JIT assembler that supports the entire x86 64 instruction set available on Intel’s

Haswell processors. This includes over 4000 variants of 400 distinct opcodes and Intel’s newest

fused multiply-add, Avx, and advanced bit manipulation instructions. Although the correctness

assumptions that we make for the target (e.g. the absence of exceptional behavior and dereferences

from undefined memory locations) do not necessarily hold for rewrites, even after we consider the

overhead required to sandbox this behavior, our implementation is able to safely dispatch test cases

at a rate of between 1 and 10 million per second on a single core.

Our implementation of Stoke protects against exceptional memory behavior by observing the

behavior of the target. From the execution of the target on test cases we obtain the maximum

number of stack locations which were used, and the minimum and maximum heap addresses that were

dereferenced in its evaluation, and then use those values to define stack and heap sandboxes to guard

the execution of a rewrite. Instructions that have the potential to perform memory dereferences are

instrumented with a function that redirects valid accesses to each of these sandboxes, and traps all

other accesses and replaces them by a safe premature termination.

In addition to sandboxing memory accesses, several other behaviors need to be checked to protect

Stoke from undefined rewrite behavior. First, simpler types of exceptional behavior that do not

have the potential to silently corrupt Stoke’s internal state (e.g. floating-point exceptions) are

handled by overloading the operating system’s signal handling routines. Second, Stoke protects

itself against rewrites that enter into infinite loops by emitting a small amount of code that counts

the number of times that a back edge is taken and causes a premature termination if a bound

calculated from the number of backwards jumps taken by the target execution is ever exceeded.

Finally, Stoke guarantees that return instructions take place only after certain invariants specific

to the x86 64 Abi have been restored. This property is guaranteed by emitting a function that

checks and then guarantees that the value of callee-saved registers are restored to the state they
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held when a rewrite began executing.

3.3 Synthesis and Optimization

Stoke can be run in either synthesis or optimization mode. These modes share the same imple-

mentation and differ only in starting point and acceptance function. Synthesis mode begins with

a random code sequence whereas optimization mode begins from a code sequence that is known to

satisfy the hard constraints of an application domain. As described previously, whereas synthesis

mode ignores the soft constraints of an application domain and only considers its hard constraints,

optimization mode uses both. Doing so allows optimization mode to improve the soft constraints

of an application domain while also experimenting with “shortcuts” that (temporarily) violate its

hard constraints. We discuss the value of this approach in the following chapter.

3.4 Solution Methods

Our implementation of Stoke uses Mcmc sampling as a random search procedure. Although the

separation of constraints into fast and slow variants is generally sufficient to achieve an acceptable

proposal throughput, there are additional performance improvements that can be obtained. Notably,

many instances of fast constraint terms are defined in terms of a set of test cases, and will involve a

reduction operator (⊕) over a sub-computation f(·) that is applied on a per-test basis. (Note in the

example below the first use of parameterization, where we assume that the behavior of the target

on the set of test cases may be precomputed once when Stoke is initialized.)

constraintfast(S; T , τ) =
⊕
t∈τ

f(S; T , τ) (3.4)

If ⊕ is monotonic (e.g. sum or max) then it is possible to rearrange the terms of the Metropolis

Hastings acceptance function to take advantage of this property. As described previously, the accep-

tance function is computed by evaluating the cost function on a proposed rewrite, noting the ratio

in total cost with the current rewrite, and then sampling a random variable x to decide whether

to accept the proposal. However, by first sampling x and then computing the maximum ratio that

the function will accept for that value, it is possible to terminate the evaluation of the cost function

as soon as that bound is exceeded and the proposal is guaranteed to be rejected. We consider the
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effect of this optimization on Stoke’s proposal throughput in the following chapter.

αmh(T ,R,R′, cost) =

(
x ≤ min

(
1, exp(k)

))
where k = −β ·

(
cost(R′; T , τ)− cost(R; T , τ)

)
x ∼ uniform(0, 1)

=

(
cost(R′; T , τ) ≤ cost(R; T , τ)− log(x)

β

)
(3.5)



Chapter 4

Fixed-Point Code Sequences

In this chapter, we consider the application of Stoke to the first of an increasingly complex set

of application domains. The optimization of short sequences of loop-free, fixed-point assembly

code sequences is a common problem in high-performance computing. However, the competing

constraints of transformation correctness and performance improvement often force even special

purpose compilers to produce sub-optimal code. Nonetheless, by combining the theory described in

Chapter 2 with the implementation described in Chapter 3, it is possible to generate aggressively

optimized versions of many non-trivial target code sequences. Specifically, beginning from binaries

compiled by llvm -O0, Stoke is able to produce provably correct code sequences that either match

or outperform the code produced by gcc -O3, icc -O3, and in some cases expert hand-written

assembly.

Most of the discussion in this chapter focuses on the Montgomery multiplication kernel used by

the OpenSsl Rsa encryption library. Figure 4.1 shows two versions of this kernel, which highlight

both the complexity of production x86 64 code sequences and Stoke’s ability to produce non-

obvious high-performance optimizations. Beginning from code compiled by llvm -O0 (116 lines, not

shown), Stoke is able to produce code (right) that is 16 lines shorter and 1.6 times faster than

the code produced by gcc -O3 (left) and even slightly faster than the expert handwritten assembly

included in the OpenSsl repository.

4.1 Fixed-Point Equality

Adapting Stoke to the domain of fixed-point computation requires a formal definition of eq(·)
constraint described in Chapter 2. Moreover, as described in Chapter 3, this definition should be

split into fast and slow variants to guarantee that Stoke is able to sustain a sufficiently high proposal

throughput.

20
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[r8:rdi] = rsi * [ecx:edx] + r8 + rdi

1 # gcc -O3 1 # STOKE

2 2

3 movq rsi , r9 3 shlq 32, rcx

4 movl ecx , ecx 4 movl edx , edx

5 shrq 32, rsi 5 xorq rdx , rcx

6 andl 0xffffffff , r9d 6 movq rcx , rax

7 movq rcx , rax 7 mulq rsi

8 movl edx , edx 8 addq r8, rdi

9 imulq r9, rax 9 adcq 0, rdx

10 imulq rdx , r9 10 addq rdi , rax

11 imulq rsi , rdx 11 adcq 0, rdx

12 imulq rsi , rcx 12 movq rdx , r8

13 addq rdx , rax 13 movq rax , rdi

14 jae .L0

15 movabsq 0x100000000 , rdx

16 addq rdx , rcx

17 .L0:

18 movq rax , rsi

19 movq rax , rdx

20 shrq 32, rsi

21 salq 32, rdx

22 addq rsi , rcx

23 addq r9 , rdx

24 adcq 0, rcx

25 addq r8 , rdx

26 adcq 0, rcx

27 addq rdi , rdx

28 adcq 0, rcx

29 movq rcx , r8

30 movq rdx , rdi

Figure 4.1: Montgomery multiplication kernel from the OpenSsl Rsa library. Compilations shown
for gcc -O3 (left) and a Stoke (right).
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al bl cl dl
σ(T , t, ·) 1111 0000 0000 0000
σ(R, t, ·) 0000 1000 1100 1111

δ = σ(T , t, al)⊕ σ(R, t, ·) 1111 0111 0011 0000
popcnt(δ) 4 3 2 0

wmis · 1(al 6= ·) 0 1 1 1

reg(R; T , τ) = 4

reg′(R; T , τ) = min(4, 3 + 1, 2 + 1, 1)

= 1

Figure 4.2: Strict versus relaxed equality functions for a target in which ax is live out and the correct
result appears in an incorrect location.

A natural choice for the implementation of the eqslow(·) constraint is the use of a symbolic model

checker (validate(·)) [12] and a binary indicator function (1(·)) that returns one if its argument

is true and zero otherwise. Stoke uses a sound procedure to validate the equality of loop-free

code sequences [6]: both target and rewrite are converted into Smt formulae in the quantifier free

theory of bit-vector arithmetic used by Z3 [36], producing a query that asks whether both sequences

produce the same side effects on live outputs when executed from the same initial machine state.

Depending on type, registers are modeled as between 8- and 256-bit vectors and memory is modeled

as two vectors: a 64-bit address and an 8-bit value (x86 64 is byte addressable).

eqslow(R; T ) = 1− 1(validate(T ,R)) (4.1)

Stoke asserts the constraint that both sequences agree on initial machine state with respect to

the live inputs defined by the target. For each instruction in the target, it also asserts a constraint

that encodes the transformation it represents on a machine state and chains these together to produce

a constraint that describes the state of the live outputs defined by the target. An analogous set of

constraints are asserted for the rewrite, and for all pairs of memory accesses at addresses addr1 and

addr2, Stoke adds an additional constraint that relates their values: addr1 = addr2 ⇒ val1 = val2.

Using these constraints, Stoke asks Z3 if there exists an initial machine state that causes the

two sequences to produce different results. If the answer is “no”, then the sequences are determined

to be equal. If the answer is “yes”, then Z3 produces a witness that can be added to the set of

test cases used by the eqfast(·) constraint described below. Although doing so changes the search

space defined by the cost function, in practice the number of failed validations that are required to

produce a robust set of test cases that can be used to accurately predict correctness is quite low.

Stoke makes two simplifying assumptions to keep runtimes tractable. It assumes that stack

addresses are represented exclusively as constant offsets from rsp. This allows stack locations to

be treated as named variables in llvm -O0 code, which exhibits heavy stack traffic. Additionally,
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Figure 4.3: Strict versus relaxed cost functions during synthesis for the Montgomery multiplication
benchmark. Random search results shown for reference.

it treats 64-bit multiplication and division as uninterpreted functions which are constrained by a

small set of special-purpose axioms. Whereas Z3 diverges when reasoning about two or more such

operations, the benchmarks that we consider in this chapter can contain up to four per sequence.

While the effectiveness of a model checker in this domain is encouraging, the total number of

invocations that can be performed per second using current symbolic validator technology is quite

low. For even modestly sized code sequences, it still well below 100. This observation motivates

a dramatically different definition of the eqfast(·) constraint which is based on the evaluation of

test cases. Intuitively, we execute a proposed rewrite on a set of inputs and measure “how close”

the output matches the target for those same inputs by counting the number of bits that differ

between live outputs (i.e., the Hamming distance). In addition to being much faster than using a

theorem prover, this approximation of equivalence has the added advantage of producing a smoother

landscape than the 0/1 output of a symbolic equality test; it provides a useful notion of “almost

correct” that can be used to help guide Stoke’s search procedure.

eqfast(R; T , τ) =
⊕
t∈τ

reg(R; T , t) + mem(R; T , t) + err(R; T , t)

where
⊕

=
∑

(·)
(4.2)

Recall that `(·) are the live outputs of a code sequence and that σ(·) are the side effects produced

by evaluating a code sequence on a test case. In Equation 4.2, reg(·) is used to compare the side

effects that both target and rewrite produce on the live register outputs (ρ(·)) defined by the target.

These outputs can include general purpose, Sse, and condition registers; reg(·) simply computes

the number of bits that the results differ by using the population count function (popcnt(·)) which

returns the number of 1-bits in the 64-bit representation of an integer.

reg(R; T , t) =
∑

r∈ρ(T )

popcnt(σ(T , t, r)⊕ σ(R, t, r)) (4.3)
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Figure 4.4: Proposals evaluated per second versus test cases evaluated prior to early termination,
for the Montgomery multiplication synthesis benchmark. Cost function shown for reference.

For brevity, we omit the definition of mem(·) which is analogous. The remaining term err(·) is

used to distinguish code sequences that exhibit undefined behavior by counting and then penalizing

the number of segfaults, floating-point exceptions, and reads from undefined memory or registers,

that occur during execution of a rewrite. We note that sigsegv(·) is defined in terms of the target

which determines the set of addresses that may be successfully dereferenced by a rewrite for a

particular test case. As described in Chapter 3, rewrites must be run in a sandbox to ensure that

this behavior can be detected safely at runtime. The extension to additional types of exceptions is

straightforward.

err(R; T , t) = wss · sigsegv(R; T , t)

+ wsf · sigfpe(R; t)

+ wur · undef((R; t)

(4.4)

Although the definition given above is intuitive, it is not as effective at guiding Stoke towards

correct rewrites as it could be. An important improvement stems from the observation that the

definition of reg(·) in Equation 4.3 is unnecessarily strict. An example is shown in Figure 4.2 for a

target in which register al is live out. A rewrite that produces the inverse of the desired value in al

is assigned the maximum possible cost in spite of the fact that it produces the correct value, only in

the incorrect location: dl. We can improve this definition by rewarding rewrites that produce correct

(or nearly correct) values in incorrect locations. The relaxed definition shown below examines all

registers of equivalent bit-width (bw(·)), selects the one that most closely matches the value of the

target register, and assigns a small misalignment penalty (wmis) if the selected register differs from

the original. Using this definition, the rewrite is assigned a cost of just wmis.

reg′(R; T , τ) =
∑

r∈ρ(T )

min
r′∈bw(r)

R(T ,R, r, r′)

where R(T ,R, r, r′) = popcnt(σ(T , t, r)⊕ σ(R, t, r′)) + wmis · 1(r 6= r′)

(4.5)
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Figure 4.5: Predicted versus observed runtimes for selected code sequences. Outliers are character-
ized by instruction level parallelism and memory effects.

Although it is possible to relax the definition of memory equality analogously, the time required

to compute this term grows quadratically with the size of the target’s memory footprint. While this

approach suffices for the experiments described in this and the following chapters, a more efficient

implementation is necessary for more complex code sequences. Figure 4.3 shows the result of using

these improved definitions during synthesis for the Montgomery Multiplication benchmark. In the

amount of time required for the relaxed cost function to converge, the original strict version obtains

a minimum cost that is only slightly superior to a purely random search. The dramatic improvement

can be explained as an implicit parallelization of the search procedure. Accepting correct values in

arbitrary locations allows Stoke to simultaneously explore as many alternate computations as can

fit within a fixed length code sequence.

Because our implementation of eqfast(·) is defined in terms of a monotonic reduction operator, it

is also possible to use the early termination optimization described in Chapter 3 for short-circuiting

test case evaluations. Figure 4.4 shows the result of applying this optimization during synthesis for

the Montgomery multiplication benchmark. As the value of the cost function decreases, so too does

the average number of test cases that must be evaluated prior to early termination. This produces a

considerable increase in the number of proposals evaluated per second, which at peak falls between

100,000 and 1 million.

4.2 Performance Estimation

Similar considerations to the ones described above apply to the implementation of the perf fast(·)
term. Although it might seem natural to simply JIT compile both target and rewrite and compare

runtimes, the amount of time required to execute a code sequence sufficiently many times to elim-

inate transient machine effects is prohibitively expensive. Moreover, natively executing randomly

generated rewrites requires that they be sandboxed. As a result, any performance estimates obtained

in this fashion would reflect the performance of the instrumented code rather than the code that we
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were interested in evaluating.

To account for this, we define a simple heuristic for approximating runtime which is based on a

static approximation of the average latencies (lat(·)) of instructions. Although we do not consider

code sequences that contain loops in this chapter, we note that the definition can be extended to

loops by simply penalizing instruction within basic blocks at loop nesting depth (nd(·)) greater than

zero by a penalty term wnest. We will revisit this definition in subsequent chapters, As a result, we

assign it the distinguished identifier λ(·).

softfast(R) = λ(R) =
∑
b∈R

∑
i∈b

w
nd(b)
nest · E

[
lat(i)

]
(4.6)

Figure 4.5 shows a reasonable correlation between this heuristic and actual runtimes for a rep-

resentative corpus of code sequences. Outliers are characterized either by disproportionately high

instruction level parallelism at the micro-op level or inconsistent memory access times. A more accu-

rate model of the higher order performance effects introduced by a modern Cisc processor is feasible

if tedious to construct and would likely be necessary for more complex code sequences. Regardless,

the approximation is sufficient for the benchmarks that we consider in this and subsequent chapters.

Errors that result from this fast approximation are addressed by defining the perfslow(·) con-

straint in terms of an uninstrumented JIT compilation method that benchmarks (time(·)) rewrites

on a representatively large set of test cases. Recall from Chapter 3 that it is safe to use uninstru-

mented code sequences in this definition because the perfslow(·) constraint is only computed for code

sequences that have a zero eqslow(·) cost. We will revisit this definition in subsequent chapters as

well and assign it the distinguished identifier Λ(·).

softslow(R, τ) = Λ(R, τ) =
∑
t∈τ

time(R, t) (4.7)

4.3 Experiments

We evaluated our fixed-point implementation of Stoke on benchmarks drawn from both the litera-

ture and high-performance codes. For each benchmark we used 32 random test cases and a uniform

proposal distribution. Four Stoke search threads were run in synthesis mode with a computational

budget of 15 minutes, and for each zero cost rewrite that was discovered, a second search thread

was run in optimization mode for an additional 15 minutes. Equal weight given to the equality and

performance terms, the annealing constant β was set to 1.0, and moves were proposed with equal

probability. Performance improvements and runtimes (we report best results on an 8 core 3.5 GHz

Intel i7-4770K) are summarized in Figure 4.9. Beginning from binaries compiled using llvm -O0,

Stoke was able to produce rewrites that matched the performance of code produced by gcc and
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int p21(int x, int a, int b, int c) {

return ((-(x == c)) & (a ^ c)) ^

((-(x == a)) & (b ^ c)) ^ c;

}

1 # gcc -O3 1 # STOKE

2 2

3 movl edx , eax 3 cmpl edi , ecx

4 xorl edx , edx 4 cmovel esi , ecx

5 xorl ecx , eax 5 xorl edi , esi

6 cmpl esi , edi 6 cmovel edx , ecx

7 sete dl 7 movq rcx , rax

8 negl edx

9 andl edx , eax

10 xorl edx , edx

11 xorl ecx , eax

12 cmpl ecx , edi

13 sete dl

14 xorl ecx , esi

15 negl edx

16 andl esi , edx

17 xorl edx , eax

Figure 4.6: Cycling Through 3 Values benchmark.

icc (the two produce essentially identical results). In several cases, the rewrites were comparable

in performance to handwritten assembly.

Hacker’s Delight [102] — often referred to as “the bible of bit-twiddling hacks” — is a col-

lection of techniques for encoding otherwise complex algorithms as small loop-free sequences of

bit-manipulating instructions. Gulwani [46] cites this text as a source of benchmarks for program

synthesis and optimization and identifies a 25 function benchmark that ranges in complexity from

turning off the right-most bit in a word, to rounding up to the next highest power of 2 or return-

ing the upper 32 bits from a 64-bit multiplication. For brevity, we discuss only the programs for

which Stoke was able to discover an algorithmically distinct rewrite, meaning a rewrite beyond the

standard semantics preserving transformations of a traditional optimizing compiler.

Figure 4.6 shows the “Cycle Through 3 Values” benchmark, which takes an input x, and trans-

forms it to the next value in the sequence 〈a, b, c〉: a becomes b, b becomes c, and c becomes a.

Hacker’s Delight suggests that the most natural implementation of this function is a sequence of

conditional assignments, but that for an ISA without conditional move intrinsics the implementation

shown is cheaper than one that uses branch instructions. For x86 64, which has conditional move

intrinsics, this is an instance of premature optimization. However, neither gcc nor icc are able to
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detect this and are forced to transcribe the code as written. There are no sub-optimal subsequences

in the resulting code; both are simply unable to reason about the semantics of the function as a

whole. Stoke on the other hand, was able to rediscover the natural implementation from the 41

line llvm -O0 binary.

In similar fashion, for machines without 64-bit instructions, the implementation that Hacker’s

Delight recommends for the “Compute the Higher Order Half of a 64-bit Product” multiplies two

32-bit inputs in four parts and aggregates the results. The computation resembles the Montgomery

multiplication benchmark, and Stoke is able to discover a rewrite that requires a single multipli-

cation using the appropriate 64-bit intrinsic. Stoke was also able to discover a number of typical

superoptimizer rewrites. These include using the popcnt intrinsic, which counts the number of 1-bits

in an integer, as an intermediate step in the “Compute Parity” and “Determine if an Integer is a

Power of 2” benchmarks.

Saxpy (Single-precision Alpha X Plus Y) is a level 1 vector operation in the Basic Linear Algebra

Subsystems Library [9]. The function makes heavy use of heap accesses and presents the opportunity

for optimization using vector intrinsics. To give Stoke the opportunity to take advantage of this

property, our implementation is unrolled four times by hand, as shown in Figure 4.7. Despite heavy

annotation to indicate that the arrays pointed to by x and y are aligned and do not alias each

other, the production compilers either could not detect the possibility of a compilation using vector

intrinsics, or were precluded from doing so by some internal heuristic.

Stoke on the other hand was able to discover the natural implementation: the constant a is

broadcast four ways from a general purpose register into an Sse register, and then multiplied by

and added to the contents of x and y, which are loaded into Sse registers four elements at a time.

The four way broadcast does not appear anywhere in either the gcc -O3 code, or in the original 61

line llvm -O0 code.
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void SAXPY(int* x, int* y, int a) {

x[i] = a * x[i] + y[i];

x[i+1] = a * x[i+1] + y[i+1];

x[i+2] = a * x[i+2] + y[i+2];

x[i+3] = a * x[i+3] + y[i+3];

}

1 # gcc -O3 1 # STOKE

2 2

3 movslq ecx ,rcx 3 movd edi ,xmm0

4 leaq (rsi ,rcx ,4),r8 4 shufps 0,xmm0 ,xmm0

5 leaq 1(rcx),r9 5 movups (rsi ,rcx ,4),xmm1

6 movl (r8),eax 6 pmullw xmm1 ,xmm0

7 imull edi ,eax 7 movups (rdx ,rcx ,4),xmm1

8 addl (rdx ,rcx ,4),eax 8 paddw xmm1 ,xmm0

9 movl eax ,(r8) 9 movups xmm0 ,(rsi ,rcx ,4)

10 leaq (rsi ,r9 ,4),r8

11 movl (r8),eax

12 imull edi ,eax

13 addl (rdx ,r9 ,4),eax

14 leaq 2(rcx),r9

15 addq 3,rcx

16 movl eax ,(r8)

17 leaq (rsi ,r9 ,4),r8

18 movl (r8),eax

19 imull edi ,eax

20 addl (rdx ,r9 ,4),eax

21 movl eax ,(r8)

22 leaq (rsi ,rcx ,4),rax

23 imull (rax),edi

24 addl (rdx ,rcx ,4),edi

25 movl edi ,(rax)

Figure 4.7: Saxpy benchmark.
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while (head != 0) {

head ->val *= 2;

head = head ->next;

}

1 # gcc -O3 1 # STOKE

2 2

3 movq -8(rsp), rdi 3 .L1:

4 .L1: 4 movq -8(rsp), rdi

5 sall (rdi) 5 sall (rdi)

6 movq 8(rdi), rdi 6 movq 8(rdi), rdi

7 .L2: 7 movq rdi , -8(rsp)

8 testq rdi , rdi 8 .L2:

9 jne .L1 9 movq -8(rsp), rdi

10 testq rdi , rdi

11 jne .L1

Figure 4.8: Linked List Traversal benchmark.

Figure 4.8 shows the linked-list traversal benchmark from [6]. The code iterates over a list

of integers and multiplies each of the elements by two. The code is unique with respect to the

benchmarks discussed so far in that it contains a loop. As a result, Stoke is unable to optimize

the function as a whole, and must focus only on its inner-most loop-free fragment — we will discuss

solutions to this limitation in Chapter 6. Stoke discovers the same transformations as the optimizer

described in [6]: the elimination of stack traffic and a strength reduction from multiplication to bit

shifting. However it fails to eliminate the instructions that copy the head pointer from, and back to,

the stack on every iteration of the loop. In contrast, both production compilers were able to eliminate

the memory traffic by caching the pointer in a register prior to entering the loop. Unsurprisingly,

the rewrite discovered by Stoke is slower.

Finally, as shown in Figure 4.9, Stoke was unable to synthesize a rewrite for three of the

Hacker’s Delight Benchmarks. All three benchmarks, despite being quite different, have the same

interesting property that they produce results that differ by only a single bit from a simple yet

completely incorrect alternative. The “Round Up to the Next Highest Power of 2” benchmark is

nearly indistinguishable from the function that always returns zero. The same is true of the “Next

Highest with Same Number of 1-bits”, and a small transformation to the “Exchanging Two Fields”

benchmark with respect to the identity function. Using its optimization routine alone Stoke was

still able to discover rewrites that performed comparably to the code produced by the production

compilers. Nonetheless, we do not expect this to be the case in general. For benchmarks of this

form, a more sophisticated cost function is surely necessary.
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Speedup (×100%) Runtime (s)
gcc/icc -03 STOKE Synth. Opt.

p01 1.60 1.60 0.15 3.05
p02 1.60 1.60 0.16 3.14
p03 1.60 1.60 0.34 3.45
p04 1.60 1.60 2.33 3.55
p05 1.60 1.60 0.47 3.24
p06 1.60 1.60 1.57 6.26
p07 2.00 2.00 1.34 3.10
p08 2.20 2.20 0.63 3.24
p09 1.20 1.20 0.26 3.21
p10 1.80 1.80 7.49 3.61
p11 1.50 1.50 0.87 3.05
p12 1.50 1.50 5.29 3.34
p13 3.25 3.25 0.22 3.08
p14 1.86 1.86 1.43 3.07
p15 2.14 2.14 2.83 3.17
p16 1.80 1.80 6.86 4.62
p17 2.60 2.60 10.65 4.45
p18 2.44 2.50 0.30 4.04
p19 1.93 1.97 - 18.37
p20 1.78 1.78 - 36.72
p21 1.62 1.65 6.97 4.96
p22 3.38 3.41 0.02 4.02
p23 5.53 6.32 0.13 4.36
p24 4.67 4.47 - 48.90
p25 2.17 2.34 3.29 4.43

mont mul 2.84 4.54 319.03 111.64
linked list 1.10 1.09 3.94 8.08
SAXPY 1.82 2.46 10.35 6.66

Figure 4.9: Speedups over llvm -O0 versus Stoke runtimes. Benchmarks for which an algorith-
mically distinct rewrite was discovered are shown in bold; synthesis timeouts are annotated with a
−.
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Figure 4.10: Search space for the Montgomery multiplication benchmark: O0 and O3 codes are
densely connected, whereas expert code is reachable only by an extremely low probability path.

4.4 Discussion

An early version of our fixed-point implementation of Stoke was able to transform llvm -O0 code

into the equivalent of gcc -O3 code, but was unable to produce results that were competitive with

expert hand-written code. The reason is suggested by Figure 4.10, which abstractly depicts the

search space for the Montgomery multiplication benchmark shown in Figure 4.1. For loop-free code

sequences, llvm -O0 and gcc -O3 differ primarily in stack use and instruction selection, but otherwise

produce algorithmically similar results. Compilers are generally designed to compose many small

local transformations: dead code elimination deletes an instruction, constant propagation changes a

register to an immediate, and strength reduction replaces a multiplication by an add. Sequences of

local optimizations such as these correspond to regions of equivalent code sequences that are densely

connected by very short sequences of moves (often just one) and easily traversed by local search

methods. Beginning from llvm -O0 code, Mcmc sampling will quickly improve local inefficiencies

one by one and hill climb its way to the equivalent of gcc -O3 code.

The code discovered by Stoke occupies an entirely different region of the search space; it rep-

resents a completely distinct algorithm for implementing the kernel at the assembly level. The only

method for a local search procedure to produce code of this form from compiler generated code is

to traverse the extremely low probability path that builds the code in place next to the original (all

the while increasing its cost) only to delete the original code at the very end.

Although Mcmc sampling is guaranteed to traverse this path in the limit, the likelihood of

it doing so in any reasonable amount of time is so low as to be useless in practice. It was this

observation that motivated the separation of Stoke’s cost minimization routine into two separate

phases:

• A synthesis phase focused solely on correctness, which attempts to locate regions of equivalent

code sequences that are distinct from the region occupied by the target.
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Figure 4.11: Cost over time versus percentage of instructions that appear in the final zero-cost
rewrite for the Montgomery multiplication synthesis benchmark.

• An optimization phase focused on performance, which searches for the fastest sequence within

each of those regions.

Even given this insight, it is still perhaps unintuitive that synthesis should be able to produce

a correct rewrite from such an enormous search space in a tractable amount of time. In our ex-

perience, synthesis is effective precisely when it is possible to discover portions of a correct rewrite

incrementally, rather than all at once. Figure 4.11 compares cost over time against the percentage

of instructions that appear in the final rewrite for the Montgomery multiplication benchmark. As

synthesis proceeds, the percentage of correct code increases in inverse proportion to the value of the

cost function. While this is encouraging and there are many code sequences that can be synthesized

in pieces, there are many that can not. In the limit, any complex computation that produces a single

boolean value will pose a serious problem. Fortunately, even when synthesis fails, optimization is

still possible. It must simply proceed only from the region occupied by the target as a starting point.

In this chapter, we showed a new approach to improving the runtime performance of loop-free

fixed-point code sequences which formulates program optimization as a stochastic search problem.

Compared to a traditional compiler, which factors optimization into a sequence of small indepen-

dently solvable subproblems, our framework is based on cost minimization and considers the com-

peting constraints of transformation correctness and performance improvement simultaneously. We

showed that an Mcmc sampler can be used to rapidly explore cost functions of this form and produce

low cost samples which correspond to high quality optimizations. Although our method sacrifices

completeness, the scope of programs which we are able to consider, and the quality of the rewrites

we produce, far exceed those of preexisting techniques.

Although our fixed-point implementation of Stoke is in many cases able to produce rewrites

that are competitive with or outperform the code produced by production compilers, there remains

substantial room for improvement. Future work will certainly involve the development of cost

functions that are robust against targets with numerous deceptively attractive — albeit completely
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incorrect — synthesis alternatives.

4.5 Related Work

Although techniques that preserve completeness are effective within certain domains, their general

applicability remains limited. The shortcomings are best highlighted in the context of the Mont-

gommery Multiplication code sequence shown at the beginning of this chapter. The code does the

following: two 32-bit values, ecx and edx, are concatenated and multiplied by the 64-bit value rsi

to produce a 128-bit product. The 64-bit values in rdi and r8 are added to that product, and

the result is stored in r8 and rdi. The version produced by gcc -O3 (left) implements the 128-bit

multiplication as four 64-bit multiplications and a summation of the results. In contrast, the version

produced by Stoke (right), uses a hardware intrinsic which requires that the inputs be permuted

and moved to distinguished register locations so that the multiplication may be performed in a single

step. The odd looking move on line 4 (right) produces the non-obvious but necessary side effect of

zeroing the upper 32 bits of rdx.

Massalin’s superoptimizer [70] explicitly enumerates sequences of code of increasing length and

selects the first that behaves identically to the input sequence on a set of test cases. Massalin reports

optimizing instruction sequences of up to length 12, but only after restricting the set of enumerable

opcodes to between 10 and 15. In contrast, Stoke uses a large subset of the nearly 400 x86 64

opcodes, some with over 20 variations, to produce the 11 instruction kernel shown in Figure 4.1. It

is unlikely that Massalin’s approach would scale to an instruction set of this size.

Denali [57], and Equality Saturation [97], achieve improved scalability by only considering code

sequences that are equivalent to the input sequence; candidates are explored through successive

application of equality preserving transformations. Because both techniques are goal-directed, they

dramatically improve the number of primitive instructions and the length of sequences that can be

considered in practice. However, both also rely heavily on expert knowledge. It is unclear whether

an expert would know to encode the multiplication transformation shown in Figure 4.1, or whether

a set of expert rules could ever cover the set of all possible interesting optimizations.

Bansal’s peephole superoptimizer [6] automatically enumerates 32-bit x86 optimizations and

stores the results in a database for later use. By exploiting symmetries between code sequences

that are equivalent up to register renaming, Bansal was able to scale this approach to optimizations

mapping code sequences of up to length 6 to sequences of up to length 3. The approach has the dual

benefit of hiding the high cost of superoptimization by performing search once-and-for-all offline and

eliminating the dependence on expert knowledge. To an extent, the use of a database also allows the

system to overcome the low upper bound on instruction length through the repeated application of

the optimizer along a sliding code window. Regardless, the kernel shown in Figure 4.1 has a property

shared by many real world code sequences that no sequence of local optimizations will transform



CHAPTER 4. FIXED-POINT CODE SEQUENCES 35

the code produced by gcc -O3 into the code produced by Stoke.

Finally, Sketching [93] and Brahma [46] address the closely related component-based sequence

synthesis problem. These systems rely on either a declarative specification, or a user-specified partial

sequence, and operate on statements in simplified bit-vector calculi rather than directly on hardware

instructions. Liang [64] considers the task of learning code sequences from test cases alone, but at

a similarly high level of abstraction. Although useful for synthesizing non-trivial code, the internal

representations used by these systems preclude them from reasoning about the low-level performance

properties of the code that they produce.



Chapter 5

Floating-Point Code Sequences

In this chapter we extend the application of Stoke to floating-point computations. The aggressive

optimization of floating-point code sequences is another important problem in high-performance

computing. Nonetheless, both programming languages and compilers are limited in their ability

to produce such optimizations, which in many cases can only be obtained by carefully sacrificing

precision. Because most programming languages lack the appropriate mechanisms for a program-

mer to communicate precision requirements to the compiler there is often little opportunity for

optimization.

In most cases a programmer’s only mechanism for communicating precision requirements to a

compiler is through the choice of data-type (e.g. float or double). This is at best a coarse ap-

proximation and at worst wholly inadequate for describing the subtleties of many high-performance

numeric computations. Consider the task of building a customized implementation of the exponen-

tial function, which must be correct only to 48-bits of precision and defined only for positive inputs

less than 100. An expert could certainly craft this kernel at the assembly level, however the process

is well beyond the abilities of the average programmer.

In this chapter, we show that by using Stoke we are able to generate custom implementations

of the trigonometric and exponential kernels in Intel’s handwritten implementation of the C numeric

library math.h, which are specialized to between 1- and 64-bits of floating-point precision, and are

up to 6 times faster than the original code. Additionally, we show that for real world programs such

as a massively parallel direct numeric simulation of heat transfer and a ray tracer, we are able to

obtain 30% full-program speedups by aggressively optimizing floating-point kernels that can tolerate

a loss of precision while retaining end-to-end correctness.

The aggressive nature of the optimizations produced by Stoke creates a difficulty in checking the

correctness of the resulting code sequences. There are two possible approaches using currently known

static verification techniques. However, neither is capable of formally verifying the kernels that arise

36
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in our applications. Existing decision procedures for floating-point arithmetic that are based on bit-

blasting could in principle be used to prove equivalence of an original and an optimized code within a

specified error tolerance. However in practice these techniques can only handle instruction sequences

on the order of five lines long, which is two orders of magnitude too small for our benchmarks.

Abstract interpretation is the alternative, but no static analysis has even attempted to deal with the

complexity of high-performance floating-point kernels. In particular, no existing analysis is capable of

reasoning about mixed floating- and fixed-point code, yet many floating-point computations include

non-trivial sections of fixed-point computation that affect floating-point outputs in non-obvious ways.

Randomized testing is another possible approach, but the guarantees that it offers are only

empirical. Although passing any reasonable set of test cases — random or not — is encouraging

and for many real code bases represents a de facto definition of correctness, random testing offers no

formal guarantees beyond the inputs used in those tests. Several researchers have attempted to give

statistical guarantees based on the absence of errors following the observation of a very large number

of tests. However, in the absence of a formal characterization of the distribution of errors relative

to program inputs these guarantees are statistically unsound and offer no stronger guarantees than

plain random testing.

To address this issue, this chapter shows a novel randomized method that does not suffer from

these shortcomings and can be used to establish strong evidence for the correctness of floating-point

optimizations. We treat the difference in outputs produced by a floating-point kernel, f , and an

optimization, f ′ as an error function, E(x) = |f(x) − f ′(x)|, and use a robust randomized search

technique to attempt to find the largest value of E(y) for some input y. In the limit the search is

theoretically guaranteed to find the maximum value in the range of E. However, well before that

limiting behavior is observed we show that it is possible to use a statistical measure to establish

confidence that the search has converged and that an optimization is correct to within the specified

error tolerance. Borrowing a term from the computational science community, we refer to this

as a technique for validating optimizations to distinguish it from the stricter standard of formal

verification. Although our technique provides evidence of correctness, we stress that it does not

guarantee it.

Using this technique, we are able to establish upper bounds on the imprecision of an optimization

that are tighter than those produced by either sound decision procedures or abstract interpretation

techniques for benchmarks where these techniques are applicable. For benchmarks not amenable to

either static technique we are able to produce upper bounds that either cannot be refuted or are

within a small margin of those exposed by random testing that is orders of magnitude more intensive

than the effort expended on validation. Although there exist optimizations that we do not expect

this technique to perform adequately on we believe that the results we obtain represent the potential

for a considerable improvement over current practice.
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Type exponent (e) fraction (f) Value

Zero 0 0 (−1)s · 0
Denormal 0 6= 0 (−1)s · 2−1022 · 0.f
Normal [1, 2046] unconstrained (−1)s · 2e−1023 · 1.f
Infinity 2047 0 (−1)s · ∞

NaN 2047 6= 0 (−1)s · ⊥

Figure 5.1: IEEE-754 double-precision floating-point standard.

5.1 Floating-Point Equality

The primary complication in adapting Stoke to floating-point programs is identifying an appropri-

ate notion of correctness. The floating-point design goal of being able to represent both extremely

large and small values in a compact bit-wise representation is fundamentally at odds with the ability

to maintain uniform precision within that range.

Figure 5.1 shows the IEEE-754 standard for double-precision floating-point values. The standard

is capable of representing magnitudes between 10−324 and 10308 as well as symbolic constants such as

infinity and not a number, but cannot precisely represent the value 0.1. Worse, values are distributed

extremely non-uniformly, with exactly half of all floating-point values located between −1.0 and

1.0. The inability to precisely represent real values is further complicated by the rounding error

introduced by basic arithmetic operations. Most calculations on floating-point numbers produce

results that must be rounded back to a representable value. Furthermore, many operations are

implemented in a way that requires their operands to be normalized to the same exponent. For

operands that vary greatly in magnitude, many digits of precision are discarded in the normalization

process. Although the IEEE standard places strict bounds on these errors they are nonetheless quite

difficult to reason about as even basic arithmetic identities such as associativity do not generally

hold. As a result, floating-point optimizers are often forced to preserve programs as written and

abandon aggressive optimization.

Our method for reasoning about correctness in the presence of these complications is the fol-

lowing. Given two floating-point programs, we say that an optimization is correct if the results it

produces are all within a rounding error η of the result placed in the corresponding location by the

original program. Two simple methods for representing rounding error are the absolute and relative

error functions. These functions are defined over the real numbers R, of which the representable
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Figure 5.2: Error functions computed for adjacent double-precision values. Absolute error diverges
for large inputs; relative error for sub-normal inputs. Neither are defined for infinity or NaN.

floating-point numbers F are a subset.

abs(r1, r2) : R× R→ R = |r1 − r2|

rel(r1, r2) : R× R→ R =
∣∣∣r1 − r2

r1

∣∣∣ (5.1)

It turns out however that there are serious problems with using either absolute or relative error.

Figure 5.2 shows the results obtained when abs(·) is computed over adjacent floating-point values;

errors between large values are weighted more heavily than errors between small values. A similar

phenomenon occurs for the relative error function, which diverges for denormal and zero values. In

both cases, these inconsistencies are only magnified when applied to non-adjacent values. For these

reasons, rounding error is typically measured in terms of uncertainty in the last place (ULPs), which

measures the difference between a real number and the closest representable floating point value.

ULP(f, r) : F× R→ R =
∣∣∣d1.d2 . . . dp −

r

βe

∣∣∣βp−1

where f ≡ d1.d2 . . . dp · βe
(5.2)

Compared to absolute and relative error, this measure has the advantage of representing error

uniformly across the entire range of representable floating-point values (including infinity and NaNs).

Furthermore, it can be shown [100] that for normal values the relationship between ULPs and

relative error is well-behaved and follows the relation shown below where the upper and lower bounds

correspond to the maximum and minimum values in the right half of Figure 5.2(b). Intuitively, ULPs

can be thought of as a uniform measure of rounding error which for most representable floating-point

inputs is an approximation of relative error that is correct to within an order of magnitude.

∀r∃f.

(
1

2
β−p ≤ 1

2
ULP(f, r) ≤ β

2
β−p

)
(5.3)

We use this definition of rounding error to extend the fast component of Stoke’s equality

term as follows. Recall that Stoke defines test case error with respect to the weighted sum of
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three terms that represent errors appearing in registers, errors appearing in memory, and divergent

signal behavior. Our extension is parameterized by a new user-defined constant η which defines the

minimum unacceptable ULP rounding error.

eqfast(R; T , t, η) = wreg · reg(R; T , t, η) +

wmem ·mem(R; T , t, η) +

wsig · sig(R; T , t)

(5.4)

Of the three terms shown above we leave the last unmodified and only describe our new definition

of register error. Our definition of memory error is analogous and it is a straightforward extension

to combine these definitions with the original fixed-point definitions in a way that is sensitive to the

type (fixed- or floating-point) of the value stored in a particular location. Recall that σ(·) is the

side effect that appears in a location after evaluating a code sequence on a test case. We define the

error in a register to be the difference in ULPs between the value it contains, and the value placed

in that same register by the target. All values in excess of η are scaled down toward zero and values

below this bound are replaced by zero.

reg(R; T , t, η) =
∑

r∈ρ(T )

max
(

0,ULP(fR, fT )− η
)

where fR = valdouble(σ(R, t, r))

fT = valdouble(σ(T , t, r))

(5.5)

In contrast to the fixed-point implementation of Stoke described in the previous chapter, here

we lift the definition of test case correctness to sets by using max(·) as a reduction operator in place

of summation. This follows from the observation that for large test case sets the repeated summation

of very large ULP errors has the potential to produce integer overflow. Using max(·) guarantees that

regardless of the number of test cases used the value of the equality term never exceeds ULLONG MAX.

eqfast(R; T , τ, η) =
⊕
t∈τ

eqfast(R; T , t, η)

where
⊕

= max(·)
(5.6)

As with Stoke’s fixed-point equality term, this function provides a useful measure of partial

correctness, which has the effect of smoothing the search space and guiding Stoke gradually towards

optimizations. Additionally, it also provides Stoke with a robust mechanism for ignoring errors that

the user considers insignificant and not worth penalizing. Because the sig(·) term in Equation 5.4 is

not parameterized by η this function is guaranteed to return positive values for any set of test cases

that exposes divergent signal behavior.

The computation of ULP rounding error shown in Equation 5.2, which is defined in terms of the
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uint64_t ULP(double x, double y) {

int64_t xx = *(( int64_t *)&x);

xx = xx < 0 ? LLONG_MIN - xx : xx;

int64_t yy = *(( int64_t *)&y);

yy = yy < 0 ? LLONG_MIN - yy : yy;

return xx >= yy ? xx - yy : yy - xx;

}

Figure 5.3: Platform-dependent C code for computing ULP distance between two double-precision
values. Note the reordering of negative values.

comparison between a real number and a floating-point number is unnecessarily complicated when

applied to the comparison of two floating-point values. In comparing the live outputs of two programs

we instead use the simpler version shown below which simply counts the number of floating-point

numbers between two values. This function has the advantage of producing only integer results and

greatly simplifies the program logic associated with cost manipulation.

ULP′(f1, f2) : F× F→ N =
∣∣∣{x ∈ F | f1 < x ≤ f2

}∣∣∣ (5.7)

Figure 5.3 shows the C implementation of this function for double-precision values. The floating-

point representation shown in Figure 5.1 has the interesting property that when reinterpreted as

signed integers iterating from LLONG MIN to 0 corresponds to iterating in descending order from neg-

ative zero to negative NaN, and iterating from 0 to LLONG MAX corresponds to iterating in ascending

order from positive zero to positive NaN. The comparison against LLONG MIN inverts the relative

ordering of negative values so that the entire set of floating-point values is arranged in ascending

order and ULPs can be computed using simple signed subtraction.

We now consider the definition of the slow component of Stoke’s equality term. The fixed-

point implementation of Stoke described in the previous chapter defines this routine in terms of

the invocation of a sound decision procedure for fixed-point operations over bit vectors. Having

redefined test case correctness for floating-point programs in terms of a minimum acceptable ULP

rounding error η it is straightforward to redefine the design constraints of this term as well. We say

that a target and rewrite are equal if there does not exist a test case t that exposes an ULP error

in excess of η and we define >η to be larger than all η to ensure that divergent signal behavior is
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always exposed.

eqslow(R; T , η) = ¬∃t.
(

error(R; T , t) > η
)

where error(R; T , t) =
∑
l∈`(T )

ULP(fR, fT ) +>η · sig(R; T , t)

fR = valdouble(σ(R, t, r))

fT = valdouble(σ(T , t, r))

(5.8)

The complexity of floating-point programs precludes the use of the most obvious implementations

of this routine for many optimizations of interest. In general neither sound decision procedures nor

abstract interpretation techniques are currently practical for non-trivial programs.

SMT float [85] is a new standard for decision procedures that contains support for floating-point

operations however it is only now beginning to be widely adopted. Z3’s implementation [26] for

example, is based on bit-blasting and does not scale beyond programs containing a very small number

of instructions [23]. Other approaches to deciding floating-point formulas are unable to handle code

sequences that interleave fixed-point bit-vector and floating-point arithmetic [47, 54]. Because bit-

wise operations such as the extraction of exponent bits are quite common in performance critical

code these procedures are currently incapable of verifying many interesting x86 64 optimizations.

And although it is possible to replace floating-point instructions by uninterpreted functions this

abstraction cannot bound the error between two codes that are not bit-wise equivalent. As a result,

the application of symbolic execution based approaches such as [20] is limited.

The abstract domains used for floating-point reasoning in methods based on abstract interpre-

tation such as those in [27] are also unable to handle the presence of fixed-point bit-wise operations.

Furthermore, even in cases where the target and rewrite are in fact bit-wise equivalent the approxi-

mations made by these abstractions render them unable to prove bit-wise equivalence in situations

that commonly arise in practice. Nonetheless, for programs that perform exclusively floating-point

computations it is possible to bound — if coarsely — the absolute error between two floating-point

programs [23].

Where neither of these approaches are appropriate, some work has been done in providing guar-

antees based on randomized testing [79]. However, in the absence of any knowledge of how errors

are distributed relative to program inputs these guarantees are extremely weak. Essentially, they

are no stronger than those obtained by a test suite and apply only to correctness with respect to

the tests in that suite. As a simple example, consider a program f(x) and an optimization f ′(x) for

which the magnitude of the error function E(x) = |f ′(x)− f(x)| is distributed non-uniformly as the

function | sin(x)|. Pure randomized testing is unlikely to uncover the values of x for which E(x) is

maximized.

In contrast to the methods described above we use Mcmc sampling to draw values from the
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error(·) function. The idea is simple: our goal is to identify a test case t that will cause error(·) to

produce a value greater than η. Although in general we cannot produce a closed form representation

of error(·), sampling from it is straightforward: we simply evaluate the target and the rewrite on

t and compare the results. As discussed in Chapter 2, in the limit Mcmc sampling will draw test

cases in proportion to the value of the error function. Not only will this expose the maximum value

of the function, but it will do so more often than for any other value. Using the Metropolis-Hastings

algorithm, we define a concrete implementation of Equation 5.8, which is based on the iterative

evaluation of the samples taken from the sequence of proposals t0, t1, . . . , t∞.

eqslow(R; T , η) = max
(

error(R; T , ti)
)∞

i=0
≤ η (5.9)

The proposal distribution over test cases is defined as follows. Recall that a test case contains

values for each of a function’s live inputs. For every test case ti we define its successor ti+1 by

modifying each of the live in register locations in ti by a value sampled from a normal distribution.

In generating these values we discard proposals for the value in location l which are outside the

range of valid inputs [lmin, lmax] specified by the user.

ti+1 =
{

(l, v) | l ∈ Dom(ti), v = v′
}

where v′ =


v ti(l) + x < lmin

v ti(l) + x > lmax

ti(l) + x otherwise

x ∼ N (µ, σ)

(5.10)

Discarding values outside this range is sufficient to guarantee that we never propose a test case

which results in a computation that produces erroneously divergent behavior. A floating-point

function might for example take two arguments: a floating-point value and a pointer to a location

in which to write the result. In proposing test cases it is crucial that the latter not be modified

to point to an undefined address. Discarding values outside a user-defined range also allows a

user to customize the rewrites discovered by Stoke to a particular range of desired inputs. Both

the ergodicity and symmetry of this proposal distribution follow from the properties of a normal

distribution.

The last remaining issue is the definition of a termination condition that can be used to determine

when to stop generating steps in the Markov chain. Effectively, we must define a criterion under

which we can be reasonably confident that an observed sequence of samples contains the maximum

value of the error function. A common method for doing so is to check whether the chain of

samples has mixed well. Mixing well implies that the chain has reached a point where it represents

a stationary distribution and contains samples that represent a uniform distribution over the test
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cases in the domain of the error function. Under these conditions we can be confident that the chain

has sampled from the regions that contain all local maxima and as a result should contain the global

maximum.

Metrics for determining whether a chain has mixed well are well known and available in many

statistical computing packages [80]. We use the Geweke diagnostic test [37] which is appropriate for

measuring the convergence of single chains. The Geweke diagnostic divides a chain into two windows

and compares the means of the two chains which should be equal if the chain is stationary. If we

define the two chains of samples as

θ1 = {error(R; T , ti) : i = 1, . . . ,n1}

θ2 = {error(R; T , ti) : i = na, . . . ,n}

where 1 < n1 < na < n and n2 = n− na + 1

(5.11)

then we can compute the following statistic, where ŝ1(0) and ŝ2(0) are spectral density estimates

at zero frequency for the two chains.

Zn =
θ̄1 − θ̄2√
ŝ1(0)
n1

+ ŝ2(0)
n2

where θ̄1 =
1

n1

∑
θ1 and θ̄2 =

1

n2

∑
θ2

(5.12)

If the ratios n1/n and n2/n are fixed, (n1 + n2)/n < 1, and the chain is stationary, then Zn

will converge to a standard normal distribution as n → ∞. Intuitively, computing this statistic for

a poorly mixed chain will produce a large absolute value of Zn. Should this occur we can simply

continue to sample from error(·) and recompute Zn as necessary. Once Zn achieves a sufficiently

small value we can conclude that the chain is approximately equal to a stationary distribution and

return the largest observed sample as a bound on ULP rounding error between the target and rewrite.

We call this Mcmc-based randomized testing method validation to distinguish it from formal

verification. While our method comes with a mathematical — if asymptotic — guarantee and

provides strong evidence of correctness we stress that this is not the same level of assurance that

formal verification provides. In particular, the sig(·) term in Equation 5.8 has the potential to

introduce discontinuities that may be very difficult to discover. Thus eqslow(·) is not an appropriate

test of correctness for say, optimizations applied to safety-critical code. Nonetheless, for many real

world performance-critical applications where correctness is already defined entirely with respect to

confidence in the compiler writer and behavior on regression test suites this definition represents a

considerable improvement over current practice.
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5.2 Experiments

We evaluated our implementation of Stoke with support for floating-point optimizations on three

high performance benchmarks: Intel’s implementation of the C numerics library math.h, a three

dimensional direct numeric simulation solver for HCCI combustion, and a full featured ray tracer.

Each benchmark contains a mixture of kernels some of which require bit-wise correctness and some

of which can tolerate a loss of precision while still being able to produce useful results. As we

demonstrate below a large performance improvement can be obtained by aggressively optimizing

the latter. We close with a case study that compares the Mcmc search kernel used by Stoke

against several alternate implementations.

All of the experiments in this chapter were run on a four core Intel i7 with support for the

full Haswell instruction set. For benchmarks where handwritten assembly was unavailable targets

were generated using gcc with full optimizations enabled (icc produced essentially identical code).

Stoke was run in optimization mode using 16 search threads, 1024 test cases, a timeout of 10

million proposals, and equal weight given to the equality and performance terms. The annealing

constant β was set to 1.0, and moves were proposed with equal probability. For estimating a bound

on optimization error test case modifications were proposed using the standard normal distribution

N (0, 1,).

For each benchmark Stoke search threads ran to completion in 30 minutes, and memory con-

sumption never exceeded one gigabyte. Mcmc validation reached convergence after fewer than 100

million proposals and runtimes never exceeded one minute. Some benchmarks were amenable to

formal verification; we compared the results against our validation method whenever it was possible

to do so.

libimf is Intel’s implementation of the C numerics library, math.h. It contains hand-coded

implementations of the standard trigonometric, exponential, and logarithmic functions. In addition

to taking advantage of many non-obvious properties of polynomial approximation and floating-point

algebra these implementations are able to dynamically configure their behavior to use the most

efficient hardware instructions available on a user’s machine. The library is many times faster than

GNU’s implementation of math.h and able to produce results within 1 ULP of the true mathematical

answer.

Figure 5.4(a-c) shows the results obtained by running Stoke on three representative kernels:

a bounded periodic function (sin), a continuous unbounded function (log), and a discontinuous

unbounded function (tan). We have omitted results for sin and exp which are similar. The library

approximates the true mathematical functions using an implementation based on polynomials. Al-

though there is a direct relationship between the number of terms in those polynomials and the

precision of a kernel the details are quite complex at the binary level. Simply deleting an instruction

does not correspond to deleting a term and will usually produce wildly inaccurate results.
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(a) LOC/speedup for sin
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(b) LOC/speedup for log
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(e) ULP error for log rewrites
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(f) ULP error for tan rewrites

Figure 5.4: Representative kernels from Intel’s implementation of math.h. Increasing η produces
rewrites that interpolate between double- single- and half-precision (vertical bars, shown for refer-
ence) (a-c). Errors functions introduced by reduced precision are well-behaved (d-f) and amenable
to Mcmc sampling.

Reference points are given on the far left of each plot. The original kernels range in length from 66

to 107 lines of code (LOC) and represent a baseline speedup of 1x. Figures 5.4(a-c) show the results

of varying η between 1 and 1018, approximately the number of representable double-precision floating

point values. For reference we have highlighted η = 5 ·109, and 4 ·1012 which correspond respectively

to the ULP rounding error between the single- and half-, and double-precision representations of

equivalent floating-point values. Setting η to either value and providing Stoke with a double-

precision target corresponds to asking Stoke to produce a single- or half-precision version of a

double-precision algorithm.

By increasing η Stoke was able to experiment with modifications to the code which meet the

desired bounds on precision. The result is a set of implementations that interpolate between double-,

single-, half-precision, and beyond. For very large η Stoke was able to remove nearly all instructions

(for η = ULLONG MAX, not shown, Stoke produced the empty rewrite) and produce speedups of up to

6x over the original implementations. However performance improvements grew smoothly and were

still significant for reasonable precisions. Although no longer available, Intel at one point offered a

variable-precision implementation of libimf that allowed the user to trade performance for higher

quality results. Using only the full double-precision implementation Stoke was effectively able to

automatically generate the equivalent library.

Two factors complicate the verification of the rewrites discovered by Stoke for libimf: code

length and the mixture of fixed- and floating-point computation. At over 100 instructions in length
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Figure 5.5: The diffusion leaf task from the S3D direct numeric simulation solver. Increasing η
allows Stoke to trade precision for shorter code and higher performance (a). The task can tolerate
a less-than-double-precision implementation (vertical bar, shown for reference), which produces a a
27% overall speedup. Errors are well-behaved (b).

verifying a rewrite against the kernels in libimf is well beyond the capabilities of current floating-

point decision procedures. Additionally, the kernels in libimf use hardware-dependent bit-wise

arithmetic to extract the fields from a floating-point value for use as indices into a table of constants.

Although an abstract interpretation based on ranges might be able to deal with the primarily poly-

nomial operations of those kernels, without an appropriate set of invariants for the values contained

in those tables any sound results of the analysis would be uselessly imprecise.

Our Mcmc sampling method for characterizing maximum error works well on these kernels.

Figure 5.4(d-f) shows the error function for each of 20 rewrites depicted in Figure 5.4(a-c) for a

representative range of inputs. Although an exhaustive enumeration of these functions is intractable

they are reasonably well-behaved and Mcmc sampling was quickly able to determine their maximum

values.

S3D is a three dimensional direct numeric simulation solver for HCCI combustion. It is one

of the primary applications used by the U.S Department of Energy for investigating combustion

mechanisms as potential replacements for gasoline-based engines. S3D is designed to scale on large
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float dot(V& v1, V& v2) {

// v1 = [xmm0 [63:32] , xmm0 [31:0], xmm1 [31:0]]

// v2 = [(rdi), 4(rdi), 8(rdi) ]

// ret = [xmm0 [63:32] , xmm0 [31:0], xmm1 [31:0]]

return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;

}

1 # gcc -O3 1 # STOKE

2 2

3 movq xmm0 , -16(rsp) 3 vpshuflw -2, xmm0 , xmm2

4 mulss 8(rdi), xmm1 4 mulss 8(rdi), xmm1

5 movss (rdi), xmm0 5 mulss (rdi), xmm0

6 movss 4(rdi), xmm2 6 mulss 4(rdi), xmm2

7 mulss -16(rsp), xmm0 7 vaddss xmm0 , xmm2 , xmm5

8 mulss -12(rsp), xmm2 8 vaddss xmm5 , xmm1 , xmm0

9 addss xmm2 , xmm0

10 addss xmm1 , xmm0

Figure 5.6: Vector dot-product. Stoke is unable to make full use of vector intrinsics due to the
program-wide data structure layout chosen by gcc. The resulting code is nonetheless faster, and
amenable to verification using uninterpreted functions.

supercomputers and relies on a significant amount of parallelism to achieve high performance. Com-

putation in S3D is split into parallel and sequential phases known as tasks. Despite the enormous

amounts of data that these tasks consume they are orchestrated in such a way that the time spent

in inter-node data communication between tasks is kept to a minimum. For some kernels this or-

chestration is so effective that the resulting runtimes have been made compute bound. As a result,

substantial performance gains can be made by optimizing these computations.

We applied our implementation of Stoke to a CPU implementation of S3D, namely the diffusion

task which computes coefficients based on temperature, pressure, and molar-mass fractions of various

chemical species, and is representative of many high-performance numerical simulations in that its

compute time is dominated by calls to the exp function. The performance of this function is so

important that the developers ship a hand-coded implementation which approximates the function

using a Taylor series polynomial and deliberately omits error handling for irregular values such

as infinity or NaN. As above, Figure 5.5 shows the result of varying η between 1 and 1018. By

decreasing precision Stoke was able to discover rewrites that were both faster and shorter than

the original implementation. Despite its heavy use of the exp kernel the diffusion leaf task loses

precision elsewhere and does not require full double-precision to maintain correctness. The vertical

bar in Figure 5.5(a) shows the maximum precision loss that the diffusion kernel is able to tolerate.

Using the rewrite discovered when η = 107 which corresponds to a 2x performance improvement for

the exp kernel produces a full leaf task performance improvement of 27%.
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Latency LOC Total Bit-wise
Kernel T R T R Speedup Correct OK

k · v̄ 13 13 8 6 3.7% yes yes
〈v̄1, v̄2〉 20 18 8 6 5.6% yes yes
v̄1 + v̄2 13 10 9 4 30.2% yes yes

∆(v̄1, v̄2) 26 19 29 14 36.6% no yes
∆′(v̄1, v̄2) 26 13 29 10 n/a no no

Figure 5.7: Speedups for aek. Bit-wise correct optimizations produce a cumulative speedup of 30.2%.
Lower precision optimization to the camera perturbation kernel, ∆(·), produces an additional 6.4%
speedup. More aggressive optimization, ∆′(·), produces further latency reduction, but is unusable.

As above, Figure 5.5(b) shows the error function for each of the 20 rewrites shown in Figure

5.5(a). For reference we have highlighted the error curve which corresponds to the most aggressive

rewrite that the diffusion leaf task was able to tolerate. The functions are well-behaved and a global

maximum of 1, 730, 391 ULPs is discovered quickly. Bit-shifts, bit-extraction, and kernel length

prevented the application of current sound symbolic techniques to this example.

aek is an extremely compact implementation of a ray tracer written in response to Paul Heckbert’s

famous challenge that an author be able to fit the entire source program on the back of a business

card [52]. Despite its compactness the program is quite complex and is capable of generating scenes

with textured surfaces, gradients, reflections, soft shadows and depth of field blur. The application is

typical of ray tracers in that it spends the majority of its compute time performing vector arithmetic.

The core loop of the algorithm computes the path and intersection of light rays with objects in the

environment to determine the color deposited on each pixel of the resulting image.

aek is unique among the benchmarks shown so far in that its kernels all operate on compound

data structures: vectors represented as triplets of floats. As a result Stoke was forced to obey the

program-wide data structure layout chosen by gcc. Consider the vector dot product kernel shown in

Figure 5.6, in particular the fact that gcc has chosen to split the layout of vectors between two sse

registers (xmm0 and xmm1) when it could easily have fit into just one. This decision precluded Stoke

from producing the obvious optimization of performing all three multiplications using a single vector

instruction; the overhead required to move the data back and forth into the appropriate configuration

was too great. Nonetheless, Stoke was able to discover an optimization that performs less data

movement, eliminates stack traffic, and is 2 cycles faster than the original. The resulting code is

additionally amenable to verification using uninterpreted functions and can be shown using Z3 to

be bit-wise correct for all inputs. We omit discussion of the remaining vector kernels which have

similar properties and produce the performance improvements summarized in Figure 5.7.

By focusing only on vector kernels, Stoke was able to produce a cumulative improvement of just

over 30% in total program runtime. However by identifying portions of the program where bit-wise
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correctness is unnecessary even further improvements can be made. aek uses randomness to induce

depth of field blur by perturbing the camera angle in its inner-most loop. So long as the imprecision

introduced by Stoke rewrites are at or below the order of magnitude of the noise injected by that

randomness the difference in results is imperceptible to the application as a whole.

Figure 5.8 shows the result of applying Stoke to the kernel which perturbs the camera angle.

Stoke was able to discover a rewrite that takes advantage of the bit-imprecise associativity of

multiplication and drops terms that take negligibly small values due to the values of program-wide

constants. The optimized kernel results in an additional 6.4% overall performance improvement for

the application as a whole. Because this kernel was generated using a general purpose compiler

as opposed to having been written by an expert it does not perform bit-fiddling on the internal

representation of floating-point values and is amenable to verification using an abstract interpreta-

tion based on ranges. The resulting static bound of 1363.5 ULPs is considerably weaker than the

maximum 5 ULP error discovered using Mcmc sampling.

Figure 5.9 summarizes the cumulative effects of the optimizations discovered by Stoke. Fig-

ure 5.9(a) shows the image that was generated using only bit-wise correct optimizations whereas

Figure 5.9(b) shows the image that was generated using imprecise optimizations as well. Although

the images appear identical they are in fact different as show in Figure 5.9(c). Further optimiza-

tions to the kernel that perturbs camera angle are possible and result in a latency reduction of 50%

compared to the code produced by gcc but at the price of unintended program behavior. For values

of η that exceed the noise introduced by randomness, Stoke removed the code that produces the

camera perturbation altogether. The result is an image without depth of field blur which is depicted

in Figure 5.9(d). As shown in Figure 5.9(e) the image differs dramatically from the original. (This

effect may be difficult to observe in printed copy; note in particular the absence of depth of field

blur on the horizon.)
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V delta(V& v1 , V& v2, float r1, float r2) {

// v1 = [(rdi), 4(rdi), 8(rdi) ]

// v2 = [(rsi), 4(rsi), 8(rsi) ]

// ret = [xmm0 [63:32] , xmm0 [31:0], xmm1 [31:0]]

assert(0.0 <= r1 <= 1.0 && 0.0 <= r2 <= 1.0);

// gcc -O3:

return V(99*(v1.x*(r1 -0.5))+99*( v2.x*(r2 -0.5)),

99*(v1.y*(r1 -0.5))+99*( v2.y*(r2 -0.5)),

99*(v1.z*(r1 -.05 ))+99*( v2.z*(r2 -0.5)));

// STOKE:

return V(99*(v1.x*(r1 -0.5)),

99*(v1.y*(r1 -0.5)),

v2.z*(99*(r2 -0.5)));

}

1 # gcc -O3 1 # STOKE

2 2

3 movl 0.5, eax 3 movl 0.5 eax

4 movd eax , xmm2 4 movd eax , xmm2

5 subss xmm2 , xmm0 5 subps xmm2 , xmm0

6 movss 8(rdi), xmm3 6 movl 99.0, eax

7 subss xmm2 , xmm1 7 subps xmm2 , xmm1

8 movss 4(rdi), xmm5 8 movd eax , xmm4

9 movss 8(rsi), xmm2 9 mulss xmm4 , xmm1

10 movss 4(rsi), xmm6 10 lddqu 4(rdi), xmm5

11 mulss xmm0 , xmm3 11 mulss xmm0 , xmm5

12 movl 99.0, eax 12 mulss (rdi), xmm0

13 movd eax , xmm4 13 mulss xmm4 , xmm0

14 mulss xmm1 , xmm2 14 mulps xmm4 , xmm5

15 mulss xmm0 , xmm5 15 punpckldq xmm5 , xmm0

16 mulss xmm1 , xmm6 16 mulss 8(rsi), xmm1

17 mulss (rdi), xmm0

18 mulss (rsi), xmm1

19 mulss xmm4 , xmm5

20 mulss xmm4 , xmm6

21 mulss xmm4 , xmm3

22 mulss xmm4 , xmm2

23 mulss xmm4 , xmm0

24 mulss xmm4 , xmm1

25 addss xmm6 , xmm5

26 addss xmm1 , xmm0

27 movss xmm5 , -20(rsp)

28 movaps xmm3 , xmm1

29 addss xmm2 , xmm1

30 movss xmm0 , -24(rsp)

31 movq -24(rsp), xmm0

Figure 5.8: Random camera perturbation. Stoke takes advantage of the bit-imprecise associativity
of floating point multiplication, and the negligibly small values of some terms due to program-wide
constants to produce a rewrite which is 7 cycles faster than the original code.
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(a) Bit-wise correct (30.2%)

(b) Valid lower precision
(36.6%)

(c) Error pixels (shown white)

(d) Invalid lower precision (e) Error pixels (shown white)

Figure 5.9: Images generated using bit-wise correct (a) and lower precision (b) optimizations. The
results appear identical, but are in fact different (c). Further optimization is possible but incorrectly
eliminates depth of field blur (d,e). In particular, notice the sharp horizon.

As remarked in Chapter 2, although Mcmc has been successfully applied to many otherwise

intractable application domains it is not the only stochastic search procedure that could have been

used in the implementation of Stoke. We modified both the optimization and validation procedures

used by our implementation to use three alternate algorithms, pure random search, greedy hill-

climbing, and simulated annealing, and for each variant reran a subset of the experiments described

above.

Figure 5.10 shows the results of running Stoke’s optimization routine on each of the three

libimif kernels for η = 106. Each curve corresponds to a different kernel and represents the best
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(b) hill() optimization
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(c) anneal() optimization
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(d) mcmc() optimization

Figure 5.10: Alternate implemenatations of the search procedure used by Stoke for optimization:
random search (rand()), greedy hill-climbing (hill()), simulated annealing (anneal()) and Mcmc
sampling (mcmc()). Mcmc sampling outperforms the alternatives for optimization.

cost discovered over time. In all cases one million iterations was sufficient for each search procedure

to reach a point where no further progress was made. For all three kernels random search was

unable to improve on the original input. Without a mechanism for measuring correctness even

a small number of random moves are most likely sufficient to guarantee that a random walk will

never return to a correct implementation. Greedy hill-climbing performed comparably to Mcmc

sampling but produced slightly larger final costs and simulated annealing performed comparably to

greedy hill-climbing but took longer to do so. As remarked in Chapter 2, simulated annealing can

be thought of as a hybrid method that behaves similarly to random search initially and then tends

towards the behavior of greedy hill-climbing. As random search seems ill-suited to the optimization

task the longer convergence times for simulated annealing can be attributed to time spent initially

on wasted effort.

Figure 5.11 shows the results of running Stoke’s validation routine on an identical representative

result for each of the three libimf kernels produced for η = 106. As above each curve corresponds
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(a) rand() validation
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(b) hill() validation
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(c) anneal() validation
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(d) mcmc() validation

Figure 5.11: Alternate implemenatations of the search procedure used by Stoke for validation:
random search (rand()), greedy hill-climbing (hill()), simulated annealing (anneal()) and Mcmc
sampling (mcmc()). Mcmc is not clearly better-suited to validation.

to a different kernel and represents the largest error discovered over time. In all cases ten million

iterations was sufficient for each search procedure to reach convergence. Both Mcmc sampling and

greedy hill-climbing were able to produce nearly identical results and differed from each other by no

more than 2 ULPs. However neither was able to produce a consistently larger result. Random search

performed similarly for some kernels but poorly for others. This result is likely due to the shape of

the error functions shown in Figure 5.4(d-f) which are dense with sharp peaks. Without a mechanism

for tracking towards local maxima it is unlikely that a purely random search procedure would be

able to produce consistently good results. As above, the performance of simulated annealing appears

to be something of a mix between that of random search and greedy hill-climbing.

Overall it is difficult to assess the performance of stochastic optimization algorithms. Different

application domains can be more or less amenable to one technique than another and parameter

settings can make the difference between a successful implementation and one that is indistinguish-

able from pure random search. The results shown above suggest that Mcmc sampling is well-suited



CHAPTER 5. FLOATING-POINT CODE SEQUENCES 55

to the program optimization task and perhaps less uniquely so to the validation task. However this

observation may be an artifact of the relative complexity of the two. The space of all x86 64 code

sequences is considerably larger and higher dimensional than that of inputs to the primarily unary

floating-point kernels used by our benchmarks. Comparing the relative performance of different

search strategies on the validation of higher arity kernels remains a direction for future work.

5.3 Discussion

In this chapter we described a new approach to the optimization of high-performance floating-point

kernels which is based on random search. Floating-point instruction sets have complicated semantics

and our technique both eliminates the dependence on expert-written optimization rules and allows

a user to customize the extent to which precision is sacrificed in favor of performance.

The general purpose verification of loop-free kernels containing floating-point computations re-

mains a hard problem and we are unaware of any existing systems that can be used to verify

the large variety of optimizations produced by Stoke. To address this limitation, we described

a general-purpose randomized validation technique that can be used to establish strong evidence

for the correctness of floating-point code sequences. Although our technique is not applicable to

application domains that require formal verification, for many high-performance applications it is

a large improvement over the state of the art which relies on nothing more than confidence in the

compiler writer and regression test suites.

The implementation of Stoke described in this chapter is the first instance of a stochastic opti-

mizer that has been successfully applied to full programs; it is able to produce significant speedups

on both Intel’s handwritten implementation of the C numerics library and full end-to-end perfor-

mance improvements on a direct numeric simulation solver and a ray tracer. Nonetheless, further

opportunities for optimization remain. Notably extensions that allow for optimizations based on the

reorganization of program-wide data structures are a high-value direction for future work.

5.4 Related Work

We are not the first to propose program transformations that sacrifice bit-wise precision in favor

of performance. Loop perforation dynamically removes loop iterations to balance an efficiency-

precision trade-off [91], and given an input distribution some perforations can be statistically guar-

anteed [73]. However, the resulting guarantees are statistically unsound for any other input distribu-

tion. Green [5] and other systems for performing approximate computation [104] allow a programmer

to provide multiple implementations of the same algorithm, each of which represent different pre-

cision/power trade-offs. These systems emit runtime code that switches between implementations
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based on power consumption. Our approach provides a method for generating a range of implemen-

tations automatically instead of relying on an expert to provide them. Program synthesis techniques

such as [46, 93] are currently inapplicable to this task as they rely on decision procedures that do

not scale to non-trivial floating-point programs.

Techniques that can be extended to bounding the error of floating-point optimizations are not

limited to those described in this chapter. A method for proving robustness and continuity of

programs is presented in [16] and a black box testing approach for establishing Lipschitz continuity

is described in [56]. Nonetheless, many high-performance kernels such as exp(·) are not Lipschitz

continuous and functions such as tan(·) are not even continuous. Thus the applicability to Stoke is

limited. Interactive theorem provers such as [24] may be applicable to the non-trivial optimizations

discovered by Stoke but the result would be far from a fully automatic system.

Random interpretations [75] can provide strong statistical guarantees of program behavior. How-

ever, the number of samples required to produce these guarantees depends crucially on the operators

used by a program. Bit-extraction operators for example, can require an intractable number of sam-

ples. Additional testing infrastructures for floating-point code that have no statistical guarantees

include [62] and [8]. Monte Carlo testing approaches for checking numerical stability which is a

concern orthogonal to the correctness of optimizations include [95, 58, 96]. Mcmc sampling has

also been applied to a related program analysis task, the generation of test cases that obtain good

program coverage [86].

The application of search techniques to the optimization and verification of floating-point code has

recently attracted considerable attention. A search procedure for producing inputs that maximize

the relative error between two floating-point kernels which is similar to simulated annealing appears

in [19]. A brute-force approach to replacing double-precision instructions with their single-precision

equivalents appears in [63], and a randomized technique for producing floating-point narrowing

conversions at the source code level is discussed in [84]. Both tools preserve semantics as written

and are incapable of producing the aggresive optimizations discovered by Stoke.

Examples of how unsound compiler optimizations can negatively affect the stability of numerical

algorithms are described in [41] and a critique of using execution time for measuring improvement

in performance is discussed in [22]. The architecture of Stoke addresses both of these concerns. Al-

though it is true that different memory layouts can result in inconsistent speedups, Stoke produces

multiple rewrites by design and can produce a suitable rewrite for each such layout. For Stoke,

execution time is a suitable optimization metric. With respect to correctness, Stoke uses test case

data to generate customized optimizations that are specialized to user-specified input ranges. These

optimizations may be incorrect in general but perfectly acceptable given the constraints on inputs

described by the user or generated by a technique such as [19].



Chapter 6

Loops

In this chapter we extend Stoke to the optimization of code sequences that contain loops. As we

will show, the primary obstacle to doing so is formal verification. Equivalence checking of loops is a

fundamental problem with potentially significant applications, particularly in the area of compiler

optimizations. However, the current state of the art in equivalence checking is quite limited: given

two x86 64 loops, no existing technique is capable of verifying equivalence automatically, even if they

differ only in the application of standard loop optimizations. Here we present the first practically

useful, automatic, and sound equivalence checking engine for x86 64 loops.

Existing techniques for proving equivalence can be classified into three categories: sound algo-

rithms for loop-free code [2, 34, 33, 21, 71]; algorithms that analyze finite unwindings of loops or finite

spaces of inputs [81, 77, 61, 55]; algorithms that require knowledge of the particular transformations

used for turning one program into another [72, 97] and the order in which the transformations have

been applied [78, 74, 40]. In contrast to these approaches, we do not assume any knowledge about

the optimizations performed.

In outline, the approach works as follows. First, we guess a simulation relation [74]. Roughly

speaking, a simulation relation breaks two loops into a set of pairs of loop-free code fragments

where logical formulas associated with each pair describe the relationship of the input states of the

fragments to the output states of the fragments. Second, we generate verification conditions encoding

the x86 64 instructions contained in each loop-free fragment as Smt [25] constraints. Finally, we

construct queries that verify that the guessed relationships between the code fragments in fact hold.

By construction, if the queries succeed they constitute an inductive proof of equivalence.

It is worth stressing that this approach works directly on unmodified binaries. The x86 64

instruction set is large, complex, and difficult to analyze statically. The key idea that makes the

approach effective in practice, and even simply feasible to build, is that the process of guessing a

simulation relation is constructed not via static code analyses, but by using data collected from test

cases. Because the approach is data driven, it is able to directly examine the precise net effect of

57
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code sequences without first going through a potentially lossy abstraction step. The use of test cases

is of course an under-approximation and may not capture all possible loop behaviors. However it

is sound; a lack of test case coverage may cause equivalence checking to fail, but it cannot result in

the unsound conclusion that two loops are equivalent when they are not.

In this chapter we describe the implementation of these ideas in a tool called Ddec (Data-Driven

Equivalence Checker) and use Ddec to extend the applicability of Stoke to loops. By replacing

Stoke’s implementation of the eqslow(·) constraint by Ddec we show that Stoke is able to perform

optimizations beyond its original capabilities, in fact producing verified code that contains loops and

is comparable in performance to gcc -O3.

6.1 Loop Equality

Figure 6.1 shows two versions of a function taken from [97] where a straightforward implementation

X was optimized using a strength reduction [4] to produce the code Y ; corresponding x86 64 code

sequences are shown below. We use primes to denote program points and registers corresponding to

the rewrite (right) and unprimed characters for those corresponding to the target (left). In addition

to the strength reduction, the rewrite also takes advantage of several low level compiler optimizations

such as the use of an x86 64 conditional-move on line 11′ to eliminate the jump on line 12. We

are unaware of any fully automatic technique that is capable of verifying the equivalence of these

two code sequences. Nonetheless, our goal is to verify equivalence in the absence of source code,

manually written expert rules for equivalence, compiler source code, or compiler annotations.

To verify that the two code sequences are equivalent, we must confirm that whenever the target

and the rewrite begin execution in identical machine states and the target runs to completion, the

rewrite is guaranteed to terminate in the same machine state with the same return value. In this

example which does not use memory, we limit our discussion of machine states to a valuation of the

subset of hardware registers that the two codes use: eax, ebx, ecx, esi, and edi (our approach does

not make this assumption in general and handles memory reads and writes soundly) and assume

that eax is live on exit from the function.

We use the well-known concept of a cutpoint [99] to decompose equivalence checking into man-

ageable sub-parts. A cutpoint is a pair of program points — one in each program — that is chosen to

divide loops into loop-free segments. The cutpoints in Figure 6.1, a, b, and c, segment the sequences

into three parts: the code from a to b which excludes the backedge of the loop, the code that begins

from and returns to b, and the code that begins from b, exits the loop, and terminates at c. Using

these three cutpoints, we can produce an inductive proof that shows that the executions of the code

sequences move together from one cutpoint to the next and that at each cutpoint certain invariants

are guaranteed to hold.
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int f(int x, int n){
  int i, k = 0;
  for (i=0; i!=n; ++i){
    x += k*5;
    k += 1;
    if (i >= 5)
      k += 3;
  }
  return x;
}

int f'(int x, int n){
  int i, k = 0;
  for (i=0; i!=n; ++i){
    x += k;
    k += 5;
    if (i >= 5)
      k += 15;
  }
  return x;
}

17  ret

14  lea 1(edi), edi
15  cmp ecx,    edi
16  jne 7

 7  mov esi,         ebx
 8  lea (ebx,ebx,4), edx
 9  lea (eax,edx,1), eax
10  lea 1(esi),      esi
11  cmp 5,           edi
12  jb  14

13  lea 4(ebx), esi

 1'  xor  edx, edx
 2'  mov  5,   ecx
 3'  mov  edi, eax
 4'  test esi, esi
 5'  jne  12'
 6'  jmp  15'

15' ret

 7'  add    ecx,    eax
 8'  lea    5(ecx), ebx
 9'  add    20,     ecx
10'  cmp    4,      edx
11'  cmovbe ebx,    ecx

1
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6

7
8
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iv

iiii

v

 1  mov edi, eax
 2  mov esi, ecx
 3  xor esi, esi
 4  xor edi, edi
 5  cmp 0,   ecx
 6  je  17

12' add 1,   edx
13' cmp edx, esi
14' jne 7'

a

b

c

X Y

12'
13'
14'

1
2
3
4
5
6

7
8
9
10
11
12

14
15
16

ii

13

1'
2'
3'
4'
5'
6'

17 15'

vi

T R

Figure 6.1: Equivalence checking for two possible compilations: (X) no optimizations applied either
by hand or during compilation, (Y ) optimizations applied. Cut points (a,b,c) and corresponding
paths (i-vi) are shown.
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1. If both sequences begin at a with identical machine states and transition immediately to c,
they terminate with identical return values.

2. If both sequences begin at a with identical machine states and transition to b, they both satisfy
I.

3. If both sequences begin at b, satisfy I, and return to b, they both satisfy I.

4. If both sequences begin at b, satisfy I, and transition to c, they terminate with identical return
values.

Figure 6.2: Partial inductive proof of equivalence for the code sequences shown in Figure 6.1.

The required invariants at a and c follow directly from the problem statement. At a, we require

that the sequences agree on initial machine states and at c we require that they agree on the return

value stored in eax. The first problem that we encounter is identifying the invariant that must hold

at b. This invariant is a relation between the machine states of the code sequences. Here we restrict

ourselves to invariants that consist of equality relationships between elements of the two states.

Once we have identified the appropriate invariant I, an inductive proof would take the form shown

in Figure 6.2. However the proof is incomplete. It does not guarantee that if the target makes a

transition, then the rewrite does the same. We do not for instance want the target to transition

from a to b while the rewrite transitions from b to c. The proof can be completed as follows.

Every transition between cutpoints is associated with the code paths that must be executed to

move from one cutpoint to the next. For example, in moving from cutpoint b to c, both sequences

execute the instructions shown in code paths vi. We say that a code path for the target pT corre-

sponds to a code path for the rewrite pR if they begin and end at the same cutpoints, and whenever

the target follows pT the rewrite follows pR. Figure 6.1 shows a complete set of corresponding paths

for this example: i and ii are associated with transition a-b, iii is associated with a-c, iv and

v are associated with b-b and vi is associated with b-c. Our proof must ensure that whenever the

target follows a code path then the rewrite must follow the corresponding path. Identifying these

paths is a second major difficulty. The question of what invariants hold at b is crucial, as these must

be strong enough to statically prove that the execution of the rewrite follows the corresponding

paths of the target and that the executions of both sequences proceed through the same series of

cutpoints.

Our solution to both problems, identifying the equalities that hold at b and the corresponding

paths of the two code sequences, is to analyze execution data. We identify corresponding paths by

matching traces for both loops on identical test inputs against cutpoints. We observe the instructions

executed by the sequences in moving from one cutpoint to the next and label them as corresponding.

For example, for a test case with initial state edi = 0 and esi = 1 the target begins its execution

from a and executes instructions 1 to 16 to reach b. It then exits the loop and transitions from b to
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 eax esi edi ecx eax′ ecx′ edx′ esi′

0 1 1 2 0 5 1 2
5 2 2 2 5 10 2 2


Figure 6.3: Live register values at b for the code sequences shown in Figure 6.1 for a test input
where edi = 0 and esi = 2.

c by executing instruction 17. The rewrite begins its execution from a and executes instructions 1′

to 14′ to reach b. It then executes instruction 15′ to reach c. From this test case, we conclude that

code paths with instructions 1 to 16 correspond to instructions 1′ to 14′ (i) and that 17 corresponds

to 15′ (vi).

The equality conditions at b can be determined by inserting instrumentation at b to record the

values of the live registers for both sequences and observing the results. For a test input where

edi = 0 and esi = 2, we obtain the matrix shown in Figure 6.3 where each row corresponds to

the values in live registers when both programs pass through b. The first row can be interpreted

as saying that when the target reaches b for the first time, the registers have the values shown in

columns eax , esi, edi, and ecx, and when the rewrite reaches b for the first time the registers have

the values shown in eax′, ecx′, edx′, and esi′. The second row shows the values of the registers when

b is reached for the second time (i.e. during the next iteration of the loops). Using standard linear

algebra techniques, it is possible to extract the following relationships, which are sufficient candidates

for the equalities that must hold at b: eax = eax′, 5 ∗ esi = ecx′, edi = edx′, and ecx = esi′. The

use of linear algebra on test data for invariant inference is well studied in software verification and the

limitations are known. The process may generate spurious equality relationships [76], however these

can be systematically eliminated using a theorem prover [89]. We note that this method assumes

that equality relationships are sufficient to prove program equivalence and we do not for example,

consider invariants that contain inequalities. Previous work on translation validation [97, 74] makes

the same assumption, which we find to be largely sufficient in practice.

Although it is possible that the tests used to generate these values do not produce sufficient cov-

erage, or that either more corresponding paths exist or spurious equality relationships are discovered

at b, the consequence is simply that the proof will fail, and we will report that the two functions

could be different. If this is the case. we can simply reattempt the proof with more test cases. Bar-

ring this possibility, almost all of the limitations of our technique can be mapped to the restricted

expressiveness of invariants. Better invariant generation techniques will only improve performance.

We now present a formal description of the algorithm sketched above. We assume that we are

given two code sequences — each of which contains one natural loop and no function calls — and that

our goal is to infer a candidate simulation relation which consists of cutpoints and linear equalities

as invariants, and to check whether the candidate is an actual simulation relation. If so, we have a



CHAPTER 6. LOOPS 62

proof of equivalence. We begin with a suitable definition of equality and proof obligations:

Definition 33 (Equivalence). Two code sequences are equivalent if for all possible states s, when

execution of the target begins from s and the target terminates in s′ without aborting, the rewrite

does the same.

Definition 34 (Proof Obligation). Let t be a code path in the target, r a code path in the rewrite,

and C the pair 〈t, r〉. For predicates P and Q, a proof obligation ({P}〈t, r〉{Q}) states that if t

begins execution from a state s1 and r begins execution from a state s2, and if P (s1, s2) holds and

t terminates in s′1 without aborting, then r does not abort and Q(s′1, s
′
2) holds for all possible final

states s′2 of r.

We generate corresponding paths t and r for proof obligations using cutpoints [99]. A cutpoint n

is a pair of program points 〈ηT , ηR〉 where ηT is part of the target and ηR is part of the rewrite. We

select cutpoints using a heuristic that prefers pairs of program points in which the corresponding

memory states agree on the largest number of values. Intuitively, cutpoints with higher agree-

ment between memory states generally correspond to simpler invariants than cutpoints where the

relationship is more involved.

We create a candidate cutpoint for every program point pair 〈ηT , ηR〉 and for every test t we

compute mt
ηT (resp. mt

ηR), the number of times control flow passes through ηT (resp. ηR) when

the execution of the target (resp. the rewrite) begins from t. If there do not exist constants a, b

such that ∀t.mt
ηT = amt

ηR + b then 〈ηT , ηR〉 is rejected as a candidate cutpoint. We additionally

reject candidates for which the number of heap locations in the observed heap states for both code

sequences at 〈ηT , ηR〉 is not constant across all tests. This operation is feasible as we only run

terminating tests that guarantee a bounded memory footprint. For the remaining candidates, we

assign a penalty that represents how different the observed heap states are for the two code sequences

at 〈ηT , ηR〉 and select candidate cutpoints in increasing order of penalty until the code sequences

are decomposed into loop free segments.

Redundant candidates are removed so that the minimum number of program point pairs are

returned as candidates — we say that a candidate is redundant if the decomposition is still loop

free after it has been removed. The resulting set of cutpoints may not be unique and multiple

cutpoints may be associated with the same program point in either code sequence. A loop unrolling

for example, may produce several cutpoints that share the same program point in the target.

If satisfactory cutpoints cannot be found then our technique will fail. In general, our approach

will fail to prove equivalence for code sequences that differ from each other in an unbounded number

of memory locations. A loop fusion transformation or an array traversal reordering for example,

will result in loops that cannot be proven equivalent. Reasoning about loops of this form requires

quantified invariants for which the current state of the art in invariant inference remains immature.

We refer to a set of cutpoints as a cutset (S). For every pair of cutpoints n1 and n2 in S we

define a transition ( τ ≡ n1.n2) from n1 to n2. This transition is associated with a set of static code
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paths P1 of the target and P2 of the rewrite that go from n1 to n2 without passing through some

other cutpoint n3 ∈ S. The instructions that are executed during a terminating and non-aborting

execution of the target and the rewrite can be represented by a sequence of transitions. Using this

notation, we define corresponding paths as follows.

Definition 35 (Corresponding Paths). Given a cutset S, we say that a code path t of the target

corresponds to a code path r of the rewrite if they are associated with the same transition τ and for

some execution τ1, . . . , τ, . . . , τm, for the transition τ , if the target follows t then the rewrite follows

r.

We use the following data-driven algorithm to generate a set of corresponding paths C. We run

both the target and the rewrite on a test input and record the sequence of instructions that are

executed by both. Next, we traverse the traces in parallel until a cutpoint is reached in both. The

pair of paths taken from the previous pair of cutpoints is added to C and the process is repeated

until we reach the end of the traces. We repeat this process for every test input that we have and

if the coverage is sufficient then C will contain all corresponding paths.

Following the work in [74] we consider invariants which are equalities over registers, stack loca-

tions, and a finite set of heap locations, and replace stack accesses by reads and writes to named

temporaries. To generate these invariants, we perform a liveness analysis over both the target and

the rewrite and for each cutpoint (η1, η2) create a set of matrices, whose columns are the live features

(variables or simple functions of those variables) at η1 and η2. If the bit-width of the longest live

feature is b, we create one column for every b bit live feature. For every live feature of fewer than b

bits we create two columns: one with the feature’s value zero-extended to b bits and the other with

its value sign-extended. The sign- and zero-extensions are necessary as many x86 64 instructions

implicitly perform these operations on registers of different bit-widths. We then instrument both

code sequences to record the values of the features at each cutpoint. If the cutpoint (η1, η2) is exe-

cuted m times then we generate m rows in the matrix for (η1, η2). Negative values are transformed

to large positive values.

We use elementary linear algebra to compute the linear equality relationships between features

by computing the nullspace or kernel for the matrix associated with each cutpoint. Every vector of

a matrix’s nullspace corresponds to an equality relationship between features at that cutpoint for all

test inputs. We simply take the conjunction of equalities generated by all vectors in the basis of the

nullspace and return the resulting predicate as a candidate invariant for our candidate simulation

relation.

One desirable feature of nullspaces is that no sound equality relationship is missed. Nullspaces can

produce spurious equality relationships for lack of sufficient data but if an equality holds statically

then our approach will discover it [89]. Intuitively, this is because every possible equality is contained

in a candidate invariant unless there is a test that violates it. In the limit, if there are no no tests
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then the candidate invariant will consist of every possible equality between features, and hence also

include the equalities that are present in the true invariants. We generalize the results in [89] which

uses nullspaces to compute invariants for a single program to features as follows:

Lemma 1 (Sound Under-approximation). If x is a set of features at a cutpoint n, and I(x) is the

strongest invariant at n that holds statically and is expressible by conjunctions of linear equalities,

then the candidate invariant I(x) obtained by computing the nullspace of test data is a sound

under-approximation of I.

We implemented the technique described above in a tool call Ddec. Ddec computes invariants

using the nullspace function of the Integer Matrix Library [18] which is specialized for computing

the nullspace of integer and rational matrices using p-adic arithmetic, and uses sixteen random tests

to generate data for the invariant computation. For a production system, a larger number of tests

would likely be necessary. However at under 2 ms for each null space computation we do not expect

that this computation would be a bottleneck.

As in Chapter 4, proof obligations are discharged using Z3 [25]. Ddec translates proof obligations

{P}〈t, r〉{Q}, where P and Q are predicates over registers, to VCs as follows. Ddec first asserts

the constraint P . Next, it iterates over the instructions in t, and for each instruction asserts a

constraint that encodes the transformation the instruction induces on the current machine state.

These constraints are chained together to produce a constraint on the final state of live outputs with

respect to t and analogous constraints are asserted for r. As in previous chapters, operators that

are very expensive for Z3 to analyze such as bit vector multiplication and division or floating-point

arithmetic are replaced by uninterpreted functions which constrained by some common axioms.

Finally, for all pairs of memory accesses at addresses addr1 and addr2, Ddec asserts additional

constraints relating their values: addr1 = addr2 ⇒ val1 = val2. These aliasing constraints grow

quadratically in the number of addresses, though in many cases these constraints can be simplified

through dependency analysis.

Using these constraints, Ddec constructs a Z3 query that asks whether there exists an initial

state that satisfies P and causes the two code paths to produce values for live outputs that either

violate Q or result in different machine states. If the answer is “no” then the obligation is discharged.

Otherwise the prover produces a counter example and Ddec fails to verify equivalence. If every VC

is discharged successfully, then Ddec has proven that the two functions are equivalent.

Although this implementation is correct, it is overly conservative with respect to stack accesses.

Notably, an access to a spill slot [4] will appear indistinguishable from a memory dereference and

Z3 will produce a counter-example in which the input addresses to t and r alias with respect to that

slot. As a result, any sound optimized code that eliminates stack traffic will be rejected. We address

this issue by borrowing an idea from [74], where spill slots are replaced by temporary registers that

eliminate the possibility of aliasing between addresses that are passed as arguments to the stack
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LOC Speedup
Program Stoke Stoke+Ddec Runtime vs. gcc -O0 vs. gcc -O3

Bansal 9 6 5492.75s 1.58× 1.04×
Saxpy 9 9 0.62s 9.22× 1.48×

Table 6.1: Performance results for the loop failure benchmarks from Chapter 4. Stoke+Ddec is
able to produce shorter rewrites than Stoke alone. Verification runtimes are tractable and the
resulting code outperforms the output of gcc -O0 and gcc -O3.

frame. For well-understood compilers such as gcc, simple pattern matching heuristics are a good

match to this task [74]. For code compiled by gccfor example, all stack accesses appear at constant

offsets from the register rbp. Although modeling spill slots in this way can produce unsound results

if an input address is used to form an offset into the current stack frame, this behavior is undefined

even in the high-level languages that in theory permit it (e.g., C). To the best of our knowledge,

existing optimizing compilers are also unsound for such programs.

6.2 Experiments

The experiments in this chapter were performed on a two core 3.40 GHz Intel Core i7-2600. We

evaluated our implementation of Ddec by using it as a replacement for the implementation of

the eqslow(·) constraint described in Chapter 4. Our modified version of Stoke (Stoke+Ddec)

was able to produce the two optimizations shown (simplified) in the lower half of Figure 6.4. The

optimizations produced by the original version of Stoke are shown above for reference.

Figure 6.4 (a) shows Bansal’s linked-list traversal bencmark which iterates over the elements in

a list until it discovers a null pointer and multiplies each element by two. In contrast to the result

described in Chapter 4, Stoke+Ddec was able to discover an optimization that caches the value

of the head pointer in a register across loop iterations. Figure 6.4 (b) shows the Saxpy kernel.

Whereas Stoke was only able to optimize the loop-free core of this kernel using vector intrinsics,

Stoke+Ddec was able to further improve on that optimization by performing a register renaming

and removing the invariant computation of a 128-bit constant from the loop. The code motion is

non-trivial and not possible if the registers are not suitably renamed first.

Performance data for these experiments are shown in Table 6.1. We note that the time spent

verifying the linked-list benchmark is significantly greater than what was required for the Saxpy

benchmark. This is because Stoke+Ddec must reason about complex 64-bit memory equality con-

straints. The goal of this experiment is simply to describe the effectiveness of our technique, and the

application of standard heuristics for constraint simplification — which we have not implemented

— could be used to achieve improved performance [29]. To demonstrate just how important con-

straint simplification is, we performed slicing on VCs [103] for the Saxpy benchmark to eliminate
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2: mov 8(rsp),rdi
3: sal (rdi)
4: mov 8(rdi),rdi
5: mov rdi,8(rsp)

6: mov 8(rsp),rdi
7: cmp 0,rdi
8: jne 2

1: jmp 6 1: movd   edi,xmm0
2: shufps 0,xmm0,xmm0
3: movups (rsi,rcx,4),xmm1
4: pmullw xmm1,xmm0
5: movups (rdx,rcx,4),xmm1
6: paddw  xmm1,xmm0
7: movups xmm1,(rsi,rcx,4)
   ...

3: movups (rsi,rcx,4),xmm1
4: pmullw xmm0,xmm1
5: movups (rdx,rcx,4),xmm2
6: paddw  xmm2,xmm1
7: movups xmm1,(rsi,rcx,4)
   ...

1: movd edi,xmm0
2: shufps 0,xmm0,xmm0

3: sal (rdi)
4: mov 8(rdi),rdi

5: cmp 0, rdi
6: jne 3

1: mov 8(rsp),rdi
2: jmp 5

(a)

(b)

(a')

(b')

Figure 6.4: Simplified versions of the optimizations discovered by Stoke+Ddec. The iteration
variable in (a) is cached in a register (a’). The computation of the 128-bit constant in (b) is
removed from an inner loop (b’).

constraints that were not relevant to the verification task and obtained a result in less than one

second. Without these constraint simplifications Ddec timed out after four hours.

6.3 Discussion

Given that we have gone to the effort of constructing a faithful symbolic encoding of the x86 64

instruction set, it is not obvious why we do not simply produce simulation relations statically. The

answer is that inference is harder than checking. Consider an application that computes the dot

product of two 32-bit arrays, where the multiplication of 32-bit unsigned numbers is used to produce

64-bit results. Say the target uses Karatsuba’s trick [60] and performs three 32-bit signed multipli-

cations to obtain a 64-bit result, whereas the rewrite uses a special x86 64 instruction that performs

an unsigned 32-bit multiplication and produces the 64-bit result directly. Any static analysis that

would attempt to demonstrate the relationship between these two algorithms would have a very

large space of plausible proof strategies to sift through. In fact we know of no inference technique
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that can reliably perform such reasoning. In contrast, with Ddec the equality manifests itself in

the data. Knowing that this specific equality is what needs to be checked narrows the search space

to the point that off-the-shelf solvers can be used to dispatch the proof automatically.

In this chapter we described a data-driven approach for verifying the equivalence of loops, and

used that technique to extend Stoke to the optimization of code sequences with non-trivial control

flow. There are many other applications for this technique, such as the automatic verification that a

code refactoring has preserved equivalence, and we hope to explore these in the future. Nonetheless,

our approach is not without limitations. Notably, Ddec requires that the expressiveness of the

invariants required for a proof to be conjunctions of linear or nonlinear equalities. However, for most

interesting intra-procedural optimizations simple equalities appear to be sufficiently expressive [82,

74, 97].

6.4 Related Work

The generation of invariants from test data was pioneered by Daikon [31]. Our technique borrows

a number of ideas from previous work in equivalence checking [21], translation validation [74], and

software verification [89]. Combining these ideas with our approach to guessing simulation relations

from test data yields the first equivalence checking engine for loops written in x86 64.

Equivalence checking is an old problem with references that date back to the 1950s. Equivalence

checking is common practice in hardware verification where it is well known that cutpoints play a

critical role in determining equality. In sequential equivalence checking for example, state-carrying

hardware elements constitute cutpoints. Equivalence checking of low-level code has also been studied

for embedded software [2, 34, 21, 33, 90]. Notably, none of these techniques support while loops

and are inapplicable to our benchmarks.

Ddec is more ambitious than the state of the art in equivalence checking for general purpose

languages. UC-KLEE [81] performs bounded model checking to check equivalence for all inputs up to

a certain size. Other versions of this approach, differential symbolic execution [77] and SymDiff [61],

bound the number of loop iterations by a constant, and Semantic Diff [55] checks only whether

dependencies are preserved in two procedures. The approach described in [71] handles neither while

loops nor pointers, and regression verification [39] only handles partial equivalence; it does not deal

with termination. Fractal symbolic analysis [72] and translation validation [78, 74, 40] are both

capable of reasoning about loops in general. However, both rely on information about the compiler

such as the specific transformations that it can perform. As a result, neither technique is directly

applicable to the problem of checking the equivalence of code of unknown provenance.

Porting the work described in [74] to x86 64, would require a static analysis that is sound and

precise enough to generate simulation relations. This is a decidedly non-trivial engineering task
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and has never been done; Ddec side-steps this issue by using concrete executions to find cutpoints

and invariants. Moreover, the constraints generated by symbolically executing x86 64 are complex

enough that we believe that the decision procedure in [74] will fail to infer equalities in most cases.

Nonetheless, compiler annotations are a rich source of high level information and translation valida-

tion techniques can handle transformations that Ddec cannot, such as the reordering of traversals

over matrices. The ability to infer quantified invariants fully automatically would be necessary for

for Ddec to handle optimizations of this complexity.

Some of the most recent work on equivalence checking includes random interpretations [45] and

equality saturation [97, 98]. The former represents programs as polynomials which it requires to

be of low degree. As a result, bit-manipulations and other similar machine-level instructions are

especially problematic for this technique. A one-bit left shift for example, has a polynomial of

degree 263 for the carry flag. Unlike equality saturation, Ddec does not rely on expert provided

equality relationships between program constructs as these would be difficult to produce by hand

for a Cisc architecture such as x86 64.



Chapter 7

Higher-Order Synthesis

In this final chapter, we demonstrate the use of Stoke as a general-purpose program synthesis

tool. Program synthesis is a well-studied technique for automatically generating code sequences in

the presence of a formal description of the input-output relationships that those sequences should

capture. Although program synthesis has been successfully applied to a number of interesting

domains such as the automatic generation of tricky low level code [93, 92, 46], synchronization for

concurrency [101, 13], and data-structures [49, 50], there are many compelling real-world application

domains for which the current approach to program synthesis remains inadequate. As an example,

consider the task of generating a high-performance random number generator which requires both a

non-trivial correctness specification and the ability to reason directly about the low-level performance

properties of the resulting implementation.

There are two primary reasons for why standard approaches to program synthesis face these

limitations. First, current approaches focus mostly on input-output correctness constraints expressed

in decidable logics that are incapable of tractably describing higher-order constraints (constraints

that require higher-order logics to formalize) such as that a random number generator produce

samples from a normal distribution. Second, current approaches to program synthesis use Sat/Smt

solvers as a mechanism for reasoning about the space of potential results which in turn places

a strong restriction on the type of programs that can be searched in an efficient fashion. Most

implementations solve this problem by considering a restricted space of programs in a high-level

intermediate representation that is close to the underlying logic of the solver. A consequence of this

design decision is that low-level requirements that relate to actual machine code implementation,

such as performance, cannot be expressed.

Stoke has the potential to address both of these issues. First, Stoke defines the quality of a

code sequence in terms of a cost function that can be written in a general-purpose programming

language. As a result Stoke can be used to specify arbitrary constraints on both functionality and

implementation. For example, the distribution produced by a candidate random number generator

69
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can be evaluated by taking a sequence of samples from that generator and comparing it to a se-

quence of samples produced by a reference implementation. Second, Stoke uses random search to

explore the space of possible code sequenes and operates directly on x86 64 assembly. This in turn

leaves Stoke free to use cost functions that take intensional constraints (constraints on implemen-

tation properties that are beyond input-output behavior) into account when considering potential

optimizations.

In this chapter we demonstrate that Stoke is an effective — and to the best of our knowledge,

the only — framework for successfully reasoning about higher-order synthesis constraints that extend

beyond simple input-output relationships. Furthermore, we show that although Stoke has so far

been demonstrated to be effective for synthesizing programs with performance constraints it can be

easily extended to arbitrary intensional constraints. To do so, we describe support for higher-order

correctness and intensional constraints as a set of cost functions for Stoke. For each of a number

of interesting domains that have previously been out of the reach of general-purpose approaches to

program synthesis we define both types of constraints as cost functions that associate lower costs

with smaller numbers of correctness errors and a closer match to the desired intensional properties

of the resulting code.

Using this approach we are able to demonstrate solutions to several sophisticated program syn-

thesis problems. We consider the implementation of random number generators as representative of

a sophisticated higher-order but soft correctness constraint, a shellcode generation task as a demon-

stration of a sophisticated hard intensional constraint, and the implementation of hash functions as

an example of a domain that has both a very sophisticated higher-order soft correctness constraint

and a complex negative soft constraint – namely that the synthesized functions produce results that

are as different as possible from a pre-existing implementation.

Although the use of Stoke substantially increases the domain of applicability of program synthe-

sis, many of the programs that we are able to produce cannot be formally verified as correct or able

to satisfy the given intensional constraints for all possible inputs. Nonetheless, we stress that this

limitation is not fundamental to the use of Stoke but rather due to the complexity of the domains

that we consider. To the best of our knowledge there is no accepted technique for guaranteeing

the higher-order constraints on program correctness and intensional properties that we describe. As

in Chapter 5, we instead demonstrate domain-specific techniques for checking these properties to a

high degree of confidence. Although these techniques provide evidence that the desired constraints

have been satisfied we stress that they are not proofs. Nonetheless, for domains where correctness

and intensional properties cannot be stated formally in tractable logics but rather only defined with

respect to representative test suites, this validation method is at least as effective as state of the art.

To the best of our knowledge, none of the application domains that we consider are within the

reach of existing general-purpose program synthesis techniques. For each domain, we summarize
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the relevant design criteria, describe how those criteria are captured in a Stoke cost function,

and discuss experimental results. As our experiments demonstrate, Stoke is consistently able to

synthesize code sequences that successfully capture the hard and soft constraints of each domain in

a way that is competitive with hand-written alternatives. The remainder of this chapter focuses on

each domain in turn.

All of the experiments that we describe in this chapter were run on a four core Intel i7 with support

for the full Haswell instruction set. Unless otherwise noted Stoke was run with equal weight given

to the hard(·) and soft(·) constraint terms, a timeout of 5 million proposals, a maximum length of

128 instructions, a uniform transformation proposal distribution, and the annealing constant β set

to 1.0. For benchmarks where handwritten assembly was unavailable, targets were generated using

C programs compiled using gcc with full optimizations enabled (compilation using icc produced

essentially identical code).

7.1 Random Number Generators

High-performance pseudo-random number generators are an important tool in many applications.

Numerical simulations, probabilistic programs and modeling algorithms all rely on high-quality

random number sequences. Moreover, many high-performance applications require pseudo-random

number sequences that are not necessarily cryptographically secure but that instead follow com-

mon statistical distributions and exhibit certain properties that can help to prevent bias in host

applications.

The standard practice in pseudo-random number generation is based on a two phase process.

First a stateful random generator is used to produce samples in a native machine format which is

typically a 64-bit value. Second, a distribution routine is used to make one or more calls to that

generator and then modify its state to produce a sequence of samples that are representative of the

desired distribution. Different applications may require underlying sequences to varying standards

of quality; this requirement is exemplified in the Diehard tests for checking sequences of random

numbers [66, 68], which is used to enforce a number of strong theoretical properties. Due to the

complexity of this process we do not address the problem of generating the random bits themselves

but instead focus on the second phase which generates samples according to a desired distribution.

The implementations of many distribution generators — while well-understood — are neverthe-

less quite involved. The ziggurat algorithm [67] for example, is a rejection sampling method that

invokes an underlying generator and then computes transcendental functions over those values and

performs repeated lookups into precomputed tables, sometimes discarding results which do not fit

the required distribution. Even in high-quality implementations such as Intel’s C numerics library

libimf each of these transcendental function calls can execute approximately 100 lines of assembly.
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Pseudo-random number generator kernels are representative of a synthesis task with a soft higher-

order intensional constraint. Defining correctness in terms of an approximate relationship between

distributions is problematic for synthesis techniques that are only able to reason about single program

executions. In particular, for this domain there is no requirement that the target and rewrite ever

produce the same result. Nonetheless, as we demonstrate below Stoke is well-suited to this task.

Given already high-performance random number generator kernels, Stoke can be used to produce

even more efficient code that has only slightly weaker distribution properties.

In general, optimizing and reasoning about code that produces samples from a random dis-

tribution requires the ability to reason about the distance between distributions. This problem

is well-studied and for samples from two known distributions can be solved by comparing their

characteristic parameters. For two normal distributions for example, it is possible to solve for the

maximum likelihood estimate of mean and variance and compute the difference between the results.

For samples of unknown provenance however (as can be expected of the code sequences produced

by Stoke) the task of comparing distributions is more complicated.

A well-known method for comparing distributions without a known closed-form representation

is the two-sided Kolmogorov-Smirnoff test [51] which takes samples from two distributions and

compares the resulting cumulative distribution functions (CDF). Given a code sequence S and

a sequence of machine states τ that represent unique seedings of the underlying random number

generator, the empirical CDF can be defined in terms of a sequence of n independently and identically

distributed samples as follows:

cdf(x;S, τ) =
1

|τ |
∑
t∈τ

1(retdouble(S, t) ≤ x) (7.1)

Using this function, it is possible to define a distance function D(·) that returns the largest

difference in height between the two functions. Intuitively, this function can be though of as a

comparison of the shape of the two distributions: distributions with similar shapes produce CDFs

with only small deviations whereas very different distributions produce CDFs with mass in very

different places.

D(R; T , τ) = sup
x

(∣∣∣cdf(x;R, τ)− cdf(x; T , τ)
∣∣∣) (7.2)

For both the fast and slow variants of the hard(·) term we adopt the portion of the correctness

term described in Chapters 4 and 5 that penalizes rewrites which trigger exceptional signal behavior

for inputs that the target does not. With the exception of this restriction on program semantics

there are no other hard constraints that need to be encoded.

For the fast variant of the soft(·) term we compute the value of the distance function for a small

but statistically significant number of samples n = 27. In similar fashion we define the slow variant
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(a) Normal µ = 0.0 σ = 1.0 (b) Exponential λ = 1.0 (c) Lognormal µ = 0.0 σ = 1.0

Transcendental Function Calls Samples (µ) Samples (σ2) LOC Total
Kernel T R T R T R T R Speedup

Normal log() sqrt() none 2.6 4 9.3 0 106 17 3.53×
Exponential log() none 2 1 0 0 45 7 2.14×

Lognormal log() sqrt() none 2.6 4 9.3 0 151 76 3.06×

Figure 7.1: Synthesis results for three random number generator kernels: normal (a), exponential
(b) and lognormal (c). The kernels produced by Stoke generate distributions that are a close fit to
those produced by the reference implementations (libstdc++) and represent a 2–3.5× performance
improvement and a substantial reduction in code size. The kernels produced by Stoke require fewer
invocations of the underlying random number generator kernel and no invocations of transcendental
functions.

of the soft(·) term in terms of a substantially larger test set of n′ = 220 samples. No standard static

technique is able to reason precisely about the distributions produced by programs written in a

full-fledged hardware instruction set as complex as x86 64. As a result, this very large sample size

provides as close to a formal guarantee as possible that the constraints on the resulting distribution

have been approximately satisfied. For the purpose of simultaneously reasoning about performance

we include the latency estimation terms described in Chapter 4.

softfast(R; T , τ) = D(R; T , τ) + λ(R)

softslow(R; T , τ ′) = D(R; T , τ ′) + Λ(R, τ ′)
(7.3)

We evaluate our support for random number generation using the GNU implementation of the

C++11 libstdc++ random number generator library. In particular, we consider three random number

distribution generators: normal, exponential, and lognormal, each of which are defined in terms

of a linear congruential underlying generator. The normal distribution is implemented using the

polar method described by Marsaglia, the exponential distribution is implemented in terms of the
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multiplication of uniform random variates, and the lognormal distribution is implemented in terms

of the normal distribution; all three implementations are described in [28].

Figure 7.1 (bottom) summarizes the important properties of these implementations. All three

implementations invoke the transcendental log(·) function and both normal distributions invoke the

sqrt(·) function. The distribution over the number of invocations of the underlying generator which

accounts for a non-trivial percentage of total kernel runtime has a mean of at least two and a large

variance for both normal distributions.

Figure 7.1 (top) compares the distributions produced by the reference implementations to the

distributions obtained by running the kernels produced by Stoke using the cost function described

above. In all three cases the distributions are a close fit (D(R; T , τ ′) ≤ 0.05). Moreover, Figure 7.1

(bottom) shows a substantial improvement in performance for the synthesized kernels. All three

perform a fixed (and in the case of exponential, smaller) number of invocations to the underlying

random number generator and represent both a substantial reduction in code size and between a 2

and 3.5× speedup over the reference implementation, even when including time spent in invocations

of the underlying generator. None of the kernels produced by Stoke perform any invocations of

transcendental functions.

7.2 Shellcode

A shellcode is a short piece of machine code that is used to exploit software vulnerabilities [35];

the name derives from the traditional use case which involves starting a shell on a compromised

machine and giving an attacker remote access to that system. Shellcodes are generally transmitted

to a vulnerable process in small data payloads that can be sent either over a network or supplied

as part of a file. An attack typically begins with the exploitation of a vulnerability that gives the

attacker control over the victim’s program counter — such as a buffer-overflow — and ends with

control executing the code contained in the attacker’s payload.

User-supplied character strings are a well-known attack vector for shellcode payloads. As a result,

many processes will only copy strings up to and including the first instance of a null-terminator

character into their address space. Because null-bytes are so common in x86 64 code sequences, this

in combination with other filtering techniques is part of an effective strategy for mitigating the chance

that a shell code can execute to completion. For example, systems that provide W ⊕X protection

offer the additional constraint that shellcode not be self-modifying. This restriction can discourage

the use of tools such as [69], that can embed shellcodes in short sequences of English-like text but

which also rely on a self-modifying decoding routine. Nonetheless, by crafting a shellcode either

by hand or through the use of a special-purpose x86 64 compiler to be free of null-bytes, position

independent, and as short as possible, an attacker may still be able to subvert these countermeasures.

Shellcodes are representative of a synthesis task with a hard intensional constraint. Defining
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correctness in terms of both semantic correctness and the absence of null-bytes is problematic for

synthesis techniques that are only able to reason about input-output relationships using a high-level

intermediate representation. Furthermore, the mapping from x86 64 assembly to an equivalent bit-

wise representation is both non-trivial and difficult to reason about even for experts. Nonetheless,

as we demonstrate below Stoke is an effective platform for automatically synthesizing shellcodes

that are free of null-bytes. Although there is some potential that this technique could be used for

malicious purposes, null-free hand-crafted shellcodes are already widely available on the Internet.

Furthermore, by applying Stoke to this domain we hope to stimulate discussion on preventative

measures for new developments in shellcode injection attacks.

Given a code sequence S we define the sequence of bytes that are obtained by invoking an assem-

bler and transforming that program to machine code. Using this formulation, we define functions

that count program size in bytes and null-bytes.

size(S) = |B|

null(S) =
∑
b∈B

1(b = 0)

where B = Asm(S)

(7.4)

We define the fast variant of the hard(·) term by augmenting the full eq(·) correctness term

described in Chapter 4 with the constraint that rewrites must be free of null-bytes. In contrast to

the hard constraints described in the previous section which only used a portion of the eq(·) term,

shellcode synthesis requires full bit-wise correctness with respect to the reference implementation.

Nonetheless, because the rewrites that we consider are loop-free and neither take any arguments nor

dereference heap values they are effectively deterministic. As a result, there is no need to define the

slow variant of the hard(·) term in terms of an expensive call to a theorem prover. In fact, for both

variants it suffices to check correctness in terms of execution in a single machine state t. In similar

fashion we define both variants of the soft(·) term in terms of size(·).

hardfast(R; T , {t}) =

hardslow(R; T , {t}) = eq(R; T , {t}) + null(R)

softfast(R) =

softslow(R) = size(R)

(7.5)

We note briefly that a small modification to Stoke’s proposal mechanism is required for success-

ful application to this domain. Specifically, Stoke defines operand moves for immediate constants

in terms of a random selection from a small set of pre-defined constants that contains both small
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Null Characters Size (bytes)
Code T R T R

chmod 8 0 28 27
dup2 10 0 23 15
exit 7 0 16 12

write 10 0 44 35
open 7 0 28 24

connect 14 0 53 59
execve 16 0 61 50
mmap 20 0 51 34
socket 13 0 30 25
setuid 7 0 16 14

Figure 7.2: Synthesis results for ten shellcode payloads that are designed to execute Linux system
calls. In all cases, Stoke is able to produce rewrites that are free of null-bytes, and in all but one,
smaller than the original. The rewrites produced by Stoke are an average of 17% smaller than the
reference implementations.

powers of two and whatever immediate constants appear in the target. Because zero-padded con-

stants are a common source of null-bytes we extend this set to include both the immediate constants

that appear in the target and small random modifications to those constants. Doing so is suffi-

cient to allow Stoke to propose constants that are free of null-bytes but that require non-trivial

computation to transform back to the appropriate value.

We evaluated our support for shellcode generation using a suite of ten shellcode payloads that

are known to have been used in buffer-overflow attacks. Each payload is designed to execute a

Linux system call and contains a number of null-bytes. These null-bytes often appear as padding

in immediate constants, as part of instruction encodings, or to accommodate the need to pass zero

as an argument to a system call. Although each benchmark is small the results we describe can

be scaled to shellcode sequences of arbitrary length by simply concatenating the results of each

experiment. For example, by combining the results for the setuid, socket, connect, dup, execve,

and exit benchmarks it is possible to produce a shellcode known as a “reverse-bind shell” payload

that connects to an attacker’s system and opens a root shell on a target machine.

Figure 7.2 compares the original shellcode payloads to the shellcodes produced by Stoke using

the cost function described above. In all cases Stoke was able to produce rewrites that were free of

null-bytes, and in all but one case shorter than the original. On average, the synthesized shellcode

were 17% smaller than the reference implementation. Furthermore, the reduction in size was with

respect to code size in bytes rather than the more traditional lines of code.
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1 # Reference 1 # STOKE

2 2

3 # c1 = 0x6e69622f 3 # c1 = 0x6e69622f

4 # c2 = 0x68732f 4 # c2* = 0x168732f

5 5

6 movq 0x3b , rax 6 movl c2*, -0xc(rsp)

7 movl c1, -0x10(rsp) 7 movl esp , edx

8 movl c2, -0xc(rsp) 8 movl c1, -0x10(rsp)

9 leaq -0x10(rsp), rdi 9 testb dl, spl

10 movq rdi , -0x18(rsp) 10 leaq -0x10(rsp), rdi

11 movl 0x0 , -0x20(rsp) 11 xorq rdx , rdx

12 movl 0x0 , -0x1c(rsp) 12 movq rdx , -0x20(rsp)

13 leaq -0x20(rsp), rsi 13 seto -0x9(rsp)

14 movq 0x0 , rdx 14 movq rdi , -0x18(rsp)

15 syscall 15 leaq -0x10(rdi), rsi

16 movb 0x3b , al

17 syscall

48 c7 c0 3b 00 00 00 c7 44 24 f4 2f 73 68 01

c7 44 24 f0 2f 62 69 6e 89 e2

c7 44 24 f4 2f 73 68 00 c7 44 24 f0 2f 62 69 6e

48 8d 7c 24 f0 40 84 d4

48 89 7c 24 e8 48 8d 7c 24 f0

c7 44 24 e0 00 00 00 00 48 31 d2

c7 44 24 e4 00 00 00 00 48 89 54 24 e0

48 8d 74 24 e0 0f 90 44 24 f7

48 c7 c2 00 00 00 00 48 89 7c 24 e8

0f 05 48 8d 77 f0

b0 3b

0f 05

Figure 7.3: Detailed comparison of a shellcode payload for executing the execve Linux system call
and the equivalent null-byte free rewrite discovered by Stoke (top). Bit-wise representations of
both codes are shown for reference (bottom).
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Figure 7.3 (top) shows a detailed comparison of a shellcode payload for invoking the execve

system call and the null-byte free variant discovered by Stoke. For reference, Figure 7.3 (bottom)

shows the corresponding bit-wise encodings. The null-bytes introduced by the use of the 64-bit

variant of the mov instruction of line 6 of the target are eliminated by the use of the 8-bit variant

of the mov instruction on line 16 of the rewrite. The null-bytes introduced by the use of the zero

constant on lines 11, 12, and 14 of the target are eliminated on line 11 of the rewrite by taking

advantage of the invariant that any register value xor’ed with itself will produce a zero value. And

finally, the null-byte that appears in the constant c2 on line 8 of the target is eliminating by loading

the slightly different constant c2* on line 6 of the rewrite, performing a test that is guaranteed to

pass on line 9, and then using the results of that test to force the seto instruction on line 13 to zero

out the upper 8 bits of c2*.

7.3 Hash Functions

Hash functions for user-defined data-types are a key part of applications that use associative data-

structures. These applications require hash functions that are both easy to compute and produce

values that are uniformly distributed. Although high-quality cryptographically secure hash functions

are well-known [83, 94, 30] the performance properties of these algorithms are often prohibitively

weak. Furthermore, because many applications do not require hash functions that provide such

strong guarantees preference is often given to implementations that instead offer low collisions rates

and faster runtimes [43, 44]. In either case, general-purpose hash functions are typically designed to

work on contiguous blocks of memory and are insensitive to any of the potentially important design

features of domain-specific user-defined types. As a result, hash functions are often written by hand

in an ad-hoc fashion to best suit the demands of a particular application.

In addition to these performance constraints another important criterion is that values that com-

pare equal should produce the same hash values. Although this property follows immediately from

the strong guarantees provided by cryptographically secure hash functions it is far from obvious for

hand-written implementations that are not theoretically motivated. In general, equality of arbitrary

data-types in an undecidable problem and as a result many real world applications fall back on a

more tractable notion of equality: equality for primitive types is defined in terms of bit-wise equiv-

alence, equality of complex user-defined types is defined inductively in terms of their components,

and equality for pointer data-types is defined only for tree-shaped heap structures.

Regardless of the definition of equality that is ultimately used all implementations must make

a distinction between the portions of a data-type that are exposed with respect to equality and

those which are not. As a simple example, consider two vectors with identical elements and different

capacities. Alternately, consider the undefined padding bytes that a compiler emits to guarantee

alignment for user-defined data-types. Because both cases are instances of implementation details
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that are not exposed to the user neither should be considered when computing equality nor should

they be exposed to a hash function.

Hash functions are representative of a synthesis task with a higher-order soft intensional con-

straint. As with random number generators, the constraint that a function produce a uniform

distribution over hash values is problematic for synthesis tools that are only able to reason about

single program executions. As we describe below, this issue is only compounded by the not un-

common soft correctness constraint that a function be as different as possible from a pre-existing

implementation. Regardless, the use of Stoke is sufficient to produce implementations that are

both better able to satisfy these constraints and substantially more performant than existing expert

implementations.

Given a code sequence S that computes a hash function and a hash table that contains b buckets

we define a function that maps a data-type to a bucket as follows. We say that an input value is

represented by a machine state t and define the function that counts the number of collisions that

occur in each bucket over a set of test cases τ .

hash(t;S, b) = retfixed(S, t) mod b

coll(x;S, τ, b) =
∑
t∈τ

1(hash(t;S, b) = x)
(7.6)

Representing input values as test cases allows us to express the distinction between the compo-

nents of a data-type that are eligible and ineligible for being hashed. Following the example given

above, a vector of integers could be represented as a Stoke test case that contained the memory

image of the elements but neither the bits that correspond to capacity nor those that correspond to

compiler-generated padding.

Using this representation, the definition of both variants of the hard(·) term is identical to the

one given in the previous section which discussed random number generators. As before, the only

hard constraint on the implementation of a hash function is that it not produce exceptional behavior.

Using the definition of equality given above the constraint that identical inputs hash to identical

values is implicit.

We define the soft(·) term by augmenting the standard notion of expected runtime with a term

that captures the standard deviation in the number of collisions over a set of test cases. A perfect

hash function will produce zero standard deviation and distribute hash values across all buckets

uniformly. Using the equation shown below we define the fast variant using a small training set τ

of 28 test case inputs and 16 buckets, whereas for the slow variant we use a larger test set τ ′ of 220

test cases and 128 buckets. For the reasons discussed in the previous section on random number

generators this very large sample size provides as close to a formal guarantee as is possible that the
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desired constraints have been met.

softfast(R; τ) = σx

(
coll(x;R, τ, 16)

)
+ λ(R; τ)

softslow(R; τ ′) = σx

(
coll(x;R, τ ′, 128)

)
+ Λ(R; τ ′)

(7.7)

As an example of a practical design constraint that often accompanies the design of produc-

tion hash functions, we additionally consider the issue of randomization. Recent work [11] has

demonstrated techniques for automatically generating input values that can cause several widely

used hash functions [43, 44] to produce identical values. These techniques can in turn be used to

generate denial-of-service attacks on production systems that induce worst-case O(n) behavior in

their underlying hash data-structures.

Although improvements in hash function implementation [3] have demonstrated resilience against

denial-of-service attacks, there is always the potential for the discovery of new exploits. As a result,

an alternate strategy that is often used in practice is to simultaneously deploy a large number of

unique hash functions to eliminate the threat that any one exploit can affect more than a small

handful of production machines. While this technique is effective it is both time consuming and

difficult to implement as it requires an expert to craft not one but many high performance imple-

mentations of the same function. In the equation shown below this design strategy is encoded in

a term that counts the number of hash function collisions produced by a code sequence S and a

reference implementation S ′.

coll′(t;S,S ′, b) =
(

hash(t;S, b) = hash(t;S ′, b)
)

CS,S′,τ,b =
∑
t∈τ

1(coll′(t;S,S ′, b))
(7.8)

Using this new definition, we can augment both variants of the soft(·) term to account for this

additional criteria as follows where S is a preexisting hash function.

softfast(R;S, τ) = σx

(
coll(x;R, τ, 16)

)
+ λ(R; τ) + CR,S,τ,16

softslow(R;S, τ ′) = σx

(
coll(x;R, τ ′, 128)

)
+ Λ(R; τ ′) + CR,S,τ ′,128

(7.9)

We evaluated our support for hash function generation using the two user-defined data-types

shown in Figure 7.4: a stack data-type that consists of a 32-byte random length zero-padded string,

a 32-bit integer, a 64-bit floating-point value, and a boolean flag, and a heap data-type that consists

of a randomly sized linked-list of elements of the former type. For comparison we use SipHash [3], a
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// Stack Data -type // Heap Data -type

struct S { struct H {

char user [32]; S val;

uint32_t id; Heap* next;

double bal; };

bool flag;

};

S stack() { H* heap() {

S s; H* h = new H();

size_t len = rand (31); h.val = stack ();

for (i = 0:len) h.next = 0;

s.user[i] = randc (); for (i = 1:rand (4)) {

for (i = len :32) H* hh = new H();

s.user[i] = 0; hh.val = stack ();

s.id = rand (); hh.next = h;

s.bal = randd (); h = hh;

s.flag = randb (); }

return s; return h;

} }

Figure 7.4: Two representative user-defined data-types: a stack type (left) and a heap type (right).
The stack type is a concatenation of randomly generated primitive data-types and the heap type is
a randomly sized linked list structure.

denial-of-service resistant hash function that can be initialized with different random seeds to induce

substantially different hashing behavior.

Figure 7.5(top) compares the hash functions generated by Stoke using the cost function shown

in Equation 7.7 against SipHash-2-4, a variant of SipHash that is designed to maximize performance.

Because SipHash is designed to be used on contiguous bytes of memory we apply a modified version

to our heap data-type benchmark that first computes the hash of each element in the linked list

and then computes a second hash over the resulting values. For both data-types the hash functions

generated by Stoke produce both a lower standard deviation and range in the number of observed

collisions and perform slightly more than five times faster than the reference implementation.

Figure 7.5(bottom) shows the result of repeating the experiment described above given the

additional constraint that collisions with a preexisting hash function be minimized. In this case

the function discovered by Stoke was generated using the modified terms shown in Equation 7.9

and setting S equal to the functions discovered in the initial experiment. In similar fashion, SipHash

was reinitialized with a set of parameters. In both cases the functions discovered by Stoke were

again slightly more than five times faster than the alternative and resulted in fewer collisions with
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Data Colls. (σ) Colls. (range) Total
Type T R T R Speedup

Stack 94.3 86.4 586 423 5.4×
Heap 87.7 63.1 459 280 5.1×

Data Colls. (σ) Repeats Total
Type T R T R Speedup

Stack’ 92.9 83.2 8139 0 5.4×
Heap’ 87.7 62.1 8173 7673 5.2×

Figure 7.5: Synthesis results for hash functions for the two user-defined data-types shown in Fig-
ure 7.4. The functions generated by Stoke produce a smaller standard deviation and range in
number of observed collisions (top) than the reference implementation (SipHash). Similar results
are observed under the added constraint that collisions with a pre-existing hash function be mini-
mized (bottom).

respect to the preexisting implementations. In the case of the stack data-type, Stoke was able to

achieve a perfect remapping that results in zero collisions with the original.

7.4 Discussion

Although Stoke offers a unique framework for describing both hard and soft instances of higher-

order correctness and intensional constraints, there are domains for which the ability to express

a constraint does not necessarily guarantee success. As a simple example we briefly consider the

steganography synthesis task which involves concealing a piece of machine code within a host im-

age. Whereas cryptography is a method for encrypting information steganography is a method for

concealing the fact that that information is being transmitted in the first place. Steganography has

many practical uses not the least of which is as an alternate method for transmitting the payloads

described in the previous section on shellcode generation.

A straight-forward method for encoding the steganography task as a Stoke cost function is to

define the hard constraint of functional correctness in terms of bit-wise equivalence with the target

as described in Chapter 4 and to define the soft intensional constraint of obfuscation in terms of

the hexadecimal representation of the rewrite. Specifically, we define a function that interprets

the sequence of bytes that are obtained by invoking an assembler as a sequence of pixels and then

penalizes a rewrite based on the extent to which those pixels differ from the pixels in the host image.

Although Stoke is able to synthesize code sequences that both match the target in terms

of correctness and closely match the hexadecimal pixel values in the host image the results are

insufficient to prevent a non-expert from distinguishing images that contain a shellcode payload

from those that do not. Although pixel error is a soft intensional constraint the resolution of the
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human perceptual system imposes an extremely tight bound on the quality of acceptable results. As

a result, although Stoke is able to rapidly explore a high volume of interestingly distinct rewrites

that satisfy the hard correctness constraints of this domain it is unclear how many of those — if any

— are capable of adequately satisfying its challenging intensional requirements.

In general we find that Stoke is most effective for synthesis tasks in which the space of code

sequences is dense with rewrites that both satisfy the required hard constraints and offer a wide

spectrum of varying quality solutions to the desired soft constraints. For domains such as the one

described above where most rewrites offer an equally poor solution to the soft intensional constraints

Stoke is unable to produce a satisfactory result.

In this chapter, we described a new approach to program synthesis that is able to handle both

higher-order correctness constraints and arbitrary intensional constraints on the resulting implemen-

tation. In contrast to previous approaches to program synthesis that focus mainly on constraints

expressed in decidable logics and search based on Sat/Smt solvers we use Stoke to express con-

straints as terms in a cost function using a general-purpose programming language and use random

search to directly explore the space of x86 64 code sequences. Because the use of Stoke dramati-

cally increases the domain of applicability for program synthesis many of the results that we are able

to produce cannot be guaranteed to satisfy the desired constraints for all possible inputs. Nonethe-

less, we are able to use data-driven domain-specific techniques to check these constraints to a high

degree of confidence.

Our implementation of Stoke is the first instance of a general-purpose synthesis technique that

has been successfully applied to the synthesis of high-performance random number generator kernels,

null-free payloads for shellcode injection attacks, and hash functions that are resistant to denial-of-

service attacks. Nonetheless, further opportunities for improvement remain, particular with respect

to synthesis tasks that are characterized by search spaces that contain few instances of rewrites that

are able to adequately satisfy challenging soft intensional constraints.

7.5 Related Work

The classic formulation of the program synthesis task [93, 46, 101, 7] requires that an input specifi-

cation be logical or boolean. Although it is theoretically possible to convert complex specifications

such as the description of a hash function to boolean objectives, the resulting specification can be

exponentially larger than the resulting program. For specifications that require quantified reasoning

over sets (such as those that relate to probability distributions) the use of higher-order logics is re-

quired to simply even state the correctness conditions for interesting synthesis problems. As a result,

synthesis techniques [53] that do attempt to reason about higher-order correctness constraints both

sacrifice expressiveness and restrict themselves to fragments of decidable logic for both specification
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and implementation language.

For the automata-theoretic synthesis domain [10, 14], quantitative objectives are a necessary

design criteria. A well-studied example is the automatic generation of reactive systems such as

resource controllers for which response time must be kept to a minimum. In contrast to the generality

provided by the classic formulation of the program synthesis task the techniques that have been

applied to this domain are limited to weighted-transition finite automata and use solution methods

that make use of game theoretic reasoning over graphs. While these techniques are effective for this

domain there is no obvious translation from this intermediate representation to one that corresponds

to a hardware instruction set, nor is there one from quantitative metrics such as mean payoffs to

arbitrary intensional constraints.

Genetic programming techniques have been applied to several of the benchmark domains that we

consider in this thesis [32, 59]. Although fitness functions are well-suited to solving soft higher-order

constraints, these applications have generally been limited to high-level IRs. It is non-trivial to apply

genetic programming to the intensional constraints that Stoke is able to handle. [87] applied genetic

programming to binary code repair, and [88] explains the circumstances under which application to

similar domains is tractable.

A slightly weaker form of the program synthesis task is the parameter synthesis task. Given

a partially specified program the goal is to produce initial value assignments to program variables

which guarantee that the program meets some purely quantitative objective [17], or one that involves

logical constraints as well [15]. While this formulation is closer to the one that we describe in this

thesis these systems focus exclusively on properties of the outputs, and because program structure

is fixed there is no way to improve upon the low-level implementation of the user-provided program

template.

Finally, although it is conceptually possible to formulate the program synthesis task as a prob-

abilistic program and to use inference engines such as Church [42] to sample from programs that

satisfy certain probabilistic constraints, the runtime properties of this approach are currently poor.

Even in the presence of concessions that trade higher-level operational semantics for a reduced ability

to reason about arbitrary intensional constraints it is unlikely that this approach could be applied

to benchmarks on the scale that we consider.



Chapter 8

Conclusion

In this thesis, we described a new approach to the aggressive optimization of high-performance code

in domains where even a single poorly chosen instruction can lead to unacceptably slow runtimes.

Our technique reformulates the competing constraints of correctness and performance improvement

as terms in a cost function defined over the space of all code sequences, and recharacterizes the

optimization task as a cost minimization problem. Although we sacrifice completeness, the scope of

code sequences that we are able to consider, and the quality of the rewrites that we are able produce,

far exceed those of previous techniques for low-level binary optimization.

In Chapter 3, we described the design and implementation of Stoke, the first instance of a

stochastic optimizer to demonstrate that the high volume application of small random transforma-

tions is sufficient for producing very highly optimized code sequences. In the chapters that followed,

we showed that the code produced by Stoke is not only capable of outperforming the code pro-

duced by production compilers, but in many cases expert hand-written assembly. In Chapter 4, we

described the application of Stoke to loop-free fixed-point code sequences which are common in

high-performance cryptographic routines, and in Chapter 5 we extended Stoke to the optimization

of high-performance floating-point kernels and showed the first application of a stochastic optimizer

to full programs. In Chapter 6 we described a data-driven approach for applying Stoke to code

sequences that contain non-trivial control flow, and in Chapter 7 we described how Stoke can

be used as part of a new approach to program synthesis that is able to handle both higher-order

correctness constraints and arbitrary intensional constraints on the resulting implementation.

While the successful application of Stoke to a number of challenging optimization tasks is en-

couraging, there are still many problems to solve, and directions for future research that we did not

discuss in this thesis. Extending Stoke to ever more sophisticated application domains will require

techniques for reasoning about longer and more complex code sequences. These could include meth-

ods for learning non-trivial transformations and transformation distributions, verification techniques
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that are capable of checking the equivalence of more sophisticated loop transformations, and search

techniques that are more resilient against cost functions that are dense with local minima.

In the introduction, we claimed that our goal was only to convince the reader that our approach

to optimization could work. Whether or not the reader is left with the impression that the approach

is crazy is up him or her. In the time since we began work on Stoke the number of publications

that apply stochastic search techniques to programming language tasks seems to have increased; we

can only take this as a hint that in some cases we may have succeeded. We hope that the reader

agrees.
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[59] Hilmi Güneş Kayacik, Malcolm Heywood, and Nur Zincir-Heywood. On evolving buffer over-

flow attacks using genetic programming. In Proceedings of the 8th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’06, pages 1667–1674, 2006.

[60] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms,

2nd Edition. Addison-Wesley, 1981.

[61] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. SYMDIFF: A
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