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Abstract. Autoencoders are powerful models for non-linear dimension-
ality reduction. However, their neural network structure makes it diffi-
cult to interpret how the high dimensional features relate to the low-
dimensional embedding, which is an issue in applications where explain-
ability is important. There have been attempts to replace both the neural
network components in autoencoders with interpretable genetic program-
ming (GP) models. However, for the purposes of interpretable dimension-
ality reduction, we observe that replacing only the encoder with GP is
sufficient. In this work, we propose the Genetic Programming Encoder
for Autoencoding (GPE-AE). GPE-AE uses a multi-tree GP individual
as an encoder, while retaining the neural network decoder. We demon-
strate that GPE-AE is a competitive non-linear dimensionality reduc-
tion technique compared to conventional autoencoders and a GP based
method that does not use an autoencoder structure. As visualisation is
a common goal for dimensionality reduction, we also evaluate the qual-
ity of visualisations produced by our method, and highlight the value of
functional mappings by demonstrating insights that can be gained from
interpreting the GP encoders.

Keywords: Genetic programming · Autoencoder · Dimensionality re-
duction · Machine learning · Explainable artificial intelligence

1 Introduction

Dimensionality reduction (DR) involves taking high-dimensional data and pro-
ducing a representation of it in a space with considerably less dimensions. This is
beneficial both as a pre-processing step to improve the effectiveness or tractabil-
ity of using the data for machine learning, and to gain a better understand-
ing of the data during exploratory data analysis (EDA), for example visualis-
ing the data in two or three dimensions. Non-linear dimensionality reduction
(NLDR) [11] is of particular interest for data with more complicated relation-
ships that can only be expressed by non-linear relationships. Many existing
NLDR methods are able to produce low-dimensional representations of com-
plex datasets while retaining much of the original information [6, 17]. However
the best performing methods have two main drawbacks: they only produce the
new data points in low-dimensional space without a means to process new points
without retraining, and the way in which they produce the embedding is difficult
for a human to directly check and interpret.
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Having interpretable models is important for a variety of reasons. One reason
is for tasks with human impact such as in medical settings, where there is an
ethical obligation to explain any decisions made. Another is as governments
move to legislate around the use of artificial intelligence, there is increasing
legal obligation for model interpretability. In the case of NLDR, an interpretable
model means we can build a clearer picture of how the data in the constructed
lower dimensional space relate to the real data in the original space, and as a
result have more confidence using the method in settings where this is important.
This also makes NLDR a more effective tool for EDA, as we can use both the
low dimensional representation and the transformation itself to understand more
about the data and the relationships within it.

An autoencoder (AE) is a type of artificial neural network architecture that
performs NLDR [5]. It has two main components: an encoder that transforms
from the space containing the original data into a space with considerably less
dimensions, and a decoder that transforms from the low dimensional space back
to the higher one. An AE is an appealing method to use for NLDR because its
neural network architecture is capable of representing powerful relationships, it
produces a functional mapping that makes it possible to easily transform previ-
ously unseen data points into the latent space, and its ability to reconstruct the
original data is an appealing metric of success at the DR task. However to achieve
high performance, AE architectures usually have far too many parameters to be
interpretable without using external methods to provide an explanation.

Genetic programming (GP) is an evolutionary computation (EC) technique
where computer programs are evolved over generations [2, 18]. GP has inherent
potential for interpretability, because it evolves solutions that combine user-
selected terminals and functions. GP has recently been demonstrated to be a
capable NLDR technique which produces functional mappings [12, 14]. Some
of these approaches have used a multi-tree GP representation with a custom
fitness function for evaluating embedding quality [12–14,22,24], and other work
has looked into GP specifically for autoencoding [16,19].

Combining GP and autoencoding is an appealing concept: it has the potential
to benefit both from the power of AEs and the inherent interpretability of GP.
Existing research into GP for autoencoding has attempted to evolve both the
encoder and decoder structure using GP, but has struggled due to the strong
dependency between the encoder and decoder, limiting performance [16]. Other
attempts instead forgo the architecture, instead using a fully tree-based approach
which gives representations that are complex and difficult to interpret [19].

In this work we propose an AE-based approach to NLDR that replaces the en-
coder component with a multi-tree structure trained by GP but keeps the neural
network decoder. We suggest that due to demonstrated suitability of multi-tree
GP to NLDR in general, that by replacing only the encoder with a multi-tree GP
individual whilst retaining the ANN decoder, the value of GP interpretability
can be harnessed while avoiding the problems of evolving both the encoder and
decoder simultaneously but keeping the benefit of the AE training method and
its potentially powerful neural network decoder.
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The contributions of this work are summarised by the research goals:

– Investigate existing work relevant to GP for NLDR and autoencoding;
– Propose a novel autoencoding method that replaces the encoder with a multi-

tree GP individual while retaining the ANN decoder;
– Evaluate how the method compares at the task of NLDR to conventional

AEs and GP-based NLDR;
– Compare how the method performs at visualisation to the baselines; and
– Investigate what potential the method has for interpretability.

1.1 Structure

The rest of the paper is structured as follows. Section 2 discusses related work
to provide a context for the method we present. Section 3 outlines our proposed
method for creating an autoencoder with a genetic programming encoder. Sec-
tion 4 describes the experiment design used to test the method, and Section 5 the
results of running these tests. Further analysis including visualisation examples
are presented in Section 6, and the paper is concluded in Section 7.

2 Background and Related Work

2.1 Non-linear Dimensionality Reduction

While traditional dimensionality reduction techniques such as PCA [7] can be
sufficient for producing high-quality embeddings of data, often the underlying
structure of a dataset is too complex to be captured by linear combinations
and transformations. For these datasets, Non-Linear Dimensionality Reduction
(NLDR) techniques are required. These are also sometimes referred to as mani-
fold learning techniques [1].

NLDR techniques can be divided into two classes: mapping and non-mapping.
Mapping techniques are those which produce the data embeddings in the low-
dimensional space, as well as a functional mapping to produce them from the
high-dimensional space. Non-mapping techniques on the other hand provide only
the low-dimensional embedding.

Having access to a mapping has a few key advantages. Firstly, it allows for
better interpretation of how the dimensionality reduction has been achieved by
being able to identify which of the original features are important to the found
embedding. Secondly, it allows for new instances of the data to be placed in the
low-dimension space without the need to re-run the DR algorithm again.

A canonical example of a high performing NLDR algorithm is t-distributed
Stochastic Neighborhood Embedding (t-SNE) [6]. t-SNE works by constructing a
probability distribution over pairs of instances in the original feature space, such
that instances close together have a high probability. Then, a second probability
distribution is constructed over the instances in the desired low-dimensional
space. Lastly t-SNE minimises the Kullback-Liebler (KL) divergence between
the two distributions with respect to the locations of the instances in the low
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dimensional space, resulting in the final embedding. The more recent state-of-
the-art Uniform Manifold Approximation and Projection (UMAP) [17] follows
a similar process to t-SNE. However, instead of using probability distributions
and minimising the KL divergence, UMAP uses fuzzy graph representations of
the data in the high dimensional and low dimensional space.

Both t-SNE and UMAP are non-mapping. There have been parametric varia-
tions proposed for both that use neural networks to allow for reusable mappings,
although they are still extremely complex and difficult to interpret [15,21].

2.2 Evolutionary Computation for Dimensionality Reduction

Various EC techniques have been applied to DR. The most straightforward DR
task, feature selection, is simply isolating the most important features. This has
been approached by a range of EC techniques, such as bit-string genetic algo-
rithms [10], particle swarm optimisation (PSO) [26], and ant colony optimisation
(ACO) [8].

The more complex problem of feature construction involves creating a re-
duced number of new features using the original features as components for
transformation. For this task, the programmatic structure of GP is an obvious
candidate. By using the original input features as the GP terminal set, and set-
ting an appropriate fitness function, GP can learn high-performing combinations
of features in an explainable way with little constraint on the form of the learned
functions. The functional structure of GP trees lends itself to produce not just
mappings which are reusable, but also ones that are interpretable.

Genetic programming has been proposed as a potential approach to learn
functional mappings for non-linear dimensionality reduction, such as in Genetic
Programming for Manifold Learning (GP-MaL), which proposed the use of GP
for NLDR [12] without the use of an AE architecture. GP-MaL uses a multi
tree representation, with w trees to represent w dimensions of the embedding.
The fitness function used by GP-MaL is based on the preservation of orderings
of neighbours from the original feature space to the embedding. The GP-MaL
fitness is somewhat ad-hoc: it uses a particular formulation of neighbour preser-
vation. Later work has proposed other fitness functions, such as that used by
the state-of-the-art non-mapping UMAP [17] method [22].

2.3 Genetic Programming for Autoencoding

There are some existing methods that incorporate GP with an AE framework.
The Genetic Programming Autoencoder (GPAE) replaced the AE entirely

with a linear GP representation [16]. Each individual is comprised of two linear
GP programs that represent an encoder and a decoder. Instead of a population-
based search, GPAE mutates a single individual using hill-climbing. The multi-
tree approach is ruled out due to the inability to share calculations between
trees. In fact, given that it is desirable to have minimal redundancy (shared
information) between the embedding dimensions, sharing calculations may be a
downside of GPAE.
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Structurally Layered Genetic Programming (SLGP) [19] uses a dual-forest
representation, with w trees to construct the embedding and v trees to recon-
struct the original input. Representing the decoder as a forest requires a tree
for each original feature, which is difficult to train on high-dimensional data.
To avoid this, SLGP decomposes the problem to smaller, independent GP runs,
each of which considers a subset of features. Thus, the mapping can only take
into account combinations of original features which are in the same subset.
Learning a tree for each original dimension is also very expensive.

Genetic Programming for Feature Learning (GPFL) is an AE-like approach
to feature learning using GP [20]. Feature learning is a tangential task to NLDR
that involves learning representations of image data. While GPFL uses a multi-
tree representation, it learns the trees sequentially, with each subsequent tree
correcting earlier errors. The final individual is a linear combination of the trees.
One drawback of GPFL is the indirect model structure. A major potential key
benefit to using GP for autoencoding is the ability to produce a clear functional
mapping to the low dimension space, which GPFL does not provide.

3 Proposed Method: GPE-AE

After considering the existing work on the subject discussed above, we developed
the novel Genetic Programming Encoder for Autoencoding (GPE-AE) method.
The overall design of GPE-AE is presented in Fig. 1. Here, an example of learning
a 3-dimension embedding of n features is used. Taking the original input dataset
with features f , these are used as inputs to a multi-tree GP individual to produce
a lower dimension embedding W , where wi is dimension i of the embedding. W
is then used as the input for the ANN decoder, while the original features f are
used as training targets. Once the decoder has been trained, it can then output
a prediction of the original features f ′. This prediction can be used to evaluate
the quality of the embedding, and thus the quality of the GP individual.

3.1 GP Representation of Encoder

We use a multi-tree GP representation with each individual being comprised of
w trees. Each of these trees represents a functional mapping of the f inputs to
a single dimension of the w-dimension space. This is consistent with previous
work that showed success with a multi-tree approach [12]. While other work has
argued against a multi-tree representation for autoencoding due to its inability
to share calculations between trees [16], we argue that for the purposes of dimen-
sionality reduction, separating calculations is actually a strength. In theory, each
dimension of embedding should have as little shared information as possible, to
ensure they are capturing independent parts of the underlying distribution.

Our GP encoder representation uses 12 functions, as shown in Table 1. In
addition to standard arithmetic operators (+, −, ×), we utilise: absolute addition
(|+|) and subtraction (|−|), an addition function which takes 5 inputs (5+), and
protected division (%) which returns 1 when the denominator is zero. Absolute
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Fig. 1: An overview of GPE-AE, with n features reduced to a 3D embedding.

Table 1: Functions used by GPE-AE. All functions take/produce numeric values.
Category Arithmetic Logical Non-Linear

Function + 5+ − |+ | | − | × % max min if ReLU sigmoid
No. Inputs 2 5 2 2 2 2 2 2 2 3 1 1

arithmetic operators allow for the easier comparison of magnitudes of inputs.
The 5+ function allows for more aggressive combination of sub-trees in a more
space efficient way. Three logical operators are also included: max, min, and if.
if takes three inputs — if the first input is greater than zero, it outputs the
second input; otherwise it outputs the third. These allow for more expressive
use of the original features beyond arithmetic combinations. To allow for further
non-linear transformations, the ReLU and sigmoid functions are used. These are
commonly used as activation functions in neural networks, adding the capacity
for non-linear learning. Existing GP for NLDR work has also used these [12,14].

The GP terminals used are the original f features of the data, as well as
ephemeral random constants (ERCs). ERCs are random values uniformly sam-
pled over the range [−1, 1], and remain constant over the evolution once ini-
tialised. The use of ERCs allows for scaling and offsetting of features.

Multi-tree GP requires adapting traditional tree-based GP crossover and mu-
tation. In this work, we use All Index Crossover (AIC), where standard crossover
is performed on all pairs of trees (with the same index within the multi-tree rep-
resentation) across each parent. For mutation, we perform standard GP mutation
on a randomly selected tree.

3.2 Fitness Evaluation

The fitness of GPE-AE individual I with w trees occurs is evaluated as follows:
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1. The features of input data X are used as inputs for I, producing the embed-
ding W with w dimensions.

2. W is used as input to the ANN decoder, with X serving as training targets.
3. Once training of the decoder is complete, a final prediction X ′ is made using

W as the input to the trained model.
4. The reconstruction error is calculated between the original data X and the

reconstruction X ′, which is assigned to I as the fitness.

As in standard AEs, the objective/fitness function is the reconstruction error
between the inputs and the predicted outputs. We use root mean squared error
(RMSE), as it better penalises large errors [3]. RMSE is defined as:

RMSE =

√∑n
i=1(x

′
i − xi)2

n
(1)

for n instances, where xi is the ith instance of the input, and x′
i is the

predicted value of instance i (after encoding and decoding).

3.3 Decoder Architecture

The architecture of the ANN decoder requires special consideration. In a con-
ventional AE, it is common to use a “funnel" architecture, where the encoder has
hidden layers with a decreasing number of neurons, with the decoder reflecting
the encoder. GPE-AE, however, uses a dynamically structured GP encoder. For
GPE-AE, we propose the use of a simple multi-layer perceptron for the decoder.
The input layer has w inputs, one for each embedding dimension. The output
layer has f outputs, one for each of the features of the data in the original space.

In GPE-AE, the role of the ANN decoder is only to evaluate the performance
of the GP encoder, and such a decoder needs to be trained for each evaluation (of
which there can be many). Therefore, we do not need the decoder to be perfect,
but merely to be able to reliably distinguish the performance of encoder candi-
dates in a consistent way, and training needs to be relatively short to keep the
overall GPE-AE running time computationally feasible. As such, we suggest the
use of simpler decoder architectures. This also has the benefit of pressuring the
evolution process towards better-structured embeddings: if a reasonably simple
decoder cannot sufficiently reconstruct the input, then the embedding is likely
ill-formed.

As ANN training is stochastic, we use a hash of the encoder as the seed for
training the decoder, ensuring a GP individual always has the same fitness.

4 Experiment Design

To examine the role the complexity of the decoder plays in the performance of
GPE-AE, we perform experiments with decoders with either 1, 2, or 3 hidden
layers. The number of neurons at each layer is presented in Table 2. We follow the
common “funnel" architecture of AEs, where the decoder incrementally expands
the data from the bottleneck to the final reconstruction. As the depth of the
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Table 2: The NN architectures used by GPE-AE and CAE in the experiments.
GPE-AE only makes use of the decoder.

No. Hidden Layers Encoder Arrangement Decoder Arrangement

1 [128] [128]
2 [128, 64] [64, 128]
3 [128, 64, 32] [32, 64, 128]

Table 3: GP parameters used for GPE-AE and GP-MaL.
Parameter Setting Parameter Setting

Generations 1000 Pop.Size 100
Mutation 20% Crossover 80%
Elitism top 10 Pop. Init. Half-and-half
Selection Tournament Tourn. Size 7
Min. Tree Depth 2 Max. Tree Depth 8

decoder increases, so does the number of connections, allowing for more complex
decoding structures. However, introducing more connections has a significant
impact on the computational cost of evaluating fitness.

We are also interested in how GPE-AE performs on NLDR tasks of varying
difficulty. To evaluate this, we perform experiments across a range of embedding
sizes (1, 2, 3, 5, and 10), which represent decreasing levels of challenge.

Standard GP parameters used by GPE-AE for all experiments are shown
in Table 3. For the decoder, standard neural network parameters are used, as
follows. A limit of 100 epochs is used to reduce computational cost, as a NN is
required to be trained for each fitness evaluation. As the decoders are reasonably
simple, this was considered sufficient. The ReLU activation is used to add non-
linearity between hidden layers (as in GPE-AE). The Adam optimiser was used
as it performs well in similar problems [9]. A learning rate of 0.001 and mini-
batch size of 200 were found to be sufficient in exploratory testing.

For each dataset, embedding size, and number of hidden layers, we perform
30 runs using GPE-AE and both of the comparison methods stated in Section
4.1. This accounts for the stochastic nature of the evolutionary process.

4.1 Comparison Methods

To evaluate the performance of our proposed GPE-AE method, we compare it to
two relevant baselines: a conventional ANN auto-encoder (CAE) and GP-MaL.

Conventional Auto-Encoder: we perform experiments using the same
hidden layer configurations as GPE-AE. The architecture of the encoder mirrors
the decoder, as shown in Table 2. By mirroring the decoder, we can be sure that
any structure capable of being found by the encoder is capable of being reversed
by the decoder. We train the CAE using the same standard NN hyper-parameters
as we use for the GPE-AE decoder, and with the same MSE objective function.

GP-MaL: Our motivation behind GPE-AE is to use the AE structure to
produce functional mappings for NLDR with GP. Thus, it is also valuable to
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compare it to another multi-tree GP NLDR method, such as GP-MaL. This al-
lows us to test the hybrid GPE-AE method against both a pure CAE method
and a pure multi-tree GP method. Our GP-MaL experiments use the same pa-
rameters and terminal/function sets as in GPE-AE.

4.2 Evaluation Measures

As NLDR and autoencoding are unsupervised tasks, there is no “gold-standard"
objective measure to compare different methods. For GPE-AE and the CAE,
we can directly compare their reconstruction error. However, GP-MaL does not
perform reconstruction. While we could use the GP-MaL fitness function to
compare all methods, this would then favour GP-MaL, which used it as the
optimisation criterion. To avoid this, we propose using the classification accuracy
obtained using the low-dimension embedding. This approach has been used in
previous GP for NLDR work [12,14], and relies on the assumption that the data
labels are important to the structure of the data. We argue that this assumption
generally holds, as the ability of the classification algorithm to separate data in
a low-dimensional space indicates that important structure within the data has
been retained in the embedding.

As this is unsupervised learning, the data labels are not given to GPE-AE
or our comparison methods, eliminating bias towards any particular approach.
The classification algorithm used for evaluation (after the embeddings have been
learned) is the scikit-learn Random forest implementation, using 100 trees. Ran-
dom forest is an efficient and robust algorithm, making it a good choice for
unbiased evaluation [23]. We calculate the classification accuracy using 10-fold-
cross-validation on the low dimensional embedding.

Measuring Complexity To measure the complexity of the models, we can
calculate the number of connections that the GP trees and the ANN encoder
have. As both are directed graphs, we are counting the number of edges in
each. For a GP individual, this is |nodes| − w, for w roots (trees), as each node
except the root have a single parent. For a fully-connected neural network, this
is defined by the equation

∑L−1
i∈L LiLi+1, where L is the number of layers in the

network, and Li is the number of nodes as layer i. The number of connections
approximately represents the complexity or uninterpretability of a model.

4.3 Datasets Table 4: Datasets used for testing.
Dataset Instances Features Classes

Clean1 476 168 2
Dermatology 358 34 6
Ionosphere 351 34 2
Segmentation 2310 19 7
Wine 178 13 3

The datasets used are presented in Ta-
ble 4. Clean1 is from openML [25], while
the rest are from the UCI Repository
[4]. The selected datasets have a range
of different dimensionalities, classes and
instances to evaluate the performance
of GPE-AE across different problems.
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5 Results

We first compare the three methods (GPE-AE, CAE, and GP-MaL) in terms
of their classification accuracy and complexity (number of connections). These
results are shown in Table 5. The results are grouped vertically by the dimen-
sionality of the embedding. For GPE-AE and the CAE, there are three rows
per dimensionality, for the three different configurations of hidden layers. For
example, GPE 3HL is GPE-AE with a 3-hidden layer decoder, while CAE 2HL
is a conventional autoencoder with two hidden layers in both the decoder and
encoder. The number of neurons at each layer was presented in Table 2. GP-MaL
does not use a decoder architecture, and so has only one row per dimensionality.

Classification Accuracy: The mean classification across the 30 runs for each
method on each dataset is presented in the Accuracy column. A Wilcoxon signif-
icance test was performed with a p-value of 0.05. The tests were performed using
each configuration of hidden layers, with the GPE-AE and CAE methods being
tested for each configuration and dataset. A “+" next to a GPE-AE accuracy
indicates that GPE-AE significantly outperformed CAE with the same hidden
layer configuration on a dataset; a “−" indicates GPE-AE performed signifi-
cantly worse. GPE-AE was also compared to GP-MaL, with a ↑ indicating that
GPE-AE significantly outperformed GP-MaL, and a ↓ indicating the opposite.

From our results, GPE-AE was generally better than CAE for the “easier"
datasets with 34 or fewer features. This indicates that the GP approach is able to
find embeddings with a more separable structure of classes. On the harder prob-
lem of the Clean1 dataset with 168 features, the CAE generally outperformed
GPE-AE — albeit with a relatively small magnitude of difference. Clean1 has two
classes, split 54%:46% — giving a “baseline" accuracy of 54%. All the methods
are very close to this when reducing to one dimension, indicating the classifier is
only doing slightly better than randomly assigning labels. This is not surprising,
as reducing 168 features to a single dimension is inherently a difficult task assum-
ing most of the features are not irrelevant or redundant. GP-MaL often had the
highest performance of the three methods, but was only significantly better than
GPE-AE in some tests on the Dermatology and Segmentation datasets. Neither
of the AE methods show clear trends across different hidden layer configura-
tions. All three methods show clear improvements as embedding dimensionality
increases; more dimensions allows for more structure to be retained.

Number of Connections: For GPE-AE and GP-MaL, the average number of
connections of the best individuals found across the 30 runs for each method is
presented. The number of connections in the neural networks is consistent for
all runs of the same configuration, and is presented for comparison. To highlight
the effect the complexity of the decoder has on the complexity of the encoder,
the smallest average individual size for each test configuration is shown in bold.
Even though the CAE designs we propose are fairly simple, they still have a very
large number of connections compared to GP, especially on the Clean1 dataset.
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Table 5: GPE-AE compared to conventional auto-encoders (CAE) and GP-MaL.
Clean1 Derma. Iono. Segmen. Wine

Method Acc. Conn. Acc. Conn. Acc. Conn. Acc. Conn. Acc. Conn.

1 Dimension

GPE 1HL 0.527− 182 0.813+ ↓ 159 0.850+ 189 0.653+ 141 0.914+ 216
GPE 2HL 0.544− 302 0.803+ ↓ 210 0.871+ 237 0.663+ 214 0.908 178
GPE 3HL 0.546− 132 0.784↓ 219 0.865+ 192 0.641+ 201 0.912 181
CAE 1HL 0.553 21632 0.719 4480 0.714 4480 0.489 2560 0.767 1792
CAE 2HL 0.571 32320 0.712 6592 0.724 6592 0.594 3712 0.811 2560
CAE 3HL 0.581 34336 0.746 8608 0.725 8608 0.561 5728 0.793 4576
GP-MaL 0.582 128 0.915 371 0.868 211 0.649 217 0.883 217

2 Dimensions

GPE 1HL 0.600 374 0.891↓ 324 0.883+ 273 0.701+ 288 0.942 470
GPE 2HL 0.622 276 0.894+ ↓ 301 0.886+ 244 0.754+ 262 0.933 342
GPE 3HL 0.582− 254 0.872+ ↓ 267 0.890+ 238 0.707+ 392 0.916+ 352
CAE 1HL 0.591 21760 0.874 4608 0.817 4608 0.573 2688 0.872 1920
CAE 2HL 0.641 32384 0.855 6656 0.823 6656 0.619 3776 0.909 2624
CAE 3HL 0.645 34368 0.852 8640 0.81 8640 0.605 5760 0.911 4608
GP-MaL 0.621 348 0.935 301 0.889 227 0.714 325 0.937 267

3 Dimensions

GPE 1HL 0.639− 257 0.909 371 0.896+ 326 0.799+ ↓ 336 0.938 380
GPE 2HL 0.642− 328 0.909+ 425 0.897+ 342 0.779+ ↓ 299 0.938 367
GPE 3HL 0.628− 106 0.911+ 305 0.893+ 277 0.786+ ↓ 257 0.940 518
CAE 1HL 0.665 21888 0.910 4736 0.856 4736 0.676 2816 0.928 2048
CAE 2HL 0.676 32448 0.886 6720 0.862 6720 0.709 3840 0.937 2688
CAE 3HL 0.665 34400 0.865 8672 0.860 8672 0.713 5792 0.940 4640
GP-MaL 0.639 301 0.928 450 0.899 348 0.830 320 0.95 419

5 Dimensions

GPE 1HL 0.692− 323 0.918− 451 0.906 242 0.889+ 549 0.944+ 588
GPE 2HL 0.697− 242 0.922+ 436 0.903 431 0.888+ 327 0.931 385
GPE 3HL 0.668− 431 0.897+ ↓ 346 0.904+ 297 0.873+ 338 0.936+ 547
CAE 1HL 0.707 22144 0.940 4992 0.900 4992 0.806 3072 0.934 2304
CAE 2HL 0.739 32576 0.911 6848 0.895 6848 0.812 3968 0.932 2816
CAE 3HL 0.707 34464 0.882 8736 0.885 8736 0.767 5856 0.927 4704
GP-MaL 0.689 480 0.953 492 0.911 428 0.895 595 0.947 295

10 Dimensions

GPE 1HL 0.746− 410 0.949 808 0.906+ 387 0.928+ 673 0.956+ 604
GPE 2HL 0.747− 356 0.933↓ 772 0.905− 378 0.916+ ↓ 384 0.964+ 832
GPE 3HL 0.717− 491 0.943+ ↓ 452 0.912− 562 0.911+ ↓ 559 0.949+ 655
CAE 1HL 0.769 22784 0.946 5632 0.920 5632 0.870 3712 0.938 2944
CAE 2HL 0.775 32896 0.930 7168 0.915 7168 0.856 4288 0.935 3136
CAE 3HL 0.744 34624 0.910 8896 0.905 8896 0.821 6016 0.924 4864
GP-MaL 0.755 577 0.963 754 0.907 457 0.932 839 0.963 556
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Fig. 2: The differences between the reconstruction error achieved by GPE-AE
and CAE. A -ve value means GPE-AE had a lower reconstruction error than
CAE. 1(3) represents a dimensionality of 1 with 3 hidden layers in the decoder.

Reconstruction Error: The mean difference in reconstruction error between
GPE-AE and the CAE is shown in Fig. 2 for each dataset and hidden layer con-
figuration. The x-axis represents increasing embedding dimensionality from left
to right, with the three different hidden layers configurations shown at each em-
bedding dimensionality. A negative difference indicates that GPE-AE achieved
better reconstruction error than CAE. There are two clear trends: firstly, that
the two methods are very similar in their reconstruction errors (differing by at
most ∼ 0.016); and secondly that GPE-AE has lower reconstruction error on
the most challenging task of embedding in one dimension, while CAE has lower
errors at higher dimensions. This is encouraging for GPE-AE: with many fewer
connections, it can achieve a lower reconstruction error with a one-dimensional
embedding. It does, however, demonstrate the need for further research into
improving the performance of multi-tree GP at higher embedding sizes.

6 Further Analysis

A common NLDR task is the reduction of data to two dimensions, explicitly
for the sake of visualising the data. To evaluate the suitability of GPE-AE for
visualisation, we show representative two-dimensional embeddings produced by
the three methods in Fig. 3 on Dermatology, Clean1 and Segmentation datasets.
These datasets represent a variety of difficulty in terms of number of original
features, from 19 for Segmentation to 168 features for Clean1.

On Dermatology, the GPE-AE (and, to a lesser degree, GP-MaL) visualisa-
tion is that instances seem to be grouped in rigid “steps" along the y axis. The
CAE learns “smoother" mapping functions due to the large number of connec-
tions, whereas the GP methods are able to find lower-complexity trees that are
sufficient in terms of fitness. For Clean1, none of the methods are able to clearly
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Fig. 3: Visualisations produced by the GP methods and a conventional auto-
encoder (CAE) on the Dermatology, Clean1 and Segmentation datasets. The
median result of each was chosen for visualisation.

separate the two classes, which is consistent with the earlier results. This sug-
gests that the relationship between the class distribution and the original feature
space is quite complex: it cannot be well-represented in only two dimensions. The
Segmentation visualisations are quite different to the earlier ones. The CAE rep-
resents the data along a single line, suggesting it is not making “full use" of the
two dimensions. GP-MaL splits the yellow and purple classes quite clearly along
the x-axis, with the y-axis mostly representing intra-class variation. GPE-AE is
able to separate the same classes well, but also pushes a number instances far
away from the main clusters — these are perhaps outliers in the dataset.

Evolved Program Analysis: a key strength of GPE-AE over a conventional
AE is the interpretable tree-based representation. Fig. 4 shows a functional map-
ping for reducing the Dermatology dataset to a single dimensions. It makes use
of a single non-linear operator: a sigmoid function with the input
min(f9,max(f21, f13)). This suggests these features may have some non-linear
relationship to the underlying distribution of the data. This mapping uses 12
unique features of Ionosphere’s original 34. From this, we can infer that only
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∼ 35% of features are required to create a sufficiently good embedding. Random
forest classification achieved an accuracy of 0.782 using the embedding produced
by this individual.

7 Conclusions
–

min. f26

min. f20

max. f19

f4 +

× f26

sig. max.

min. % +

f9 max. f4 f32 | – | if

f21 f13 f17 f8 f32 f5 f3

(a)

Fig. 4: Dermatology dataset (34
features) reduced to a single
feature with GPA-AE using 12
unique features.

Autoencoders are a class of unsupervised
learning models for learning representations
of data. They simultaneously learn a func-
tion to encode the data in a low-dimensional
space (the encoder) and a function to recon-
struct the input data from the encoding (the
decoder). Conventional autoencoders use arti-
ficial neural networks, which have an opaque
structure that makes interpretation of the en-
coder mappings highly difficult.

Existing work has attempted to replace
the entire autoencoder with GP. Some of these
represent both the encoder and decoder inde-
pendently with GP, however these has been
difficult to evolve due to the inter-dependency
between them. Other approaches have forgone
the encoder-decoder architecture entirely by
using GP to mimic the reconstructive behaviour of an autoencoder directly.
These approaches have used complex and indirect GP representations, which
makes interpretation difficult. To address this gap, we proposed the Genetic
Programming Encoder for Autoencoding (GPE-AE). GPE-AE retains the ANN
decoder, while using a multi-tree GP representation for the encoder. This allows
for an interpretable encoding, while still retaining the performance benefits of
the ANN decoder.

We have presented the results of experiments to compare GPE-AE to both
conventional autoencoders (CAE) and GP-MaL, a similar GP method for NLDR.
We found that GPE-AE was competitive with both approaches for producing
embeddings which retained the original structure, demonstrating the strength
of the approach at finding functional dimensionality reductions. We also have
compared two-dimensional visualisations produced by the methods, and assessed
how the different approaches can effect these. Finally, we have analysed some
selected GP encoders produced by GPE-AE to demonstrate the valuable insights
that can be gained by using interpretable AE models.

Future Work: In this work, we kept the structure of the ANN decoder simple
and constant for all individuals during the evolution. Future work could explore
dynamic decoder structures based on the encoder structure. Simple encoders
could make use of simpler decoders, reducing evolution time by reducing decoder
training time for simpler solutions where complex decoders are not required.
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The datasets used in this week were of relatively low dimensionality, with
only one dataset over one hundred dimensions. This was suitable for an initial
test of GPE-AE as a proof of concept, but future work could test the method
on a wider variety of datasets, especially larger ones with over one thousand
features. Performing such experiments would provide more rigorous tests of the
suitability of GPE-AE for a wider range of tasks.

Another potential extension of this work is to Variational Autoencoders. The
suitability of GP for multi-objective optimisation [14,27] would allow introducing
another objective that constrains the shape of the latent distribution.

Finally, this work does not directly take into account the susceptibility of GP
to program bloat. It is likely that exploring and applying suitable bloat control
methods would lead to more compact and therefore interpretable trees in the
GP-based encoders produced by the proposed method.
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