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Abstract

ENHANCING EVOLUTIONARY ALGORITHM PERFORMANCE WITH KNOWL-
EDGE TRANSFER AND ASYNCHRONOUS PARALLELISM

Eric O. Scott

George Mason University, 2022

Dissertation Director: Sean Luke, Professor, and Kenneth A. De Jong, Professor Emeritus

Search and optimization problems are widespread throughout business and engineering,

but these computational problems are often complex enough that they must be approached

with heuristic algorithms. Evolutionary algorithms (EAs) offer a very general framework for

solving many of these tasks, but their computational complexity can be difficult to manage

when they are applied to mature and large-scale classes of problems. From my experience

working on EA applications, I became concerned about two EA efficiency challenges that

have been inadequately addressed to date: 1) parallelization strategies for evolutionary

algorithms routinely suffer from idle CPU resources that go unused, and 2) customizing

evolutionary algorithms with the domain-specific prior knowledge that they require in order

to solve useful problems often requires costly and time-consuming research programs.

In response to the idle-resources problem, I have engaged in a detailed study of asyn-

chronous steady-state evolutionary algorithms (ASEAs) and their ability to better utilize

large clusters of CPU resources. I studied issues of speedup, evaluation-time bias, and excess

computational effort in ASEAs—concluding in particular that evaluation-time bias is a less

severe problem for these algorithms than many practitioners have assumed.

Next, I have addressed the problem of prior knowledge in EAs by engaging in a broad



preliminary study of evolutionary knowledge transfer (EKT) and multi-task optimization.

Motivated by natural examples of “innovation engines” that repurpose solutions to past

tasks to find solutions to complex future tasks, I studied issues of transferability in different

problem classes, negative transfer, and representation-based knowledge transfer approaches

for evolutionary algorithms. My contributions in this area include proofs of a new set of no-

free-lunch theorems for various types of transfer optimization, and several novel algorithms to

address EKT challenges—including a many-source population-seeding algorithm that avoids

negative transfer fairly easily, a multi-task Cartesian genetic programming approach, and

a representation-learning algorithm that is able to learn and transfer genotype-phenotype

maps across problem classes.



Chapter 1: Introduction

The survival of the fittest is a slow method for measuring advantages. The

experimenter, by the exercise of intelligence, should be able to speed it up.

—Alan Turing [1950]

A very widespread and important swath of human activity is concerned with the closely

related tasks of search and optimization. Almost all professions and domains of business and

engineering involve daily efforts to reduce waste, increase performance, find novel courses

of action, and to find accurate predictive models of phenomena in the natural and artificial

worlds. Many of these problems are complex enough, however, that in practical cases they

can only be solved with heuristic algorithms such as genetic and evolutionary algorithms

(EAs), which trade away performance guarantees in exchange for being able to solve many

problems adequately in a feasible amount of time. The performance of these algorithms is

affected by a number of complex considerations. In this dissertation I study two of those

considerations in particular: 1) the utilization rate of parallel computing resources when

objective evaluation times vary, and 2) the more subtle problem of configuring algorithms

with heuristic knowledge that can help to efficiently navigate problem-specific search spaces.

1.1 Evolutionary Computation

Evolutionary computation (EC) is one general class of heuristic approaches (and, more

specifically, meta-heuristic approaches, which I will describe in Chapter 2) to designing

probabilistic algorithms that can be used to solve search and optimization problems. This

school of computing is best known for conforming to a bio-inspired metaphor, in which

1



algorithms solve problems through an iterative process of variation and selection that re-

sembles Darwinian evolution in many respects.1 The chief advantage that these evolutionary

algorithms have over other algorithmic techniques is that they make few explicit assump-

tions about the type or structure of problems that they are solving—to the point that they

are often effectively applied as “black box” algorithms which make relatively little use of

problem-specific information [Doerr, 2020].2 This means that, on the one hand, EAs offer a

very general framework for performing search and optimization: they serve as a means to

solve (or approximately solve) problems that are complex, combinatorial, non-linear, non-

convex, non-differentiable, of mixed-type, NP-hard, or otherwise too poorly understood for

a less general approach to be useful. It also means, however, that EAs risk performing

inefficiently. In line with the traditional distinction that artificial intelligence (AI) draws

between “strong” and “weak” methods of problem-solving, algorithms that utilize special-

ized knowledge about a problem or problem domain generally find better solutions and/or

require fewer computational resources than highly general, one-size-fits-all procedures that

make no use of such information [Laird et al., 1986, Newell and Simon, 1976].3

1That said, the metaphor is optional: the core motivating property of most evolutionary algorithms is the
idea of parallel search, in which a set of multiple solution instances is iteratively updated to collaboratively
explore (and exploit) an objective landscape. As with neural networks and other bio-inspired approaches
to computation, authors vary a great deal in how far they go toward emphasizing the natural metaphor or
drawing inspiration from biological research.

2For example, EAs typically do not assume that the function to be optimized is continuous, or that its
derivative is known (which is required by the gradient descent optimizers so widely used in neural networks);
nor do they assume, in a control context, that the system to be controlled has linear dynamics, or that the
function to be optimized is described by a quadratic expression (which is required by the linear-quadratic
regulator of optimal control theory).

3Alan Turing [1950] was the first to conceive of evolutionary algorithms, and also the first to observe that
because they proceed primarily through probabilistic sampling of a solution space (i.e., mutation), they may
often be inefficient. This concern about EA inefficiency echoes to this day—particularly among advocates of
reinforcement learning (such as Sutton and Barto [2018], p. 8). Recently, however, the ease with which EAs
can be scaled and parallelized on large compute clusters—as well as their ability to handle complex search
problems such as neural architecture search for deep learning—has helped to allay these concerns and to
renew interest in EAs within the broader machine learning community [Elsken et al., 2019, Salimans et al.,
2017].

2



1.2 Prior Work on Managing EA Efficiency

In my experience applying evolutionary algorithms to various simulation problems in eco-

nomic regulation [Scott et al., forthcoming], neuroscience [Chen et al., 2021, Venkadesh et al.,

2018, Zou et al., 2021], robotics [Scott et al., in press], and agent-based modeling [D’Auria

et al., 2020], a key challenge has been managing the computational complexity that evo-

lutionary methods tend to entail. Many of these problems involve high-dimensional search

spaces and objective functions that require complex simulations to be executed that take a

long time to run (even with the help of GPU acceleration). Problems of this kind seem to

be particularly commonplace in mature projects that have moved beyond toy problems and

are ready to begin solving useful and detailed instances of a real-world class of problems

[Harada and Alba, 2020]. As both the need for and access to high-performance computing

(HPC) resources continue to proliferate in the 21st century, the kinds of problems that EAs

are applied to increasingly tend to be computationally intensive in this way.

The EC research community has used several broad strategies to improve on the ef-

ficiency of evolutionary algorithms for computationally expensive applications. These are

illustrated by a hierarchical diagram in Figure 1.1. Like other meta-heuristic algorithms—of

which evolutionary algorithms are the largest and most diverse subfamily [Blum et al., 2011,

Stork et al., 2020]—EAs can be configured in a wide variety of different ways using various

parameters, subcomponents, and design decisions.

Some of these decisions may improve the algorithm’s ability to find good solutions while

using fewer queries to the objective function. This can be achieved either by utilizing cross-

cutting, “meta-level” insights that apply broadly to many domains [Back, 1994, Blickle and

Thiele, 1996], or by applying deep human analysis and/or extensive parameter sweeps to

design domain-specific search strategies for narrow application areas (such as traveling sales-

men problems, real-valued optimization, or specific subsets within these domains) [Burke

et al., 2010, Hutter et al., 2009, López-Ibáñez et al., 2016, Ochoa et al., 2015].

Other design decisions can improve performance by reducing the cost of each query to the

3



Approaches to EA Efficiency

Get More 
Samples in 
Less Time

Parallel &
Distributed
Algorithms

Surrogate 
Modeling

Examples
Master-worker algorithms

Island models

Spatial EAs

GPU acceleration

Examples
Response surface models

Kriging

Radial basis functions

Neural networks

Get Better 
Answers with 
Fewer Samples

Meta-Level 
Algorithm 
Configuration

Domain-Specific 
Algorithm 
Configuration

Examples
Selection operators

Stochastic universal sampling

1:5 rule for adaptive mutation

Parameterized uniform crossover

Examples
Specialized mutation for TSP

CMA-ES

Parameter-tuning frameworks

Automated algorithm configuration

Figure 1.1: A high-level breakdown of the strategies the community has used to address the
efficiency of evolutionary algorithms.

objective function, so that a greater number of samples can be obtained by the algorithm

in the same period of time. The most significant approaches of this kind fall into two

categories. Parallel evolutionary algorithms (PEAs) [Alba, 2005, Alba and Tomassini, 2002,

Harada and Alba, 2020] use multiprocessing and/or distributed processing to exploit the

“embarrassingly parallel” structure of EAs to evaluate many search points simultaneously.

Surrogate models, meanwhile, explicitly build a statistical model of an objective function

while it is being optimized, so that some queries can be replaced by much lower-cost queries

to the surrogate model [Alizadeh et al., 2020, Jin, 2005]. These two approaches—PEAs and

surrogate modeling—are complementary and are often used together.

1.3 Motivating Problems

In my work on EA applications, I have become concerned with two key challenges that have

been inadequately addressed by prior research:
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1. First, traditional parallelization strategies for evolutionary algorithms (like those in-

dicated on the left-hand-side of Figure 1.1) suffer from an omnipresent idle time

problem: at each generation, all the processors must synchronize and wait for the

individual (or batch of individuals) that take the longest to evaluate to complete be-

fore evolution can proceed. In some cases this can lead to a large fraction of available

CPU resources being left idle while an EA runs—especially in cases where numerous

processors are used, as in modern high-performance computing clusters.

2. Second, performing domain-specific research to customize evolutionary algorithm com-

ponents to a problem class (like in the examples listed on the right-hand-side of Fig-

ure 1.1) is often an essential step in being able to solve useful problems. But research

programs of this kind are costly and time-consuming, and the results of such ef-

forts usually fail to generalize to new domains (or even to new problems within

the domain of interest). This situation is analogous to the widely lamented problem

of generalization and robustness in contemporary machine learning [Schölkopf et al.,

2021].

In this dissertation, I investigate solutions to each of these challenges: specifically asyn-

chronous steady-state evolutionary algorithms (ASEAs), and evolutionary knowl-

edge transfer (EKT), respectively. These two sets of algorithmic approaches are comple-

mentary, in the sense that they arise from separate theories and can be used independently

of (or in combination with) one another. But each of these methods addresses a major

bottleneck in the efficiency of EAs as they are currently applied.

1.4 Proposed Solutions

My research has taken me first to perform a thorough analysis of ASEAs and variations of

them that respond to aspects of the idle-time problem. Ultimately, however, improving the

efficiency of EA parallelization alone can only go so far toward addressing the computational
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costs that are involved in solving complex search and optimization tasks. In the latter

portion of this dissertation, then, I turn to the burgeoning field of EKT as a potential

means of further improving EA performance. This second portion of my work here is more

speculative and preliminary than the ASEA results, but has given me the opportunity to

address several fundamental open questions that surround how and when knowledge transfer

might play a significant role in evolutionary computation.

1.4.1 Asynchronous Steady-State EAs

Asynchronous steady-state EAs have risen in popularity in recent years as a solution to the

idle-time problem. In contrast to generational EAs—which process the entire population

at once in each generation—ASEAs follow a steady-state population model, in which single

solutions are generated, evaluated, and integrated into the population on an individual basis.

By performing steady-state evolution asynchronously across multiple processors, ASEAs can

make better use of parallel computing resources than generational algorithms when the time

it takes to evaluate solutions is relatively long and varies.

The asynchronous steady-state model has only recently begun to become widely used,

however, particularly as problems involving computationally expensive objective functions

and large parallel computing environments with many processors have increased in popu-

larity [Coletti et al., 2020, 2021, Durillo et al., 2008, Harada et al., 2020, Yagoubi, 2012,

Yagoubi et al., 2011]. ASEAs bring the advantage of increased processing throughput during

evolution. As a side effect, however, the search trajectories of ASEAs differ from their gen-

erational counterparts in complex and difficult-to-analyze ways. In this dissertation, I study

three significant open questions that are of potential concern to practitioners who apply

ASEAs: namely 1) the problem of how much speedup an ASEA may be expected to produce

(since reducing idle CPU resources may not always lead to better solutions), 2) the problem

of evaluation-time bias, in which ASEAs are sometimes biased toward evolving solutions

that are computationally inexpensive to evaluate (in addition to or instead of high in qual-

ity), and 3) the problem of excess computation, in which the additional evaluations that an
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ASEA can perform with recovered resources may be useless on certain problems (ex. because

the algorithm must still wait for longer-evaluating individuals to complete processing before

progress can be made). I have published most of these results in peer-reviewed conferences

and journals [Scott and De Jong, 2015, 2016b, Scott et al., 2021, in press], and present them

here in a freshly integrated form, along with some new analytical and experimental results.

1.4.2 Evolutionary Knowledge Transfer

By far the majority of evolutionary algorithms’ uses are single-task applications: in which

an algorithm begins with some human-configured baseline input, executes iteratively for a

number of steps until a stopping condition is reached, and then returns the best answer it

has found so far. When a new problem instance needs to be solved, a single-task algorithm

is reinitialized to its starting point, and uses zero information from prior experience on other

problems.

Evolutionary knowledge transfer refers to evolutionary algorithms that solve multiple

distinct tasks (either in sequence or in parallel), gathering information from one or more tasks

that it uses to alter its heuristic approach while solving one or more additional, related tasks.

Until just a few years ago, transfer-based EAs were rarely used and had never been deeply

studied. Recently, however, a number of authors have begun to systematically investigate

the challenges that surround the idea of retaining and reusing experience in evolutionary

algorithms—building on a few seminal algorithms invented by Gupta et al. [2016c], Kelly

and Heywood [2017], Nguyen et al. [2015b], and others.

At a broad, speculative level, EKT can be motivated by observing real-world instances

where organizations face multiple optimization tasks that share a clear and obvious similar-

ity (such as when a t-shirt factory needs to solve job-shop scheduling problems for different

seasons of the year [Zhang et al., 2021b]), or it can be motivated by appealing to shared

causal principles that underlay some broad domain or environment (such as robotics). A

third provocative inspiration for evolutionary approaches to knowledge transfer arises from

observations of the reuse of information in biology and technology: where serendipitous
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repurposing of solutions to highly disparate problems and niches has often created break-

throughs and innovations [Arthur, 2009, Lenski et al., 2003]. Innovation engines of this kind

[Nguyen et al., 2015b] have the potential to take an indirect route to solving problems, po-

tentially arriving at complex solutions to problems that would be very difficult to approach

directly [Stanley and Lehman, 2015].

These three narratives vary in the view of EKT that they lead to, and in their degree

of speculation or optimism about the potential of knowledge transfer methods to broadly

improve the state of the art for search and optimization. But all three lead to a similar array

of basic challenges and open problems that, because they are poorly understood, complicate

attempts to introduce knowledge reuse into evolutionary computation.

In this dissertation, I study three significant classes of these open questions that lie at

the heart of the young field of evolutionary knowledge transfer and its feasibility: 1) the

question of what kinds of problem classes knowledge transfer is a useful paradigm for, 2)

the challenge of negative transfer and the associated task of knowledge source selection, and

3) how knowledge representations can be used to encode generalizable knowledge to transfer

across tasks (and more specifically how such knowledge can be encoded in solution repre-

sentations). I have published some of these preliminary findings as peer-reviewed workshop

and conference papers [Scott and Bassett, 2015, Scott and De Jong, 2017, 2018]—but many

of them are presented here for the first time.

1.5 Contributions and Roadmap

The remainder of this dissertation will present a number of studies that I have conducted

on these two broad and complementary facets of evolutionary computation.

After an extensive background discussion in Chapter 2 covering both areas and presenting

concrete research questions for each, I will turn in Chapter 3 to analyzing asynchronous

evolutionary algorithms. My primary contributions in this area include an analytic proof of

the expected performance speedup of an ASEA under restricted conditions, and an empirical
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study of evaluation-time bias in ASEAs. I conclude that evaluation-time bias is less prevalent

in most applications than practitioners have tended to fear, and that its effects are mostly

confined to the initialization phase of the algorithm.

Another contribution I offer toward understanding asynchronous EAs is an analysis (not

previously published) of the effects that different initialization strategies have on these al-

gorithms’ behavior—as it turns out that ASEAs are especially sensitive to the choice of

initialization method in a way that traditional EAs are not. I also investigate one ex-

ample of a class of hybrid algorithms that are only partly asynchronous—specifically the

quasi-generational EA, which has been previously proposed in the literature [Durillo et al.,

2008, Fonseca and Fleming, 1998]—and show that prior work that hypothesized that it has

advantages over the classical ASEA was mistaken.

Finally, I present recent results that investigate a specialized selection operator that

can be used with the ASEA to improve its performance on applications where high-quality

solutions are associated with longer evaluation times of candidate solutions.

With the ASEA study complete, I then turn in Chapter 4 to the two related problems

of transferability in problem classes and the issue of negative transfer. Here I prove a se-

ries of novel no-free-lunch theorems, showing analytically and empirically for the first time

that the general principle that no algorithm can outperform other algorithms on average

across all possible problems (“no free lunch”) does indeed still apply when considering var-

ious types of knowledge transfer in optimization. I focus for the remainder of this chapter

on instance-based transfer in a sequential setting (which has been somewhat neglected by

the literature’s recent trend toward focusing on multi-task transfer instead), demonstrating

problem classes that it works well on, and proving a complexity result on the leading-ones

problem that clarifies the conditions under which sequential knowledge transfer can reduce

an EA’s running time on this problem from O(n2) to O(n log n). To my knowledge, this

is the first asymptotic runtime result that has been proven for transfer optimization. In

this chapter I also contribute a many-source variation of instance-based transfer—where a

repertoire of knowledge from many source tasks is used to solve a single target task—and
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show that in some cases this can offer a very effective antidote to the widespread problem

of negative transfer.

In Chapter 5, then, I contribute two new algorithms for evolutionary knowledge transfer,

demonstrating that both of them are able to learn and transfer solution representations—one

in the context of real-valued vector optimization problems, the other in a genetic program-

ming context. These approaches serve to mitigate the limitations of most EKT methods,

which commonly rely on the transfer of low-level solution instances which generalize poorly

to new tasks.

With all the details covered and explained, I turn briefly in Chapter 6 to some closing

reflections on the significance of both of these fields—asynchronous evolution and knowledge

transfer—and how the results I present here contribute to their respective trajectories.

Lastly, because software tends to take a backstage role in written science, a silent con-

tribution of this dissertation has been many contributions to the ECJ software framework

[Scott and Luke, 2019], and also a novel EC software framework—the Library for Evolution-

ary Algorithms in Python (LEAP)—which I have developed in collaboration with Coletti

et al. [2020] in response to the many limitations and inflexibilities of existing EC software

frameworks. I have presented LEAP at peer-reviewed workshops and at formal talks at

NASA Jet Propulsion Laboratory and MITRE Corporation, among other venues.
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Chapter 2: Background

In this chapter I aim to give a thorough overview of the state of the art in asynchronous

evolutionary optimization and evolutionary knowledge transfer (EKT), respectively. I will

give special attention to several key research challenges that both fields face, but I will not

attempt an entirely comprehensive survey of either area. Because these topics are somewhat

independent, I will first survey parallel EAs and prior work on asynchronous interpretations

of them in section 2.1, and then turn separately to EKT in section 2.2. Both sections will

conclude with a set of research questions that the research in the remaining chapters of this

dissertation is built around.

2.1 Asynchronous Evolutionary Optimization

In this section I discuss how an asynchronous steady-state computation model for evolution-

ary algorithms arises naturally from the need to reduce idle computing resources on parallel

architectures. While there are other reasons one might be interested in asynchronous EAs

[Kim, 1994, Martin et al., 2015, Sambo et al., 2020], making efficient use of (massively)

parallel computing environments is the most important, and has become an especially burn-

ing problem in recent years, as HPC clusters become the norm rather than the exception

in many applications. Most of the applications I personally work with, moreover, involve

expensive fitness evaluations and simulations—and thus benefit greatly from parallel and

distributed environments, where asynchronous processing can mitigate certain problems.

Here I will first introduce asynchronous evolutionary algorithms at a high level, explain-

ing how they arise from the simple idea of combining the master-worker model of parallel

and distributed optimization with a steady-state model of evolution. Then in my review of

the EC community’s recent efforts to apply and understand the performance characteristics

11



of these algorithms, I find that three groups of practically important questions have not

been answered: namely

1. how much speedup asynchronous algorithms achieve over their traditional, synchronous

(generational) counterparts,

2. whether and to what degree asynchronous algorithms introduce an evaluation-time

bias that favors quick-evaluating (i.e., computationally inexpensive) solutions over

slow-evaluating ones, and

3. how to mitigate the problem of excess computation that asynchronous algorithms may

have in applications where higher-quality solutions take longer to evaluate than lower-

quality ones.

I motivate each of these points below in sections 2.1.2, 2.1.3, and 2.1.4, respectively, and I

restate them in section 2.1.5 as research questions that guide this dissertation.

2.1.1 Problem-Solving with Parallel Meta-heuristics

Evolutionary algorithms are part of a wider family of algorithms that are generally referred

to as “meta-heuristics” [Blum et al., 2011, Stork et al., 2020]. Most meta-heuristics share in

common the trait of combining a fairly general search strategy—which aims to balance ex-

ploratory and exploitative behavior while navigating a solution space—with domain-specific

functions and customizations that improve an algorithm’s performance on particular prob-

lems.1 Evolutionary algorithms are the largest and most diverse subfamily of meta-heuristic

algorithms.2 This is because one of the properties that often distinguishes EAs from other

meta-heuristic approaches is the emphasis that they place on maintaining a population of

solutions during the search process as a means of balancing exploration and exploitation.
1Since its introduction by Blum and Roli [2003a], the term “meta-heuristics” and the field it has come to

denote has been interpreted in several ways—some more helpful than others. I prefer the view that a meta-
heuristic is in essence a general, “meta-level template” for defining a heuristic search algorithm—a template
that is abstract enough to define a search strategy largely independently of the application domain.

2Examples of non-evolutionary methods in this family include simulated annealing and tabu search [Glover
and Laguna, 1998].
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This concept of population-based search can be implemented in diverse ways and is a com-

mon thread through most EA families—including genetic algorithms, evolution strategies,

genetic programming, particle-swarm optimization, ant colony optimization,3 etc.—and it

makes these algorithms naturally amenable to execution on parallel architectures such as

multi-core machines, distributed clusters, and massively parallel hardware such as GPUs.

Panmictic Master-Worker EAs

Because of their natural affinity with parallelism, parallel and distributed implementations

of EAs have been deeply studied, and can be broadly divided into two major families [Alba,

2005]:

1. panmictic models,4 in which variation and selection operators are applied to a single

monolithic population, and

2. structured-population models (including both island models and spatial EAs), in which

multiple sub-populations (sometimes called demes) are evolved separately with some

degree of loosely coupled communication.

Each of these families of population models has different advantages and motivations.

Structured-population models use a subdivided population and network topologies to re-

duce the cost of communication among processors, for instance. Minimizing communication

costs is important in applications where the goal is to execute many evaluations of an in-

expensive fitness function as quickly as possible. Island models address this by reducing

network overhead,5 whereas spatial EAs—such as the cellular EA, where small populations

in each “cell” interact only with their neighbors—restrict communication in ways that may

be more easily implemented on a GPU [Soca et al., 2010]. Parallelization of all three fami-

lies (panmictic, island, and spatial) has been studied extensively [Alba and Tomassini, 2002,
3Because EAs are often equated with population-based algorithms, the term is inclusive of related al-

gorithm families that do not reference evolution in their names—such as particle-swarm optimization and
ant-colony optimization.

4From πᾶς (all, every) + μίξις (mixing), since all individuals are able to mate with all other individuals.
5This can also be useful in cases where genomes are very large and thus non-trivial to transmit across

processing nodes, as when dealing with large weight vectors for neural networks.
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Cantú-Paz, 1998, Nowostawski and Poli, 1999]. The recent survey by Harada and Alba

[2020] gives a detailed discussion and taxonomy.

Panmictic master-worker methods6—also known simply as “global parallel” EAs [Harada

and Alba, 2020]—have generally been less studied by researchers (mostly on account of their

relative simplicity). These algorithms, however, offer the simplest and most widely used

parallel architecture for evolutionary computation. A master-worker EA maintains a single,

global population on the master processor, and dispatches individuals in the population out

to worker processors to have their fitness evaluated. Sometimes reproductive operators are

also executed on worker nodes, if they are expensive enough that executing them on the

master would introduce a significant bottleneck. Master-worker EAs are beneficial when

the cost of fitness evaluation (and/or reproductive operators) is substantially greater than

the cost of transmitting individuals from the master to the workers. These algorithms thus

yield significant speedup when applied to problems where the computational cost of fitness

evaluation dwarfs other costs.

In my experience, a very wide class of applications that EAs are a good fit for meet this

description. As access to and the need for high-performance computing power has grown in

recent years, more and more applications of meta-heuristics are attended by expensive fitness

functions. For example, I have often worked with colleagues on applying EAs to search

decision spaces or parameter-tuning spaces that are associated with complex simulations

[D’Auria et al., 2020]. In an economic modeling context, an EA might evolve a sequence of

business transactions that an agent executes during a simulation of a tax system [Scott et al.,
6Historically these have, along with similar algorithms throughout computer science, almost universally

been referred to as “master-slave” algorithms (including in my own past publications). This vocabulary has
always been somewhat in tension with the U.S. Constitution, however, particularly since the passage of the
XIIIth amendment in 1865; my own friends have often been shocked at how cavalier computer scientists
are about antebellum metaphors (and also “male” vs. “female” cable connectors—but I digress). As has
often been observed (for instance, with the famous “secretary problem”), the names we give to canonical
algorithms often reflect the prejudices of the era in which they were named [Christian and Griffiths, 2016, p.
11–12]. Most papers and software APIs in recent years have thus been quietly replacing this terminology as
the community becomes disillusioned with casual analogies to enslaved people—and I adopt that trend here.
Capitalism, however, is alive and well in America, so—while granting that today’s computers are as yet no
more capable of voluntary servitude in which they own their own labor than they are of the involuntary
kind (current events notwithstanding)—I will be ruthless in giving jobs (still doled out by “masters” who
orchestrate the means of production) to metaphorical “workers” throughout this dissertation!
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forthcoming]; or in a neuroscience context, EAs can be used to tune the free parameters of

individual neuron models [Venkadesh et al., 2018], synaptic connections [Zou et al., 2021],

or learning rules like spike-timing dependent plasticity (STDP) [Chen et al., 2021] to fit

complex neural network behavior to neurophysiological data, or to act as a controller for

an autonomous vehicle [Scott et al., 2021]. EAs are also frequently applied in adversarial

machine learning, to generate or select difficult example data to challenge a machine learner’s

ability to generalize [Scott et al., in press]. In all of these examples, I have encountered

problems where the fitness evaluation procedure is extremely expensive (taking anywhere

from seconds to hours to execute one or more simulations), and where all other sources

of overhead in the evolutionary process are negligible by comparison. In some, moreover,

fitness evaluation is stochastic, and more than one fitness sample is required to accurately

estimate a solution’s expected quality (a problem I have studied elsewhere, although it is

outside the scope of this dissertation [Scott and De Jong, 2016a]).

Given the rapidly increasing popularity of these kinds of applications, the panmictic

global-population model and the simple master-worker topology for parallel evaluation has

become especially important in evolutionary algorithm applications in recent years.

Generational and Steady-State EAs

A second important classification of evolutionary algorithms is based on whether their pop-

ulation dynamics follow a generational model or a steady-state model (also known as non-

overlapping generations and overlapping generations, respectively).

The most widespread general model of evolutionary population dynamics used in com-

puter science is the non-overlapping generations model. Originating in mathematical models

of population genetics in the early 20th century (and forming the setting of well-known the-

oretical results in biology, such as Hardy-Weinberg equilibrium), this model considers the

case where “the cycle of birth, maturation, and death includes the death of all organisms

present in each generation before the members of the next generation mature” [Hartl and
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Clark, 2007]. Canonical examples of these generational models include early genetic al-

gorithms and the subfamily of evolution strategies known as (µ, λ) (“mu comma lambda”)

algorithms—which use a population of µ parents to generate λ offspring (where most often

µ = λ)—as well as many others. Most particle-swarm optimization implementations and

genetic programming algorithms, for example, can be said to follow a (µ, λ)-style model, in

the sense that they utilize non-overlapping generations.

Algorithms with overlapping (steady-state) dynamics were studied in an influential way

by Whitley [1989], whose GENITOR system used an overlapping-generations model in which

offspring individuals are generated, evaluated, and compete for a place in the population

one-at-a-time in such a way that they often coexist with their parents in the same population.

This approach was motivated in part by a desire to “achieve faster feedback relative to the

rate at which new points of the search space are being sampled.” In general, methods of

this type are referred to as generation gap algorithms, where the value of the generation

gap refers to the number of offspring that are generated at each step: a generation gap of

one indicates one-at-a-time generation of offspring, but larger gaps are possible, in which

some arbitrary number of individuals are generated at each step [De Jong and Sarma, 1993,

Grefenstette, 1981, Sarma and De Jong, 2000].

In the evolution strategies community, overlapping-generation models were historically

known as (µ+λ) (“mu plus lambda”) strategies—where µ = |P | parents are used to generate

λ = |O| offspring, and then the new parents are selected from the union P ∪O of both popu-

lations.7 Today the notational distinction between (µ, λ)-style and (µ+ λ)-style population

models serves as a popular written (and spoken) shorthand throughout the evolutionary

computation community to distinguish non-overlapping-generation or “generational” algo-

rithms on the one hand from overlapping-generation or “steady-state” algorithms on the
7This is an abuse of notation which I will be guilty of repeating several times in this dissertation. Formally,

populations are multisets (there can be multiple copies of identical individuals in the population at the same
time), not sets. Properly, the kind of multiset combination indicated here should be termed the sum of two
multisets rather than the union—but set notation is familiar and easy to follow, so I follow the convenient
fiction of pretending that populations are sets when describing EAs at a high level of abstraction or in
pseudocode. Alternatively, one can simply imagine that all individuals include a unique identifier such that
no two individuals are ever identical.
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Figure 2.1: A generational master-worker EA synchronizes after each population has been
evaluated in parallel.

other. The relative merits of each model are often understood in terms of the feedback loop

governing the evolution of the population: generational algorithms have a longer feedback

loop, since new information about fitness is not used until a full generation has elapsed,

whereas steady-state algorithms have a tighter feedback loop, incorporating information

about fitness immediately into the search process.

Asynchronous Steady-State EAs

A drawback to the steady-state, (µ+λ)-style approach to evolution is that the model cannot

be directly parallelized. Generational, (µ, λ)-style algorithms are “embarrassingly” parallel:

all λ individuals can be evaluated simultaneously and independently of one another at each

generation, as illustrated in Figure 2.1 and Algorithm 1. But in the steady-state model, only

one individual (or a small batch of individuals, when the generation gap > 1) is created at

a time, and no additional individuals are created until after that individual (or batch) has

been evaluated and had a chance to be integrated into the population. This strict ordering

constraint on the sequence of variation, evaluation, and selection events in the algorithm

limits any attempt to scale the steady-state algorithm up to handle large computational

loads via parallelism.

Asynchronous steady-state evolutionary algorithms (ASEAs) achieve parallelism by re-

laxing this constraint: these allow the order of events in the evolutionary process to vary

depending on the time it takes for each individual to evaluate. ASEAs were first described

by Grefenstette [1981], and implementations began to appear in the 1990s for both single-
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Algorithm 1 A General Master-Worker Evolutionary Algorithm
1: function masterWorkerEvolution(µ, generations)
2: P ← initialize(µ) ▷ Initialize the population in parallel
3: for i← 0 to generations do ▷ Begin generational evolution
4: P ′ ← breedOffspring(µ, P ) ▷ Produce offspring (possibly in parallel)
5: P ′ ← evaluate(P ) ▷ Evaluate fitness values in parallel
6: P ← P ′

and multi-objective problems [Kim, 1994, Stanley and Mudge, 1995, Talbi and Meunier,

2006]. While they have only been lightly studied to date, ASEAs have steadily gained im-

portance as HPC paradigms have changed across science and engineering [Durillo et al.,

2008]. Implementations of asynchronous optimization have been used for most of the ma-

jor evolutionary algorithm families—such as genetic programming [Harada and Takadama,

2013, 2014, Jakobović et al., 2014, Maxwell, 1994] and differential evolution [Olenšek et al.,

2011]—and also for closely related meta-heuristic paradigms such as ant colony optimization

[Stützle, 1998] and particle swarm optimization [Koh et al., 2006, Mussi et al., 2011, Ven-

ter and Sobieszczanski-Sobieski, 2006]. The primary benefit that has been cited for using

ASEAs is that they can avoid idle time that traditional generational EAs suffer in some

applications (I will discuss this motivation in more detail below, in section 2.1.2). Another

significant benefit of ASEAs is that they can be easily built in such a way that they are

resilient to the failure of worker nodes, or such that the number of worker nodes can vary

dynamically while the algorithm runs (as nodes come online and go offline arbitrarily).8

I will describe the basic ASEA and some of its variations in more detail in Chapter 3, but

briefly, in an ASEA new individuals are typically generated one-at-a-time by selection and

reproduction operators as CPUs become available, and are integrated into the population

immediately when they finish having their fitness evaluated. In this sense, ASEAs operate

much like (µ + 1)-style EAs, except that they use more than one processor. Figure 2.2
8The robustness of ASEAs to node failures was recognized early by Grefenstette [1981]. While in this

dissertation my experiments do not focus on this aspect of these algorithms, robustness does play a significant
role in many of the HPC-oriented EA applications that I have been involved with.
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Figure 2.2: In steady-state evolution, individuals compete for a space in the population
at the immediately subsequent step (Top). In the asynchronous steady-state EA, several
evolutionary steps may pass before an individual enters the population (Bottom).

illustrates the difference between the traditional (single-processor) steady-state EA and the

ASEA: the ASEA allows more than one individual to be evaluated simultaneously—but

while a single individual evaluates, several other individuals may complete evaluating in the

meantime and enter the population, causing considerable evolutionary change.

Selection Lag

As Rasheed and Davison observe in their early application of an asynchronous EA, “the

creation of a new individual may not be affected by individuals created one or two steps ago

because they have not yet been placed into the population” [Rasheed and Davison, 1999].

The number of evolutionary steps that pass while a single individual is being evaluated on a

free processor has been called the selection lag by Depolli et al. [2013]. This order-shuffling

effect introduces considerable complexity into ASEA behavior whenever some solutions take

longer to evaluate than others, and this remains an obstacle to fully understanding the

strengths and weaknesses of ASEAs as an optimization strategy [Rasheed and Davison,

1999]. A sequential steady-state EA always has a selection lag of 0, but Depolli et al. prove

that the average selection lag in a (µ + 1)-style asynchronous EA is T − 1 steps, where

T is the number of worker processors. This holds even when fitness evaluation times vary
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considerably from individual to individual or processor to processor.

Non-Asynchronous Parallelism and Quasi-Generational Algorithms

The ASEA is not the only possible parallel interpretation of steady-state evolution—

Wakunda and Zell [2000], for example, describe a (µ+λ)-style steady-state evolution strategy

with “local tournament selection” that generates several offspring and evaluates them in par-

allel in a synchronous fashion, but chooses only one of them to integrate into the population.

This parallel steady-state model maintains a strict ordering constraint on the evaluation of

individuals and involves no asynchronous communication among processors—albeit with the

trade off that only a limited form of parallelism is possible (discarding all but 1 individual

in each parallel batch).

It is also possible, conversely, to conceive of asynchronous evolutionary algorithms that do

not adhere strictly to a steady-state model—I will discuss “quasi-generational” and “semi-

asynchronous” algorithms in section 2.1.3, for example [Durillo et al., 2008, Fonseca and

Fleming, 1998, Harada, 2020b]. Nevertheless, the ASEA has been by far the most common

parallel scheme for steady-state evolution (and the most common asynchronous scheme for

panmictic evolution in general).

Asynchrony vs. Structured Populations

Figure 2.3 summarizes the various kinds of parallel evolutionary algorithms (PEAs) that

I have discussed at this point, using a two-dimensional matrix. The generational master-

worker EAs in the lower-left quadrant are the most common PEA in day-to-day practice

among engineers. Panmictic ASEAs (in the top-left quadrant) have been less studied, but

have become increasingly attractive in practice in recent years. Structured-population par-

allelization schemes have been heavily studied by the research community, but because they

involve somewhat more complexity to implement and deploy in a cluster computing envi-

ronment, practitioners tend only to use these algorithms when they have a specific reason

to.
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Figure 2.3: A simple two-way classification of parallel evolutionary algorithms by population
structure and whether generations overlap during evolution.

In general, structured-population algorithms are typically built atop a generational model

of evolution: both evolution within each cell or deme (that is, sub-population) and migrations

between them occur at regular generation boundaries. Communication procedures based on

(asynchronously) overlapping evolution have sometimes been used for inter-deme signals

in structured-population models, however: island models have been created that permit

asynchronous migrations between subpopulations [Alba and Troya, 2001, Dufek et al., 2021,

Grefenstette, 1981, Liu et al., 2002], and asynchronous cell updating has been studied in

cellular EAs [Giacobini et al., 2003]. But in general, asynchronous mechanisms have not been

advertised as promising major performance advantages for structured-population models,

and I am not presently aware of any work that has implemented or studied structured-

population models that include asynchronous steady-state evolution internally within each

sub-population for intra-deme evolution.

That said, there is nothing preventing (asynchronous) steady-state evolution from being
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applied to the demes in a structured population model (by, for example, using steady-

state evolution to update the internal population of each of the demes in an island model).

Jakobović et al. [2014] have suggested that this may be useful in the same circumstances

that island models with non-overlapping generations are beneficial: namely in cases where

algorithmic overhead is high enough that the master process becomes the algorithm’s pri-

mary performance bottleneck. On arguable exception to this gap in the literature is the

work of Merelo et al. [2013], who have introduced a “pool-based” EA that allows subsets of a

centralized population to be farmed out asynchronously to worker processors for evolution,

as a sort of intermediate between panmictic and structured population models.

2.1.2 Idle Processor Time and Asynchronous Speedup

Evaluation-Time Variance

In the applications I have been involved with, my colleagues and I often observe a non-

negligible amount of parameter-dependent variance in the evaluation times of the simulation

models being tuned. At any given generation, the slowest individual in the population may

take several times longer to evaluate than the fastest-evaluating individuals.

Variance in evaluation times has become especially important as applications that involve

using search and optimization to tune the parameters of computationally expensive simula-

tions become more popular in science and engineering (ex. [Carlson et al., 2014, Churchill

et al., 2013, Tayarani et al., 2015, Van Geit et al., 2008]). Variance in evaluation times

arises for different reasons in a wide class of applications: when tuning the parameters of a

computationally intensive simulation, for instance, some configurations may cause the sim-

ulator to engage in more expensive and time-consuming operations than others. In genetic

programming, a large, bloated program structure will take more time to evaluate than a

small, parsimonious one [de Vega et al., 2020, Martin et al., 2015, Sambo et al., 2020]. As

a third example, in a distributed evolutionary algorithm, evaluation times may vary if the

load or computational capacities of the available compute nodes are heterogeneous.
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Regardless of its source, variance in evaluation times can have a pronounced impact on

the performance and efficiency of parallel evolutionary algorithms. In particular, classical

master-worker EAs that use a generational model of evolution (as in Algorithm 1) leave some

processors idle as they wait for the longest-evaluating individual in each generation to return

a fitness value [Cantu-Paz, 2000]. All the processors in a generational algorithm must wait

for all the other processing jobs to complete before moving to the next generation. This can

lead to a significant amount of CPU idle time: Figure 2.4 illustrates this with 10 simulated

evaluation times sampled uniformly from [0.5, 1.0]. The lightly shaded region shows the idle

CPU time induced as 9 of the 10 nodes wait for the next generation. In some applications,

as much as 50% of the available computational resources have been observed to be left idle

as a direct result of variance in evaluation time Churchill et al. [2013]. The greater the

variance in evaluation times, the lower the utilization of the processors.

When large numbers of processors are used, this problem may become exacerbated: the

more jobs that are run in parallel, the greater the running time of the longest-running job

is likely to be (by virtue of taking a larger number of samples from the distribution that

defines evaluation times), and thus the greater the ratio of CPU resources left idle. As

it has become normal to use large computing clusters to approach complex optimization

problems in recent years (my colleagues and I, for example, have recently used our LEAP

software framework to run evolutionary algorithms that use upwards of 2,400 processors at

a time [Coletti et al., 2020]), this problem poses a severe scaling and efficiency challenge to

evolutionary algorithm applications.

Asynchronous Algorithms as a Solution to Idle Time

The general problem of idle resources during synchronous data collection affects a wide class

of distributed algorithms of which evolutionary methods are just one example. In a machine

learning context, for instance, mainstream approaches to federated learning across edge

devices typically impose a synchronous synthesis step [McMahan et al., 2017]. But this leads

to the so-called “straggler problem,” in which the system must wait for the slowest learner
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in its network to complete training [Xia et al., 2021]. This has recently motivated a family

of asynchronous federated learning algorithms that avoid idle time, but which potentially

raise other issues—such as biasing the global learner toward information provided by faster-

running local learners [Chai et al., 2020, Chen et al., 2020b]. Though the details differ, this

situation is closely analogous to similar behavior that occurs with asynchronous EAs.

In evolutionary search and optimization, asynchronous interpretations of fitness evalua-

tion and steady-state evolution can eliminate this idle time that results from evaluation-time

variance. When fitness evaluation is the most expensive operation in the algorithm, asyn-

chronous parallel EAs have the virtue of being able to keep an unlimited number of processors

operating at a nearly 100% utilization rate. While earlier work on asynchronous EAs by

authors such as Zeigler and Kim [1993] was motivated by other interesting properties—such

as the observation that ASEAs are capable of utilizing an unlimited number of processors

(potentially much greater than the population size) [Kim, 1994]—more recent work by re-

searchers and practitioners alike has sought to reclaim idle resources. There seems to be no

effective way to accomplish this except by moving away from a synchronous, generational

model and introducing a generation gap (ex. [Alba and Troya, 2001, Depolli et al., 2013]),9

and ASEAs have now been widely applied to problems with evaluation-time variance.

For instance, Churchill et al. apply an asynchronous multi-objective evolutionary al-

gorithm (MOEA) to a tool-sequence optimization problem for automatic milling machine

simulations. They find that both the synchronous and asynchronous methods achieve so-

lutions that are comparable in quality after a fixed number of evaluations, but that the

asynchronous method completes those evaluations in 30–50% less wall-clock time [Churchill

et al., 2013]. Yagoubi et al. similarly apply an asynchronous MOEA to the design of an

engine part in a simulation of diesel combustion, with favorable results after a fixed num-

ber of evaluations [Yagoubi, 2012, Yagoubi et al., 2010]. Overall, the last decade has seen a

small surge of new publications that apply or analyze asynchronous EAs of this kind [Coletti
9Though, as previously mentioned, examples like the “quasi-generational” algorithm of Durillo et al. [2008]

suggest that hybrid asynchronous-generational approaches may be possible.
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et al., 2021, Gong et al., 2015, Harada et al., 2020, Jakobović et al., 2014, Martin et al., 2015,

Reisch et al., 2015, Said and Nakamura, 2014, Salto and Alba, 2015, Tagawa and Takeuchi,

2015, Zăvoianu et al., 2015].

Understanding Asynchronous Speedup

While ASEAs show clear benefits in many applications, their search behavior differs from

both generational and single-processor steady-state algorithms in ways that are poorly un-

derstood. Overall, the performance of the asynchronous EA depends in a readily evident but

poorly understood way on the number of worker processors and the distribution of individual

evaluation times. In particular, while one can often guarantee that an ASEA will perform

better on a particular problem than a generational algorithm in terms of fitness evaluations

per unit time (i.e., throughput), those additional fitness evaluations may not always lead the

algorithm to find better solutions, or to find a good solution in less time. Runarsson has

shown empirically, for example, that as the number of worker processors is increased, more

function evaluations are needed for his asynchronous evolution strategy to make progress on

unimodal functions [Runarsson, 2003].

Few studies have attempted to tease out a theoretical or empirical understanding of what

kinds of problems ASEAs may be poorly- or well-suited for. While my focus in this disserta-

tion is on single-objective problems, some analysis of the asynchronous master-worker model

has taken place in the context of multi-objective optimization, using MOEA approaches that

are inspired by the steady-state EA. In empirical studies on small test suites, Durillo et al.

[2008] and Zăvoianu et al. [2013a] each find that the asynchronous approach performs well

at finding good Pareto fronts in less time than other approaches. Zăvoianu et al. also use an

argument based on Amdahl’s law [Amdahl, 1967] to put a lower bound on the speedup in

evaluations-per-unit-time that the asynchronous approach provides as compared to a gener-

ational approach. They suggest that the asynchronous EA can provide some improvement

in computational capacity even when evaluation times are very short and have negligible

variance. When evaluation times are much longer than the EA’s sequential operations (i.e.,
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reproduction, selection), however, negligible speedup is predicted by their model unless there

is variation in evaluation times.

What these past studies have not established is under what conditions, or by how much,

an ASEA will be able to more quickly find high-quality solutions to problems. For example,

as a steady-state model, it seems the faster feedback loop that the ASEA uses for opti-

mization may lead it to have greedier behavior. This could make it more prone to falling

into local optima on some problems than a similarly configured generational algorithm. In

general, practitioners would like to know whether they can reliably expect beneficial results

from an asynchronous EA. Little to no such guidance currently exists in the literature.

A Four-Part Classification of Evaluation-Time Properties

When approaching questions about what kind of speedup ASEAs will offer in different sce-

narios, it is helpful to distinguish between a handful of broad problem classes. In particular,

the impact of asynchronous evaluation on an algorithm’s search trajectory will depend in

part on the evaluation-time characteristics of particular problems. In the simplest (i.e.,

linear) analysis, there are four main ways that fitness and evaluation time can be related:

1. Evaluation time may be stochastic but completely non-heritable (i.e., independent of

both fitness and any other genetic trait in the individual). This kind of evaluation-time

variance is common, for example, as a result of operating system scheduling effects,

or of running a distributed algorithm on a cluster with heterogeneous resources (ex.

nodes with different architectures or CPU speeds).

2. Evaluation time may be heritable but independent of fitness, in the sense that it

is a trait that is determined (or partly determined) by the values of a solution’s genes,

but in such a way as to be completely independent of fitness.

3. Evaluation time may have a correlation with fitness such that better solutions are

slower-evaluating. This may happen, for example, when evolving parameters for
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a simulation in which successful solutions lead to longer-lasting simulations, such as

successfully driving a vehicle without crashing it.

4. Likewise, evaluation time may have a correlation with fitness such that better so-

lutions are faster-evaluating. This can happen, for example, when evolving a

solution to problem in which initial, low-quality solutions execute an exorbitant num-

ber of computational operations (This often happens when tuning the parameters of

spiking neural networks, in which low-quality solutions often have excessively high

neuronal firing rates).

These four classes are not exhaustive (non-linear/non-convex correlations don’t neatly fit

into any of the four) or completely mutually exclusive (real-world problems may exhibit

aspects of all four categories at once), but they serve as a convenient first-order taxonomy

for classifying ASEA applications.

Since I introduced this four-part classification in Scott and De Jong [2015], the com-

munity has often used it as a starting point for defining experimental evaluations of asyn-

chronous evolutionary algorithms. Harada et al. [2020], for example, focus their evaluation of

an asynchronous variation of the MOEA/D algorithm on the non-heritable, better-is-faster

correlation, and better-is-slower correlation cases.

2.1.3 Evaluation-Time Bias in Asynchronous EAs

While asynchronous steady-state EAs can eliminate idle time, they do so at the cost of

introducing a dependence between the evolutionary trajectory that the population takes

and the evaluation-time characteristics of the problem. Specifically, it seems that these

methods exhibit an implicit selection bias that favors individuals that are cheap to evaluate.

This effect was predicted by Grefenstette [1981], but to my knowledge was first empirically

observed and reported by Yagoubi et al. [2011]. It has been frequently cited since as a

potential source of unexpected or unwanted behavior in ASEAs.

In some cases, an evaluation-time bias may be desirable. Martin et al. [2015] observe, for
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instance, that a bias toward fast-evaluating individuals in genetic programming may provide

a favorable parsimony pressure in ASEAs. Sambo et al. [2020] have recently exploited this

effect intentionally to favorably bias a genetic programming algorithm to avoid evolving

complex and bloated solutions to symbolic regression problems. In their experiments, us-

ing evaluation-time bias to control complexity worked better at preserving the accuracy of

the solutions than traditional bloat-control mechanisms. Outside of genetic programming,

Yagoubi et al. [2011] construct an artificial example of a multi-objective optimization prob-

lem in which penalizing high-quality solutions by giving them long simulated evaluation

times improves the performance of an ASEA by helping to prevent premature convergence.

In general, however, practitioners are wary of evaluation-time bias, as it may either

hinder the algorithm’s ability to find high-quality solutions quickly, or it may otherwise

introduce unwanted implications. In scientific applications, especially, the goal is often to

find regions of a model’s parameter space that maximize goodness of fit to some data set—

an additional pressure toward models that are computationally efficient may undermine the

validity of a study’s conclusions in some cases.

Understanding Evaluation-Time Bias

Intuitively, the reason that practitioners anticipate an evaluation-time bias in asynchronous

EAs is that, while an individual with a long evaluation time is being executed on one pro-

cessor, the other processors might evaluate numerous faster individuals. An example of

this is shown in Figure 2.5, which shows the sequence of evaluation times for 100 steps of

an asynchronous EA simulation as it minimizes a paraboloid function. Evaluation time is

proportional to fitness in this simulation, and the EA utilizes 10 simulated processors.10

The dashed lines emphasize the times that an individual with a particularly long evalu-

ation begins and ends. Once the single long-evaluating individual completes, more than

50 individuals have completed evaluation and had a chance to compete for a place in the
10Because the algorithm is operating with simulated evaluation times, only the relative differences in

evaluation times matter, and I show time in arbitrary units.
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Figure 2.5: A Gantt-style visualization of a sequence of fitness evaluation durations in an
ASEA, with the start and end time of one relatively long-evaluating individual marked with
red dashed lines. There were ten processors in this simulation, so exactly ten jobs are
executing in parallel at any given point in time.

population. This would appear to put long-evaluating individuals at a disadvantage, since

in some cases fast individuals have more opportunity to reproduce.

To date, however, no studies have systematically quantified the severity of evaluation-

time bias or studied specifically when or how it occurs during the execution of an ASEA.

Proposed Solutions to Evaluation-Time Bias

As a consequence of these concerns—and in the absence of clear evidence for or against

the risks that evaluation-time bias presents—some authors have suggested novel algorithms

that combine some aspects of existing synchronous and asynchronous EAs, in an attempt

to achieve the best of both worlds. In particular, Fonseca and Fleming [1998] have proposed

what they call a quasi-generational EA (QGEA) in which idle time is reclaimed by generating

extra offspring to fill the vacant CPU resources. As individuals complete evaluating, they

are added to an offspring population. When the offspring population reaches a size equal

to the parent population, it replaces the parent population, and a new, empty offspring
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population is created. In this way, observe Durillo et al., “the master does not have to wait

until all the individuals of a generation have been evaluated” [Durillo et al., 2008].

While the quasi-generational EA has been suggested and discussed, to my knowledge

Durillo et al. [2008] are the only authors who have implemented a QGEA (applying it to a

multi-objective optimization problem). A few other closely related “semi-asynchronous”

models have been introduced by various authors, however [Chitty, 2021, Harada and

Takadama, 2020, Mazière et al., 2020, Sanhueza et al., 2017]. Harada [2020b], for exam-

ple, has empirically studied a variation of the ASEA that does not integrate newly eval-

uated individuals into the population immediately, but waits a number of steps defined

by an “asynchrony parameter” α before integrating them. By varying α, they can obtain

fully asynchronous behavior, fully synchronous (generational) behavior, or something in

between. Harada has shown that this semi-asynchronous model performs well (with appro-

priate choices of the α parameter) on a suite of multi-objective optimization problems—but

they have not specifically studied evaluation-time bias with this algorithm.

What all of these approaches share in common is the hypothesis that a hybrid algorithm

design can be devised—something between a traditional generational model and a steady-

state asynchronous model—that captures desirable characteristics of both algorithms. The

advantages and disadvantages that the QGEA and related hybrid models have, however,

in comparison to the generational EA and ASEA remain an open question. This is partic-

ularly the case with respect to evaluation-time bias—where it remains unclear whether a

hybrid model exists that can avoid evaluation-time bias while maintaining the performance

advantages of asynchronous evolution.

2.1.4 Specialized Selection Strategies for Asynchronous EAs

Some authors have proposed specialized selection operations that aim to alleviate particular

challenges that arise in parallel steady-state EAs. Some of these are specific to particular

algorithms or applications. For instance, Harada et al. [2020] introduce a specialized parent-

selection operator to adapt the popular MOEA/D algorithm for multi-objective optimization
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to an asynchronous steady-state population model. Others are more generally applicable:

Wakunda and Zell [2000] introduce a selection method based on the population’s median

fitness value as way of allowing steady-state selection to behave more like (µ, λ) selection—

and thereby making it easier to apply traditional self-adaptation mechanisms to parallel

(µ+ λ) evolution strategies.

More recently, Harada [2020a] has introduced a specialized parent-selection operator

for asynchronous steady-state EAs that specifically targets the problem of evaluation-time

bias. Observing that evaluation-time bias occurs when fast-evaluating individuals effectively

make “progress” more quickly than slow-evaluating ones (in terms of creating increasingly

long lineages of parents and offspring), Harada’s operator introduces a search frequency

value that is maintained for each individual. This value is used as way of taking the length

of each individual’s evolutionary history into account when choosing parents. This allows

sets of individuals that have exploited evaluation-time bias and thus made extra “progress”

to effectively be throttled, so that lineages that are disfavored by evaluation-time bias can

“catch up.”

A distinctive property of steady-state evolutionary algorithms (both in their traditional,

single-processor form and in parallel renditions) is that they include evolutionary selection

at two points in the algorithmic loop [De Jong, 2006, p. 54]:

1. selection occurs when parents are chosen to generate offspring from—this is termed

parent selection ,

2. but selection also occurs when individuals are selected to be replaced by a newly eval-

uated offspring—this is often referred to as survival selection , since this procedure

determines whether an existing individual in the population “survives” or is replaced

by the new individual.

Because there are two different sources of selection at work in this family of algorithms,

steady-state methods are prone to having high selection pressure. Because high selection
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pressure tends to yield a greedy algorithm that performs poorly in many applications, prac-

titioners who use steady-state algorithms typically configure one of these two operators to

use a selection strategy that has little to no selection pressure, thereby reducing the overall

pressure. Different choices of low-pressure operators have been studied—such as performing

selection based on a FIFO queue [De Jong and Sarma, 1993, Parker and Parker, 2006]—but

random uniform selection is most commonly used in practice.

What these operators typically have in common is that they make no use of fitness

information: individuals with good fitness are not favored over individuals with poor fitness.

One insight I present in this dissertation is the recognition that this property presents an

opportunity for a specialized approach to selection: when used as a parent-selection method,

these operators are able to select individuals that have not yet been fully evaluated and to

use them as parents to generate offspring. I will return to this idea below when formulating

this suggestion as a research question.

2.1.5 Research Questions

Building on the review of the ASEA literature I have conducted in this section, several

research questions have governed the experiments I pursue in this dissertation (and partic-

ularly in Chapter 3).

The first concerns the speedup of the ASEA, and whether it tends to reliably produce

a performance improvement over the (µ, λ)-style alternative. I will use a combination of

analytical proofs and experiments to examine the following research question:

Research Question 1. Asynchronous Speedup: How much speedup does the ASEA show

over a traditional, generational EA in different scenarios? And are there simple cases where

an ASEA should clearly be avoided?

I will approach this question by making use of the four-part classification of optimization

problems based on evaluation-time properties that I presented in section 2.1.2, performing

empirical tests of ASEA behavior on examples of each, and presenting some analytical results
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that place bounds on the speedup in the special case of non-heritable evaluation times.

Next, I turn to the question of evaluation-time bias, to understand its causes and severity,

and whether it can be mitigated in a straightforward way. I pose this as a two-part research

question:

Research Question 2. Evaluation-time Bias:

A) Under what conditions does evaluation-time bias occur in an ASEA, and how severely

might it effect an algorithm’s problem-solving ability?

B) Can the evaluation-time bias of asynchronous evolution be mitigated by adopting a quasi-

generational approach as described by Fonseca and Fleming [1998]?

Finally, I will focus in on the opportunities provided by specialized selection operators

for ASEAs. Specifically, I will introduce a parent-selection operator that selects among not

just the current (fully evaluated) population P , but also from the set E of new individuals

whose fitness is currently being evaluated. I refer to this method that selects parents from

P ∪E as “Selection WhilE Evaluating” (SWEET). This approach to selection may have the

potential to improve ASEA performance in cases where higher-quality solutions take longer

to evaluate.

Research Question 3. Selection WhilE EvaluaTing (SWEET): Does including in-

dividuals in selection that are still being evaluated reduce “excess work” in ASEAs when

evaluation time has a better-is-longer correlation with fitness (longer individuals are better)?

i.e., does it lead to an improvement in performance? Does it impact performance when the

evaluation time has the opposite (better-is-faster) correlation with fitness?

On a methodological level, the evolutionary behavior of the asynchronous EA is complex

and difficult to describe in a purely analytical way. For instance, replicator dynamics are one

tool (from evolutionary game theory) that can be used to study the dynamics of evolutionary

algorithms [Ficici et al., 2000]. But the replicator dynamics of an asynchronous evolutionary
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system are non-Markovian, making them more difficult to analyze. As such, while I use some

analytical results where possible in this dissertation, I will rely heavily on empirical studies to

target these research questions and improve the community’s understanding of asynchronous

EAs.

2.2 Evolutionary Knowledge Transfer

Having completed my background review of parallel and asynchronous evaluation schemes

in evolutionary algorithms, I now turn to the second major subtopic of this dissertation:

how knowledge transfer can be used to improve the performance of EAs on complex tasks.

For the rest of this chapter, I will be primarily concerned with giving a broad motivational

view of evolutionary knowledge transfer (EKT) and the different ways in which it has been

approached. In particular, I begin in section 2.2.1 by presenting three high-level theories

of why and how knowledge transfer might be useful in optimization. These different per-

spectives are speculative (given how young the field is), but provide complementary (and

sometimes contrasting) reasons for investing research effort into this field at an abstract

level. Then in section 2.2.2 I give background on what I mean by “heuristic knowledge,”

and summarize the different ways that knowledge has historically been integrated into evo-

lutionary algorithms for single-task problem-solving. The remainder of this section is then

devoted to a selective survey of the EKT literature to date (section 2.2.3), and in particular

to three classes of open questions that form the core of the field’s challenges (sections 2.2.4,

2.2.5, and 2.2.6).

Building on these open challenges, my review culminates in a set of research questions

in section 2.2.7 that will guide my research in Chapters 4 and 5.

2.2.1 Speculative Motivations for Knowledge Transfer

Principles are appropriated from or suggested by that which already exists, be it

other devices or methods or theory or functionalities. They are never invented
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from nothing. At the creative heart of invention lies appropriation, some sort of

mental borrowing that comes in the form of half-conscious suggestion.

—Brian Arthur [2009], p. 115.

Many problems clearly become easier to solve if we are able to re-use knowledge that an

algorithm has gained while solving a different, related task. Evolutionary knowledge transfer

(EKT) algorithms take information that is acquired via an automated process on one or more

source tasks and use it as heuristic knowledge while solving one or more target tasks. As a

general problem-solving paradigm, knowledge transfer can be motivated in a few different

ways. Three of the principle historical models for understanding knowledge transfer come

out of psychology and biology: namely the identical-elements theory of Edward Thorndike,

the general principles model of Judd, and Darwin’s principle of exaptation.

In this section I discuss motivations for transfer that arise from practical settings and

nature. In subsequence sections, I will look more specifically at how knowledge transfer

has been realized in implementations of evolutionary algorithms and what problems these

implementations raise.

The Identical Elements Principle

The most direct justification for using a transfer approach is when two or more tasks are read-

ily at hand that clearly display strong and obvious similarities to one another. In the early

20th century, Thorndike argued that knowledge transfer across tasks in human problem-

solving involves an identical-elements principle (IEP): this principle predicts that positive

transfer can only occur in cases where two tasks share a significant overlap in concrete, low-

level features.11 A canonical example comes from elementary mathematics education: the
11Thorndike’s emphasis on identical elements marked a significant departure from the popular formal

disciplines theory that dominated Western educational philosophy until the 20th century. This theory has
roots in the mental faculty theories of Aristotle, Thomas Aquinas, and Thomas Reid, and often invokes the
analogy of the brain as a muscle that can be trained through exercise—in which case learning mathematics
or memorizing Latin texts was believed to strengthen general faculties such as reasoning and memory, which
could then transfer to an infinite variety of subjects. The formal disciplines theory is considered to be largely
discredited today [Leberman and McDonald, 2016].
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identical-elements theory predicts that once a child has learned to add numbers, they will

have an easier time learning to multiply them, because the standard arithmetic algorithms

for addition and multiplication share similar low-level symbol manipulations [Leberman and

McDonald, 2016] (and in particular the pattern of dividing multi-digit computations into a

series of single-digit operations [Wu, 2009]).

In computing, organizations often have need to solve a sequence of related optimization

problems that share clear structural features. Problems in vehicle routing, scheduling, simu-

lation tuning, pattern recognition, etc., often arise not one-at-a-time, but as a set or stream

of tasks that bear significant structural similarities to one another (perhaps because they

are based around similar geographical topologies, or simulations built from similar compo-

nents, etc.) [Hart and Sim, 2014]. Zhang et al. [2021b], for instance, cite the example of

manufacturers that face seasonal variation in the production of t-shirts or jackets: in the

summer, numerous t-shirt orders lead to a challenging job-shop scheduling problem with

high utilization, whereas a similar problem for the winter season involves lower utilization

and is easier to solve, but still shares significant common properties. Knowledge transfer is

a natural response to scenarios of this kind, and some of the earliest examples of knowledge

transfer in evolutionary algorithms have been motivated by a desire to avoid requiring al-

gorithms to “learn from scratch” on each new instance of a family of related optimization

tasks (ex. [Ramsey and Grefenstette, 1993]).

The IEP view of transfer points to clear examples where transfer may be useful, but at

the same time it suggests that transfer is of limited use outside these obvious cases of high

similarity between tasks. One possible conclusion of this view is that knowledge transfer is,

in general, best viewed as a niche approach: a good tool to have in one’s toolbox if closely

similar tasks arise, but one that will only be beneficial in rare cases. Alternatively, however,

Gupta et al. [2016c] argue that with modern cloud-computing paradigms, it may be possible

to collect a vast diversity of problems from practitioners around the world into a centralized

location—in which case the probability of finding two or more tasks that are sufficiently

similar to each other may be increased significantly. Several optimization researchers have
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envisioned similar ideas for a centralized repository of optimization tasks for the purpose of

knowledge sharing.12 Such a system is purely hypothetical at this point, however, and many

open questions remain about its feasibility—such as whether the similarity of tasks can be

estimated automatically with enough accuracy for transfer opportunities to be discovered,

and whether the memory swamping problem13 can be overcome (in which the task of search-

ing for relevant source tasks becomes so complex that it outweighs the benefits of knowledge

transfer) [Fikes et al., 1972, Markovitch and Scott, 1988, Salamó and López-Sánchez, 2011].

Shared Causal Principles

A second major way to arrive at transfer methods is to focus on domains where common

underlying causes appear to be broadly shared by a variety of problems or tasks in some large

domain. Robotics tasks, for example [Yu et al., 2020], ultimately require navigating the same

basic set of physical laws that hold in our universe—such that a principle that is relevant for

solving one task may also be relevant in other tasks even if they are superficially dissimilar.

In this view, knowledge transfer is likely to be most widely applicable and generalizable when

it focuses on identifying and transferring these shared causal principles. An early proponent

of a general principles view was Judd, whose 1908 underwater dart-throwing experiment

claims to show that students who received an explanation of the principles of refraction

performed better when learning to throw darts at an underwater target after the depth

of the target was changed. While later experimenters had difficulty reproducing this result

[Hendrickson and Schroeder, 1941], Judd’s claim that understanding general principles plays

an important role in facilitating transfer remains influential in psychology.

It is challenging to apply the causal-principle view of transfer in a computing context,

because it is not easy to design algorithms that reason about abstract relationships that

may be realized differently in different contexts. Aspects of this problem are addressed by

the study of computational analogy-making, as in the influential structure-mapping theory
12For example, L. Graham, personal communication, October 12th, 2010.
13Known in the past as the utility problem in the context of cognitive architectures like Soar—the term

“memory swamping” is less obscure and has become favored in recent years.
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of Gentner [1983]—and some of the earliest work on knowledge transfer in heuristic search

has sometimes taken the view that transfer is a kind of analogy-making [Carbonell, 1986].

Another relevant perspective is found in the work of Pearl [2009] and others on formally

modeling causality and learning causal models from data. Pearl has suggested that causal

models have a close relationship to knowledge transfer: causal models are distinguished from

non-causal (correlational) models specifically in that the former are more likely to retain their

predictive power when aspects of the environment are altered. Formal observations of this

kind have recently had some impact on the machine learning community [Goudet et al., 2018,

Lake et al., 2017, Schölkopf et al., 2021], but the role of causal knowledge in generalization

and knowledge transfer has yet to be explored significantly in the meta-heuristics community.

Within machine learning, representation learning is one area where the causal-principle

view has readily been applied to computational problems. In computer vision and natural

language processing domains, transfer has been especially successful at allowing machine

learning algorithms to re-use rich feature representations from models that have been pre-

trained on large, general-purpose object detection and language data. Leading neural net-

work software packages now routinely ship with “model zoos” that serve as a source for

knowledge transfer in the form of re-used neural network layers and parameters [Shu et al.,

2021, Such et al., 2018, Xu et al., 2021a].

Exaptation and Innovation Engines

Biological systems display reuse of genetic information in profound and far-reaching ways,

offering a natural motivation for a third perspective on knowledge transfer. Take almost any

phenotypic trait in a human or animal, and ask “what purpose did this trait evolve for?,”

and the answer tends to be a long narrative in which an intermediate structure evolved first

for one purpose, then was co-opted for another, then another, and so on before it assumed

its current form. Classical examples from animal morphology include lungs evolving from

swim bladders (whose original purpose was to maintain neutral buoyancy) [Daniels et al.,

2004, Perry et al., 2001], and feathers being adapted for flight (when their original purpose
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in theropod dinosaurs may have been thermoregulation) [Prum and Brush, 2002]. Gould

and Vrba [1982] famously introduced the term exaptation—indicating an aptness that comes

“out of” something else—as a means of contrasting these features with adaptations (which is

aptness “toward” something).14 While determining the precise adaptive or exaptive history

of specific morphological traits with confidence is difficult and requires careful empirical anal-

ysis [Baum and Donoghue, 2001, MacLeod, 2001, Martins, 2000, Smith, 2010], the picture

is especially clear on the molecular level, where the duplication and modification of genes

and protein domains—and their subsequent repurposing for new functions—is widespread

and well-documented [Mistry et al., 2021]. Up to 90% of known protein domains (subcom-

ponents) found in eukaryote genes, for instance, are reused in more than one gene [Orengo

and Thornton, 2005].

Repurposing processes of this kind allow evolution to take an indirect route to solving

problems, and sometimes facilitates complex adaptations that are unlikely to have been

able to evolve more directly. An important minor thread of evolutionary knowledge transfer

research has explicitly invoked exaptation as a process that should be studied in a computa-

tional context [Davies, 2014, Fentress, 2005, Graham, 2008, Mouret and Doncieux, 2009]. De

Oliveria was one of the earliest to apply these concepts to evolutionary algorithms, introduc-

ing methods that take inspiration from the shifting balance theory of Sewall Wright [1932]

(one of the earliest attempts to explain biological aptations in terms of crossing valleys in a

fitness landscape) [de Oliveira, 1994]. While more recent authors tend to focus instead on

the term “knowledge transfer” (owing to its familiarity from the machine learning literature),

the bio-inspired concept of exaptation offers an important alternative lens through which to

understand information reuse in optimization.
14Darwin’s term for this concept was pre-adaptation. “The structure of each part of each species, for

whatever purpose it may serve,” he observed, “is the sum of many inherited changes, through which the
species has passed during its successive adaptations to changed habits and conditions of life. . . A well-
developed tail, having been formed in an aquatic animal, it might subsequently come to be worked in for all
sorts of purposes, — as a fly-flapper, an organ of prehension, or as an aid in turning” [Darwin, 1859, ch. 5].
The terms exaptation, pre-adapation, “functional shift,” and co-option are typically used interchangeably
today.
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In particular, a number of authors have more ambitiously argued that indirect problem-

solving of this kind on a massive scale is essential to achieving innovative solutions to complex

tasks in natural systems—and that transfer even from tasks that appear to be completely

unrelated on the surface is necessary in order to solve hard problems. Arthur [2009], for

instance, has argued that the development of human technology follows an exaptive pattern

in which discoveries in diverse technological fields routinely facilitate unexpected break-

throughs on very different problems. Some of the first studies of evolutionary algorithms

that use knowledge transfer among more than two or three tasks at a time were attempts

to model natural examples of innovative systems: Lenski et al. [2003] devised a multi-task

EA to model the evolution of complex phenotypic traits in biology, showing that complex

Boolean-logic tasks were considerably easier to solve by co-opting solutions to simpler tasks.

Arthur and Polak [2006] likewise introduced a model of technological evolution based on

Boolean functions, showing that even a very simple genetic programming system based on

random recombination of circuits could solve remarkably complex Boolean functions by re-

using solutions to dozens or hundreds of simpler functions in a massive multi-task ecosystem.

This picture of widespread reuse and repurposing of evolved phenotypes differs signifi-

cantly from the way that heuristic algorithms typically operate, including almost all evolu-

tionary algorithms. Exaptation amounts to a heuristic that says “when solving a problem,

first devise a solution to a completely different problem. Then co-opt that solution and

refine it to solve the new task.” Except in narrow cases (as discussed in the context of the

identical-elements principle above), this indirect approach has not been a natural choice

among engineers solving practical tasks.

Nguyen et al. [2015b] introduced the term “innovation engines” into the evolutionary

computation community as a way to refer to massive multi-task systems that explicitly cul-

tivate a diversity of knowledge transfer sources. An example of this behavior is notably

evident in the PicBreeder evolutionary art system developed by Secretan et al. [2011]: they

found that users of their online system were able to evolve a remarkable variety of complex

images that resemble various objects, even where a standard evolutionary algorithm would
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have failed to produce such an image with their particular solution representation and op-

erators. This was in part because users were allowed to take solutions that other users had

developed for one goal and evolve them toward new, distinct goals. Stanley and Lehman

[2015] have argued extensively on the basis of the PicBreeder example that the paradigm of

single-task optimization is fundamentally limited in its ability to solve complex problems:

on complex tasks, traditional algorithms fall into severe local optima that prevent them

from being able to make progress. They argue that an explicit pursuit of diversification

and experience—which they term “stepping-stone” collection—is necessary in order to build

algorithms that can solve complex problems.

The prevailing interpretation of “innovation engines” in the EC community, however, has

been to equate stepping-stone collection with novelty-seeking mechanisms that encourage

the evolution of a wide diversity of different structures within the context of a single task

or objective function—typically by using human-defined metrics (known as behavior char-

acterizations) to define diversity in a phenotype space [Lehman and Stanley, 2011, Pugh

et al., 2016]. With some exceptions—such as the recent work of Wang et al. [2019] and

Norstein et al. [2022] on robotic agents that explore and adapt to diverse environments—

there has been less emphasis among these researchers on explicitly using different problems

and associated fitness functions as a source of co-option and knowledge transfer.

Overall, the perspective of exaptation and innovation engines differs significantly from

other motivations for knowledge transfer—such as identical elements or causal principles—in

that it suggests that successful reuse and co-option has a tendency to be serendipitous, that

it should be conceived as involving transfer among hundreds or thousands of different niches

or problems rather than just two or three, that it is essential for evolving complex solutions

to difficult tasks, and that useful examples of transfer may occur in unexpected ways and

among problems that bear little obvious similarity.

The simplicity of exaptive mechanisms in evolution is also significant. Many discussions

of knowledge transfer in AI associate it with sophisticated solutions to the problems of

artificial general intelligence (AGI): such as using compositional reasoning and causal models
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to generalize with very little training data [Lake et al., 2017], using massive language models

as a generalized representation of knowledge and reasoning [Radford et al., 2019b], or more

broadly with the executive functions of the prefrontal cortex in humans [Russin et al., 2020].

The relative simplicity of Darwinian evolution, however, suggests that transfer can achieve

remarkable feats even without the guidance of sophisticated executive features.

2.2.2 Representations of Algorithmic Knowledge

The fundamental problem of understanding intelligence is not the identification

of a few powerful techniques, but rather the question of how to represent large

amounts of knowledge in a fashion that permits their effective use and interaction.

This shift is based on a decade of experience with programs that relied on uniform

search or logistic techniques that proved to be hopelessly inefficient when faced

with complex problems embedded in large knowledge spaces... Thus, we see

AI as having shifted from a power-based strategy for achieving intelligence to a

knowledge-based approach.

—Goldstein and Papert [1977]

In this section I give a brief, but broad, summary of different ways that heuristic knowl-

edge has historically been encoded in evolutionary algorithms that are built for single-task

problem-solving. I use this to contextualize knowledge transfer in two ways: first, knowledge

transfer is a potential solution to the high cost of traditional approaches to configuring al-

gorithms with prior knowledge. Second, the strategies that have been used for evolutionary

knowledge transfer can often be seen as variations on more traditional themes of algorithm

configuration—such as seeding populations with high-quality solution instances, or tuning

an algorithm’s solution representation.
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Structural and Heuristic Knowledge

The principle that algorithms require prior knowledge in order to solve problems efficiently

is widely accepted in the AI community, and is often invoked in a variety of distinct con-

texts.15 The kind of “knowledge” that algorithms can have tends to be vaguely defined in

these conversations, and any definition of algorithmic knowledge would probably fall very

short of the standards famously set in Plato’s imagined dialogue with the mathematician

Theaetetus.16 But here I broadly distinguish between structural knowledge in algorithms on

the one hand and heuristic knowledge on the other.

Structural knowledge occurs when algorithms use detailed information about a problem

instance or its properties. Quadratic optimization algorithms, for example, explicitly encode

knowledge about a problem’s structure in a weight matrix Q as they minimize a function

f(x) = x⊤Qx. Algorithms that use structural knowledge are often seen as white-box ap-

proaches, and they are the focus of much of classical computational complexity theory. In

some cases, having full structural knowledge yields very efficient algorithms that permit per-

formance and accuracy guarantees for real-time and/or large-scale applications that would

not otherwise be possible. In general, however, even complete structural knowledge of a

problem is not always sufficient to yield efficient algorithms (as demonstrated by hundreds

of problem classes that are NP-hard).

Heuristic knowledge, by contrast, occurs when algorithms use local strategies for rank-

ing different decisions or “moves” that they may take in an iterative process. Heuristic

approaches often sacrifice guarantees such as optimality, accuracy, or completeness in favor

of being able to find adequate solutions to many complex problems efficiently. This includes

heuristic scoring functions like those used in A∗ search, general search procedures such as

the Nelder-Mead simplex method [Nelder and Mead, 1965], and other strategies such as
15This concept was already so well-established forty years ago that Newell [1982] called it the “cliche of

AI.”
16That is to say, algorithmic “knowledge” very often is neither justified, true, nor a belief—to say nothing of

modern problems such as Gettier cases, which further complicate the classical view of knowledge by showing
that even a justified true belief is not sufficient for knowledge (even if it is necessary) [Zagzebski, 1994].
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pattern databases which assemble collections of “moves” that may assist in more quickly

finding solutions to classes of problems (such as the Rubik’s cube) [Edelkamp, 2014, Korf,

1997]. It also includes specialized representations of solution spaces, which can simplify the

structure of a problem or problem class [Amarel, 1968]. Today, heuristic algorithms are the

main focus of black-box complexity theory, which treats complexity in terms of the number

of queries that an algorithm requires in order to learn enough about a problem instance that

it has little to no prior information about to be able to solve it [Doerr, 2020].

Many algorithms make use of both structural and heuristic knowledge simultaneously.

Machine learning engineers leverage a limited form of structural knowledge about neural

networks, for instance (specifically their synaptic weight matrices along with the derivative of

their neuronal activation functions), when they apply algorithms based on gradient descent.

Gradient descent itself, however, encodes a heuristic that builds on top of this structure.

Knowledge in Evolutionary Algorithms

As meta-heuristic methods [Blum et al., 2011, Stork et al., 2020], evolutionary algorithms

are generally made up of a high-level algorithm template that is filled in by a series of

components, parameters, and design decisions to obtain a heuristic algorithm for a particular

application. The process of incorporating heuristic knowledge into an effective algorithm

can be seen partly as the problem of making good design choices while implementing such

a template.

Most evolutionary algorithms involve four main classes of design decisions at a minimum:

1) a fitness function to be optimized, 2) a representation of a solution space, 3) a means of

initializing solution instances within this space, and 4) reproductive operators that select

and modify said instances. Figure 2.6 summarizes several of the components of evolutionary

algorithms that can be used to express heuristic knowledge.

Some algorithms also explicitly build machine learning models of the solution space while

solving a problem. These include estimation of distribution algorithms (EDAs), surrogate

modeling methods, and linkage-learning methods. EDAs learn and maintain generative
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Figure 2.6: Aspects of evolutionary algorithm configuration where prior knowledge about a
problem or problem class can appear.

models of a distribution for sampling high-quality solutions [Larrañaga and Lozano, 2001].

Some notable examples of EDAs include Bayesian optimization [Hauschild and Pelikan, 2011,

Parsa et al., 2020], covariance-matrix adaptation (CMA-ES) [Hansen, 2016], and learnable

evolution models (LEM) [Coletti, 2014]. Surrogate modeling approaches learn predictive

models of the fitness function itself [Jin, 2005, 2011]. Linkage-learning methods, meanwhile,

focus on learning models of pairwise or higher-order interactions in how variables relate to

fitness [Baluja and Davies, 1997, Sastry and Goldberg, 2000, Yu et al., 2009].

“Gray-Box” Algorithm Design

Practitioners use the components in Figure 2.6 to configure EAs with prior knowledge in

several ways. Much of this work involves in-depth human research and iterative testing of

hypotheses to learn what kinds of heuristics tend to work well in a given domain. A striking

example is the work of Whitley et al. [2009] on partition-based “tunneling” operators for

the traveling salesman problem (TSP) [Tinós et al., 2015, Whitley et al., 2010]. Built upon
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a sophisticated graph-theoretic analysis of the properties of Hamiltonian circuits as they

appear in TSP instances, this work has devised special reproductive operators that are able

to move directly to new local optima in a single step, bypassing poor-fitness regions in

between. Whitley [2019] argues that results of this kind support the efficacy of a “gray-

box” approach to optimization, in which randomized search algorithms are combined with

deep human expertise to solve a variety of complex problems such as TSPs and Boolean

satisfiability problems.

The counterargument to intensive research programs like Whitley’s is that manually

configuring evolutionary algorithms with deep expert knowledge requires advanced and spe-

cialized skills. This skill-and-knowledge bottleneck does not scale to the immense diversity

of applications that EAs and other meta-heuristics are applied to, nor to the diversity of

people—with different backgrounds, areas of expertise, and levels of familiarity with the EA

literature—who use them to solve real-world problems.

Automated Algorithm Configuration

This concern over the skill bottleneck in the “gray-box” approach partly motivates the fields

of automated algorithm configuration (AAC) [Hutter et al., 2009, López-Ibáñez et al., 2016]

and hyper-heuristics [Burke et al., 2010, Tauritz and Woodward, 2018]—two closely related

efforts that often use higher-level search and optimization algorithms to search over the

space of algorithms itself. Work in these areas (much like analogous work on automated

machine learning [He et al., 2021]) attempts to use automation to reduce the amount of prior

input, effort, and human guidance that is required to design effective heuristics for complex

problems or problem classes. These have been used to automatically synthesize components

such as selection operators [Richter and Tauritz, 2018], local optimizers [Kamrath et al.,

2020], and other heuristics [Illetskova et al., 2017, Pope et al., 2019] that perform well in

many domains.

The clear challenge raised by AAC, however, is the computational cost involved in using

algorithms to search for algorithm configurations. In fact, in an effort to cope with this
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complexity, Bertels and Tauritz [2016] have argued that “asynchronous parallel evolution is

the future of hyper-heuristics.” Efficient parallelization schemes of the kind I surveyed in

section 2.1, however, by themselves can only make a small dent in the broad problem of

configuring algorithms with prior knowledge.

These concerns—the skill bottleneck that attends “gray-box” algorithm design, the com-

putational cost of AAC, and the insufficiency of parallelization by itself to address the

latter—are what motivate me to consider knowledge transfer as an alternative.

Population Seeding in a Single-Task Setting

Two specific strategies for placing a priori knowledge into evolutionary algorithms will prove

relevant to my discussion of transfer below.

The first is population seeding. In research works, the initial population of solutions in

an evolutionary optimization procedure is typically initialized randomly—often by sampling

uniformly over some pre-defined multi-dimensional space. Random sampling encourages

high initial diversity, allowing an algorithm to begin with an extremely exploratory sample

and to move to more exploitative behavior as computation progresses. In many applications,

however, clear alternatives to random initialization are available which can significantly

improve an algorithm’s performance. These strategies involve “seeding” a subset of the

initial population with solutions that are derived from some process other than uniform

random sampling [Grefenstette, 1987].

The knowledge sources used by population-seeding approaches vary. In some application

domains, data or ad-hoc knowledge is available to algorithm designers that offers a clear

path to improve population initialization. Kazemzadeh Azad [2018], for example, seeds a

population that optimizes steel truss structures with solutions that are known to be feasible.

In some cases, an explicit library of real-world data can be used to inform the generation

or modification of solutions. Experimental results from x-ray crystallography, for example,

yield large libraries of known stable folding structures for proteins. These can be used to

initialize or otherwise inform meta-heuristic algorithms that aim to find and study additional
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stable forms of the same molecules [Zaman et al., 2019]. Even in the absence of data or

ad-hoc human knowledge that can inform initialization, practitioners often run one or more

algorithms multiple times on the same problem instance—in which case the best-found

solutions from earlier runs can be used to seed later runs. Whitley et al. [1991] used this

principle to design a special approach to population seeding that alters the representation

that is used for solutions in future runs.

In other applications, expert knowledge yields heuristics that can be used to stochasti-

cally generate solutions of higher quality than would occur with a uniform random approach

[Paul et al., 2013, 2014]. Hopper and Turton [2001], for example, generate solutions to

bin-packing problems under the constraint that objects are sorted in order of decreasing

size—and then use the best solutions that result from this heuristic to seed an evolutionary

algorithm that refines them. A related set of approaches initially use a highly informative

but computationally costly search strategy just once up front to create an initial set of

candidate solutions—then switch to a regular evolutionary algorithm to complete optimiza-

tion more efficiently [Gaina et al., 2017, Shi et al., 2020a,b]. Hernandez-Diaz et al. [2008],

for example, demonstrate this approach as a means of efficiently hybridizing a gradient-

based heuristic with evolution. And Friedrich and Wagner [2015] approach multi-objective

optimization by running a single-objective EA (namely CMA-ES) to solve several weighted

variations of an original multi-objective problem—using the solutions obtained by the single-

objective method to seed the population of a multi-objective algorithm that produces the

final solution.

Broader reviews of population initialization strategies for meta-heuristic algorithms and

EAs are given by Kazimipour et al. [2014] and Agushaka and Ezugwu [2022]. The main

takeaway is that instances—that is, individual candidate solutions to a problem—can be

an effective way of representing and injecting heuristic knowledge into an algorithm. I will

return to this topic below when considering population-seeding approaches that transfer

knowledge across distinct tasks. Solution instances by themselves, however, are limited in

the information they can represent and convey—since they encode only specific points in a
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search space.

Representation Learning in a Single-Task Setting

A second provocative direction for configuring evolutionary algorithms is to focus on the

representation. Solution representations (a.k.a. encodings) and reproductive operators form

two sides of the same coin: by altering the structure or semantics of the data structure that

reproductive operators operate upon, representations have a profound impact on the search

trajectory of an algorithm.

In an evolutionary context, representations can be conceived of as a genotype-phenotype

map, which maps some genotype space G to a phenotype space P. Genotypes, however, are

often abstract representations (such as a bitstring) that can be conveniently manipulated

by evolutionary operators, but that have no obvious meaning by themselves as solutions

to a problem. Importantly, then, in many applications, fitness functions are not defined

over a genotype space, but instead over a phenotype space in which candidate solutions

are described in a fashion that is natural to the problem domain. A fitness function for

traveling salesman problems takes graph tours as input, for instance, while a fitness function

for real-valued optimization accepts vectors in Rn. The selection of a good representation

for the problem domain is commonly seen as one of the most important components of

EA design—a view that is consistent with biologists’ understanding of the crucial role that

genotype-phenotype relationships play in natural evolution [Gerhart and Kirschner, 2007].

It is relatively straightforward to use a method such as meta-evolution to automate

the selection of numeric design decisions such as population size, parameters for muta-

tion, etc. [de Landgraaf et al., 2007, Grefenstette, 1986, Luke and Talukder, 2013]. The

hyper-heuristics community, moreover, has shown that it is often possible to optimize more

complicated parts of a heuristic algorithm’s behavior by searching for combinations of oper-

ators or heuristics that complement each other’s strengths [Burke et al., 2010]. The design

of elaborate, domain-specific reproductive operators or encodings, however, is often viewed
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as too complex and challenging to approach automatically [De Jong, 2007]. As such, de-

spite the large literature on automatic EA configuration, and despite the central importance

of genetic representations to EA performance, very little work has attempted to adapt a

representation to a problem or class of problems.

Some early exceptions to this oversight are the efforts of Simões et al. [2014] and Watson

et al. [2014] on using feed-forward neural networks and genetic regulatory networks (GRNs),

respectively, to evolve genotype-phenotype maps for evolutionary algorithms. Simões et

al. conduct an exploratory study of how several neural network encodings radically alter

the local neighborhood of a mutation operator that takes a fixed step size in a real-valued

genotype space. While they suggest that fruitful mappings of this kind can be automatically

evolved, they do not propose a mechanism for doing so. Watson et al., meanwhile, show

that GRN representations can be evolved effectively along with solutions to a problem in an

online fashion, and that through repeated exposures to complex problems in this way, GRNs

are able to evolve rich encodings that convey compositional information about sub-solutions

that can be combined in novel ways to generate promising solutions. Some striking examples

of this are demonstrated by Kouvaris et al. [2017], who extend the same GRN methodology.

2.2.3 Overview of Evolutionary Transfer Methods to Date

The vast majority of evolutionary algorithm applications are single-task applications, which

approach one problem and do not reuse information from previous problems. The main

exception to this rule has been automated algorithm configuration (AAC) methods that

optimize the performance of an algorithm on a class of problems [López-Ibáñez et al., 2016,

Tauritz and Woodward, 2018]: the goal of this kind of AAC approach is to learn or evolve

a single algorithm configuration that performs well on a set of problem instances sampled

from a distribution, and/or which generalizes robustly to perform well on unseen instances

sampled from the same distribution.

Evolutionary knowledge transfer (EKT) is distinguished both from single-task evolution
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and from AAC methods that focus on a fixed problem class. EKT aims to re-use informa-

tion that is automatically gleaned from source tasks to improve an evolutionary algorithm’s

performance (i.e., solution quality, efficiency, or both) on one or more target tasks.17 While

forms of knowledge transfer have been heavily studied in several areas of machine learning

(such as pattern recognition [Caruana, 1998], meta-learning [Smith-Miles, 2008], and rein-

forcement learning [Taylor and Stone, 2011]), attempts to accrue or reuse knowledge as an

aid in solving search and optimization tasks more generally have been less common.

Evolutionary algorithms that use knowledge transfer, however, have begun to be in-

tensely studied for the first time in the last few years. Until about five years ago, EKT

algorithms tended to be isolated, one-off experiments that generated little general insight

beyond a single application. Today, however, the community has begun to identify several

significant threads of inquiry and to build research programs that systematically build in-

sight into aspects of how to build effective knowledge transfer systems. The seminal work

of Gupta et al. [2016c] in particular has spurred a great deal of recent work that specifically

investigates multi-task optimization.

In this section I will give a brief survey of the diversity of EKT approaches that have been

implemented to date—broken down in terms of 1) basic models of transfer (such as sequential

transfer vs. multi-task transfer), 2) application areas, and 3) knowledge representations for

transfer. I do not engage in a comprehensive review of this emerging area, however—several

surveys of EKT or narrower sub-disciplines (such as multi-task EAs) have now been written

which cover the field fairly well [Gupta et al., 2018, Liu et al., 2017, Xu et al., 2021b].
17How exactly this differs from AAC methods that train on many instances of a problem class (and

generalized to new instances) is a difficult definitional exercise. I don’t try to answer here whether the two
are mutually exclusive, or whether they are overlapping algorithm categories that bear a complex “family
resemblance.” While AAC does gather experience from multiple tasks, perhaps it is best viewed as producing
a kind of robustness (rather than knowledge transfer). One way to view AAC vs. transfer is to say that an
AAC/hyper-heuristic approach performs knowledge transfer if and only if it attempts to learn an algorithm
configuration on one task distribution that generalizes to instances that are sampled from a second, distinct
distribution of tasks. This is similar to how knowledge transfer is typically defined in machine learning
(i.e., in terms of two distinct distributions of instances)—and an example of this kind of knowledge-transfer
hyper-heuristic is the work of Hart and Sim [2014] on heuristics for scheduling problems.
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Heuristic Precursors to EKT

Efforts to incorporate knowledge reuse into search algorithms date at least to Sussman’s

HACKER system in the 1970s, an influential early example of a “problem solver whose perfor-

mance improves with practice” [Sussman, 1975]. HACKER leveraged a library of solutions that

it had generated to previously-encountered planning tasks to improve its ability to generate

solutions to new tasks. This approach, which Sussman demonstrated in the famous Blocks

World, can be seen as a precursor to later case-based reasoning systems. The ability to

store, transfer, and repurpose learned problem-solving knowledge for new tasks continued

to be a feature that some researchers hoped to incorporate into heuristic search algorithms

throughout the early days of artificial intelligence [Carbonell, 1986, Langley, 1985]. One of

the most ambitious early attempts at such a knowledge-acquisition system was developed

in the context of the Soar cognitive architecture [Laird, 2012, Laird et al., 1987]. Drawing

on the chunking theory of learning in humans, mechanisms for learning hierarchical sets of

stimulus-response rules were integrated into Soar as a means of giving it the ability to im-

prove its own performance through “practice,” and to acquire a repertoire of knowledge that

could be searched to allow the system to perform well on a wide variety of tasks (providing

a so-called “universal weak method”) [Laird et al., 1986].

While most of these historical approaches to knowledge retention and transfer in heuristic

methods have had little direct influence on subsequent research on transfer in evolutionary

algorithms, some of these early investigations did mature enough to begin investigating

some significant and general research problems that are relevant to modern meta-heuristics.

One such concern arises when a system aims to grow a repertoire of prior knowledge from

multiple past experiences that can be applied to new problems. Such a system risks being

“swamped by an ever-increasing repertoire of stored plans,” as Fikes et al. [1972] put it in a

now-classic paper that identified the utility problem. This concern highlights the importance

that forgetting [Markovitch and Scott, 1988]—and especially strategic forgetting [Kennedy

and De Jong, 2003]—may play in allowing a system to effectively make use of its past
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experience.

The utility problem is the opposite of the catastrophic forgetting problem, in which a

model is continuously exposed to new tasks, but tends to quickly forget any useful infor-

mation it learned on prior tasks as new experiences overwrite past experiences, making it

difficult to learn any generalizable skills. Catastrophic forgetting has gotten much more

research attention in recent AI literature [Beaulieu et al., 2018, Rusu et al., 2016, Serrà

et al., 2018, Wen and Itti, 2018], in part because of the dominance of artificial neural net-

work models, which are naturally more prone to catastrophic forgetting than to the utility

problem. The utility problem has continued to be studied in contexts other than deep

learning, however—such as in the case-based reasoning literature, where the less obscure

term memory swamping has become favored [Salamó and López-Sánchez, 2011]. Because

population-based approaches to knowledge transfer and lifelong learning usually use a more

granular approach—in which solutions to or knowledge from past tasks are stored as dis-

crete entities—it seems that the utility problem (rather than catastrophic forgetting) may

be poised to gain renewed significance in an optimization context.

Models of Transfer

Terms like task, domain, and knowledge transfer are often used in the EC literature without

being defined. As I discuss approaches that have been devised to EKT, however, it is helpful

to start out with a clear interpretation of these terms as a reference point.

Let a task T = (S, f(·), F ) be a solution space S and a fitness function f : S 7→ F to be

optimized. The fitness space F may be R (in which case the task is single-objective), or it

may be multidimensional (in which case the task is multi-objective).

Furthermore, let a domain D = (G, ϕ) be a genotype space G along with a mapping (or

“encoding”) ϕ : G 7→ S that maps genotypes to solutions.

Now, taking inspiration from a similar definition of transfer learning given by Pan and

Yang [2010], I can give the following definition of transfer optimization:
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Definition 2.1. Transfer optimization seeks to solve (i.e., optimize/satisfice/improve)

a target task Tt in a target domain Dt using knowledge from at least one source task Ts

solved in a source domain Ds.

Evolutionary knowledge transfer (EKT) can now be interpreted as the application of evolu-

tionary algorithm that is used to perform transfer optimization.

A number of sub-families of transfer optimization (and thus EKT) can be specified

based on this definition. The most important division is between sequential transfer and

multi-task transfer. Sequential transfer first “trains” on one or more source tasks, and

then “tests” by transferring knowledge to one or more target tasks. Multi-task transfer,

by contrast, solves more than one task simultaneously—allowing “omni-directional transfer”

[Gupta et al., 2018]. The distinction between source and target tasks is blurred in multi-task

transfer, and is often determined by the context of a particular operation at a particular time

in an algorithm. A third problem-solving approach, task-switching transfer, alternates back

and forth between two or more tasks while only working on one at a time—this can be seen

as a kind of intermediate, sharing aspects of both sequential and multi-task problem-solving

[Parter et al., 2008].

Orthogonally to these designations, transfer optimization approaches may be homo-

geneous (source and target tasks share the same domain, Ds = Dt) or heterogeneous

(Ds ̸= Dt). Objective-heterogeneous systems, furthermore, were recently introduced by

Xue et al. [2021], and consider the case where the fitness spaces for each task have dif-

fering dimensionality (such as when transferring from a single-objective source task to a

multi-objective target task).

Sequential transfer methods are arguably the most natural, but have been relatively

rarely studied. Early examples of sequential transfer in the EC community appeared in a

genetic programming context: Seront [1995], for instance, noted that John Koza’s mechanism

of creating automatically defined functions in genetic programming [Koza, 1994a] offered a

potential means of learning, encapsulating, and reusing a library of concepts across program
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synthesis tasks.

Multi-task transfer has been a latecomer in the evolutionary computation community—

but has rapidly grown to become the most heavily studied form of EKT to date. Early

examples of multi-task evolutionary algorithms originated in interdisciplinary simulations of

natural systems [Arthur and Polak, 2006, Lenski et al., 2003]. These don’t appear to have

directly inspired any follow-up work in the artificial intelligence community. Instead, knowl-

edge transfer concepts have typically entered EC from the machine learning community.

Jaśkowski et al. [2008], for instance, introduced one of the first examples of a multi-task EA

in a genetic-programming-based computer vision application (though Moriarty and Miikku-

lainen [1997] proposed multi-tasking much earlier as a natural outgrowth of their work on

co-evolution of neural networks for concept learning).

Multi-task evolutionary algorithms came into their own with the introduction of the

multi-factorial EA (MFEA) by Gupta et al. [2016c]. This innovative approach to multi-

tasking in evolutionary systems inspired a significant burst of work on multi-tasking and

knowledge transfer in evolutionary algorithms—much of it centered on researchers at

Nanyang Technological University and their collaborators elsewhere in Asia—that has con-

tinued unabated ever since [Bali et al., 2017, Chandra and Gupta, 2016, Chandra et al.,

2017a,b, Cheng et al., 2017, Da et al., 2016a,b, 2017a, Gupta et al., 2016a, Gupta and Ong,

2016, Gupta et al., 2016b, 2017, Jiang et al., 2016, Lim et al., 2016, Sagarna and Ong, 2016,

Wen and Ting, 2016, Yuan et al., 2016, 2017, Zheng et al., 2016, Zhou et al., 2016]. The

MFEA assigns each individual in a single population a “skill factor” associated with a partic-

ular task. After initialization, individual fitnesses are evaluated only on the task associated

with their skill factor. When parents are selected to produce offspring, however, parents from

different skill factors may be chosen with some (tunable) probability—otherwise parents are

chosen from within the same skill factor. This inter-skill-factor crossover mechanism—

termed assortative mating—is what facilitates inter-task transfer in the MFEA. Overall, the

MFEA’s dynamics are effectively very similar to an island model that uses different fitness

functions on different islands, although the separation between subpopulations is implicit in
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the mating mechanism rather than explicit. So far the community has typically treated the

MFEA as a distinct evolutionary paradigm—with multi-population multi-tasking models

proper being treated as a separate (if interrelated) approach [ElSaid et al., 2020, Li et al.,

2020, Tang et al., 2021, Zheng et al., 2019].

Beyond the algorithm itself, the MFEA’s more general innovation was the introduction

of a new bio-inspired formalism—the multi-factorial optimization (MFO) framework—for

representing the fitness of individuals in a multi-dimensional space, where each dimension

corresponds to a different task. Gupta et al. [2016c] take care to distinguish multi-factorial

optimization from the Pareto-dominance formalism used in multi-objective optimization

(MOO): the two are not equivalent, since MFO aims to find at least one high-quality solu-

tion to each task while sharing information—not necessarily to find a single solution that

balances trade-offs among competing tasks (as in multi-objective optimization). The clear

distinction between the MFO and MOO frameworks is underscored by the large number of

papers that have now emerged investigating multi-task optimization for multi-objective opti-

mization problems [Chen et al., 2022a,b, Da et al., 2016b, Gupta et al., 2016d, Yi et al., 2021,

Zhang et al., 2019]—i.e., applications in which multiple, distinct multi-objective problems

(each with their own set of multiple objectives) are solved in parallel. The two paradigms,

however, do share significant overlap, and multi-objective optimization techniques have of-

ten been used as a means of solving multi-task problems [Jiang et al., 2017, Le et al., 2012,

Li et al., 2021].

A full review of multi-task optimization and related efforts is beyond my scope here

(see Gupta et al. [2018] and Xu et al. [2021b] for more comprehensive treatments), as my

experiments in this dissertation will focus more on sequential transfer. But I will highlight

a few key features of this literature in subsequent sections below—such as the efforts that

have been made to manage the problem of negative transfer.
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Application Areas for EKT

Knowledge transfer relies fundamentally on the structure of the application domain: and

specifically on the availability of relevant source tasks. Research on evolutionary knowledge

transfer has focused on three main classes of application domain—namely combinatorial

optimization, machine learning, and robotics.

In the vast majority of these applications, EKT has been applied to just a few tasks that

have been hand-selected in advance by humans. As a result, the success of these applications

may say as much about how the tasks they were tested on were selected by a human as they

do about how well-suited the algorithm is to the application domain. Occasional papers

have scaled knowledge transfer to larger sets of tasks (greater than 3) [Arthur and Polak,

2006, Lenski et al., 2003, Martinez et al., 2021, Sagarna and Ong, 2016, Yuan et al., 2016],

but achieving many-source and many-task transfer of this kind raises a number of challenges

that I will describe in more detail in the sections below.

Many researchers have focused intently on combinatorial optimization as a setting for

knowledge transfer [Iqbal et al., 2014, Mei and Zhang, 2016, Zhou et al., 2016]. Early

examples of EKT involved applications to scheduling problems [Cunningham and Smyth,

1997, Hart and Sim, 2014, Louis and McDonnell, 2004], and some significant efforts have

recently developed sophisticated new methods of solving job-shop scheduling problems with

multi-task genetic programming [Zhang et al., 2021a,b,c]. Feng et al. in particular developed

a series of approaches to capacitated arc-routing (CARP) and vehicle-routing problems

(CVRP) that rely on sequential evolutionary transfer [Feng et al., 2012, 2015a,b].

A second major application thread has been focused on using evolutionary knowledge

transfer to help solve supervised pattern recognition and regression tasks (ex. [Chandra

and Gupta, 2016]). Many genetic programming systems, such as the multi-task approach

of Jaśkowski et al. [2008], have taken this approach, and work that focuses on on super-

vised learning applications and the evolution of neural networks in particular [Chandra and

Gupta, 2016, Fernando et al., 2011, 2017, Mouret and Doncieux, 2009] continues to appear in
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the annual IEEE Congress on Evolutionary Computing (CEC) special session on “Transfer

Learning in Evolutionary Computation,” among other venues [Chandra et al., 2017b, Haslam

et al., 2016, Iqbal et al., 2016, Jaśkowski et al., 2014, Krawiec and Wieloch, 2010, Wen and

Ting, 2016].18 Genetic programming (GP) with knowledge transfer has occasionally been

studied without reference to machine learning tasks—beginning with the multi-task PushGP

systems of Bladek and Krawiec [2016] and Soderlund et al. [2016], which synthesize imple-

mentations of several string-processing functions simultaneously. Most EKT approaches

that use GP, however, have been oriented at pattern recognition.

The third natural application area for EKT has been evolutionary robotics. As I dis-

cussed above in section 2.2.1, one significant thread of this work has been inspired by the

novelty search mechanism introduced by Lehman and Stanley [2011], and which has inspired

a large family of “quality-diversity” algorithms that sometimes overlap with knowledge trans-

fer methods [Pugh et al., 2016]. In particular, the family of “illumination algorithms” intro-

duced by Mouret and Clune [2015]—and particularly their MAP-elites method—has led to

a number of multi-task algorithms which have been applied to robot control tasks [Huizinga

and Clune, 2018, Nguyen et al., 2016, 2015a, Norstein et al., 2022, Wang et al., 2019]. In-

dependently of this work, Kelly and Heywood [2017] have developed a “tangled program

graph” representation that permits a significant degree of re-use of sub-programs across

multiple tasks in genetic programming. After first having it demonstrated that this GP

representation could perform as well as major reinforcement learning approaches (namely

deep Q-learning [Mnih et al., 2013]) on standard Atari video-game-playing benchmarks, this

approach has been further developed with additional features to enhance its performance on

visually intensive reinforcement learning tasks [Bayer et al., 2022]. Finally, coming from the

multi-task optimization community, an early demonstration of multi-task optimization was

the multi-robot path planning work of Ong and Gupta [2016], and Martinez et al. [2021]
18It’s worth noting that when we apply evolutionary algorithms to transfer learning in machine learning,

the resulting systems can be viewed as both a transfer optimization task and a transfer learning task. One
definition emphasizes that two different optimization problems must be solved for the sake of model-fitting
on different tasks, while the other emphasizes that two different underlying datasets or distributions are at
work.
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have used a variation of the MFEA to evolve neural networks for deep reinforcement learning

tasks for 3-D robot arm manipulation.

While combinatorial optimization, machine learning, and robotics have been the main

application areas for EKT, EKT approaches and multi-task EAs have been applied to other

application areas as well (see, for example, the recent survey of many applications given

by Gupta et al. [2022]). Some of these include continuous optimization [Bali et al., 2017,

Zheng et al., 2016], constrained optimization [Lim et al., 2016], and software test generation

[Sagarna and Ong, 2016].

Knowledge Representations for EKT

Whether a sequential or multi-task algorithm is being applied to a small number of tasks

or to many tasks, all EKT methods require some means of representing and transferring

knowledge gained on one task to another. The strategies for achieving this closely follow

the categories of heuristic knowledge representation that I discussed above in section 2.2.2.

For example, model-based approaches to knowledge transfer include methods based on

learning and reusing the parameters of distribution models from estimation of distribution

algorithms across tasks (ex. [Shahriari et al., 2015, Swersky et al., 2013, Zhang et al., 2019]).

Algorithms of this kind have only recently been developed—based for example on mixture

models or CMA-ES [Li and Li, 2021]—and their advantages or limitations in comparison to

other EKT approaches are not yet well understood. Model-based transfer approaches based

on surrogate models have also recently been developed. Ji et al. [2021], for example, use

multiple surrogate modeling techniques to convert a single-task optimization problem into

a multi-task optimization problem—an example of a broader pattern in which multi-task

optimization can be used as a means toward solving single-task problems [Gupta et al.,

2018].

Instance-based transfer approaches, however, have been especially common. These ap-

proaches use whole (or partial) solution instances themselves as a representation of transfer-

able information. Early examples of instance-based transfer have included “case retrieval”
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and “case injection” methods for TSPs and job-shop scheduling [Louis and McDonnell, 2004,

Oman and Cunningham, 2001]. The simplest instance-based transfer model is population-

seeding transfer. Just as in the single-task case that I survey in section 2.2.2, population-

seeding transfer inserts solutions that have been saved from prior tasks into the initial

population of an EA when it solves a target task. Potter et al. [2005], for example, use pop-

ulation seeding to evolve complex robot behaviors by initializing evolutionary populations

with solutions to prior, related tasks. Approaches of this kind first appeared very early in

heuristic reasoning systems, such as in the SAMUEL system of Ramsey and Grefenstette

[1993] (who argued that “genetic learning systems need not learn from scratch.”).

Instance-based transfer is the dominant approach to knowledge transfer in evolution-

ary computation at the present time. Multi-factorial algorithms, multi-task island models,

population-seeding algorithms, etc., all typically rely on solution instances as the unit of

transfer (though, as I will discuss below in section 2.2.5, strategies for combining instances

from related problems have become quite sophisticated). Beyond population seeding, other

instance-based algorithms have included crossover-based reuse [Jaśkowski et al., 2014] (where

a special crossover operator is able to periodically select parents from a fixed archive of so-

lutions to past problems), injection-island EAs [Eby et al., 1998] (a specialized island model

in which solutions to low-fidelity simulation models are fed periodically to higher-fidelity

models in a feed-forward fashion), and heterogeneous island models [Skolicki, 2007].

2.2.4 Transferability and Problem Classes

In reality, all arguments from experience are founded on the similarity which

we discover among natural objects, and by which we are induced to expect

effects similar to those which we have found to follow from such objects. And

though none but a fool or madman will ever pretend to dispute the authority of

experience, or to reject that great guide of human life, it may surely be allowed

a philosopher to have so much curiosity at least as to examine the principle of

human nature, which gives this mighty authority to experience, and makes us
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draw advantage from that similarity which nature has placed among different

objects.

—David Hume, An Enquiry Concerning Human Understanding, IV.2, 1748.

There are three fundamental ingredients to successful transfer that I will refer to repeat-

edly throughout this dissertation (Figure 2.7). The first is the problem class that an EKT

method is being applied to. If a problem space tends to produce problems that have little to

no relationship to one another whatsoever, then transfer is unlikely to be successful. Second,

even on problem classes where similar problems do occur—such similarity may occur with

fairly low frequency. Source selection is therefore a vital component of knowledge transfer:

selecting knowledge sources, within a wider set of potential choices, from which to transfer

information. Finally, assuming that suitable source tasks are in place, an effective transfer

strategy is needed in order to exploit the opportunity for information reuse. I begin here by

discussing the first ingredient—problem classes—before addressing the remaining two below.

Helpful or harmful relationships among tasks ultimately arise from the decisions that are

made about what source and target tasks are chosen for an EKT algorithm to be applied

to. Even at their smartest, EKT algorithms are limited by the potential for positive transfer

that is present in the task set they are given. And this in turn is limited by the degree

and frequency with which instances of the problem class that is being considered display

opportunities for transfer.

With the exception of the recent trend toward using “model zoos” of pre-trained models

for computer vision and other machine learning domains [Shu et al., 2021, Such et al., 2018],

for the most part AI practitioners are not accustomed to keeping databases of past problems

at the ready for their algorithms to learn from. More importantly, it is not clear what kinds

of problems or problem classes are likely to benefit from transfer, and which are not—or

what kind of guidelines practitioners can follow when deciding to use transfer methods or

gathering problems to act as knowledge sources.

While I have reviewed examples of successful EKT applications in robotics, combinatorial
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Figure 2.7: The scheme of “three ingredients” of successful evolutionary knowledge transfer
that I use to organize the problems studied in this dissertation.

optimization, and machine learning, it remains difficult to say in advance what kinds of

domains and problem classes knowledge transfer is an appropriate strategy for. Reporting

bias is likely to impact the community’s picture of transfer’s usefulness as well—as task sets

that benefit from transfer are naturally more likely to be published, whereas work that finds

transfer to be ineffective on a given task set will be less likely to be published.

One way to phrase this problem is by asking what the probability is that, for a given

problem class, two (or more) randomly chosen problem instances will display a positive,

negative, or neutral transfer relationship. I do not know of any work that has studied

transferability in evolutionary algorithms through this lens.19 Asking this question raises

the possibility that some problem classes may display no potential for transfer on average—

particularly if results akin to the no-free-lunch theorems for optimization hold for transfer

[Wolpert and Macready, 1997].
19This idea does bear some remote resemblance, however, to the recent trend in machine learning of

viewing transfer through the lens of taskonomy : that is, the systematic study of problems (or problem
classes) and how they are related to one another in terms of knowledge transfer potential [Zamir et al.,
2018].
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No Free Lunch Theorems and Transfer

The original no-free-lunch theorems (NFLTs) for optimization algorithms were proved by

Wolpert and Macready [1997]. This work emerged from Wolpert’s wider program, which

investigated the Humean question of when machine learning and search algorithms can

[Wolpert, 1996a] and cannot [Wolpert, 1996b, Wolpert et al., 1995] make valid inductive

inferences from incomplete data (see Adam et al. [2019] for a recent review of these theorems

and their broad influence on AI and machine learning). Wolpert and Macready show formally

that, over the set of all possible objective functions f : X 7→ Y that map a given solution

space X to a set Y of performance values (or, in the “sharpened” NFLTs of Schumacher et al.

[2001], over any set of such functions that are closed under permutation of their values),

there can be no “a priori distinctions” between algorithms: that is, no algorithm will obtain

better performance values than any other when averaged over all possible f ∈ F , where

F = YX .

The classic no-free-lunch theorem for optimization only covers algorithms that are ap-

plied to a single, static (unchanging) fitness function. At the same time, however, Wolpert

and Macready [1997] proved a similar theorem that applies to dynamic problems: problems

whose objective function changes over time. This time-dependent NFLT shows that, given

a problem whose initial objective function at time t = 1 is f1, no a priori distinctions

among algorithms will occur when averaging over all possible time-dependent mappings

T : F ×N → F . These mappings define how the objective function that begins in the state

f1 evolves over time.

Optimization algorithms that use knowledge transfer can be seen as a special case of time-

dependent problems. Consider a sequential transfer algorithm, for example, that executes

m iterations to learn about (i.e., to solve or otherwise analyze) a source task fs, and then
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switches to solving a target task ft. This scenario can be expressed as a time-varying function

Tfs,ft(t) =


fs if t ≤ m,

ft otherwise .

(2.1)

So knowledge-transfer problems in optimization can be expressed as a time-varying objec-

tive. But in imposing this constraint on the possible values of the dynamic schedule T , I

have violated the core assumption of the time-dependent NFLT, which only holds when con-

sidering all possible mappings F ×N → F , rather than only mappings that follow the more

constrained form of Equation 2.1. The time-dependent NFLT, moreover, does not rule out

a priori distinctions among algorithms when averaging across different choices of f1 = fs.

For these reasons, the classic theorems of Wolpert and Macready [1997] by themselves are

not able to model the questions that I should like to ask about how knowledge transfer may

perform in different problem classes.

2.2.5 Negative Transfer and Source Selection

I now turn to the second key “ingredient” of successful transfer in the scheme of Figure 2.7:

source selection. The most glaring and fundamental question in transfer (whether for learn-

ing or optimization) is “where does useful source information come from?” The promise of

knowledge transfer is founded on the hypothesis that 1) effective methods are available to

exploit source tasks that are similar to a given target task, and 2) that source tasks in the

world can be found that are exploitable in this way.

The problem of how to effectively exploit useful source tasks is intimately tied to the

question of how to avoid negative transfer. Negative transfer occurs when knowledge transfer

has an adverse effect on the performance of an algorithm instead of a beneficial effect—i.e.,

when the solution quality or efficiency of a method is better when no transfer is used at all

than when transfer is attempted. Because the potential that two or more problems have
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for positive (or neutral) transfer is typically not known for certain in advance—and because

task similarity can be difficult to judge—the possibility of negative transfer is ubiquitous in

applications. Many approaches to knowledge transfer focus, then, on ensuring that negative

transfer can be preempted and mitigated.

Task-Level Similarity Estimation

A variety of adaptive mechanisms have recently been introduced to combat negative trans-

fer in evolutionary knowledge transfer. Most of these methods have been studied in the

context of multi-task optimization. In particular, Bali et al. [2019] introduced an influen-

tial online method based on probabilistic mixture models and Kullback-Leibler divergence

for estimating a matrix of task-specific transfer parameters in their MFEA-II algorithm.

These weights serve to control the degree to which any pair of tasks in the system exchanges

information—with more similar tasks sharing information more often than less similar tasks.

MFEA-II thus effectively acts as a source-selection method. This landmark revision to the

MFEA of Gupta et al. [2016c] has helped to inspire a series of similar approaches. Mar-

tinez et al. [2021], for instance, extend the transfer-parameter matrix approach of Bali et al.

[2019] into a transfer-parameter tensor for applications that evolve deep neural networks for

reinforcement learning tasks. The extra dimensions of this tensor allow their A-MFEA-RL

algorithm to learn transfer parameters that are not only specific to a source-target task pair

in a multi-task system, but are also specific to particular layers of the multi-layer neural

networks that are being evolved.

Gene-Level Similarity Estimation

While MFEA-II and related algorithms focus on source selection at the task level, increasing

or decreasing the frequency with which solution instances are transferred from particular

tasks, other approaches have examined strategies for selectively constructing compound so-

lution vectors that borrow gene values from a variety of different tasks. These methods
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perform source selection on a finer level, picking and choosing individual genes (i.e., vari-

ables) from different sources. Ma et al. [2021], for example, introduce a gene-level approach

to estimating gene similarity based on Kullback-Leibler divergence. This allows them to

construct a specialized crossover operator that pulls specific genes from parents that are

optimized for different source tasks, based on which source-task subpopulations in the multi-

task system display the most similarity to a given target-task subpopulation with respect

to each individual gene. Chen et al. [2022b] have recently developed this idea further, by

introducing another solution-construction strategy which borrows genes from many tasks,

and by perturbing the hybrid individual that is constructed in this way to generate multiple

offspring.

Other Source Selection Methods

Both these classes of adaptive multitasking—the task-level similarity estimation mechanisms

of MFEA-II and the gene-level similarity mechanisms introduced by Ma et al. [2021]—have

been developed primarily in the context of vector-based solution representations (such as

real-valued optimization). Noting that these approaches don’t generalize trivially to more

complex evolutionary representations, Zhang et al. [2021a] develop their own adaptive multi-

task system for genetic programming, based on a phenotypic measure of similarity between

genetic programming trees.20 They apply this approach to evolving heuristics that solve

dynamic job-shop scheduling problems in combinatorial optimization, showing favorable

performance over a single-task approach and the MFEA.

Most of these adaptive approaches for avoiding negative transfer rely on comparing

different subpopulations for different tasks in a multi-task setting—typically by applying

Kullback-Leibler divergence in some fashion as a measure of similarity between distributions

of solution phenotypes or genes. This approach exploits the fact that several tasks are

solved simultaneously in multi-task optimization, so task-specific subpopulations can be
20Parse-tree-style representations are one of the main traditional approaches to using evolutionary algo-

rithms to directly evolve computer programs [Koza, 1994b]—so measuring the similarity between individuals
or populations in tree-based GP requires defining a similarity measure across tree structures.
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compared online in the midst of the run (before they converge). One variation on this

theme is the source-selection method of Zhang et al. [2019], which utilizes estimation of

distribution algorithms (EDAs), and uses a Wasserstein distance to directly compare the

estimated distributions as they optimize different tasks—but the basic principle of doing

distributional comparison while multitasking is the same.

This distributional approach may be misleading or inapplicable in some cases. Having

populations with similar distributions in some space at some point during an evolution-

ary run may not imply that two problems are significantly similar, and conversely, similar

problems may not always share similar evolutionary distributions. For example, in genetic

programming, solutions to two problems might have very different phenotypes, but a sub-

circuit from one problem may nonetheless be useful as a partial solution to another problem.

To my knowledge, possibilities of this kind have yet to be considered in literature on adaptive

solutions to negative transfer.

Adaptive EKT methods have also primarily been developed in ways that are specific to

multi-task optimization. Less work has investigated how negative transfer can be avoided

in a sequential transfer setting.

Many-Source Transfer as Human-Machine Teaming

Ultimately, solutions to source-selection and negative transfer open up a greater possibility

for human-machine teaming in evolutionary knowledge transfer. As long as EKT requires

a human to correctly and accurately identify a suitable source task that leads to positive

transfer on a given target task, this kind of technology will tend to be limited to niche

applications where transferability is “obvious” (as I discussed in section 2.2.1). A promising

route to reduce the reliance of EKT on humans’ source-selection ability is to build algorithms

that are able to use many knowledge sources—only a small percentage of which may be viable

sources for transfer in a given application. This opens up the possibility of a relationship in

which a human selects a (perhaps large) set of problems that they believe have some chance

of being useful (either in general or for a particular target task), and then the algorithm
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works with this material to narrow down and isolate the material that is indeed useful for a

given target task.

Currently, most applications of EKT involve just two or three tasks, and these are

typically manually curated in advance by a human based on their intuitions of problem

similarity and where positive transfer might be possible. For instance, one might observe

with Seront [1995] or Kurashige et al. [2003] that a robot that has used genetic programming

to learn a sequence of actions that allow it to ‘stand up’ vertically might subsequently have

an easier time learning to ‘walk forward.’ Likewise, Kelly and Heywood [2017] initially

demonstrated their “tangled program graph” genetic programming system on small sets

of reinforcement learning environments, consisting of three tasks each that a human has

grouped together.

Applications that involve dozens or hundreds of tasks, however, offer an algorithm the

opportunity to search for useful information among a wider set of sources. A number of

authors have begun to experiment with multi-task optimization on larger task sets [Bladek

and Krawiec, 2016, Huizinga and Clune, 2018, Martinez et al., 2021, Nguyen et al., 2016,

Sagarna and Ong, 2016, Soderlund et al., 2016, Yuan et al., 2016]. Liaw and Ting [2017]

refer to such applications, which aim to solve greater than three objectives simultaneously,

as many-task optimization, in analogy to how the term many-objective optimization is used

in the Pareto optimization community. Sequential (as opposed to multi-task) EKT methods

that use many sources have rarely been built, but I apply the broad term many-source

transfer to refer to sequential and multi-task approaches alike that use more than three

sources tasks.

Scaling to many tasks is necessary to reduce the burden on humans to select perfect

knowledge sources for transfer-based algorithms. It also seems to be necessary in order to

exploit surprising or serendipitous kinds of transfer that the innovation-engine theory of

transfer I discussed in section 2.2.1 arguably requires. “The key problem,” conclude Stanley

and Lehman [2015] from their experience with robotics and evolutionary art, “is that the

stepping stones that lead to ambitious objectives tend to be pretty strange. That is, they
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probably aren’t what you would predict if you were thinking of only your objective.” As the

number of tasks increases, however, the cost and complexity of source selection necessarily

becomes an increasingly important part of an EKT algorithm’s performance. It is important,

then, that problem classes exhibit the right kind of structure such that useful source problems

do appear with some non-negligible probability—otherwise, many-source approaches will fall

into the memory-swamping problem I covered in section 2.2.1. To date, however, little work

has looked explicitly into how the performance of many-source methods scales with task set

size, or how it hinges on the properties of a problem class.

2.2.6 Representing Knowledge for Transfer

The third major ingredient of successful knowledge transfer is the transfer strategy that is

applied. The majority of work on EKT has focused on instance-based knowledge transfer.

Knowledge representations, however, have the potential to represent knowledge in a more

general way that may be much more widely applicable than a particular instance. Instance-

based approaches—which are by far the most common in current work on EKT—may be

suitable for applications where it is reasonable to expect problems to share a great many

“identical elements.” But solution instances by themselves are very limited in the kinds of

information they can represent. A simple translation or rotation of the search space, for

instance, could render such information moot. In particular, it seems that in many problems

it may be desirable to transfer not just information about solutions that have been successful

in the past, but also about what kind of search strategies should be used: what variables

should be varied together, for example, or what kind of subcomponents have proved useful

for building compositional solutions.

Representation-based knowledge transfer aims to provide this kind of solution. In sec-

tion 2.2.2 I reviewed the small body of work that exists on learning representations for

single-task evolutionary algorithms. Even less work has studied representation learning in

a multi-task setting. Watson et al. [2014] and Kouvaris et al. [2017] offer one of the few

examples to date of explicit representation learning for knowledge transfer. They show
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that a genetic regulatory network representation of a genotype-phenotype map is capable

of learning to repeat genetic patterns that have been useful on previous tasks (or on pre-

vious attempts to solve a single, highly multi-modal task). This system evolves a matrix

representing the representation simultaneously with solutions, but mutates the matrix much

more slowly than the solutions themselves (so that the matrix tends to encode long-term

information, while the solution vectors act as the short-term solution instances).

Lenski et al. [2003] follow perhaps the simplest approach to the reuse of representational

components in GP: they evolve a single individual that solves multiple Boolean function

synthesis tasks simultaneously, and which has a complex executable structure that allows

sub-solutions to be reused across multiple tasks. Different outputs of a single evolved pro-

gram are assigned to different tasks, but the program is free to reuse function calls internally

across tasks. Kelly and Heywood [2017] have used a similar general multi-task approach to

evolve rule-based controllers for Atari video games. They found that, by reusing internal de-

cision structures across multiple games, they were able to learn to play sets of three distinct

games competitively with the same computational budget that was normally necessary to

learn just one game independently. An alternative approach to re-use in graph structures

can be found in the component-sharing model of Arthur and Polak [2006] (where logic cir-

cuits evolve by using whole solutions to other tasks as subcomponents themselves). Such a

purely compositional approach to function synthesis has sometimes been called “endosym-

biotic” evolution [Watson, 2006], in reference to the theory that early eukaryotic organisms

evolved their organelles by symbiotically absorbing other prokaryotic organisms whole.

Beyond implicit examples of this kind, however (in which genetic programming ap-

proaches “automatically” enable a limited form of representation learning), little to no ad-

ditional work has explicitly examined representation-based transfer in evolutionary compu-

tation.21

21This is a far contrast from the machine learning literature, where transfer based on learned representa-
tions is extremely common in both research and practice.
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2.2.7 Research Questions

At a high level, I am motivated to the study of evolutionary knowledge transfer by the

third speculative vision that I discussed in section 2.2.1: the hypothesis that evolutionary

algorithms built out of simple algorithmic mechanisms can be used to build innovation

engines much in the sense of Nguyen et al. [2015b], except by relying on a diversity of

source tasks (rather than novelty mechanisms) to spur complex problem-solving. In order

to understand the ingredients that may be necessary for artificial systems of this type to

be possible, however, here my investigation is limited to preliminary studies of each of the

three ingredients of EKT success—problem classes, source selection, and transfer strategies.

Here I present a number of research questions, toward which I will present several prelim-

inary and exploratory investigations in Chapter 4 and Chapter 5. The excursionary nature

of these investigations will contrast somewhat to the questions I presented in section 2.1.5,

but through them, I establish a number of novel theoretical and empirical insights that ad-

vance the goal of understanding EKT mechanisms that may facilitate increasingly innovative

meta-heuristic problem-solving systems in the future.

Problem Classes

In section 2.2.4 I discussed the central importance that the task set that a human selects

for an evolutionary knowledge transfer experiment plays in its success or failure. Because

this selection is likely to be heavily influenced by the broader problem class that tasks are

selected from (for example, tasks may be arbitrarily selected from some historical database,

or from the space of possible problem instances), the transferability properties of problem

classes are important in determining whether an application space is a suitable setting for

transfer to be applied.

Beginning at a foundational level, I will first use a combination of analytical proofs and

experiments to examine the following two-part research question:
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Research Question 4. Transferability within Problem Classes:

A) Do broad no-free-lunch theorems hold for evolutionary knowledge transfer (analogous to

single-task optimization)?

B) What kind of problem classes is positive transfer in optimization likely to occur in with

non-negligible probability?

Source Selection

Next, once a transfer-friendly problem class and task set is fixed, the task of source selection

remains a challenge (so that negative transfer can be avoided). As I noted in section 2.2.5,

most work on source selection for EKT has focused on multi-task problem-solving. A natural

question when dealing with sequential problem-solving (i.e., based on historical experience)

is whether there is a way to analyze the available source tasks to determine a priori which

are good candidates for transfer in a sequential transfer model:

Research Question 5. Transfer Prediction: Can sampling strategies for analyzing fit-

ness landscapes yield effective predictors of sequential transferability between source and tar-

get tasks?

Sequential transfer raises a second provocative possibility for the source-selection prob-

lem: if a large pool of source tasks is available, and a method is available that is good

at weeding out sources of negative transfer, then it may be possible to use a many-source

transfer algorithm to rapidly hone in on positive transfer sources:

Research Question 6. Many-Source Transfer: Is many-source transfer a viable strategy

for avoiding negative transfer?

I posit that in some cases at least, a many-source variation of population-seeding transfer

will meet this criterion.
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I will present the results of Research Questions 4, 5, and 6 in Chapter 4, which focus

on the broad question of transferability in problem classes when instance-based sequential

transfer is applied.

Transfer Strategies

The final key ingredient of EKT success is the transfer strategy that is used to exploit

information from a source task. As I discussed in section 2.2.6, it seems that knowledge

formats that are based on representation learning have the potential to convey a great deal

more generalizable knowledge than solution instances by themselves would typically be able

to. But representation learning has rarely been studied (even for single-task optimization),

so this hypothesis remains largely untested. Here I will pursue two kinds of representation-

based evolutionary knowledge transfer.

First, I investigate a Boolean-function domain, where solutions are themselves executable

objects with internal structure. This situation is analogous to neural network training, where

the layered structure of a neural network allows earlier layers to learn a representation that

is reused across various parts of later layers. Cartesian genetic programming (CGP) [Miller,

2011] is a popular evolutionary system that shares this phenomenon with neural networks.

I use this to empirically examine the ability of a multi-task evolution approach based on

hard parameter sharing to solve a set of Boolean tasks.

Research Question 7. Representation-Based Transfer for CGP: Can genetic pro-

gramming with graph structures facilitate multi-task learning via shared sub-circuits, analo-

gously to how multi-task neural networks can learn via hard parameter sharing?

Second, I will perform experiments in domains that naturally use a vector-phenotype

representation. The aim here will to be show that a simple automated algorithm configu-

ration approach based on meta-evolution is able to learn linear mappings from genotype to

phenotype that produce useful and transferable knowledge:
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Research Question 8. Representation-Based Transfer for Vector Phenotypes:

Can learning a genotype-phenotype map representation for a class of problems yield rep-

resentations that generalize to problems with different global optima, and which are sampled

from different classes?

In this case I will be examining the task of learning a representation that works well for a class

of problems (rather than a single problem instance)—and then test how that representation

transfers to a new class.
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Chapter 3: Asynchronous Parallelization of Evolutionary

Algorithms

3.1 Research Plan

In this chapter I investigate several of the aspects of asynchronous evolutionary algorithm

behavior and performance that I emphasized in my review of the field in section 2.1.

After a describing the asynchronous steady-state EA (ASEA) in detail in section 3.2

and presenting a study of how different initialization strategies affect its behavior, my first

core research question, Research Question 1 (see section 2.1.5), focuses on speedup in asyn-

chronous steady-state EAs. The simplest way to conceive of speedup is in terms of fitness

evaluations per unit of time—throughput speedup. But true speedup takes solution quality

into account—considering the number of fitness evaluations needed to reach a fitness thresh-

old. I study both kinds of speedup in section 3.3, proving analytical results that quantify

the former, and presenting experimental studies to examine the latter.

Concerns around evaluation-time bias in ASEAs arise naturally from this examination

of their true speedup properties (Research Question 2). I conduct several empirical studies

of evaluation-time bias in section 3.4, in particular examining the quasi-generational EA

(QGEA) [Durillo et al., 2008, Fonseca and Fleming, 1998] to see if it offers a feasible middle

ground between the advantages of ASEAs and more traditional generational EAs.

Lastly, in section 3.5 I turn to the question of whether ASEAs engage in “excess computa-

tion” when solving problems in which higher-quality solutions take longer to have their fitness

evaluated (Research Question 3). I introduce a specialized selection operator (SWEET) into

an ASEA and show empirically that it has desirable properties on this class of problems.
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3.2 The General Asynchronous EA

Asynchronous master-worker EAs eliminate the primary source of idle time in parallel evo-

lutionary processes by ensuring that, any time a processor has become free, a new offspring

individual is immediately produced to take its place. Almost all asynchronous global-

population EAs to date have been built on the steady-state model: individuals are inte-

grated into the population one-at-a-time immediately after their fitness has been evaluated,

in the style of a (µ+ 1)-EA.

A general pseudocode template for asynchronous evolution is described in Algorithm 2

from the perspective of the master processor. The abstract template defined by this algo-

rithm describes the class of algorithms that I study throughout this chapter. Algorithm 2

is abstract enough to admit of a number of important variants that can be implemented by

different choices of its subroutines—portions of this chapter will investigate some of these

variations.

Algorithm 2 The General Asynchronous EA
1: function asynchronousEvolution(µ, T , steps)
2: P ← asyncInitialize(µ, T) ▷ Initialize the population asynchronously
3: for i← 0 to steps do ▷ Begin steady-state evolution
4: send(breedOne(P ))
5: integrate(nextEvaluatedIndividual(), P )

First, the algorithm calls an asynchronous evaluation procedure that generates an initial

population of individuals and begins evaluating them (line 2). I will study several possible

choices of initialization procedure below in section 3.2.2, but I assume that regardless of

exactly how initialization proceeds, the asyncInitialize() procedure always leaves exactly

one processor free when it returns. So if there are T processors, T − 1 of them will be busy

at the moment that Algorithm 2 advances to line 3.

Evolution then proceeds in the for loop, which generates an offspring individual and
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sends it to the free processor (line 4). The breedOne() procedure here is responsible

for performing both parent selection and applying reproductive operators to generate a

single offspring; the details of these are application-specific, and I will explain my choice of

reproductive operators later in the sections for each experiment that I present below. Line

5 of the algorithm then blocks by calling nextEvaluatedIndividual(), which waits until

an individual completes processing and then returns it. The individual then competes for a

place in the population—the details of this being handled by the integrate() procedure—

and, since one processor is now once again free in the computational environment, the loop

takes us back to line 4 to generate a new offspring.

3.2.1 The Asynchronous Steady-State EA

When the integrate() procedure takes the form of a steady-state survival selection process,

I refer to the resulting algorithm as a simple asynchronous EA (following terminology I

introduced in Scott and De Jong [2015]), or an asynchronous steady-state EA (abbreviated

just ASEA). Such a procedure is given in Algorithm 3. Here, the newly evaluated individual

ind competes against an individual chosen by selectOne()—if the offspring individual is

betterThan the other, then it replaces the selected individual in the population. I typically

choose to consider one individual to be betterThan() another if its fitness is greater than

or equal to the other.1

Algorithm 3 Steady-state insertion into a population
1: function integrateSteadyState(ind, P , µ)
2: if |P | < µ then ▷ Population not yet full?
3: P ← P ∪ {ind} ▷ Add the individual
4: else
5: replaceInd← selectOne(P ) ▷ Select a random or poor individual to replace.
6: if betterThan(ind, replaceInd) then ▷ Replace it if the new one is better
7: P ← (P − {replaceInd}) ∪ {ind}

1This nuance ensures that change can still occur in the population even when fitness does not change.
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Of the five abstract procedures that appear in Algorithm 2, the integrate() and

asyncInitialize() methods are especially important. I will consider alternative choices

of each of these later in this chapter. In section 3.4 I will consider an alternative choice

of integrate() that dispenses with the steady-state selection of Algorithm 3 and instead

implements a quasi-generational EA (QGEA). Right now, however, I will take a closer look

at the asyncInitialize() step.

3.2.2 Initialization Strategy Experiments

The initialization step of asynchronous evolution is more important than it may at first

appear.2 In a generational algorithm, initialization is straightforward and routine: an initial

population of individuals’ genomes is generated (often via uniform random sampling of gene

values), and then each individual has its fitness evaluated before the next generation begins

to be generated. In asynchronous algorithms, however, strategies for asynchronously initial-

izing a starting population can have profound and long-lasting effects on a run’s problem-

solving trajectory.

When speaking with other practitioners who use ASEAs, I have found that there is no

clear consensus on how, exactly, a population ought to be initialized (that is, evaluated)

asynchronously. But the different initialization procedures that practitioners choose when

implementing an ASEA can sometimes have significant performance implications. In this

section I examine some pitfalls that different initialization strategies may encounter, and

give a preliminary assessment of their respective performance benefits.

Regardless of these strategies, however, all asynchronous initialization strategies by def-

inition involve some possibility of a re-ordering effect in evaluations. In section 3.4 below, I

will show that this effect at initialization time in particular—far more than at other points

in the evolutionary process—is responsible for evaluation-time bias in the behavior of asyn-

chronous algorithms that follow the template of Algorithm 2.
2The results presented in this section have not previously been published.
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Figure 3.1: Illustration of the three asynchronous initialization strategies that I study here.
Each diagram shows what the state of the algorithm looks like at the moment that initial-
ization logic ends and regular, steady-state evolution begins (circles indicate the individuals
generated during random initialization, squares indicate the three processors that are avail-
able in this example). In the immediate strategy (top left), evolution begins when exactly
one individual has completed evaluating and enters the population. In the until-finished
strategy (top right), evolution begins as soon as all initial individuals have either eval-
uated or are in the midst of evaluation, and one processor becomes free. With the extra
strategy (bottom), evolution begins as soon as the population is full—and a few extra
random individuals are generated in the meantime to keep all but one processor busy.

Hypotheses

There seem to be three equally basic interpretations of asynchronous initialization. The

three possible strategies that I have seen colleagues gravitate toward are illustrated by

diagrams in Figure 3.1. Each of these can be described in terms of how far evaluation of an

initial set of generated individuals proceeds before the initialization procedure terminates

and steady-state evolution begins:

• Coletti et al. [2019], for example, use an immediate strategy: they assume that

individuals are queued in a parallel cluster when send() is called, and they enter

the steady-state regime of Algorithm 2 immediately after the first initial individual

completes (i.e., as soon as the population contains a single individual that can act

as a parent). The use of a processing queue (implicitly added to by send() when
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the processors are already busy) is a natural pattern for practitioners to fall into,

since many distributed computing environments—such as the dask library [Rocklin,

2015] that the LEAP evolutionary computing framework relies upon [Coletti et al.,

2020]—readily support arbitrary-length job queues for clusters of many processors.3

• At the opposite extreme, the ECJ software framework [Luke, 2017, Scott and Luke,

2019] uses an extra strategy for its asynchronous initialization: steady-state evolution

does not begin until the population is completely full of evaluated individuals (|P | =

µ), and to keep all the processors busy until that time, a few extra individuals (T − 1,

to be exact) are generated—for a total of µ+ T − 1 random initial individuals.

• In my most recent work with colleagues [Scott et al., 2021, in press], we have adopted a

middle-ground until-finished strategy: exactly µ random individuals are generated,

but steady-state evolution begins as soon as all individuals are either evaluated or

currently evaluating on the processors. At this point in time, the population contains

µ− T + 1 individuals that can be used as parents.

All three of these strategies satisfy the assumption I made in Algorithm 2 that when the

initialize() procedure returns, there is exactly one free processor available in the computing

environment. But they differ significantly in how many individuals have been added to the

initial population at the moment that evolution begins: just one (immediate), µ − T + 1

(until-finished), or µ (extra).

Figure 3.1 emphasizes the case where T << µ—i.e., the number of processors is consid-

erably less than the population size. In this case, the behaviors of the three algorithms all

differ, but we have µ ≈ µ − T + 1, and thus the until-finished and extra strategies behave

somewhat similarly to one another (with just a minor difference in how many individuals
3And while the other initialization strategies I study here do not rely on a queue of waiting jobs in the

experiments that I present, this is partly an artifact of my assumption that the number of processors T is
held constant. In large-scale, real-world distributed computing environments, asynchronous algorithms must
be robust to the periodic failure of nodes and/or changes in the number of processing resources that are
available in the midst of an algorithm run. Queuing effects are thus likely to affect many kinds of ASEA at
scale—although I largely assume away this caveat throughout this chapter for simplicity.
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they sample and the point at which evolution begins):4

Hypothesis 3.1. When T << µ, the performance of an ASEA using the extra strategy will

behave considerably more similarly to the until-finished strategy than it will to the immediate

strategy.

In this scenario, furthermore, the immediate strategy behaves radically differently, in that

the evaluation queue of length µ − T that it begins evolution with never shrinks in size:

it continues to be added to and removed from as steady-state evolution continues. This

introduces a significant delay into the evolutionary feedback loop, by artificially inflating

the selection lag of all individuals by a factor of µ− T , or approximately µ when T << µ.

Using the until-finished strategy as a reference point, I state this observation as the following

hypothesis:

Hypothesis 3.2. When T << µ, an ASEA using the immediate strategy will take sig-

nificantly longer to reach high-fitness solutions on a typical optimization problem than the

until-finished strategy.

Another instructive edge case occurs when the number of processors is equal to the

population size (T = µ). Under this assumption, the immediate and until-finished strategies

are now exactly equivalent: both generate µ initial individuals and begin evolution with

one individual in the population (and an empty queue of waiting jobs). In this case, the

pathological queuing behavior of the immediate strategy is eliminated:

Hypothesis 3.3. When T = µ, an ASEA using the immediate strategy behaves no differ-

ently than one using the until-finished strategy.

But in this T = µ case, the extra initialization strategy behaves very differently from the
4Throughout this dissertation, I will introduce a lot of numbered hypotheses as a means of framing and

presenting results. But don’t read too much sophistication into this organizational device. Like much of
science [Bartz-Beielstein, 2006, Mayo, 1996], most of this work began less with a solid theory to test (à la
Karl Popper) and more of a “huh, that’s funny” (to paraphrase a popular Asimov quote). It’s just easier to
summarize a bunch of hypotheses than a bunch of “funnies.”
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other two: it creates fully 2µ−1 individuals during initialization—resulting in almost double

the initial exploratory sampling of the search space:

Hypothesis 3.4. When T = µ, an ASEA using the extra strategy behaves significantly

differently from one using the until-finished strategy.

The performance effect of this extra initial sampling will be problem-dependent. In the

experiment below, however, I happen to choose a problem and algorithm parameters in

which extra up-front exploration is considerably beneficial—so I will look for a performance

boost in the data when the extra strategy is used.

Methods

For clarity, the three initialization strategies that I study are specified as pseudocode in

Algorithms 4, 5, and 6. To test the differences between these algorithms, I ran an ASEA

with a real-valued representation on an exponential fitness function:

f(x) = exp

(
n∑
i

xi

)
. (3.1)

This function is useful for testing ASEA behavior, because it introduces exaggerated fitness

differentials between individuals within each generation—and when evaluation times are

proportional to fitness, this can help to bring out dynamics that are affected by evaluation

times. I simulate the evaluation times for these experiments to create problems that have

either a positive correlation between evaluation time and fitness or a negative one.

To test the slate of hypotheses above, I prepared experimental configurations with dif-

ferent population sizes and different numbers of processors. The algorithm I apply here is a

real-valued EA with additive Gaussian mutation applied to each gene. Mutation is applied

with probability p = 1/L, and the steady-state components of the ASEA use random se-

lection of competitors for survival selection (always keeping the best individual) and binary

tournament selection for parent selection. No crossover is used.
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Algorithm 4 Immediate Asynchronous Initialization
1: function immediateAsyncInitialize(µ, T )
2: P ← ∅ ▷ Start with an empty population
3: for i← 1 to µ do ▷ Queue all individuals for evaluation
4: Send(randomIndividual())
5: P ← P ∪ {nextEvaluatedIndividual()} ▷ Collect the first to complete

return P

Algorithm 5 Until-Finished Asynchronous Initialization
1: function untilFinishedAsyncInitialize(µ, T )
2: P ← ∅ ▷ Start with an empty population.
3: for i← 1 to µ do ▷ Queue all individuals for evaluation.
4: Send(randomIndividual())
5: while |P | < µ− T + 1 do ▷ Collect individuals until the queue is empty.
6: P ← P ∪ {nextEvaluatedIndividual()}

return P

Algorithm 6 Extra Asynchronous Initialization
1: function extraAsyncInitialize(µ, T )
2: P ← ∅ ▷ Start with an empty population.
3: for i← 1 to T − 1 do ▷ Fill up all but one processor.
4: Send(randomIndividual())
5: while |P | < µ do ▷ Collect individuals until the population is full.
6: Send(randomIndividual())
7: P ← P ∪ {nextEvaluatedIndividual()}

return P
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Table 3.1: Median area-under-curve (AUC) results for each initialization strategy on expo-
nential problems. Statistical tests here compare the immediate and extra strategies against
the until-finished control. Asterisks indicate the smallest p-value that significance is achieved
at with a Wilcoxon rank-sum test: ∗ = 0.05, ∗∗ = 0.005, and ∗ ∗ ∗ = 0.0005.

Environment Pop. Size # Procs Until-Finished Immediate Extra

Exponential (correlated) 10 5 6.47e+11 5.98e+11*** 6.60e+11*

Exponential (correlated) 50 5 2.81e+11 2.86e+10*** 3.10e+11*

Exponential (anti-correlated) 10 5 8.02e+11 7.63e+11*** 7.97e+11

Exponential (anti-correlated) 50 5 4.79e+11 1.95e+11*** 5.03e+11

Exponential (correlated) 10 10 2.15e+12 2.15e+12 2.18e+12***

Exponential (correlated) 50 50 1.36e+12 1.35e+12 1.47e+12***

For each initialization strategy and experimental configuration, I measure the area under

the best-so-far fitness curve (AUC) after running the algorithm for a fixed number of steps.

In each sub-experiment, I ran each initialization strategy for 50 independent runs to collect

mean best-so-far and median AUC results.

Results

The performance of all three initialization strategies for population sizes of 10 and 50 with

the number of processors fixed to T = 5 is shown in Figure 3.2 (for the positively correlated

problem) and Figure 3.3 (for the negatively correlated problem). These graphs test the case

in which T << µ. As Hypothesis 3.1 predicts, the extra and until-finished strategies

perform very similarly both in terms of mean best-so-far trajectory and AUC values. And

as predicted by Hypothesis 3.2, the immediate strategy takes far longer to converge

than the other approaches as the population size grows.

These results are confirmed by statistical tests in Table 3.1, which reports the median

AUC values for each experiment, along with Wilcoxon rank-sum tests that confirm significant

differences in the reported medians. The Wilcoxon tests here are conducted by treating the

until-finished strategy as a baseline, and comparing each of the other strategies against
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Figure 3.2: Mean best-so-far trajectories of an ASEA with 5 processors using three different
initialization strategies on the correlated exponential landscape (i.e., where evaluation time
is proportional to fitness).
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Figure 3.3: Mean best-so-far trajectories of an ASEA with 5 processors using three different
initialization strategies on the anti-correlated exponential landscape (i.e., where evaluation
time is negatively proportional to fitness).
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it.5 Interestingly, the extra strategy shows a small (and weakly significant) performance

improvement over the until-finished approach on the positively correlated problems (where

better solutions take longer to evaluate), but not on the anti-correlated case (where better

solutions evaluate more quickly).

My remaining two hypotheses treat the case where µ = T . Figure 3.4 shows results of

similar experiments conducted on positively correlated landscapes. In these experiments,

there are no dramatic performance differentials for the immediate strategy, because no queue-

ing effects occur when µ = T . Specifically, I see no evidence of a performance difference

between the immediate and until-finished strategies, confirming Hypothesis 3.3. I do

observe a tendency for the extra strategy to converge more quickly toward higher-quality

solutions, however—and this benefit is strongly statistically significant (again by Wilcoxon

tests in Table 3.1). This result confirms my fourth and final prediction, hypothe-

sis 3.4.

Conclusions on Initialization

In this section I have analyzed three common asynchronous initialization strategies for evo-

lutionary algorithms that practitioners often implement. I have shown that the immediate

strategy in particular—which uses a queue of individuals to maintain a backlog when the

population size is greater than the number of processors—should be used with extreme care,

as it can greatly lengthen the delay in the evolutionary feedback loop. The until-finished

and extra strategies, meanwhile, perform fairly similarly under the conditions I have tested

here.

In general, it may be preferable to use a hybrid scheme, in which a synchronous strategy

is used for initialization before transitioning to steady-state evolution. I revisit this topic in

section 3.6.1 as a potential avenue for future work.
5I did not bother with a Bonferroni correction, since I am only testing two simultaneous hypotheses at a

time in each experiment. The results that confirm the hypotheses are significant at p < 0.0005, however, so
they would easily satisfy Bonferroni.
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Figure 3.4: Mean best-so-far trajectories of an ASEA with the number of processors
equal to the population size using three different initialization strategies on the anti-
correlated exponential landscape (i.e., where evaluation time is negatively proportional
to fitness). Shown are results for population sizes of µ = 10 (top), 50 (middle), and 100
(bottom), respectively.
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3.3 Parallel Speedup with Asynchronous Evaluation

Asynchronous EAs are interesting primarily because they promise to increase the total

number of individuals that complete evaluation per unit of wall-clock time—i.e., throughput.

I measure throughput by considering the time it takes for an EA to execute a fixed number

of evaluations. I call the ratio between two algorithms’ throughput the throughput speedup.

Extra fitness evaluations do not necessarily translate to an increase in progress toward

a goal, however. Being able to evaluate more candidate solutions per unit time does not

by itself guarantee that an algorithm can find a higher quality solution to a problem. It

is important to distinguish throughput speedup from true speedup, which would take the

quality of the resulting solution into account.6

In this section I characterize the speedup that an ASEA offers over a parallel genera-

tional algorithm. I present throughput speedup results for the ASEA, first analytically in

section 3.3.1 and then empirically in section 3.3.2. After that I return to the more difficult

question of true speedup with further experiments in section 3.3.3.

3.3.1 Analytical Lower Bounds on Throughput Speedup

As elsewhere in this chapter, I assume that the evaluation time of individuals dwarfs all

other EA overhead, and thus that an asynchronous EA has near-zero idle time. Under

this assumption, the speedup in throughput that the asynchronous EA offers is completely

described by the amount of idle CPU resources it recovers. Algebraically, the throughput

speedup is thus expressed as the ratio

S =
Tgenerational

Tasynchronous
=

1

1− Î
, (3.2)

where Î is the fraction of CPU resources that the generational EA would have left idle.

In this section7, I consider the case where individual evaluation times are independent
6Zăvoianu et al. [2013b] use the term ‘structural improvement’ for what I call ‘throughput speedup’ here.
7With the exception of some moderate clarifications such as Theorem 3.2, I have published all the results
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and identically distributed according to some distribution. That is: I focus on the case in

which evaluation time is independent of a solution’s fitness and its genotype. Furthermore,

I assume for simplicity that the ratio of CPUs available to the population size is 1, i.e., there

is one CPU for each individual in the population.

Under these assumptions, we8 proceed to analyze the expected value of S, deriving a

reasonably tight lower bound for the speedup of the ASEA. Although many of the assump-

tions made here may not hold (or at least not hold exactly) in applications, these results

nevertheless provide us with a quantitative handle on what actual values for the throughput

speedup S might look like. We will see in section 3.3.2 that the bounds derived here are

only slightly violated as we relax some of their assumptions.

Now, the most important value in determining the fraction Î of CPU resources that

are left idle in a given generation (and thus the asynchronous speedup S) is the evaluation

time of the longest-running job (or individual) on any of the processors. This is clear from

Figure 2.4 in the previous chapter: the size of the lightly shaded idle region in each processor

is determined by the gap between the finishing time of the job on each processor and the

finishing time of the longest-running job.

With this in mind, we begin our analysis of speedup under uniform evaluation times

with the following lemma:

Lemma 3.1. If P = {Y1, Y2, . . . , Yn} be a set of random variables that are i.i.d. and follow

a uniform distribution U(a, b). Then

E[max[P ]] = b− 1

n+ 1
(b− a). (3.3)

Proof. The idea of the proof is to recognize that the probability of max[P ] ≤ x is equal to

from this section in Scott and De Jong [2015].
8Welcome, dear reader, to the first-person plural! In this section, as in much of mathematics literature,

“we” refers to you and me, since the convention is to assume that the reader is in some sense “present” with
me, working through the results [Morgan, 1996]. Odd as it may be, I rather like this tradition.
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the probability that all of the samples Yi ∈ P are less than or equal to x. From this we can

obtain an integral expression for E[max[P ]], which can be solved in closed form.

From the theory of order statistics, the probability that the maximum value in P obtains

a given value is characterized by the cumulative distribution

p(max[P ] ≤ x) =
n∏

i=1

p(Yi ≤ x). (3.4)

Taking the derivative of both sides yields the p.d.f.

p(max[P ] = x) =
d

dx

n∏
i=1

p(Yi ≤ x). (3.5)

Now we can combine this equation with integration by parts to express the expected value

of the maximum value as a function of the c.d.f. of the Yi’s:

E [max[P ]] =

∫ ∞

−∞
x · p(max[P ] = x)dx (3.6)

=

∫ ∞

−∞
x
d

dx

n∏
i=1

p(Yi ≤ x)dx (3.7)

=

[
x

n∏
i=1

p(Yi ≤ x)−
∫ n∏

i=1

p(Yi ≤ x)dx

∣∣∣∣∣
∞

−∞

(3.8)

This expression cannot be solved in closed form for most distributions. The c.d.f. of a

uniform distribution over the interval [a, b], however, is given by

p(Yi ≤ x) =

∫ x

a

1

b− a
dy =

x− a

b− a
. (3.9)
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Substituting into Equation 3.8, we have

E [max[P ]] =

[
x

(
x− a

b− a

)n

−
∫ (

x− a

b− a

)n

dx

∣∣∣∣b
a

(3.10)

= b− 1

n+ 1
(b− a), (3.11)

and we have proved the lemma.

Now we proceed to prove the following general lower bound on expected idle time that

applies to any evaluation-time distribution that is bounded from above by b ∈ R+. We will

proceed to derive corollaries for the uniform distribution afterwards (as a special case).

Theorem 3.1. Let the number of processors in a generational evolutionary algorithm be

equal to the population size, and let the evaluation times of the individuals in each generation

be drawn i.i.d. from a probability distribution. Furthermore, assume that there is some

b ∈ R+ such that the distribution’s p.d.f. f(x) = 0 for all x > b.

Then the expected fraction of idle time E[Î] incurred by the generational algorithm

is bounded from below by

E[Î] ≥ 1

b
(E[max[P ]]− E[Y ]) . (3.12)

Proof. Let P = {Y1, Y2, . . . , Yn} be a set of random variables drawn i.i.d. from the distribu-

tion, where Yi ∈ [0, b) represents the evaluation time of the ith individual in the population.

Then, as I illustrated in Figure 2.4 in the previous chapter, the absolute idle time suffered

by the generational EA is the total number of CPU-seconds processors spend waiting for

the longest-evaluating individual to complete:

I =
n∑

i=1

(max[P ]− Yi). (3.13)

To express idle time as a normalized value between 0 and 1, Î, we divide I by the total number
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of CPU-seconds available to the algorithm during the generation, which is nmax[P ].

Î =
I

nmax[P ]
. (3.14)

Computing the expected value of this ratio distribution is difficult for most distributions, in

part because max[P ] and I are not independent. The following inequality is easier to work

with:

E[Î] = E
[

I

nmax[P ]

]
(3.15)

≥ E
[
I

nb

]
(3.16)

=
1

nb
E

[
n∑

i=1

(max[P ]− Yi)

]
(3.17)

=
1

b
(E[max[P ]]− E[Y ]) , (3.18)

where the last step follows by the linearity of expectation.

We now confine our attention to the case where the Yi’s are sampled from a uniform

distribution over the interval [a, b]. We will use the general bound from Theorem 3.1 to

derive a lower bound on the expected idle time specific to this scenario.

Corollary 3.1. Let the number of processors n in a generational evolutionary algorithm be

equal to the population size, and let the evaluation times of the individuals in each generation

be drawn i.i.d. from a uniform distribution U(a, b).

Then the expected fraction of idle time E[Î] incurred by the generational algorithm

is bounded from below by

E[Î] ≥
(
b− a

b

)(
1

2
− 1

n+ 1

)
. (3.19)
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Proof. The result follows by applying Lemma 3.1 like so:

E[Î] ≥ 1

b

[
b− 1

n+ 1
(b− a)−

(
a+

b− a

2

)]
(3.20)

=

(
b− a

b

)(
1

2
− 1

n+ 1

)
. (3.21)

Note that since max[P ] quickly approaches b as n → ∞, this lower bound on E[Î] will

be tight for large n. This can be seen by referring to Equations 3.15 and 3.16.

At this point we have proved bounds on the expected normalized idle time E[Î] in a

generational EA. In experiments, however, it is more straightforward to measure the speedup

between two algorithms than to directly measure the idle processing resources. Our final

theorem rearranges our results to give a lower bound on speedup:

Theorem 3.2. Let the number of processors equal the population size and evaluation times

be i.i.d. from U(a, b).

Then the expected throughput speedup E[S] that the asynchronous steady-state EA

exhibits over a generational algorithm is bounded from below by

E[S] ≥
(
1−

(
b− a

b

)(
1

2
− 1

n+ 1

))−1

. (3.22)

Proof. The result follows by using Jensen’s inequality to rearrange inequality 3.19 to match

the definition of speedup (Equation 3.2).

For clarity, let the RHS of inequality 3.19 in Corollary 3.1 be denoted by C. Then we
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have

E[Î] ≥ C (3.23)

1− E[Î] ≤ 1− C (3.24)

1

1− E[Î]
≥ 1

1− C
(3.25)

1

E[1− Î]
≥ 1

1− C
, (3.26)

where the inequality reverses direction a second time in step 3.25 because both sides are

positive (i.e., E[Î] and C are both between (0, 1)).

The LHS of Equation 3.26 is almost in the form of speedup, but not quite. To complete

the rearrangement, let X = 1 − Î. Because Î is normalized to always be between 0 and 1,

we also have X ∈ (0, 1). As a result, the function

ϕ(X) =
1

X
(3.27)

is convex (since the reciprocal function is convex for positive arguments). Now we can apply

Jensen’s inequality,9 which states that for any convex function ϕ,

ϕ(E[X]) ≤ E[ϕ(X)]. (3.28)

Applying this to inequality 3.26, we arrive at

E
[

1

1− Î

]
≥ 1

E[1− Î]
≥ 1

1− C
, (3.29)

which is equivalent to corollary.
9For a proof of Jensen’s inequality, see for example p. 27 of Cover and Thomas [2006].
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We can see from Equation 3.22 that the expected speedup is determined entirely by the

population size n and the ratio of the standard deviation (which is related to (b − a) by

a constant factor) to its maximum value b. Moreover, the maximum attainable speedup is

determined by the limit of the idle time as n grows, which we can express exactly (because,

as we noted, Equation 3.19 is tight for large n):

lim
n→∞

E[Î] =
1

2

(
b− a

b

)
. (3.30)

This result indicates that the generational EA will never incur an expected idleness greater

than 50% when evaluation times follow a uniform distribution, and consequently an asyn-

chronous EA can never provide a throughput improvement of greater than 2. I note in

passing, however, that for other distributions that permit more extreme values (such as the

Gaussian or long-tail distributions), a speedup of much greater than 2 is possible.

3.3.2 Throughput Speedup Experiments

Theoretical bounds like Theorem 3.1 and its corollaries can be very informative, but it is

important to contextualize analysis of this kind with empirical results. Experiments help to

verify that analytical results are correctly derived, provide a view of how tight the bounds

they provide are in practice, and (most importantly) how quickly the theoretical results

become invalid when the assumptions that went into them are relaxed.10

Hypotheses

I performed11 two sets of speedup experiments to explore these questions. The first examines

how the expected speedup of the ASEA varies with the number of processors:
10I have published all of the results from this section in Scott and De Jong [2015].
11And here I bid you adieu, dear reader: returning to the first-person singular now that the math is behind

us; and because this is a dissertation, and I am expected to emphasize my personal contributions (or so I
am told!).
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Hypothesis 3.5. When the number of processors n equals the population size and evaluation

times are i.i.d. and uniformly distributed, the throughput speedup of an ASEA over a

generational EA increases with n in a fashion that closely follows the lower bound given

by Theorem 3.2.

The second experiment examines how speedup changes when I relax the assumption

that n equals the population size. This assumption simplified our analytical approach to

throughput above, but in practical applications the population size will often be significantly

greater than the number of processors. When the population is larger than the number of

processors, each processor in a generational algorithm will evaluate a subset of individuals in

the population. The total evaluation time of the jobs executed by a given processor during

a generation in this scenario, then, is a random variable given by the sum of the evaluation

times of the individual jobs. In general (for any distribution), while the mean and variance of

the sum of n independent variables grow linearly with n, the standard deviation of the sum

grows with
√
n.12 As a result, the total evaluation time per generation on each processor will

be less prone to extreme values relative to the mean—meaning that cases where a processor

takes much longer to finish its workload relative to the other processors will become rarer.

For this reason, I expect the amount of idle time in the generational algorithm (and thus

the speedup achieved with an ASEA) to decrease:

Hypothesis 3.6. The throughput speedup of an ASEA over a generational EA de-

creases with the ratio of the population size to the number of processors.
12This follows from Bienaymé’s formula, which is a general result that applies to any sum distribution:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) +

n∑
i ̸=j

Cov(Xi, Xj).

When the Xi are independent (as they are in the current context), the covariances reduce to zero, and the
variance of the sum grows linearly with n.
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Methods

To measure the impact of evaluation-time variance on the speedup of an asynchronous

steady-state EA, I use a synthetic fitness evaluation scheme to test Hypotheses 3.5 and 3.6.

The evaluation scheme is configured to wait a given amount of time (i.e., using a sleep

system call) before returning a fitness value. Since I am only studying throughput speedup

in this experiment, and since evaluation times are independent of fitness in this experiment,

the fitness values themselves are irrelevant for our purposes and were configured arbitrarily.

For both of these experiments, I run generational and asynchronous algorithms on a single

shared-memory machine using the ECJ evolutionary computation framework [Scott and

Luke, 2019]. Since executing sleep system calls to the kernel to simulate fitness evaluation

latency is not resource intensive, I was able to simulate arbitrary numbers of processors on

a shared-memory machine that had just a few cores. Because the algorithm is still running

on a real-world machine, however, effects such as process scheduling, algorithm overhead,

etc. may affect the performance of the algorithms in ways that are not captured by the

assumptions of our derivations in section 3.3.1.13

To approach Hypothesis 3.5, I keep the number of threads available to the algorithms

fixed to the population size. Within this assumption, I studied two configurations of the

evaluation-time distribution:

1. In the first configuration, individual evaluation times were sampled uniformly from

the interval [ t4 , t], where t is a sufficiently long time (a few seconds) that the overhead

of evolutionary operators is negligible compared to evaluation time.

2. In the second configuration, evaluation times were sampled from [0, t]—with the result

that the ratio between any two evaluation times may be arbitrarily large.

For each of these configurations, and for each of the population sizes |P | ∈

{5, 10, 15, 20, 25, 30}, I ran both an ASEA and a generational EA each for 50 independent
13This is in contrast to other experiments I present in this chapter, in which a discrete-event simulation

is used to perfectly simulate a zero-overhead evolutionary algorithm.
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runs. Each run of both algorithms ran for |P | · ⌊|P |/500⌋ fitness evaluations (i.e., for as

close to 500 fitness evaluations as one can get without exceeding it, given that the genera-

tional algorithm evaluates exactly |P | individuals at a time and can only execute an integral

number of generations).

To approach Hypothesis 3.6, meanwhile, I performed additional runs with the [0, t]

evaluation-time configuration, but this time the number of processors was fixed to n = 10

while the population size varied (|P | ∈ {10, 20, 30, 40, 50}). Similarly to before, I performed

50 runs for each configuration, each consisting of |P | · ⌊|P |/250⌋ fitness evaluations.

In both experiments, I measure the empirical speedup by taking the ratio

S̄ =
Tgenerational

Tasynchronous
, (3.31)

where Tgenerational is the wall-clock time measuring how long it took the generational algo-

rithm to complete all fitness evaluations, and Tasynchronous is the equivalent quantity for the

ASEA.

Results

The results of both experiments are shown in Figure 3.5.

The left-hand figure tests Hypothesis 3.5, comparing the empirically observed speedup

values to lower bounds (bold dark lines). These bounds were computed from Theorem 3.2

using the parameters of the uniform distributions for the two experimental configurations,

[ t4 , t] and [0, t]. The thin error bars indicate the standard deviation in the speedup across

the 50 runs. Tighter, wide error bars showing the 95% confident interval on the mean are

barely visible in the figure, indicating that the estimate of the expected speedup is precise.

The results confirm that Theorem 3.2 provides a reasonably tight estimate of the through-

put improvement. For large numbers of processors (T = n > 20), however, the prediction

no longer serves as an accurate lower bound. I found that the degree to which the results
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Figure 3.5: Left: Observed throughput improvement, shown along with theoretical lower
bounds predicted by Theorem 3.2 (bold lines). Error bars show standard deviation (blue
bars with narrow hats) and a 95% confidence interval on the mean (red bars with wide
hats—these intervals are so small as to be barely visible). Right: Observed throughput
improvement when the number of worker processors is fixed at 10 and the population size
varies.

conform to the prediction vary somewhat depending on the architecture of the computer I

run the experiments on. From this I surmise that the deviation from the prediction at high

n is an artifact of my experimental setup, which simulates more processors than are actually

available and thus invites some operating system overhead. I thus consider Hypothesis 3.5

to be partly supported: the theoretical bounds appear to be reasonably tight, but they

begin to be violated as the overhead of executing many parallel evaluation threads grows. In

particular, these results suggest that—while Equation 3.30 showed that the ASEA can attain

a theoretical maximum speedup of 2 in the limit for uniform evaluation-time distributions—

in practice speedups of greater than 1.8 or 1.9 may be difficult to achieve, due to classical

considerations related to Amdahl’s law [Amdahl, 1967].

The right-hand side of Figure 3.5 tests Hypothesis 3.6 by measuring the effect of holding

the number of processors fixed at 10, and varying the population size while individual

evaluation times are sampled non-heritably from [0, t] (50 independent runs of 250 fitness

evaluations each). As |P | increases, each processor becomes responsible for evaluating a

101



larger share of the population, and the throughput improvement quickly decreases, as was

predicted. This data supports Hypothesis 3.6.

In the experiments shown so far, the variance in throughput improvement from run to

run is small. When evaluation time is a heritable trait, this may no longer be the case, as

genetic drift and/or selection can significantly alter the distribution of evaluation times as

evolution progresses. The amount of throughput improvement that the algorithm attains

over the entire run depends heavily on how the magnitude and variation of evaluation times

expands or shrinks over time. How that change occurs depends in turn on how the heritable

component of evaluation time is related to an individual’s fitness. I will return to this nuance

as part of further experiments in section 3.3.3.

Conclusion of Throughput Experiments

In this section I have used empirical experiments to demonstrate and test the limits of the

analytical model of ASEA processing throughput that we derived in section 3.3.1. These

results serve to precisely illustrate and bound the main advantages that the ASEA offers to

practitioners: asynchronous parallelization is especially advantageous over the generational

EA when the number of worker processors is large and the ratio of processors to the pop-

ulation size is high. But decreasing returns appear to set in quickly, so it is important to

have realistic expectations about how much of an advantage asynchrony will offer.

The main limitation of the results that I have presented in this section are that they

deal only with evaluation times that are both uniformly distributed and non-heritable. It is

reasonable to expect qualitatively similar results for other simple distributions when evalua-

tion times are non-heritable. When evaluation times are systematic, however—in the sense

of being a trait that carries over from parents to offspring—or when they exhibit some re-

lationship to fitness (such as when faster-evaluating solutions tend to have better fitness),

then the impact that asynchronous dynamics have on the performance and search trajectory

of an EA may deviate in complex ways from what the results of this section would suggest.

I turn to these more challenging questions in the next section.

102



3.3.3 True Speedup Experiments

In the forgoing discussion, I have given an analytical and quantitative view of the speedup

that an asynchronous EA offers in throughput. The throughput improvement an asyn-

chronous EA offers over a generational alternative is an intuitively appealing metric, because

one is inclined to believe that progress toward the solution can be measured by the number

of fitness evaluations an algorithm has completed. But focusing on throughput alone can be

misleading when considering optimization algorithm performance.

In his early analysis of asynchronous master-worker EAs, Kim [1994] called this the

requisite sample set hypothesis, and used it to express the importance of throughput:

Given an [algorithm] for which the invariance of the requisite sample set size

holds, search speed is determined by the throughput of fitness evaluation. The

greater the number of processors dedicated to the evaluation of individuals, and

the higher the utilization of these processors, the faster the global optimum will

be located.

When the number of samples an asynchronous EA needs to find a high quality solution on the

given problem is equal to the number of samples a generational EA requires, then throughput

improvement is an accurate predictor of true speedup. But this assumption is unlikely to

hold in practice. In principle, on some problems the asynchronous EA could require so many

more samples that it takes longer to converge than the generational EA, despite the increase

in throughput. Computational throughput serves no evolutionary purpose unless it allows

us to find better solutions than would otherwise be possible (given the same computational

budget).

In this section, I continue to analyze the speedup the ASEA offers over a generational

EA, but now I consider the true speedup—i.e., the speedup in terms of solving particular

problems, rather than only the throughput speedup.14 An ASEA’s true speedup is deter-

mined partly by the throughput advantages it offers, and partly by the search trajectory it
14I have published all of the results from this section in Scott and De Jong [2015].

103



takes when sampling the solution space. Informally, the latter can be understood in terms

of how the algorithm balances exploration with exploitation [Blum and Roli, 2003b]—or,

more simply, by the degree to which its search trajectory exhibits greediness.

As with all evolutionary algorithms, the complex interactions between selection and vari-

ation operators in an ASEA ensure that the algorithm operates as a non-linear dynamical

system [De Jong, 2006]. Because it is generally difficult to study these interactions analyti-

cally, in this section I present only empirical results.15

Hypotheses

Here I use a set of three qualitative properties to suggest hypotheses about how exploration

and exploitation are exhibited in ASEAs: namely 1) the relative greediness of steady-state

population models, 2) genetic drift, and 3) evaluation-time bias.

First, traditional steady-state evolutionary algorithms are known to have a more greedy

search trajectory than generational algorithms. This arises because as new individuals re-

place existing individuals in the population, some individuals are replaced not long after

they are born, and are thus given far more limited opportunities to produce offspring than

they would be in a generational population model. The result is that a steady-state EA

has a shorter delay in its evolutionary feedback loop than a generational EA does [De Jong,

2006, pp. 52–3]. While the ASEA is a generalization of the SSEA, all ASEAs share this ba-

sic property of a tightened feedback loop in common with the traditional SSEA. On highly

multi-modal problems, this may cause the algorithm to be more prone to falling into a local

optimum, delaying or preventing it from finding a good solution. But on simple, unimodal

problems, greediness may be an advantage—reducing the number of fitness samples required

to find a good solution:
15While there is a significant literature devoted to the computational complexity analysis of traditional EAs

[Doerr and Neumann, 2020], sophisticated proof techniques are often needed for even very simple problems,
and almost none of this work has examined the additional complications introduced by asynchronous EAs.

104



Hypothesis 3.7. In general, the ASEA’s search trajectory on simple problems (spheroid

and Rastrigin) will be greedier than a generational EA, in terms of taking fewer fitness

evaluations to approach the optimum.

Second, when evaluation times are heritable but can vary independently of fitness, the

degree of evaluation-time variance that the population exhibits at any given step is de-

termined by competing pressures from mutation (which changes evaluation-time traits in

individuals over time and can cause them to diverge) and selection (which, through genetic

drift, has a tendency to cause diversity to be lost given sufficient time, in extreme cases

fixating to a single uniform value) [De Jong, 2006, pp. 121–123]. If the former dominates

over the latter (as is normally the case), then it will lead to higher variance in evaluation

times within the population as the simulation proceeds.16 For this reason, I hypothesize

that the ASEA will exhibit higher variance in its performance in the heritable scenario:

Hypothesis 3.8. When evaluation times are heritable but independent of fitness, the

variance in the ASEA’s throughput speedup and true speedups will both be considerably

greater than in the other three scenarios.

Third, it seems plausible that ASEAs may exhibit evaluation-time bias: because of the

selection lag property that ASEAs exhibit, it is sometimes the case that while a single long-

evaluating individual is evaluating on one processor, many fast-evaluating individuals can

be born, evaluated by the remaining processors, and integrated into the population. This

may lead fast-evaluating individuals to be preferred over time by evolution, separate from

any consideration of fitness.
16This can be seen by considering the case of additive Gaussian mutation, in which case—disregarding

selection—the evolution of a neutral trait in a single individual’s lineage follows a Gaussian random walk.
The overall change in a lineage’s evaluation-time trait between generation 0 and generation n in this case
can be modeled as the sum

∑n
i=1 Xi of n i.i.d. random variables Xi ∼ N (0, σ2). But by Bienaymé’s formula,

the variance of this sum distribution grows linearly in n:

n∑
i=1

Xi ∼ N (0, nσ2)

So after several hundred generations, the variance in a population’s evaluation times has the potential to
grow very large.

105



In my experience, practitioners frequency cite the possibility of evaluation-time bias

as a concern when they are considering applying an ASEA to a problem. In particular,

the informal expectation is that when better solutions are faster, evaluation-time bias may

accelerate an algorithm’s trajectory toward these solutions—leading to a more exploitative

algorithm:

Hypothesis 3.9. When better solutions are faster (i.e., when evaluation times are pos-

itively correlated with fitness on a minimization problem) on simple problems (spheroid and

Rastrigin), the ASEA will take fewer fitness evaluations to find the optimum than it does

in the other three scenarios, and will exhibit a greater true speedup over a generational

EA.

Conversely, when better solutions are slower, the algorithm may be slower to move into

good regions of the search space:

Hypothesis 3.10. When better solutions are slower (i.e., when evaluation times are

negatively correlated with fitness on a minimization problem), the ASEA will take more

fitness evaluations to find the optimum than it does in the other three scenarios, and will

exhibit less true speedup over a generational EA.

The possibility of these dynamics is particularly concerning on difficult, multi-modal

problems. Because of the greedier dynamics of steady-state population models, I expect the

ASEA to be more prone to local optima than the generational EA overall:

Hypothesis 3.11. In general, the ASEA will be more prone to local optima than a

generational algorithm on highly multi-modal problems (namely the Hölder table).

But when better solutions are faster-evaluating, it may be that evaluation-time bias exac-

erbates the problem of local optima further:
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Hypothesis 3.12. When better solutions are faster (i.e., when evaluation times are

positively correlated with fitness on a minimization problem) on a highly multi-modal problem

(Hölder table), the ASEA will be more prone to local optima than it is in the other three

scenarios.

A Remark on Metrics

As Kim’s concept of a “requisite sample set” suggests [Kim, 1994], measuring the true

speedup of an algorithm requires me to take the number of fitness evaluations into ac-

count that are needed to achieve a goal. This is in line with the overwhelming majority of

evolutionary algorithms research, which considers the number of fitness evaluations needed

to reach a goal (or, relatedly, the quality of the solution achieved after some fixed evaluation

budget) as an objective way to evaluate algorithms’ performance in a way that is compara-

ble across different computer architectures (which may run the same algorithm at different

speeds) [Luke and Panait, 2002].

When evaluation times vary, however, the raw count of fitness evaluations needed to

achieve some goal (or, similarly, the quality achieved after some fixed evaluation budget)

can be misleading. In asynchronous algorithm experiments, then, measuring performance

in terms of time—time plotted on the x-axis, time to convergence, best solution found

within a fixed budget of time, etc.—is often important. The trade-off is that the wall-clock

time that passes while an algorithm runs varies considerably from machine to machine or

implementation to implementation, making it difficult to compare results across experiments,

papers, and labs.

In my experiments here, then, I focus primarily on wall-clock time metrics, since those

are what give us the most meaningful window into the true speedup of an ASEA. I will

additionally present some results in terms of evaluation-count metrics, to show how the

search behavior of the ASEA differs from the control independently of time.
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Methods

Following the four-part classification of problems based on their evaluation-time properties

that I presented in section 2.1.2, I used four distinct simulated scenarios on each test function

to see how the asynchronous EA performs on real-valued minimization problems. In all four

scenarios, I represented individual genomes as vectors in Rl, where l is the dimensionality

of the particular problem at hand.

1. In the Non-Heritable scenario, individual evaluation times are uniformly sampled

from the interval [0, tmax].

2. In the Heritable, fitness-independent scenario, I define a special gene to represent

the individual’s evaluation-time trait. The trait is randomly initialized on [0, tmax],

and undergoes Gaussian mutation within these bounds with a standard deviation of

0.05 · tmax. This gene is ignored during the calculation of fitness.

3. In the Positive fitness-correlated scenario, the evaluation time t(x⃗) of an individual

x⃗ is a linear function of fitness with a positive slope m and zero intercept:

t(x⃗) = mf(x⃗) (3.32)

This simulates the case where evaluation becomes faster as a solution x⃗ approaches

the optimum.

4. In the Negative fitness-correlated scenario, evaluation time is a linear function of

fitness with a negative slope and a non-zero intercept:

t(x⃗) = max (0,−mf(x⃗) + tmax) . (3.33)

In this case, evaluation becomes slower as the solution approaches the optimum (up

to a maximum of tmax seconds).
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I tested all four scenarios on the venerable 10-dimensional spheroid function, the 2-

dimensional Rastrigin function, and the Hölder table function. The spheroid function17 has

a unimodal, quadratic macrostructure. The faster an algorithm approaches the optimum of

a spheroid, the greedier its search behavior is. While the Rastrigin function has many local

optima, it is linearly separable and has a quadratic macro-structure which makes the global

optimum relatively easy to find:

f(x⃗) = 10l +

l∑
i=1

[x2i − 10 cos(2πxi)]. (3.34)

The Hölder table function (Figure 3.6) is also highly multi-modal:

f(x⃗) = −

∣∣∣∣∣sin(x1) cos(x2) exp
(∣∣∣∣∣1−

√
x21 + x22
π

∣∣∣∣∣
)∣∣∣∣∣+ 19.2085, (3.35)

where I have added the non-traditional constant 19.2085 so that the global optima have a

fitness of approximately zero. I select the Hölder table because it is moderately difficult, in

the sense that the EAs I am studying sometimes converge on a local optimum, and fail to

converge on a global optimum after several hundred generations.

Each algorithm used a Gaussian mutation operator with a per-gene mutation probability

of 0.05, and used a 100% rate of two-point crossover. The population size was fixed at n = 10

in each case, and the number of worker processors was also T = 10. During both initialization

and the application of reproductive operators, I bound each gene between -10 and 10 on

all three objectives, and I set the standard deviation of the Gaussian mutation operator to

0.5. For the fitness-correlated scenarios, I set the parameter m to 1 for the sphere function

and 5 on the Rastrigin and Hölder table. I ran each EA for 250 generations on the sphere

function, 500 on the Hölder function, and 1,000 on the Rastrigin function.
17So-called not because it is a sphere, but because it is a paraboloid whose contours of equal fitness form

hyper-spheres.
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Figure 3.6: The Hölder table function.

Results on Sphere and Rastrigin Functions

Figures 3.7 and 3.8 show mean best-so-far fitness trajectories for 50 independent runs of the

ASEA and generational EA on the spheroid and Rastrigin functions, respectively, for the

case where evaluation times are non-heritable. The curves are indexed by generation on the

left-hand side, and by wall-clock time on the right-hand side. For comparison, results from

a plain (single-processor) steady-state EA are also shown in the by-generation plots.18 For

the non-generational algorithms (ASEA and SSEA), a “generation” here is taken to indicate

a number of fitness evaluations equal to the population size.

The results on the spheroid and Rastrigin function indicate that the asynchronous EA

is greedier than the generational EA. This is true in a fairly fundamental sense: because the

evaluation-time distribution in this experiment is non-heritable, no systematic evaluation-

time bias effect can be at work. This supports Hypothesis 3.7, indicating that the

ASEA has greedier search behavior on a unimodal function (spheroid) and a function that
18Because the SSEA uses only a single processor, it takes far greater wall-clock time to solve these problems

than the two multi-processor algorithms do. As such, I don’t bother showing it in the wall-clock-time plots.
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Figure 3.7: On the spheroid function, the simple asynchronous EA consistently takes fewer
fitness evaluations on average to reach the optimum (Left). This contributes to its ability
to find the solution in less wall-clock time than the generational EA (Right).
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Figure 3.8: The asynchronous EA also performs well on the Rastrigin function both in terms
of fitness evaluation (Left) and wall-clock time (Right).
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is multimodal on a small scale, but has an overall convex macrostructure (Rastrigin).

Comparing just the ASEA performance to itself across the four scenarios, however, I

observe no statistically significant (p < 0.05) difference in the number of fitness evaluations

it takes for the asynchronous EA to converge on the spheroid function (not shown). This

indicates that as Gaussian mutation leads the population to exploit a unimodal function,

the effect of evaluation-time bias is negligible on average.

This surprising absence of an identifiable evaluation-time bias in the ASEA persists

when I closely examine both the throughput speedup and true speedup in each scenario.

Figures 3.9 and 3.10 show the true speedup and throughput improvement for each of the

four scenarios on the spheroid and Rastrigin functions, respectively. The true speedup is

measured by considering the amount of wall-clock time it takes each algorithm to reach a

fitness value of less than the threshold value η = 2. Each scenario was tested by pairing 50

independent runs of each algorithm and measuring the resulting speedup distribution.

On both functions, I note that the “heritable” (independent of fitness) eval-time scenario

exhibits higher variance than the other three scenarios. This supports Hypothesis 3.8,

suggesting that in the absence of selection pressure on evaluation-time traits, genetic drift

increases the unpredictability of the benefits of ASEAs.

Because the asynchronous EA tends to converge in less time than the generational EA

in all four scenarios on both functions, and since all of them exhibit throughput improve-

ments, their true speedups are greater than 1.0. On the Rastrigin, but not the sphere, the

true speedups are remarkably high. All of them average over 2.0, which is the maximum-

attainable expected value for throughput improvement for the non-heritable scenario as

determined by Equation 3.30, and outliers for the non-heritable scenario are visible in Fig-

ure 3.10 with true speedup values in excess of 20 or 30. This is possible only because the

asynchronous EA requires fewer fitness evaluations to solve the Rastrigin function than the

generational EA.

On the spheroid function, most of the true speedup is more readily explained by an

increase in throughput: I find at p < 0.05 (with a Bonferroni correction for testing four
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Figure 3.9: Speedup in throughput (Left) and convergence time (Right) of the asyn-
chronous EA on the sphere function.
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Figure 3.10: Speedup in throughput (Left) and convergence time (Right) of the asyn-
chronous EA on the Rastrigin function.
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simultaneous hypotheses) that there is no statistically significant difference between the

means of the throughput speedup and true speedup in three of the four cases: the non-

heritable, heritable, and positive scenarios. In these scenarios, all of the true speedup comes

from throughput—there is no evidence that greater or fewer overall fitness evaluations are

needed to reach the optimum. This result is inconsistent with Hypothesis 3.9, which

predicted that in the positive (“better is faster”) scenario, evaluation-time bias would cause

the ASEA to require fewer fitness evaluations to reach the optimum than in the other

scenarios.

In the negative (“better is slower”) scenario, however, the same test (at p < 0.05 with

Bonferroni correction) on the spheroid function rejects the hypothesis that the mean true

speedup in the negative scenario is equal to the mean of its throughput improvement: the

true speedup is higher on average. This indicates that the ASEA did require fewer fitness

evaluations than a generational EA to solve the spheroid function in the negatively correlated

scenario—despite the fact that this requires it to move more greedily into slow-evaluating

regions of the space.

Specifically, on both the spheroid and the Rastrigin, the throughput speedup in the neg-

ative (“better is slower”) scenario is very close to 1. It is easy to see why this is the case:

when evaluation time is negatively correlated with fitness on a minimization problem, the

majority of the processing time is spent in the later stages of the run, where the population

consists primarily of high-quality individuals with long evaluation times. The late stages

of the run are also where genetic variation is low in the population, so there is very little

evaluation-time variance. As we saw analytically in Section 3.3.1, low evaluation-time vari-

ance translates to very little difference in throughput between the two algorithms—when

there is no eval-time variance, there is no idle time to eliminate. As such, throughput im-

provement will approach 1 on any objective function provided that the algorithm is run for

a sufficiently long period of time. And this is what I observe in the throughput results in

Figures 3.9 and 3.10.

But the true speedup in the negative scenario is observed at an average of 1.23 +/-
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0.05 (95% confidence interval) for the sphere function and 3.09 +/- 0.58 for the Rastrigin.

The fact that the true speedup is greater than 1 for both functions indicates that it is the

evolutionary trajectory of the asynchronous EA, not the elimination of idle time, that is

producing the true speedup. These results contradict Hypothesis 3.10, which predicted

that evaluation-time bias would cause the ASEA to require more fitness evaluations to reach

the optimum.

Results on the Hölder Table Function

Both algorithms frequently fail to converge to a global minimum on the Hölder table function.

As a result, it is not possible to fully describe the run-length distribution, which I used to

compute the distribution of speedups on the other objectives. Instead, I characterize just

part of the run-length distribution by measuring the success ratio of each algorithm after a

fixed amount of resources has been expended (such as wall-clock time). I define the success

ratio as the fraction of 50 independent runs that achieved a fitness of less than η = 2. See

Bartz-Beielstein [2006] for a discussion of run-length distributions, success ratios and related

measures.

In all four scenarios, the asynchronous EA is able to find a global optimum on the Hölder

table function more frequently than the generational EA does. When both algorithms do

find a solution, the asynchronous EA tends to find one at least as quickly as the generational

EA does, as shown in Figure 3.11. The ASEA is thus less prone to local optima on this

function than the generational EA. This surprising result contradicts Hypothesis 3.11.

In the positively correlated (“better is faster”) scenario, however, the success rate of

the ASEA is lower than in the other three scenarios. This supports Hypothesis 3.12,

suggesting that under this evaluation-time scenario, the algorithm has a harder time escaping

local optima relative to the other scenarios. The surprising caveat, however, is that the

ASEA still outperforms the generational control in this scenario.
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Figure 3.11: The asynchronous EA is able to find a global optimum on the Hölder table
function more often than the generational EA in all four scenarios.
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Conclusion of True Speedup Experiments

In this section I have shown that, like the single-processor SSEA that it generalizes, the

ASEA tends to exhibit a greedier search trajectory on unimodal problems—but that this

does not prevent it from doing a better job at solving a difficult, multi-modal problem (the

Hölder table function) than a similarly configured generational EA. I have also shown that

the variance in the true speedup it offers over a generational EA is considerably higher when

evaluation time is systematic (heritable) but independent of fitness.

The question of evaluation-time bias, meanwhile, has proved to be considerably more

subtle than I (or most practitioners I have spoken with) had believed before this study.

Despite the fact that several experiments in this section were configured to have a perfect

(100%) correlation between fitness and evaluation time, no clear, systematic effect emerged

that would suggest ASEAs are clearly greedier when better solutions evaluate faster, or

that they are less greedy when the opposite is true. Only one experiment suggests that

the ASEA is a little more prone to getting stuck in a local optimum in the former case,

and even then the ASEA outperforms a generational algorithm in this regard. The puzzle

of evaluation-time bias is worth further investigation, and I will return to it with further

experiments below in section 3.4.

Another salient observation that comes out of these experiments is that the benefits of

asynchronous evolution are muted in cases where better solutions take longer to evaluate.

There may exist simple modifications to the ASEA that can improve on this, making it more

useful on problems of this kind. I will take up this proposal with additional experiments in

section 3.5.

The results of this section are, of course, problem-dependent, and performance may

vary on other objective functions. Some limitations of these results are that only three

test functions were used, only linear relationships between fitness and evaluation times were

considered, and most experiments assumed that the number of processors was equal to the
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population size. I also did not perform any parameter tuning—I held each algorithm’s pa-

rameters (such as population size and mutation width) constant, varying only the underlying

algorithm. While this ceteris paribus approach is reasonable in these experiments, where

the two algorithms share the same parameters and the different evolutionary models used

by each algorithm are what I was primarily interested in studying, it is nonetheless possible

that parameter choices and performance interact in complex ways (i.e., I did not test for

the possibility that the generational EA performs best with a different mutation setting or

population size than the ASEA).

Overall, on all three test functions and all four evaluation-time scenarios in the framework

I have introduced, I have found that the asynchronous EA does not exhibit any particu-

larly adverse performance that should worry practitioners. To the contrary, it does a good

job of delivering the promised speedup in problem-solving ability, without introducing any

overwhelming tendency to be biased by evaluation times or to fall into local optima.

3.4 Evaluation-Time Bias and Quasi-Generational Evolution

In section 3.3 I found that the evaluation-time properties of problems have less of an impact

on the ASEA’s search trajectory than one might expect. In particular, when better solutions

are faster-evaluating, I found insufficient evidence to conclude that the ASEA moves more

greedily toward better solutions—and conversely, I found insufficient evidence that it is

less greedy when better solutions are slow-evaluating. This suggests that, while evaluation-

time bias may still occur under certain conditions, it may arise in a complex way from the

dynamical behavior of the ASEA, making it non-trivial to predict.

Evaluation-time bias is a serious concern among practitioners, who would like to be

assured that an optimization algorithm is solving the objective they have defined for it. If

an ASEA effectively solves an implicit objective—one that encourages it to minimize the

evaluation time of candidate solutions, in addition to (or instead of) fitness—then it could

lead to suboptimal or invalid results in some applications.
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In this section, I perform a suite of experiments with both the ASEA and the quasi-

generational EA (QGEA—which I introduced at a high level in section 2.1.3) that aim

to understand evaluation-time bias, how and when it occurs, and how severe it tends to

be. I begin this investigation in the simple setting of flat fitness landscapes (i.e., constant

objective functions). In this scenario, selection based on fitness exhibits no preference for any

solution over any other, and any empirically observed selection effect that remains can be

attributed to evaluation-time bias in the algorithm. Second, I investigate simple multimodal

landscapes, where I study how evaluation-time bias and fitness-based selection interact to

alter the frequency with which each algorithm successfully finds the global optimum.

The experiments in this section are conducted on simple discrete- and real-valued opti-

mization problems. These problems are not intended to form a representative benchmark

with real-world features. The purpose of this kind of study is rather to gain targeted insight

into aspects of the algorithms’ behavior. In particular, I focus on how the evaluation-time

properties of landscapes impact the behavior of each algorithm. Each synthetic problem is

defined by a tuple of two functions (f, t), where f(x⃗) represents the fitness of individual x⃗

and t(x⃗) defines its evaluation time (in arbitrary units). Some of the experiments in this

section use real evaluation times (with sleep calls to the kernel used to implement t(x⃗)),

and some use a discrete-event simulation to simulation the passage of time.

3.4.1 The Quasi-Generational EA

The QGEA uses an asynchronous evaluation scheme to minimize idle time, but as new

individuals are evaluated, they are not incorporated directly into the parent population P

in steady-state fashion [Durillo et al., 2008, Fonseca and Fleming, 1998]. Instead, they are

added one-at-a-time to a separate child population P ′. Once the child population becomes

full, it replaces the parent population, and a new, empty child population is initialized. The

key difference between the QGEA and the classical generational scheme is that the QGEA

generates more than |P | children from each set of parents, as a means of keeping all of

the processors occupied (in this way, the QGEA’s evolutionary loop has a lot in common
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with the extra initialization strategy of Algorithm 6). Fonseca and Fleming argue that this

approach retains dynamics that are similar to the generational EA, and that by doing so

it will reduce the “bias towards individuals easy to evaluate.” They also observe that it is

possible to select all of the parents up front, rather than one-at-a-time—and that it is thus

possible to use selection techniques that select a full population of parents all at once—such

as stochastic universal sampling—in conjunction with the QGEA [Baker, 1987].

For simplicity, I interpret the QGEA as a variant of the general asynchronous EA given

in Algorithm 2 in section 3.2. To implement generational dynamics, I define an alternative

implementation of the integrate() procedure which inserts individuals into an offspring

population until it is full—see Algorithm 7. Recall that Algorithm 2 calls integrate()

once each time an individual completes evaluating, so Algorithm 7 incrementally collects

individuals into a new population P ′, and uses it to replace the old population P only once

P ′ becomes full (|P ′| = |P |). Here I treat the offspring population P ′ as a global variable

that is implicitly initialized to be the empty multiset.

Algorithm 7 Quasi-generational insertion into a population
1: function integrateGenerational(ind, P )
2: P ′ ← P ′ ∪ {ind}
3: if |P ′| = |P | then
4: P ← P ′

5: P ′ ← ∅

This integration method ensures that changes to the population occur in a generational

way, in the sense that the population is completely replaced every µ steps.

3.4.2 Evaluation-Time Bias on Flat Landscapes

Evaluation-time bias can be understood as an implicit selection effect: at some point during

a run, fast-evaluating individuals gain a reproductive advantage over slow ones—that is,
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they are selected as parents more frequently than can be explained by other factors (such

as fitness). The simplest and most direct way to study evaluation-time bias, then, is to ask

what happens when the fitness of all individuals is equal.19 This makes it possible to isolate

any bias toward fast-evaluating genotypes from other evolutionary effects. In this setting,

evolutionary change occurs under the influence of the well-studied problem of genetic drift in

finite populations (see, for example, De Jong [2006]). Alleles are lost simply due to sampling

variance occurring in the selection procedure.

Hypotheses

Naïvely, one might expect that the fast-evaluating subset of the population in an asyn-

chronous EA is akin to the famously exponential growth of rabbits in 19th-century Australia:

the faster individuals mature, the more children they will have, which will tend to be fast-

evaluating themselves, and so forth—quickly coming to dominate the population. However,

besides the fact that the total population size is fixed, there are at least two reasons that

any reproductive advantage that fast individuals receive in an asynchronous EA is limited

in a way that it is not for an exponential growth process like the Australian rabbits:

1. While a slow individual is evaluating, the CPU resource it is occupying is made un-

available. So, if half the processors are occupied with slow individuals, only half remain

for fast-evaluating individuals to exploit.

2. Individuals do not reproduce as soon as they finish evaluating. Evaluations trigger a

breeding event that produces a new child, but the parents are selected from the general

population. Individuals only reproduce when they are selected.

So the dynamics that govern reproductive advantages for fast-evaluating individuals in an

ASEA are somewhat subtle.
19With the exception of some minor refinements to the introductory arguments such as Equation 3.36,

I have published all of the results from this section in Scott and De Jong [2015] and Scott and De Jong
[2016a].
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In fact, on closer analysis it seems that the evolutionary bias toward fast-evaluating

phenotypes in the ASEA must be very small on average. Figure 3.12 illustrates an example

in which there are three processors that receive a stream of individual jobs to process—

and where slow jobs (S) take much longer to evaluate than fast ones (F). It is clear from

this diagrammatic view that on the left half of the figure, any fast jobs that occur at

the beginning of the subsequence assigned to each processor will complete evaluating long

before any of the slow jobs have completed. The first few jobs to complete, then, will indeed

be fast-evaluating, giving these phenotypes a “head start” at competing for a place in the

population. The probability that a contiguous run of n fast jobs occurs at the beginning of

each processor’s queue of jobs, however, decreases exponentially with n. In fact, on average

the length of any run S of contiguous fast jobs is equal to the odds of a single job being

fast:20

E[|S|] = p

1− p
. (3.36)

In the case where fast and slow values are equally probable, p = 1
2 , and we therefore

expect E[|S|] = 1. So in this example, only one fast individual will evaluate on average

on each processor before the next slow individual arrives! In general, the initial burst of

fast-evaluating individuals is limited to E[|S|] times the number of processors: or in this

illustration, just 3 individuals.

What this implies is that—while fast jobs may have an initial transient advantage—it

is not long before each processor is occupied by a slow job, at which point the system must

wait until one of these complete before continuing. By this informal reasoning, I expect
20Specifically, if the probability that a given individual is of fast-type is p, then the chance that a sequence

S of fast-type events has length at least n is the conjunction of n independent Bernoulli events, giving us
the following exponential function:

P (|S| ≥ n) = pn.

Because |S| takes values on N ∪ {0}, we can use the tail-sum formula from probability theory to compute
the expectation for an infinite sequence of jobs:

E[|S|] =
∞∑

n=1

P (|S| ≥ n) =

∞∑
n=1

pn =
p

1− p
,

where the last step is the closed-form solution of the infinite geometric series (which holds for any p < 1).
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Figure 3.12: An illustration of how a stream of jobs is processed by three processors, when
each job has an equal probability of being either fast-type (F) or slow-type (S).

that evaluation-time bias will tend to be a short-lived, transient phenomenon in general

(including in cases where evaluation times can vary continuously):

Hypothesis 3.13. On flat fitness landscapes, the ASEA and QGEA will both exhibit a

short-lived bias toward fast-evaluating individuals near the beginning of the run.

Outside of this initialization effect, over long time scales each processor should com-

plete an equal number of jobs in equal time on average. In the example of the two-valued

evaluation-time distribution of Figure 3.12, the proportion of fast and slow jobs that com-

plete evaluating on each processor is thus governed by the probability of each type of job

being born (i.e., p and 1− p). Generalizing from this, I hypothesize that ASEAs will show

no systematic bias toward fast-evaluating individuals over long time scales:

Hypothesis 3.14. On flat fitness landscapes, the ASEA and QGEA will both exhibit no

significant evaluation-time bias (that is, drift toward faster-evaluating genotypes) over time

after initialization.

Methods

I test these hypotheses about evaluation-time bias on flat landscapes in two settings: a

simple problem where genotypes can take one of two discrete values, and on real-valued
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search spaces. In the first domain I consider the case of no mutation (so, population change

occurs only through genetic drift), while in the second I do include a mutation operator.

For the first domain, I study only the ASEA, and I define a heritable runtime trait by a

gene that can take on one of two alleles: fast and slow, where slow takes 10 times longer

to evaluate. I further assume that there is no reproductive variation (offspring are generated

only by cloning), and that the fitness landscape is flat—i.e., every individual has an equal

chance of being selected as a parent. Each cloned offspring replaces a random individual in

the population with 100% probability. I seeded the initial population with random genotypes

that were drawn with equal probability from both fast and slow alleles, so that the initial

fast-type frequency averaged f = 0.5. I then ran the asynchronous EA with 10 worker

processors and a population size of 100 for a total of 50 independent runs. In this scenario,

any systematic change in genotype frequency can only be due to some implicit selection

acting on the evaluation-time trait. In this experiment I measure the mean frequency of

slow-type individuals in the population at each evolutionary step across 50 independent

runs.

For this first set of experiments, I use the same implementation approach as in section 3.3:

namely using an ASEA implemented in ECJ [Scott and Luke, 2019], with sleep system calls

used to simulate artificially configured evaluation times.

In the second domain, I study both the ASEA and the QGEA, representing solutions as

vectors in R, and breed single children by applying Gaussian mutation with hard bounds

and a standard deviation of 0.5, mutating each gene individually with 100% probability. I

do not use crossover, and I consider only the case where the number of worker processors

T is equal to the population size. I conduct experiment with population sizes of 10 and

100, respectively. Initial individuals are generated randomly from a uniform distribution

across the genotype space, U(−10, 10), and they are evaluated on a task where the fitness

function is flat (f(x) = 1). I investigate two different configurations of the evaluation-time

function: in one scheme, evaluation times are defined by a 1-dimensional parabola centered

on the origin (t(x) = x2)—so individuals close to 0 are very fast-evaluating. In the other,
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evaluation times are defined by a mixture of two Gaussian functions, one of which defines a

fast-evaluating region and one that defines a slow-evaluating region. These design decisions

clearly limit the generality of the results, but they are sufficient for my current purpose,

which is to isolate the effect of evaluation-time bias, rather than to study its interactions

with particular representations or reproductive operators. In this experiment, I divide the

population’s genotype values into bins, taking a histogram at each step. I will use the

collected data below to plot heatmaps of the population’s genotypic distribution over time,

and to test its deviation from a uniform distribution at the end of the runs.

For this second set of experiments, I introduce a new discrete-event simulation (DES)

methodology for testing hypotheses about ASEAs. Because this research is focused on the

case where fitness evaluation dwarfs other EA overhead, experiments with parallel EAs can

be quite time consuming to run if one wishes to obtain statistically significant results. To

facilitate doing a large number of runs on artificial problems as well as complete control over

the experimental conditions, I implemented a version of both algorithms that is based on a

discrete-event simulation, in which each individual x⃗ is assigned an evaluation time from an

artificially-imposed evaluation-time function t(x⃗) that is defined as part of the experiment.

A priority queue is used to instantly jump to the next completed evaluation event when

nextEvaluatedIndividual() is called (see Algorithm 2). Because there is always some

small amount of variation in the time a function takes to execute an algorithm in vivo on a

computer (thanks to process scheduling effects if nothing else), I always add a small amount

of Gaussian noise to the simulated evaluation time t(x⃗), so that this value is not perfectly

deterministic in simulation.

Taking this simulation approach introduces some infidelity to real-world conditions: I

effectively ignore any effect from algorithmic overhead besides fitness evaluation, from pro-

cess scheduling in the operating system, etc. When fitness evaluation cost truly dwarfs other

factors, there is little threat that this will affect the ability of my conclusions to be replicated

on real problems. But it may introduce some deviations in cases where overhead still makes

up a small (but nontrivial) fraction of an EA’s computational cost.
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Table 3.2: Summary of the three main experimental configurations that I use to study
evaluation-time bias on flat fitness landscapes.

Domain Eval-Time Algorithms Variation Environment

x ∈ {fast, slow} t(x) =

 k if x = fast

10k if x = slow
ASEA Cloning only Multiprocessing with sleep()

x ∈ (−10, 10) t(x) = x2 ASEA, QGEA Gaussian mutation Discrete-event simulation

x ∈ (−10, 10) t(x) = 1 + e−
1
2(

x+5
σ )

2

− e−
1
2(

x−5
σ )

2

ASEA, QGEA Gaussian mutation Discrete-event simulation

The experiments that I have just described are summarized in Table 3.2.

Results

In the discrete domain of slow- and fast-type genotypes, I find that apart from a very

short transient period at initialization, the average genotype of the population in the ASEA

stays very close to 0.5 throughout the run—as shown on the left-hand plot of Figure 3.13.

For most of the run, 95% confidence intervals on the mean genotype straddle 0.5. The only

exception appears to be the first few evolutionary steps immediately after initialization:

here there appears to be a slight bias toward fast-type individuals. I found similar results

for population sizes of 10 and 500 (not shown), and also for similar experiment in which

genotypes can vary continuously along an interval under genetic drift (not shown—other

results on continuous landscapes are reported below). This first result is consistent with

both Hypotheses 3.13 and 3.14: after a brief initial evaluation-time bias, there is no

further detectable bias toward fast genotypes, and genetic drift leads the population’s

genotypes to diverge randomly.

While these results lead to strong predictions about the behavior of algorithms in the ex-

pectation, this insight is useful only for characterizing the ensemble averages of a sufficiently

large number of finite-population models: not the behavior of individual runs. Notice that

in Figure 3.13 the variance in genotype frequency over the 50 independent runs continues to

increase over time, even as the mean is roughly constant. This is an indication that there

are in fact significant changes in the slow/fast ratios on individual runs.
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Figure 3.13: Left: Frequency of slow-type individuals on a flat fitness landscape, averaged
over 50 runs. No systematic drift toward fast alleles is observed. Right: Each point
represents the fraction of individuals out of the same 50 independent runs that finished
evaluating with slow type at that step. Since the fraction hovers around 0.5, the frequency
of each genotype does not change very much.

The right side of Figure 3.13 shows an alternative view of the same experiment: this

scatter plot shows the fraction of individuals that completed evaluation at step i that are

of slow-type. In all but just the first few steps, these values consistently hover around

0.5 without any systematic trend up or down. This supports the claim that that inspired

Hypothesis 3.14: the system completed evaluating an approximately equal number of fast-

and slow-type jobs in equal time over long time periods.

The rest of the experiments in this section—involving real-valued genotypes in a discrete-

event simulation of the ASEA and QGEA—yield similar conclusions. Figure 3.14 shows

the mean distribution of genotypes in the ASEA population as a function of the number of

evolutionary steps for the experiment in which the evaluation times are configured according

to the parabola t(x) = x2, averaged over 500 runs. The top heatmap shows data from runs

with a population size of 100, while the bottom shows a population size of 10. In each plot,

the dashed line represents the end of the initialization phase—i.e., the step at which the

population is first completely filled. Plots for similar experiments with the QGEA are not

shown, but were qualitatively similar.
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Figure 3.14: Distribution of genotypes over time in an ASEA on a one-dimensional flat
fitness landscape, where individual evaluation times are equal to the square of the genotype.
Top: Population size of µ = 100. Bottom: µ = 10.
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At the beginning of the run, a clear pattern of initialization bias emerges: individuals

with very short evaluation times (i.e., x ≈ 0) enter the population first, while the slowest

individuals do not begin to enter the population until around step 400 (in the pop_size =

100 case). When the population is large, I observe that the initial overrepresentation of fast

individuals persists and undergoes negligible change later in the run. This can be explained

by the well known property of evolution systems, in which genetic drift is weak for large

population sizes, leading genotype frequencies to change very little over time.

When the population is small, however (10), the effect of mutation and drift are strong

enough to quickly erase the effects of initial evaluation-time bias. In fact, by step 2,000,

the average distribution of the population for both the ASEA and the QGEA (not shown)

is statistically indistinguishable from a uniform distribution (using a Kolmogorov-Smirnov

test with p > 0.05).

I obtained similar results with the two-Gaussian form of the evaluation-time function

t(x) (this function is depicted on the left-hand side of Figure 3.15). At the end of 2,000

iterations, the distribution of genotypes in the population over many independent runs was

statistically indistinguishable from a uniform distribution. The right-hand side of Figure 3.15

shows the observed final distributions of the ASEA and the QGEA, along with a similar

dataset sampled from a purely uniform distribution (for visual comparison).

I observed similar results (not shown) for cases where evaluation times followed a linear

form (t(x) = x− 10), and with a Rastrigin function (i.e., following Equation 3.34). Overall,

the results of this section strongly support the conclusion that any evaluation-time bias that

exists on flat fitness landscapes after the initialization period is so weak that, in both the

ASEA and the QGEA, it can be entirely overpowered by the disruptive effects of mutation

and drift. This supports both Hypotheses 3.13 and 3.14.

Conclusions on Flat Landscapes

It is clear from these experiments that evaluation-time bias only occurs in special circum-

stances. Overall, the apparent advantage that fast-evaluating individuals may obtain while
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after 2,000 evolutionary steps.

long-evaluating individuals evaluate on some processors seems to be completely balanced

out by the fact that long sequences of consecutive fast-evaluating jobs are unlikely to be

assigned to the same processor.

This does not, however, rule out an evaluation-time bias that emerges from a combination

of reproduction, variation and selection, so my results do not contradict the bias that authors

such as Yagoubi et al. [2011] have observed in practice. In the next section, I will turn my

attention to non-flat fitness landscapes.

3.4.3 Evaluation-Time Bias on Multimodal Problems

Recall that in section 3.3.3 I was surprised to find only very limited evidence that evaluation-

time bias could lead the ASEA to behave more greedily or to fall into local optima on simple

real-valued optimization problems. In the section 3.4.2 I have now shown that no significant

evaluation-time bias appears on flat landscapes in the ASEA or QGEA after a brief initial

transient period.
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In this section I test the degree to which this observation generalizes to non-flat fit-

ness landscapes, and in particular how evaluation-time bias can divert search away from a

promising optimum and toward a sub-optimal one. For this analysis, I focus on an artificial

problem with two large basins of attraction—one around a local optimum and one around a

global optimum—to design an experiment that allows me to detect even very weak biases.

This provides a more direct window into understand evaluation-time bias on multimodal

problems than the more general experiments I presented in section 3.3.3.

Hypotheses

I continue to study both the ASEA and the QGEA. Both may exhibit some evaluation-time

bias:

Hypothesis 3.15. Let the quasi-generational EA and the steady-state asynchronous EA be

run on a fitness landscape that has two basins of attraction, and let one basin of attraction

have fast evaluation times, and the other have long evaluation times. Both algorithms will

be more likely to converge to the fast basin than the slow one.

But the QGEA was introduced specifically to reduce this bias—raising a second hypothesis:

Hypothesis 3.16. The ASEA will exhibit a stronger preference for the fast basin than the

QGEA does.

If supported, this would provide evidence in favor of the conjecture of Fonseca and Fleming

[1998] that the QGEA has a reduced “bias towards individuals easy to evaluate” compared

to the ASEA.

Experiments targeting these two hypothesis may show that bias occurs at some point

during the run, but not when. But I know from section 3.4.2 that both asynchronous EAs

are primarily biased at initialization. Is initialization bias by itself sufficient to explain

observations of evaluation-time bias on non-flat landscapes?

Hypothesis 3.17. Most of the evaluation-time bias in the QGEA and ASEA on a non-flat

fitness landscape occurs during the initialization stage of the run.
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Methods

I test the above hypothesis on an objective function defined over Rn that has two Gaussian

basins of attraction centered on local minima A0 and B0:

fa,b(x⃗) =max(|a|, |b|)

− a exp

(
− 1

2σ2

∑
(xi − 2σ)2

)

− b exp

(
− 1

2σ2

∑
(xi + 2σ)2

)
.

(3.37)

I set σ = 2.5 and use bounds of (−10, 10) when initializing and mutating each gene. When

the depth parameters a and b are equal, the two basins are identical from a fitness perspec-

tive. Because of the symmetry in the objective function, most evolutionary algorithms will

converge to either of the two optima with equal probability.

In the experiment in this section, a = b, so the two basins form a symmetric objective

function. I introduce an asymmetry into the problem, however, by assigning each individual

x⃗ a simulated evaluation time t(x⃗), where the eval-time function t : Rn 7→ R is given by:

t(x⃗) = fa,−b(x⃗). (3.38)

Evaluation-time is thus equal to fitness, except that evaluation-time basin surrounding op-

timum B0 is inverted. This ensures that A0 is surrounded by fast-evaluating solutions, and

B0 is surrounded by slow-evaluating solutions.

In the first set of experiments, I ran N = 5, 000 independent runs of both asynchronous

EAs (the ASEA and the QGEA) out to 2,000 steps—long enough so that all N runs con-

verged. The population size is 10, and I use 10 simulated worker processors in a discrete-event

simulation (just as described in section 3.4.2), and the search space has two dimensions. The
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result of each run can be represented by the random variable

Ri =


1 if ∥x⃗′ −A0∥ ≤ τ

0 if ∥x⃗′ −B0∥ ≤ τ

, (3.39)

where x⃗′ is the best individual discovered in the run, A0 and B0 are the locations of the two

optima, and τ is a small number that serves as a convergence threshold. Now, the number

of runs that converge to basin A is
∑N

i=1Ri, which follows a binomial distribution with

proportion parameter r equal to P (R = 1). I use the Wilson method [Brown et al., 2001] to

compute 95% confidence intervals around the binomial proportion r. If the asymmetry in

evaluation times has no effect on the basin the algorithm coverages to, then r will be equal

to 0.5.

I also perform a second set of experiments to target initialization bias in particular: in

these, I configured both the fitness function f(x⃗) and the evaluation-time function t(x⃗) to

have a constant value for the first 100 steps of each evolutionary run. After 100 steps,

the functions revert to their original values of f(x⃗) = fa,b(x⃗) and t(x⃗) = fa,−b(x⃗) (with

a = b). This way there is no evaluation-time bias during initialization. Any bias that is still

measurable is due to the dynamic interaction between the fitness landscape and evaluation

time.

Results

The empirical results of the first two-basin experiment are shown in Figure 3.16. Both the

QGEA and the ASEA display a statistically significant preference for the faster basin, con-

firming Hypothesis 3.15. However, I find that the QGEA displays a stronger evaluation-

time bias than the ASEA. The difference is small, but statistically significant at p < 0.05.
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Figure 3.16: Ratio of runs that converge to the faster of two basins of attraction.

On these grounds, Hypothesis 3.16 is unsupported. Under the conditions of the two-

basin experiment, it turns out that the QGEA is in fact quite biased toward fast solutions,

and more so than the ASEA.

Recall that the second two-basin experiment examined initialization bias by artificially

holding evaluation times constant for the first 100 steps. The results of this experiment—

again as estimates of the probability of each algorithm converging to optimum A0—are shown

in Figure 3.17. Removing initialization bias caused a significant reduction in this measure of

evaluation-time bias, and this supports Hypothesis 3.17. Both algorithms still display a

statistically significant preference for optimum A0, however. This indicates that, unlike flat

fitness landscapes, I detect an evaluation-time bias on non-flat fitness functions that occurs

after initialization.

3.4.4 Slow Evolution in the QGEA

I close my sequence of experiments with the QGEA with a small but important observation:

the evolutionary trajectory of the QGEA does not mimic the generational EA closely, but

instead takes substantially longer to converge on simple problems.

I show this with an empirical observation of the QGEA’s behavior: the QGEA, it turns
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Figure 3.17: Ratio of runs that converge to the faster of two basins of attraction when
initialization bias is controlled for.

out, is an algorithm that converges very slowly on unimodal functions. Figure 3.18 shows

the number of steps that it takes the generational EA, the ASEA, and the QGEA to reach

a threshold fitness value of τ = 0.5 on spheroid functions of differing dimensionality. In this

experiment, evaluation times are held constant. Each bar depicts the convergence time of

N = 500 independent runs.

The quasi-generational EA consistently takes longer to converge than the generational

EA. This is a consequence of the asynchronous dynamics of the QGEA, which cause it to

generate more than µ children at each generation.

3.4.5 Discussion of Evaluation-Time Bias

Asynchronous evolutionary algorithms are able to make efficient use of parallel process-

ing resources when fitness evaluation is expensive enough to make the master-worker

model viable—but asynchronous EAs bring evaluation-time bias with them as side effect.

Evaluation-time bias may hinder the results of some applications, have no impact on other

applications, and in some cases it may even be beneficial. The current state of the litera-

ture does not provide sufficient theoretical insight to make accurate predictions about how
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evaluation-time bias will impact EA performance on a particular problem.

The work in this section marks the first attempt that I know of to analyze the nature of

evaluation-time bias in asynchronous evolutionary algorithms, especially by distinguishing

between bias that occurs at initialization and bias that occurs later in the run. Despite

the strong intuitive case to be made that evaluation-time bias can significantly affect the

trajectory of an EA under the right conditions (I began my preliminary investigation of

evaluation-time bias in section 3.3.3 on the belief that it would have a profound impact on

the behaviors of asynchronous evolutionary algorithms), the empirical evidence seems to

suggest that the effect is relatively mild after initialization.

This is good news for practitioners, who may be more willing to trust ASEAs with their

problems, knowing that they rarely exhibit strong undesired biases.

Following the suggestion of Fonseca and Fleming [1998], I also initiated a study of the

quasi-generational EA on the belief that it can serve as a behavioral intermediate to the

classical, generational EA and the steady-state asynchronous EA. I found, however, that

this is not the case. While both the ASEA and the QGEA display little or no evaluation
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time bias on flat landscapes after initialization (section 3.4.2), in the simplified scenarios

I used to measure evaluation-time bias, the QGEA has a slightly stronger preference for

fast-evaluating regions of the search pace than the ASEA (section 3.4.3). The QGEA also

shows much slower progress in general while solving simple, unimodal optimization problems

(section 3.4.4).

Overall, these results suggest that the QGEA does not have the particular benefits that

it has been conjectured to offer.

My experiments here made a number of assumptions that could affect their validity as

general conclusions—in particular, I used a fixed mutation width and no crossover, and I

assumed that the number of processors was equal to the population size. In my experience,

the representation and operators do not have a major effect on the kind of results that

I have presented here—I observed some similar results (not presented here), for instance,

with higher-dimensional search spaces, with crossover enabled, and with binary representa-

tions on simple pseudo-Boolean functions. It may be that these kinds of parameters have

a substantial impact on the magnitude of evaluation-time bias in certain circumstances,

however—the evidence I present here does not rule this out. Furthermore, the simple two-

basin objective that I used to measure evaluation-time bias, while a useful instrument for

my purposes here, may not capture the information that is most useful for predicting the

behavior of an EA on new problems.

Many open questions still remain about evaluation-time bias in asynchronous EAs that

fall outside the scope of this study. Future empirical studies could move closer to a predictive

theory of evaluation-time bias by investigating more complex landscapes, particular classes

of application domains, or by considering how a population moves asynchronously along

smooth fitness gradients. The community also lacks a solid theoretical understanding of

asynchronous algorithm behavior—and particularly how the re-ordering effect that induces

selection lag interacts with evaluation times to bias the algorithm. My theoretical analysis

here was limited to brief observations like Equation 3.36 and Figure 3.12—future work using

mathematical tools like drift analysis [Lengler, 2020] might be able to prove more satisfying
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and general statements about ASEA behavior, if these techniques can be adapted to handle

asynchronous re-ordering effects.

With the most essential questions about evaluation-time bias now answered, in the next

section I move on to looking at different aspects of ASEA behavior: namely, how can the

benefits of asynchronous fitness evaluation be maximized in cases where better individuals

take longer to evaluate than worse ones?

3.5 Selection While Evaluating (SWEET)

In this section, I turn to a specific concern that arises when there is a correlation between

evaluation time and fitness. Take the case of evolving a controller for a task such as a

cart-pole or vehicle control problem, for example. Here, better-performing individuals may

“survive” longer (i.e., don’t drop the pole, or don’t crash) and thus take longer to evaluate,

resulting in fitness evaluation times being positively correlated with fitness scores. In sce-

narios of this kind, an asynchronous EA can still recover some idle processing resources that

a generational EA would incur. The degree to which this additional computation is “useful,”

however, might be called into question. To make progress on such a problem, the algorithm

essentially needs to wait for long-evaluating individuals to complete processing, so that it

receives feedback that it can use to continue moving the population toward high-quality

solutions.

So it seems that the true speedup over a generational algorithm will be limited in appli-

cations like this, where “slower is better” (even if the processing throughput is improved).

In this section, I propose to mitigate this problem of excess work in asynchronous evo-

lution with a simple mechanism: I allow parents to be selected randomly from not just the

population, but also from among individuals that have begun evaluation on a processor but

have not yet completed. This gives long-evaluating individuals a chance to reproduce be-

fore their fitness has been evaluated, potentially accelerating the propagation of the genetic

material that they encode. Stated differently, this approach offers a simple strategy for
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neutralizing a large portion of the evaluation-time bias I studied in section 3.4 at its source:

by mitigating the tendency for slow-evaluating individuals to be disfavored by selection.

For convenience, I refer to this method as Selection WhilE EvaluaTing (SWEET). My

core research question in this section is to ask whether SWEET improves the convergence

behavior of ASEAs in the case where “better is slower,” and, conversely, whether it has an

impact on ASEAs for the opposite class of applications, where “better is faster.”

3.5.1 The SWEET Operator

In Chapter 2, I discussed how steady-state evolutionary models admit of two different kinds

of selection—namely parent selection and survival selection—and noted that is it common

in practice to configure one of these selection stages to use random uniform selection (see

section 2.1.4). In terms of the ASEA I study in this chapter, which is defined by parameter-

izing the general asynchronous EA of Algorithm 2 with the steady-state insertion procedure

of Algorithm 3, parent selection occurs as part of the breedOne() procedure, and survival

selection is implemented by the selectOne() procedure.

This tradition of using a random selection operator opens up an opportunity that I

exploit in this section. Because random uniform selection makes no use of an individual’s

fitness when choosing an individual, it becomes possible to apply selection to a set that

includes individuals that have not yet been evaluated—that is, to Select WhilE EvaluaTing

(SWEET). In particular, random selection (and thus SWEET) fits in naturally as a strategy

for parent selection. This is because survival selection centers on selecting competitors to

replace in the current population (which has already had its fitnesses evaluated).

In this section, I obtain a SWEET-based ASEA implementation by using a traditional se-

lection operator—namely binary tournament selection—for survival selection,21 while using

SWEET for the parent selection operator.

In the experiments described below, I evaluate the merits of SWEET by comparing two
21This contrasts with the other ASEA configurations earlier in this chapter, which typically use random

uniform selection for survival selection, and binary tournament selection for parent selection.
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Table 3.3: Overview of all of the benchmark problems used in this study. All use a simulated
parallelization environment to model the impact that evaluation-time variance has on the
algorithm’s behavior.

Problem Parallelization Type Domain

Takeover Times Simulated N/A

Exponential (Correlated) Simulated Real-Valued Optimization

Exponential (Anti-Correlated) Simulated Real-Valued Optimization

Exponential (Uncorrelated) Simulated Real-Valued Optimization

Two-Basin (Correlated) Simulated Real-Valued Optimization

Two-Basin (Anti-Correlated) Simulated Real-Valued Optimization

Two-Basin (Uncorrelated) Simulated Real-Valued Optimization

ASEA variations:

1. the basic asynchronous (basic ASEA) selection strategy, which implements parent

selection by randomly choosing and individual from the population Pp, and

2. the SWEET strategy (SWEET ASEA), which implements parent selection by apply-

ing random selection to the union Pp + E of the population and currently evaluating

individuals.

To evaluate the performance of SWEET in different asynchronous evaluation environments I

use a combination of take-over time analysis and several real-valued optimization problems,

which I study using the discrete-event simulation approach that I introduced in section 3.4.2.

These benchmark optimization problems are summarized in Table 3.3, and will be described

in more detail below. In this section I describe the asynchronous algorithm under study,

and the specific hypotheses that I will test in terms of takeover times and performance.

All of the algorithms and simulations in this section were implemented using the Library

for Evolutionary Algorithms in Python (LEAP)—a general-purpose toolkit for evolutionary

computation research which I have created in collaboration with colleagues, and which has

built-in support for ASEAs [Coletti et al., 2020].
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3.5.2 Takeover Time Analysis

Takeover times are a traditional methodology for evaluating the rate at which selection

operators increase the frequency of high-performing genotypes in an evolutionary meta-

heuristic [De Jong, 2006]. Takeover time is typically defined as the earliest point at which

the genotype of the single best individual in the population completely replaces all other

genotypes, reaching a frequency of 100% (from its initial frequency of 1/population_size).

The purpose of takeover times is to study the evolutionary dynamics of a selection operator

specifically, in isolation from other aspects of evolution such as reproductive operators.

That is, I separate out the two fundamental sources of evolutionary change—selection and

variation—so as to understand the behavior of the former.

In this section, I use takeover times to measure the impact of asynchronous selection

strategies on the frequency of a good-fitness, slow-evaluating genotype.22

Hypothesis

The basic motivation behind SWEET is to give long-evaluating individuals a chance to

reproduce earlier, allowing them to increase their representation in the population sooner

than would otherwise be possible.

To test this, I measure the effect that the SWEET strategy—selecting from the combi-

nation of the population with the pool of currently-evaluating individual (P + E)—has on

the rate at which slow-evaluating individuals take over the population:

Hypothesis 3.18. Given an initial population that contains a single good-fitness, slow-

evaluating individual that evolves under cloning and selection alone, the SWEET strategy

will lead to significantly faster takeover times than the basic asynchronous selection strategy.

22I have published all of the results from this section in Scott et al. [2021] and Scott et al. [in press].
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Methods

Like in section 3.4.2, the experiments in this section run an ASEA using a cluster with

processors and job-evaluation times simulated by a discrete-event simulation (DES). To

facilitate the study of the takeover time of a particular genotype of interest, the initial

population is configured to contain exactly one individual of HIGH genotype (good-fitness,

slow-evaluating). The rest of the population is initialized to have LOW genotype (poor-fitness,

fast-evaluating). The exact fitness value that is assigned to these genotypes is irrelevant, as I

use binary tournament selection for survival selection,23 and tournament selection considers

only the relative rank of individuals (rather than absolute differences in fitness values). I fix

the evaluation-time differential between the two genotypes to a ratio of 100 to 1 (i.e., a fast

individual evaluates 100x faster than slow ones).

Because the survival selection operator in the ASEA used here uses tournament selection

to choose competitors, with zero chance of keeping the poorer individual, the initial high-

fitness individual will always successfully compete for a place in the population, and the

fraction of HIGH-type individuals will grow monotonically under selection and cloning. To

formally test Hypothesis 3.18, I report the simulated time (and also number of births)

required for each of 50 runs to converge to a population of 100% HIGH genotype (i.e., the

takeover time).

Asynchronous EA behavior is affected by a variety of parameters, most notably the

relation between the size of the population and the number of processors. Here I focus on

the simple case where the population size is equal to the number of processors, and I report

results for a fixed population size of 50. I note in passing that qualitatively similar results

can be obtained for lower and higher population sizes. In these experiments the initialization

strategy for both algorithms (see section 3.2.2) is the immediate strategy of Algorithm 4—

which, because the population size equals the number of processors, is equivalent in this
23More specifically, when selection is used to find a competitor for survival selection, as in selectOne()

in Algorithm 3, I use (in this case) binary tournament selection in reverse: the algorithm chooses two
individuals randomly, and the worse of the two is kept. This is because competitor selection aims to choose
a poor individual to replace in the population (rather than a good individual to keep).
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Table 3.4: Configuration parameters used in the takeover times experiment. Reproduction
here is via cloning, so the evolutionary dynamics serve only to increase the frequency of high-
fitness genotypes, without modifying them.

Parameter Value

HIGH genotype evaluation time 100 simulated seconds

LOW genotype evaluation time 1 simulated seconds

Initialization strategy immediate/until-finished (Algorithm 4)

Parent selection operator Random-uniform selection (with or without SWEET, respectively)

Survival selection Inverted binary tournament selection

Reproduction operators Cloning only (no variation)

Stopping criterion Run for 10,000 simulated seconds

Population size 50

# simulated processors 50 (= population size)

# independent runs 50

case to the until-finished strategy of Algorithm 5. For the sake of reproducibility, all of

the parameters and design decisions I use when testing Hypothesis 3.18 are summarized in

Table 3.4.

The notion of a “faster” takeover time can be defined either in terms of births (fitness

evaluations) or time. In this experiment I report both metrics—but because time is a

simulated variable in our cluster DES methodology, I report “simulated seconds” rather

than true wall-clock time.

Results

The results of the DES experiment with takeover times are shown in Figure 3.19. The

SWEET strategy exhibits a considerably shorter (and statistically significant via Wilcoxon

rank-sum at p ≈ 10−9) median takeover time in terms of simulated seconds (505.5s vs.

621s). Plotting the mean takeover curves shows that the behavior of the two algorithms

differs qualitatively as well, with SWEET assuming a sort of pseudo-generational trajectory,

as groups of HIGH-type individuals repeatedly complete evaluating at nearly the same time.
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Overall, these results confirm Hypothesis 3.18 and suggest that the SWEET strategy

allows high-fitness genetic material from long-running individuals to more rapidly increase

its frequency within a population. It is worth noting here, however, that the majority of the

difference in takeover times with SWEET occurs at the beginning of the run.

3.5.3 Synthetic Real-Valued Optimization Problems

The takeover-time analysis described in the previous section is useful for understanding

how selection operators behave in isolation. But—as I noted in section 3.3.3—because the

components of an evolutionary algorithm can interact with each other in complex ways, its

performance is often best evaluated empirically by running a complete algorithm on various

benchmark tasks.24

In this section I examine the behavior of a SWEET-based ASEA as it solves several simple

real-valued optimization problems. The aim here is to understand SWEET’s performance

advantages in simple scenarios, on the anticipation that these observations will generalize

to real-world applications. While I do not treat any such application here, I have worked

elsewhere with colleagues to apply SWEET to some problems in robotics and adversarial

machine learning—those results are further reported in Scott et al. [in press].

Hypotheses

Again following the claim that SWEET gives long-evaluating individuals an improved chance

at reproducing, I expect that the ASEA with SWEET will perform better at approaching

local optima on landscapes when better solution take more time to evaluate:

Hypothesis 3.19. On unimodal problems, when evaluation time is heritable and posi-

tively correlated with fitness on a maximization problem, an ASEA that uses the SWEET

strategy will find the global optimum significantly faster than a basic asynchronous strategy

on average.

24I have published all of the results from this section in Scott et al. [in press].
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Figure 3.19: Takeover-time experiments for 50 runs under selection & cloning, seeded with
exactly 1 HIGH-type individual and 49 LOW-type. Left: individual HIGH frequency curves for
each run. Right: distribution of the time until convergence to a HIGH frequency of 1.0. The
Top plots report metrics in terms of simulated seconds, while the Bottom shows the same
data in terms of the number of births.

145



Hypothesis 3.19 covers the case where SWEET is used on the kind of problem it was

designed for. In practice, however, the evaluation-time properties of many problems are

not fully understood in advance—or it could be the case that different parts of the search

space display different patterns of correlation between evaluation time and fitness. There

is risk, then, that a SWEET-based ASEA may be used on problems where better solutions

sometimes (or always) evaluate more quickly (rather than more slowly) than poorer ones.

In this scenario, then (depending on the state of the population at each step), SWEET may

reduce the probability of choosing high-quality parents. On unimodal problems, then (where

exploration has little benefit compared to exploitation), using SWEET in an ASEA when

“better is faster” may have an adverse effect on performance:

Hypothesis 3.20. On unimodal problems, when evaluation time is heritable and is anti-

correlated with fitness on a maximization problem, an ASEA that uses the SWEET strategy

will the global optimum significantly less quickly than a basic asynchronous strategy on

average.

The hypotheses stated so far concern only unimodal functions. A more complex ques-

tion is how SWEET will affect an asynchronous EA’s ability to cope with local optima. I

formulate this question in the following hypotheses:

Hypothesis 3.21. On multimodal problems, when evaluation time is heritable and pos-

itively correlated with fitness on a maximization problem, an ASEA that uses the SWEET

strategy will achieve good fitness values more quickly on average than a basic asynchronous

strategy.

Hypothesis 3.22. On multimodal problems, when evaluation time is heritable and neg-

atively correlated with fitness on a maximization problem, an ASEA that uses the SWEET

strategy will achieve good fitness solutions less quickly on average than a basic asynchronous

strategy.
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Since the algorithms may not always find the global optimum in the multimodal case,

measuring convergence times may yield infinite values and thus is not feasible as a measure of

performance. Instead, I will operationalize the notion of achieving “good fitness values more

quickly on average” by considering the area under the best-so-far curve (AUC). This metric

takes into account both the final quality of the solution the algorithm finds and the speed

with which it finds it, and will also serve as a suitable metric for evaluating the unimodal

problems referenced by Hypotheses 3.19 and 3.20.

Methods

To provide a concrete test of these hypotheses about the performance of SWEET, I define

a benchmark of real-valued optimization problems. Much like in the experiments in other

sections of this chapter, each of these problems is defined by a tuple (f(·), τ(·)) made up

of a fitness function f(·) and an evaluation-time function τ(·). Both functions are defined

over the domain of genotypes. In this section I focus on three cases from the four-part

classification in section 3.3.3: when f = τ , there is perfect, heritable correlation between

fitness and evaluation time; when f = −τ , there is perfect, heritable anti-correlation; and

if the value of τ(x) is independent of the genome x, then evaluation time is non-heritable.

Specifically, for the non-heritable case in this section, I consider evaluation times that are

stochastic and drawn from a uniform distribution on [0, 1].

Specifically, for the benchmark in this section, I construct six different problems in this

way by choosing the forms of f(·) and τ(·) from five different functional forms (both sum-

marized in Table 3.5). In all cases, ten-dimensional versions of the problems are constructed

(n = 10), and the search space is bounded within the hypercube [−2, 2]10. These prob-

lems can be divided into two categories, corresponding to unimodal cases (Hypotheses 3.19

and 3.20) and multimodal cases (Hypotheses 3.21 and 3.22, respectively):

1. The “exponential” problems are unimodal, and are designed to introduce exag-

gerated differences in fitness values/evaluation times among individuals as evolution
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Table 3.5: Top: the five functions I use as building blocks to create the synthetic problems
used in this section. Bottom: the six synthetic problems that I define by choosing different
functions to define their fitness landscapes and evaluation-time properties.

Function Name Expression

Exponential-growth f(x) = exp (
∑n

i xi)

Exponential-decay f(x) = exp (−
∑n

i xi)

Two-basin (A higher) f(x) = 10 · exp
(
−
∑n

i

(
xi−xa

w

)2)
+ exp

(
−
∑n

i

(
xi−xb

w

)2)
Two-basin (B higher) f(x) = exp

(
−
∑n

i

(
xi−xa

w

)2)
+ 10 · exp

(
−
∑n

i

(
xi−xb

w

)2)
Random-uniform f(x) ∼ U(0, 1)

Problem Name Fitness Function f(·) Evaluation-Time Function τ(·)

Exponential (Correlated) Exponential-growth Exponential-growth

Exponential (Anti-Correlated) Exponential-growth Exponential-decay

Exponential (Uncorrelated) Exponential-growth Random-uniform

Two-Basin Two-Basin (A higher) Two-Basin (A higher)

Two-Basin (Anti-Correlated) Two-Basin (A higher) Two-Basin (B higher)

Two-Basin (Uncorrelated) Two-Basin (A higher) Random-uniform

progresses. This is valuable because differences in evaluation time are what create the

complex dynamics of asynchronous algorithms, and this gives us a simple environment

within which to test those dynamics.

2. The “two-basin” problems are constructed (similarly to section 3.4.3) by summing

two Gaussian functions centered over different regions of the search space, one of which

has an amplitude ten times higher than the other. These problems provide a scenario

in which evolutionary algorithms are prone to getting stuck in a local optimum, from

which it is difficult to escape. For the “two-basin” functions, the offset of basin A is a

constant xa = [−1, · · · ,−1]⊤, while the offset of the other basin (B) is xb = [1, · · · , 1]⊤.

As for the algorithm used in our synthetic experiments, it is similar to the one described

above for the takeover times experiment, except that I introduce an additive Gaussian mu-

tation operator which mutates genes by adding a value randomly sampled from a Gaussian

148



Table 3.6: Configuration parameters used in the synthetic real-valued optimization
problems experiment.

Parameter Value

Genome representation Real-valued vectors

Search space dimensions n 10

Search space bounds [−2, 2]n

Initialization strategy immediate/until-finished (Algorithm 4)

Parent selection Random-uniform selection (with or without SWEET, respectively)

Survival selection Inverted binary tournament selection

Reproduction operators Additive Gaussian mutation only (no crossover)

Mutation σ 1.5

Mutation probability 1/n = 0.1

Stopping criterion Run for 5,000 births

Population size 50

# simulated processors 50 (= population size)

# independent runs 100

distribution: g′ = g+ϵ, where ϵ ∼ N (0, σ). For this analysis, I do not include crossover, and

I use a fixed mutation width of σ = 1.5. As in the takeover-time experiments in the preceding

section, I used an immediate initialization strategy for both algorithms (see section 3.2.2),

which is equivalent to the until-finished strategy of Algorithm 5 since the population size

equals the number of processors here.

Table 3.6 summarizes the design parameters for the synthetic real-valued optimization

experiments with SWEET. In many contexts, it would be important to tune these parameters

via a suitable hyperparameter-tuning algorithm before comparing algorithms against each

other on real-world problems. In this study, however, I am narrowly concerned with the effect

of modifying asynchronous selection strategies in particular; having highly tuned mutation

parameters, population size, etc., therefore is unlikely to modify my conclusions.
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Results

The results of the DES experiments with SWEET on real-valued optimization problems come

in two parts: the exponential (unimodal) problems that test Hypotheses 3.19 and 3.20, and

the two-basin (multimodal) problems that test Hypotheses 3.21 and 3.22.

The results on the exponential functions are depicted in Figures 3.20, along with visu-

alizations made from 2-D projections of the functions f(·) and τ(·) for reference (though

recall that the full problems themselves are 10-dimensional). Recall that in the correlated,

anti-correlated, and uncorrelated cases, f = τ , f = −τ , and τ ∼ U(0, 1), respectively. I

report the results here in terms of births (i.e., evolutionary steps). In the correlated case

(where “better is slower”), SWEET clearly outperforms the control, consistently obtaining a

higher AUC and confirming Hypothesis 3.19. In the remaining cases, the performance

of the two algorithms shows little difference. The basic ASEA does take fewer steps to

converge (and have a lower AUC) in both the anti-correlated and the uncorrelated experi-

ments, and the difference in the median AUC values under these conditions is statistically

significant (Wilcoxon rand-sum test, p < 0.0005). But the effect size here is very small (as

can be seen by examining the box plots in the center and bottom rows of Figure 3.20, which

show considerable overlap). So I consider Hypothesis 3.20 to be partially supported:

SWEET does appear to take slightly more steps to converge on unimodal functions, but the

difference is so small that it may be safe to ignore in applications.

The results on the two-basin functions are depicted in Figures 3.21, again with 2-D pro-

jections to visualize these 10-dimensional function surfaces. These results are more nuanced

than the unimodal case: I do observe that when fitness and evaluation time are directly cor-

related, SWEET converges more rapidly on a solution, achieving a superior AUC score in the

median (p < 0.0005). SWEET also exhibits higher variance in its fitness curve, however, sug-

gesting that it achieves faster convergence at the cost of having a higher probability of falling

into a local optimum. So while I consider Hypothesis 3.21 to be mostly supported by

this data, it comes with the simple observation that faster convergence may not always lead
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Figure 3.20: Mean best-so-far fitness curves and AUC metrics for SWEET and the Basic
Async algorithm applied to the exponential benchmark problems. Shown on the left are
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Table 3.7: Median area-under-curve (AUC) values for 100 runs of the two algorithms on
each problem. Bold numbers are statistically significantly the best-performer in each row
by a Wilcoxon rank-sum test, and the triple-asterisks (***) indicate p < 0.0005.

Problem Evaluation Times Basic ASEA SWEET

Exponential Correlated 1.35e+12 1.69e+12***

Exponential Anti-correlated 2.31e+12*** 2.22e+12

Exponential Uncorrelated 2.15e+12*** 2.12e+12

Two-Basin Correlated 2.41e+4 3.11e+4***

Two-Basin Anti-Correlated 2.67e+4 3.39e+4***

Two-Basin Uncorrelated 4.16e+4*** 3.97e+4

to better solutions (this is in line with classic arguments based on an exploration-exploitation

trade off). The anti-correlated case offers an additional surprise: although SWEET was in-

troduced in order to solve correlated (“better is slower”) problems, and I expected it to have

a harmful performance effect on anti-correlated (“better is faster”) problems, here I observe

that SWEET offers a clear and non-trivial improvement over the basic ASEA on a mod-

erately anti-correlated multi-modal problem. This disconfirms Hypothesis 3.22, which

posited that no improvement would be seen in the anti-correlated case. In the uncorrelated

case, there is a small, statistically significant difference in median behavior between the

two algorithms, favoring the basic ASEA, but the difference is so small as to be practically

negligible. I also observe high variance in both algorithms in this scenario—suggesting that

the noisy evaluation-time landscape significantly increases the chance of falling into a local

optimum.

The median AUC values measure for SWEET and the basic control on all six benchmark

problems are summarized in Table 3.7, along with asterisks indicating that all differences

were statistically significant at p < 0.005.
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Figure 3.21: Mean best-so-far fitness curves and AUC metrics for SWEET and the Basic
Async algorithm applied to the two-basin benchmark problems. Shown on the left are 2-
D projected visualizations of each 10-D synthetic problem’s properties. Error bars on the
best-so-far curves indicate the standard deviation across 100 independent runs.
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3.5.4 Discussion of SWEET

I have proposed a simple steady-state parent selection strategy, SWEET (“Selection WhilE

EvaluaTing”), which is intended to offset the tendency that asynchronous steady-state EAs

have to inefficiently sample an excess of fast-evaluating solutions at the expense of higher-

quality, slow-evaluating ones. Simulated experiments with takeover times suggest that this

method is able to more quickly increase the frequency of high-performing, long-evaluating

alleles. And results on synthetic real-valued optimization problems suggest that SWEET is

effective at boosting problem-solving performance in the case of a positive fitness-eval-time

correlation.

The experiments in this section are limited in that I used only a few, simple real-valued

landscapes to test the algorithms’ behavior, and I considered only a few fixed parameter

values (for example, assuming that the population size is equal to the number of processors).

Future work will need to investigate the practical impact of SWEET more thoroughly on a

variety of real-world applications to see if the conclusions drawn here generalize effectively

to practical settings. I have begun this research in collaboration with colleagues [Scott et al.,

2021, in press]: we have applied SWEET to some initial applications that include evolving

spiking neural networks for autonomous vehicle control, and to adversarial methods that use

an evolutionary algorithm to improve the robustness of a reinforcement learner to different

environmental conditions.

Overall, the experiments presented here suggest that SWEET is a promising optimiza-

tion to ASEAs, and that in some applications it can have a moderate impact on the efficiency

of an algorithm’s ability to find high-quality solutions with a limited budget. In particular,

its tendency to adversely impact performance when evaluation times in fact decrease with

quality (rather than increase) appears to be significantly smaller than I believed when begin-

ning this research. As with many meta-heuristic enhancements, however, it remains difficult

to predict what problem properties might cause this ASEA strategy to lead to improved

performance.
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One factor that I observed in the simulation of takeover times is that SWEET tended to

improve performance early, but as longer evaluating individuals take over the population, it

has much less of an impact. On useful avenue for future research may be to investigate the

use of SWEET as only during the initial portion of an ASEA run, pivoting to a traditional

selection approach later in the run.

3.6 Conclusions & Discussion

In Table 3.8 I summarize all of the hypotheses that I have tested in this chapter and their

conclusions. As indicated by the structure of the table, my research questions from sec-

tion 2.1.5 have led me to six different lines of experimental inquiry in total.

3.6.1 Research Question 1: Speedup

Research Question 1 led me to a multi-faceted investigation of the performance of ASEAs in

terms of speedup. My first contribution in this area has been a novel analysis of initializa-

tion strategies in ASEAs in Hypotheses 3.1–3.4—which I have shown can have an outsized

impact on the behavior and performance of an algorithm, and should thus be approached

with more care than they traditionally are in other areas of evolutionary computation. In

particular, when the number of processors T is significantly less than the population size µ,

the immediate initialization strategy suffers from queueing effects that significantly slow the

fundamental feedback loop that drives evolution. In practice, knowing that initialization

strategies should be treated with care is an important lesson. This has had an immediate ef-

fect of the code that my colleagues and I have written for present and future projects—as for

years we were unaware of the pitfalls of asynchronous initialization. A simpler alternative

practice, however, may be to hybridize an ASEA by simply using synchronous initializa-

tion—bypassing the subtleties of asynchronous initialization altogether, at the cost of a

brief period of idle time. I have not recommended this approach as the best solution, how-

ever, because I have not yet studied this strategy to ensure that it doesn’t lead to unexpected

155



Table 3.8: Summary of the hypotheses tested in Chapter 3.
Hypothesis Description Result

Initialization Strategy Experiments

Hyp. 3.1 Extra and until-finished initialization behave similarly when T << µ Supported

Hyp. 3.2 ASEA with Immediate initialization converges slowly when T << µ Supported

Hyp. 3.3 Immediate and until-finished initialization the same when T = µ Supported

Hyp. 3.4 Extra initialization behaves differently when T = µ Supported

Throughput Speedup Experiments

Hyp. 3.5 ASEA throughput speedup obeys the analytic lower bounds given by Theorem 3.2 Mostly supported

Hyp. 3.6 ASEA throughput speedup decreases with population size Supported

True Speedup Experiments

Hyp. 3.7 ASEA greedier overall than generational on mostly unimodal problems Supported

Hyp. 3.8 ASEA speedup has high variance when eval-time heritable but fitness-neutral Supported

Hyp. 3.9 ASEA more greedy when better is faster on mostly unimodal problems Unsupported

Hyp. 3.10 ASEA less greedy when better is slower on mostly unimodal problems Unsupported

Hyp. 3.11 ASEA more prone to local optima overall on highly multimodal problem Unsupported

Hyp. 3.12 ASEA more prone to local optima when better is faster on highly multimodal problem Mostly supported

Evaluation-Time Bias on Flat Landscapes

Hyp. 3.13 ASEA and QGEA exhibit evaluation-time bias at initialization on flat landscapes Supported

Hyp. 3.14 ASEA and QGEA exhibit no evaluation-time bias after initialization on flat landscapes Supported

Evaluation-Time Bias on Multimodal Problems

Hyp. 3.15 ASEA and QGEA exhibit evaluation-time bias on two-basin problems Supported

Hyp. 3.16 QGEA is less biased than ASEA on two-basin problems Unsupported

Hyp. 3.17 Most evaluation-time bias in the ASEA & QGEA is at initialization Supported

Selection While Evaluating (SWEET)

Hyp. 3.18 SWEET leads to faster takeover times in the ASEA Supported

Hyp. 3.19 SWEET outperforms a basic ASEA on unimodal problems when better is slower Supported

Hyp. 3.20 A basic ASEA outperforms SWEET on unimodal problems when better is faster Partly supported

Hyp. 3.21 SWEET outperforms a basic ASEA on multimodal problems when better is slower Mostly supported

Hyp. 3.22 A basic ASEA outperforms SWEET on multimodal problems when better is faster Unsupported
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effects during the transition from synchronous to asynchronous evaluation. Some applica-

tions, moreover, exhibit the most evaluation-time variance early in the run, in which case

synchronous initialization of the population may still lead to unacceptably high levels of idle

resources. Nevertheless, this hybrid approach is one avenue that I hope to pursue in future

research.

Next I turned to the problem of quantifying the idle time that generational EAs incur

in Hypotheses 3.5 and 3.6, and I have proved a general result in Theorem 3.1 and a spe-

cific algebraic bound in Theorem 3.22 that very closely quantifies the degree of throughput

speedup that an ASEA exhibits—at least in the case where evaluation times follow a uniform

distribution. These results mostly serve to limn with precision the intuitive point that the

idle time properties of generational EAs are driven primarily by the maximum evaluation

time incurred by a given population. Having analytic results on the uniform distribution

is useful in that it allows an easy algebraic rule for predicting what kind of inefficiencies to

expect in a given application, and of quantifying the benefits of an ASEA.25 In practice,

Theorem 3.22 will be of fairly narrow use to practitioners, because few applications exhibit

uniform evaluation-time distributions in the objective functions. I am hopeful that these

results can be extended in the future to provide similar theoretical analysis of other distri-

butions that often arise—such as Gaussian, exponential, and long-tail distributions. In the

future, I hope that more analytic solutions (or at least empirical results) can be collected so

that organizations and tech companies who use distributed clusters for optimization have

an easy way to understand the benefits that asynchronous search algorithms will provide

them in their specific context.

The third thread of Research Question 1 that I have investigated is the difficult and

application-specific question of true speedup in Hypotheses 3.7–3.12—that is, the impact

that asynchronous evolution has on the ability to find acceptable solutions to problems

in less “wall-clock time” than would otherwise be possible. The reason this question is
25This is exactly why algebraic solutions have been so important around the world since antiquity: they

provide a simple, straightforward way to calculate values that otherwise would be very difficult to divine.
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not obvious it that while the ASEA does increase an algorithm’s ability to make more

fitness queries in less time (to refer back to my original motivating diagram for evolutionary

algorithm efficiency in Chapter 1—Figure 1.1), it also follows a different kind of feedback

loop with different search dynamics than traditional genetic algorithms do. So the question

of how much true speedup it offers will depend to some degree on the application, and on

the interaction between the fitness landscape and the asynchronous dynamical system at

the algorithm’s heart. Here, I mostly tested a number of commonsense assumptions that

practitioners (including myself) have often had when approaching ASEAs: beliefs like “an

ASEA tends to be a greedier algorithm,” and “an ASEA will tend to be drawn more quickly

toward fast-evaluating regions of the search space.” Here I found a number of surprises:

the ASEA is indeed greedier on unimodal problems, but overall it proved quite good at

avoiding local optima on more complex problems. And it has turned out—to my surprise—

that no clear, systematic evaluation-time bias emerged from these experiments. The biggest

practical thrust of these results it that there appears to be no glaring “gotcha” that affects the

asynchronous steady-state EA: it is a viable optimization strategy that can handle a variety

of different kinds of complex optimization problems—and no general cautions against it

(such as “don’t use it on complex problems when better solutions are slower-evaluating”)

seem to apply. Personally, these results have greatly emboldened me to recommend the

ASEA to my colleagues as a practical solution to applied problems.

3.6.2 Research Question 2: Evaluation-Time Bias

These results led me directly to Research Question 2, in which I have investigated the

conditions that give rise to evaluation-time bias and how it might be mitigated. Using

flat fitness landscapes (Hypotheses 3.13 and 3.14) and a specially constructed landscape

with two configurable basins of attraction (Hypotheses 3.15–3.17), what has surprised me in

this study has been the revelation that most evaluation-time bias in ASEAs occurs during

asynchronous initialization of the population. Besides that, it seems to be very weak (this

is another reason that studying a hybrid, synchronous initialization approach for ASEAs
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may be fruitful). The practical impact of this work has been an immediate boost in the

confidence with which I apply asynchronous EAs in my work: these results have led me to

believe that “evaluation-time bias is no big deal.”

This general principle may not generalize to every application, however, and my un-

derstanding of evaluation-time bias remains empirical. I am frustrated that we (the EC

community) as of yet have no solid analytical understanding of what causes evaluation-time

bias: the dynamical feedback system in the ASEA is just complex enough that it is not

obvious how to fit it into any of the existing methodologies of Markov chain analysis, drift

analysis, or other tools that the EC community has traditionally used to understand al-

gorithm dynamics. I hope that future research can settle this question and give apodictic

credence to the conclusions that my experiments here have pointed to. Recent work by

Harada [2019] may offer the first step in this direction.

3.6.3 Research Question 3: Excess Computation & SWEET

My final research question was motivated by applications that my colleagues have been

engaged in, in which an optimization algorithm tends to encounter more computationally

expensive objective evaluations as it narrows in on higher-quality solutions. For example, in

the F1TENTH competition,26, entrants compete to autonomously control a one-tenth scale

Formula One car in racing around a track. A common approach to synthesizing autonomous

vehicle controllers for this task would be to first implement a simulation in which a controller

uses simulated sensors to navigate around a track while, minimally, avoiding crashing into

the walls [Scott et al., in press]. But in this example, low-quality solutions will lead to vehicle

trajectories that quickly collide with a wall, ending the simulation—whereas higher-quality

solutions will be able to successfully navigate for a longer period of time. This variance in

evaluation times will create idle time on distributed processors.

An asynchronous EA can reduce the idle time incurred by an evolutionary learner in

this situation. But it seems that in such a case, the extra computational resources will serve
26https://f1tenth.org/
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no benefit—the algorithm may simply trade off idle resources for excess computation. This

is because in order to make progress on optimization, evolution must receive feedback from

increasingly high-quality individuals. But if those individuals are always the long-evaluating

ones in the population, then generating additional offspring while the algorithm waits for

them to complete evaluating may yield little benefit. In a word, the ASEA reduces idle

time, but it cannot always speed up the feedback loop that drives evolutionary progress.

My results testing Hypotheses 3.18–3.22 shows that the SWEET (Selection WhilE Eval-

uaTing) strategy is a promising approach to mitigate this pathology—providing an asyn-

chronous algorithm that is able to maintain a tighter feedback loop. An encouraging result

that came out of this study is the observation that SWEET seems to have no significant

negative impact on applications that are the opposite of what it was design for—reducing

the fear that using it might lead to poor results on problems that don’t satisfy the sim-

ple assumption “longer is always better.” In practice, my colleagues have found that the

positive benefit of SWEET is fairly small on their applications so far (to the point of be-

ing difficult to detect statistically) [Scott et al., 2021, in press]. This suggests to me that

the use case for SWEET may be to consider it as one narrow algorithmic tool that can

be combined with others to create efficient algorithms for various applications. Having a

fully-featured software framework that makes these tools available to practitioners (without

require in-depth research to implement myriad small operators and features) is essential for

making results of this kind of research useful. My work as a coauthor of the LEAP frame-

work partly aims to help move niche features of these kind to a higher technology readiness

level—providing ready-build examples and easily installable Python packages for deploying

distributed optimization strategies [Coletti et al., 2020].
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Chapter 4: Transferability in Instance-Based Evolutionary

Knowledge Transfer

In a rugged field of this character, selection will easily carry the species to the

nearest peak, but there may be innumerable other peaks which are higher but

which are separated by ‘valleys.’ The problem of evolution as I see it is that of

a mechanism by which the species may continually find its way from lower to

higher peaks in such a field.

—Sewall Wright [1932]

4.1 Research Plan

In this chapter I present a series of results that concern transferability: the conditions under

which knowledge transfer between two or more tasks can be exploited. More specifically, the

results in this chapter address the first two “ingredients of successful EKT” that I discussed

in Chapter 2: transferability within problem classes and source selection. The experiments

in this chapter all use simple population-seeding approaches to sequential EKT (I postpone

treatment of the other strategies and representations that can be used to Chapter 5).

In section 4.2 I pose and prove no-free-lunch theorems for transfer optimization, showing

that in the class of all possible problems (fitness functions) defined over some search space,

no EKT approach outperforms any other on average. I follow this up with some empirical

experiments on problem classes whose definition involves permutation, but which slightly re-

lax the assumptions of the NFLTs—confirming the prediction that population-seeding EKT

is ineffective in these domains. Then in section 4.3 I give examples of narrower problem

classes in which knowledge transfer is considerably beneficial—proving a simple asymptotic
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complexity result for population seeding on generalized leading-ones problems, for example,

and performing experiments with generalized max-ones and leading-one problems whose tar-

get patterns vary in a modular way, and with real-valued optimization problems. Together,

section 4.2 and section 4.3 test the two parts of Research Question 4.

In section 4.4.1 I present a very simple analysis of how properties of real-valued optimiza-

tion problem pairs—namely landscape correlation and global optimum distance—correlate

with transferability between problem instances. This preliminary analysis suggests that fu-

ture research on landscape properties may be a promising approach to source selection to

mitigate negative transfer in EKT (Research Question 5).

Finally, in section 4.4.2 I study many-source population seeding on real-valued optimiza-

tion problems, performing an experiment in which population seeding proves effective at

doing implicit source-selection—avoiding negative transfer and succeeding at positive trans-

fer when using many source tasks (even though only a subset of the source tasks are useful

sources for any given target task). This result satisfies Research Question 6.

4.2 No Free Lunch for Transfer

Because NFLTs are an important theoretical landmark for understanding problem-solving

in search and optimization, I begin my investigation of evolutionary knowledge transfer with

a formal observation that there can be no “free lunch” with transfer: when averaging over

all possible source-target pairs, no optimization algorithm that uses knowledge transfer will

perform better than any other. This implies that, in general, no strategy for identifying

and transferring bits of information from one task to another is better than any other: any

transfer strategy that performs well on one subset of problems performs poorly on another

subset of problems.

In section 2.2.4, I explained that the classic no-free-lunch theorems (NFLTs) for opti-

mization are not general enough to apply directly to evolutionary knowledge transfer. In
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this section I will analytically prove novel no-free-lunch theorems for optimization cover-

ing the special cases of pairwise sequential transfer, multi-task transfer, and heterogeneous

sequential transfer (i.e., transfer where the domains of the source and target tasks differ).

These results invite the usual interpretation of NFLTs as theorems that are theoretically

foundational, but which have little-to-no direct implications for practice: in general, NFLTs

only hold over classes of problems that are closed under permutation of the functions that

define them [Schumacher et al., 2001, Whitley and Watson, 2005], and these classes of func-

tions are so large as to contain a great many arbitrary functions that have no relationship

to real-world problems. At the end of this section, however, I will present some empirical

results that show evidence that the no-free-lunch view seems to hold even when the strict

assumptions made by NFLTs are relaxed somewhat.

4.2.1 Proof of NFLTs for Transfer Optimization

Traditional proofs of the no-free-lunch theorems for search and optimization proceed by

showing that all algorithms (that is, all rational strategies for sampling solutions from a

solution space X and returning the best solution found) perform identically when aggregated

over all possible problems F . This is usually done by showing that the sum (and thus

average) of an algorithm’s performance values across all problems are equal for all algorithms

regardless of what performance metric is chosen [Adam et al., 2019, Whitley and Watson,

2005].

Preliminary Lemmas

One clear and effective way to approach this kind of proof is to define a fundamental matrix

(or P-matrix ) of performance values [Ho and Pepyne, 2002a,b].
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Table 4.1: Illustration of a fundamental matrix for single-task optimization in the special
case where Y = {0, 1} and Xs = {x0, x1, x2, x3}.

fs = f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

x0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Definition 4.1. (Fundamental Matrix). Let X be a solution space, and Y be a set of

performance values. We can assume that both sets are finite, since even with floating-point

representations all values used by digital computers are discrete. Further, let F be the set

of all possible mappings f : X 7→ Y. Now, the fundamental matrix M is constructed

by letting the columns correspond to each problem fj ∈ F , and the rows correspond to each

solution xj ∈ X . Specifically, the elements of M are made up of performance values yij ∈ Y,

chosen such that Mij = yij = fj(xi).

An example of a fundamental matrix for a binary performance set and a solution space of

size |X | = 4 is illustrated in Table 4.1.

The fundamental matrix is a tool for thinking about the degree to which values sampled

from X give an algorithm information about which function f ∈ F the algorithm is solving.

If the algorithm can learn about the function it is solving in a way that allows it to predict

the performance value of unseen samples, then it can be more efficient about choosing future

samples—and algorithms that are better at this kind of learning can out-perform algorithms

that are worse at it. The key conclusion we can draw from a fundamental matrix, however,

is that no such learning is possible when considering the space of all possible problems F :

learning the performance values associated with a set of samples provides no information

about the performance values of the remaining (unseen) samples, and thus does nothing to

reduce the algorithm’s uncertainty about what function it is solving.
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These insights follow analytically from the basic observation that the columns of a fun-

damental matrix are unique. This implies the two following useful lemmas, which are given

by Ho and Pepyne [2002b]:

Lemma 4.1. (Counting Lemma for Fundamental Matrices). For a fundamental

matrix M associated with some X and Y, each y ∈ Y appears exactly |Y||X |−1 times in each

row.

Proof. Briefly, the lemma can be proven by showing that the uniqueness of the columns of

M requires that each possible value y ∈ Y appears exactly |Y||X |−1 times in each row. A

full proof along these lines is given by Ho and Pepyne [2002b].

Lemma 4.2. (Sub-matrix Lemma for Fundamental Matrices). Consider a funda-

mental matrix M , and pick any row i and any y ∈ Y. Now create a sub-matrix M ′ by

eliminating from M row i and all columns j such that Mij ̸= y. M ′ is itself then fundamen-

tal matrix.

Proof. The idea of the proof is to observe that M ′ must have |X | − 1 rows and that, by

Lemma 4.1, it must have |Y||X |−1 columns. Then observing that the columns of M ′ are

unique shows that it is a fundamental matrix.

These lemmas can be used to execute proofs that all algorithms that solve problems by

sampling solutions in X will have the same performance on average across all problems.

Results

I will proceed to prove an NFL for transfer across any source-target task pair by constructing

a fundamental matrix in which each column corresponds to a task pair (fs, ft). As a bonus,

I will not assume that fs and ft are defined over the same domains. This will allow the

results here to generalize to heterogeneous transfer algorithms.

Following the notation of Wolpert and Macready [1997], let dxm = {dxm(1), · · · , dxm(m)}

be the set of distinct points that an algorithm samples from a solution space at each of
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m steps, and let dym = {dym(1), · · · , dym(m)} = {f(dxm(1)), · · · , f(dxm(m))} be the set of

values of Y that are obtained by evaluating those samples. Let Xs = {x1, . . . , xq} and

Xt = {x′1, . . . , x′r} be two sets of solutions (a.k.a. two domains) with finite cardinality,

and let Y = {y1, . . . , ys} be a set performance values, also with finite cardinality. Then

consider the set of all unique mappings Fs = {fj : Xs 7→ Y} that map a finite solution

set Xs to a finite set of performance values Y. Each of these mappings can be considered

a different problem, under the criterion that two problems are distinct if and only if they

exhibit different performance values y = f(x) for some x. Likewise, define the set of all

unique target problems Ft = {fk : Xt 7→ Y}.

I claim that no pairwise (i.e., two-task) knowledge transfer algorithm will perform better

than any other on average across all possible source, target pairs (fs, ft) ∈ Fs × Ft. This

can be established via the following theorem:

Theorem 4.1. (No Free Lunch Theorem for Pairwise Transfer Optimization on

Discrete Domains) For any pair of algorithms a1 and a2,

∑
fs∈Fs

∑
ft∈Ft

P (dym|fs, ft,m, a1) =
∑
fs∈F

∑
ft∈Ft

P (dym|fs, ft,m, a2) (4.1)

Proof. We proceed by defining G ≡ Fs × Ft as the cross product of the source and target

problems Fs and Ft. We interpret the elements (fs, ft) ∈ G as the enumeration of all possible

(source, target) pairs that can be used for pairwise knowledge transfer.

Now, construct a fundamental matrix M for knowledge transfer problems as follows. For

every pair (fs, ft), create a column of length |Xs| + |Xt| of performance values taken from

Y , such that the first |Xs| values are equal to fs(xi) for each xi ∈ Xs, and the remaining

|Xt| values are set to ft(x
′
i) for each x′i ∈ Xt. The matrix formed by these columns thus has

|Xs|+ |Xt| rows and |G| = |Fs| · |Ft| = |Y ||Xs|+|Xt| columns. Note furthermore that because

the mappings in each of Fs and Ft are unique, the pairs of mappings in G are also unique,
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and thus all columns of the matrix are unique. An example of such a fundamental matrix

for two tasks is shown in Table 4.1 for the special case where Y = {0, 1}, Xs = {x1, x2, x3},

and Xt = {x′1, x′2, x′3}.

Next consider an optimization algorithm a that proceeds by sequentially selecting m

unique samples from the combined search space Xs ∪ Xt. We will prove the theorem by

induction on m.

• Base step: When the first sample dx1 is taken, it corresponds to a row i in the

fundamental matrix M = M1, and we obtain a performance value dy1 = f(dx1) that

corresponds to the column of the function being solved. Because M1 is a fundamental

matrix, by Lemma 4.1 we know that all performance values appear in the row an equal

number of times. Therefore, for any value of y, and under the assumption that all

problems are equally likely to be the one we are solving,

∑
fs,ft

P (dy1 = y|f1, f2,m = 1, a) =
|G|
|Y|

= |Y||Xs|+|Xt|−1. (4.2)

The set of unvisited sample points and their possible values, moreover, is now described

by a sub-matrix M2 of M with the ith row removed and all columns j removed where

Mij = dy1. By Lemma 4.2, M2 is also a fundamental matrix, and it has |Xs|+ |Xt| − 1

rows.

• Inductive step: Assume as the hypothesis that for some value of m ∈ N∪0, we have

∑
fs,ft

P (dym = y|f1, f2,m, a) = |Y||Xs|+|Xt|−m−1, (4.3)

and the set of unvisited sample points is described by a fundamental matrix Mm+1
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Table 4.2: Illustration of a fundamental matrix for single-source transfer in the special case
where Y = {0, 1}, Xs = {x1, x2, x3}, and Xt = {x′1, x′2, x′3}. The upper half of the matrix’s
rows represent search points that can be sampled on the source task. The lower half are
search points that can be sampled on the target task. Because the columns enumerate all
possible joint mappings from Xs∪Xt to Y , the mean of all the rows are equal by Lemma 4.1.
This observation is a key step in proving the no free lunch theorem for single-source transfer.

fs = f1 f1 f1 f1 f1 f1 f1 f1 · · · f8 f8 f8 f8 f8 f8 f8 f8

ft = f1 f2 f3 f4 f5 f6 f7 f8 · · · f1 f2 f3 f4 f5 f6 f7 f8

x0 0 0 0 0 0 0 0 0 · · · 1 1 1 1 1 1 1 1

x1 0 0 0 0 0 0 0 0 · · · 1 1 1 1 1 1 1 1

x2 0 0 0 0 0 0 0 0 · · · 1 1 1 1 1 1 1 1

x′
0 0 0 0 0 1 1 1 1 · · · 0 0 0 0 1 1 1 1

x′
1 0 0 1 1 0 0 1 1 · · · 0 0 1 1 0 0 1 1

x′
2 0 1 0 1 0 1 0 1 · · · 0 1 0 1 0 1 0 1

with |Xs|+ |Xt| −m− 1 rows. Then we have:

∑
fs,ft

P (dym = y|f1, f2,m+ 1, a) = |Y||Xs|+|Xt|−(m+1)−1. (4.4)

Therefore, by induction, Equation 4.4 holds for any value of m. But this means that the

value of the sum does not depend on the algorithm a, and the theorem follows.

Corollary 4.1. No knowledge transfer algorithm outperforms single-task optimization when

averaged over all possible problems.

Proof. Single-task optimization can be seen as a knowledge transfer algorithm that simply

ignores all information from the source task. Fixing a1 to any single-task algorithm in

Theorem 4.1 proves the corollary.

Corollary 4.2. There is no free lunch for pairwise multi-task optimization.
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Proof. The proof of Theorem 4.1 makes no assumption about the order in which samples are

drawn from the two domains. It thus includes multi-task algorithms—that is, algorithms

that alternate arbitrarily between taking samples from Xs and Xt—and the corollary follows.

Corollary 4.3. There is no free lunch for pairwise sequential transfer (or multi-task learn-

ing) on heterogeneous discrete domains.

Proof. Theorem 4.1 makes no assumption that the two domains Xs and Xt are equal. If we

set Xs ̸= Xt, then the corollary follows.

4.2.2 Experiments on Permuted Max-Ones and Multi-Peaks Problem

Classes

In section 2.2.5, I discussed how it is important that a class of problems that EKT is

applied to displays some non-negligible probability of positive transfer occurring between an

arbitrary pair of tasks sampled from it. This can be important both to make it easier for a

human to select useful source tasks a priori, and/or to make it easier for many-source EKT

algorithms to sift useful material out from non-useful material (thus avoiding the memory

swamping problem).

In this section, I apply a population-seeding EKT algorithm to pairs of tasks that are ran-

domly sampled from two different classes of pseudo-Boolean optimization problem—namely

a permuted version of the max-ones problem and a set of “multi-peak” problems defined

by Watson and Jansen [2007]. These problem classes are defined by problem generators

that make liberal use of permutation and/or random-sampling procedures as part of their

operation, yielding very large and fairly unrestricted problem spaces.

These problem classes are not so large as to include “all possible problems,” so they do not

satisfy the assumptions of the NFLTs that I presented above (nor are they fully closed under

permutation of their fitness values—so sharpened NFLTs in the vein of Schumacher et al.

[2001] also would not apply). I show nevertheless that positive transferability is extremely
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rare in these problem classes when population seeding is used. These results serve as a

lightweight test of how to interpret the NFLTs: if the probability of transferability grows

rapidly as I relax the no-free-lunch assumptions, then EKT would be very easy to exploit. If

not, however, then this would be evidence for the claim that specialized knowledge-transfer

algorithms (or knowledge transfer methods) are needed for different problem classes—or

perhaps that knowledge transfer is not a viable approach at all for some problem classes.

Hypotheses

The point of the experiments in this section is to demonstrate the limitations of evolutionary

knowledge transfer. To do so, I study the “permuted max-ones” and “multi-peaks” problem

classes (each of which I will define below). Both of these classes are fairly unrestricted, and

functions sampled from them have a tendency to be rugged with many local optima.

From an intuitive perspective, population-based seeding is likely to be useful when a

solution transferred from a source task is located in a part of the search space that is either

close to a high-quality optimum on the target task, or located on a gradient that makes

a high-quality optimum easy for evolution to find. Rugged functions frustrate transfer of

this kind in at least two ways. First, when optima are located arbitrarily in the space, the

probability that a given source task has a global or high-quality optimum that shares a basin

of attraction with a similar optimum on the target landscape may be very low. Second, even

if two functions share similar global optima, the ruggedness of the source function makes

it difficult to find the global optimum—and different runs of evolution on the same source

task may arrive at very different solutions (and thus transferred individuals).

For these reasons, instance-based EKT on these complex fitness landscapes may only be

useful in rare cases:

Hypothesis 4.1. Instance-based transfer will rarely be useful on the permuted max-ones

problem class.
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Hypothesis 4.2. Instance-based transfer will rarely be useful on the multi-peaks problem

class.

Methods

The max-ones problem is the best-studied benchmark function in the theory of evolutionary

computation and randomized search heuristics [Doerr, 2020]. This simple Boolean optimiza-

tion problem is defined by a function that assigns to each genotype x ∈ Bn an integer equal

to the sum of bits in the genotype with a value of 1 (as opposed to 0):

f(x) =
n∑

i=1

[xi = 1], (4.5)

where the Iverson bracket [xi = 1] is equal to 1 if xi = 1 and 0 otherwise. The max-ones

problem is very simple as far as optimization problems go, because the fitness contribution

of each gene is completely independent of the values of all of the other genes: the resulting

function is unimodal, and it is well-known that the computational complexity of a simple

(1 + 1)-style EA on max-ones (and linear problems more generally [Droste et al., 2002]) is

O(n log n) [Mühlenbein, 1992].1

The permuted max-ones problem generator I introduce here creates complex, multi-

modal optimization problems by applying a permutation to the value of the sum expression

in equation 4.6:

fϕ(x) = ϕ

(
n∑

i=1

[xi = 1]

)
. (4.6)

That is, while in the original max-ones a bitstring such as 001101 would receive a fitness

value of f(001101) = 3, in the permuted version the value 3 is mapped via the permutation

ϕ(·) to a new value, so that fϕ(001101) = ϕ(3). Examples of randomly permuted max-ones
1In fact, this was probably the first formal runtime result to be proved in evolutionary computation,

according to Jansen [2020].
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Figure 4.1: Examples of permuted max-ones problems that were generated with 20 dimen-
sions (top), 50 dimensions (middle), and 100 dimensions (bottom).

problems that are generated in this way are visualized in Figure 4.1 for bitstrings of 20, 50,

and 100 dimensions. In these visuals, the x-axis corresponds to the number of ones in the

genotype (i.e., f(x)), and the y-axis plots a permuted version of the function (according to

some randomly selected permutation ϕ).

The second problem generator I use in this section is the multi-peak generator. Watson

and Jansen [2007] introduced this class of functions in the context of studies on evolutionary

crossover (as multi-peak functions can be combined to build more complex functions that are

asymptotically easier to solve with crossover than they are without). A multi-peak problem

is made up of a number of binary target patterns {t1, t2, . . . , tT }, each surrounded by a basin

of attraction whose fitness decreases as the genotype vector’s Hamming distance from the
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target pattern increases. Specifically, the multi-peak function is defined as follows:

fmp(x) =

T∑
j=1

c(x, tj), (4.7)

where the individual terms are defined by

c(x, tj) =


wj if |x− tj | = 0,

(1 + |x− tj |)−1 otherwise.

(4.8)

Here, wj is the fitness contribution made by each target pattern tj when the genome x

matches that target pattern exactly.

I use Equation 4.7 to implement a multi-peaks problem generator as follows. I assume

the genome dimensionality |x| = 20, and I initialize T = 4 target strings by randomly

generating 20-dimensional binary vectors, with the first m values set to one and the rest

set to zero, where m is a random integer between 0 and |x| (inclusive). Finally, the wj

values are sampled uniformly on (0, 2) (as in Watson and Jansen [2007]). Figure 4.2 shows a

1-dimensional cross-section of the fitness landscape that results from some of the generated

functions. It is evident that these multi-peaks problem have fewer local optima than the

most of the permuted max-ones problems do, each with a relatively wide basin of attraction.

On both of these problem classes, I run a single-task EA and a population-seeding EKT

algorithm. Both algorithms use a bitstring representation for genotypes, and apply standard

bit-flip mutation (that is, mutation in which each gene in a genotype is mutated with some

probability) with a probability of p = 1/L, where L is the length of the genome. Neither

algorithm uses crossover. The EKT algorithm here is run first on a source task and then on

a target task. It saves the highest-fitness individual that was seen during the target task,

and uses it to replace a single individual in the initial population when solving the target
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Figure 4.2: Fitness landscape cross-sections of problems generated with the form of Equa-
tion 4.7. At each point along the x axis, I fed a genome into the function with the indicated
number of leading ones, and the remaining genes fixed to 0.

Table 4.3: Parameters used for the control and population-seeding algorithms on the
permuted-max-ones and multi-peaks problems.

Parameter Permuted Max-Ones Multi-Peaks

Genome length L ∈ {20, 50, 100} L = 20

Parent selection Binary tournament

Mutation type Flip each gene with probability p

Mutation probability p = 1/L

Crossover probability 0 (no crossover)

Population size µ = 10

Generations for the single-task control 100 200

Generations for transfer during the training phase 100 200

Generations for transfer during the testing phase 100 200

task (the remaining µ − 1 individuals in the initial population are uniformly initialized as

they would be in a single-task algorithm). The single-task algorithm, meanwhile, is only

run on a target task. The configuration and parameters used on both problem classes are

summarized in Table 4.3.

On both problem classes, I generate 1,000 target tasks T up front, each with L dimen-

sions. For each target task t, I run the single-task control algorithm for 100 generations, and

measure the fitness of the best solution found x∗
c(t). Then for each target task t, I generate

an additional source task s, and run the EKT algorithm, training on s and testing on t,
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again measuring the fitness of the best solution found on the target task x∗
T (t). The experi-

ment’s output, then, is a dataset of paired fitness observations (x∗
c(t),x

∗
T (t)), with one pair

for each of the 1,000 target tasks. This data gives us a statistical view of how performance

on these tasks with transfer differs from the single-task control—aggregated over a sample

taken from the problem class.

On the permuted-max-ones problems, I run three separate experiments, each for prob-

lems of a different dimensionality (L = 20, L = 50, and L = 100). On the multi-peaks

problems, I run just one experiment on multi-peaks with L = 20.

Results

For the permuted-max-ones experiments, the mean values of the control results x∗
c(t) and

the transfer results x∗
T (t), respectively, are shown as a bar plot in Figure 4.3 with standard

deviation bars in the left-hand plots and 95% confidence intervals on the right-hand plots. It

is clear from the latter that the difference between the mean control and transfer experiments

on these benchmarks is not statistically significant. Histograms of the paired distances

between the two algorithms on permuted max-ones are also shown in Figure 4.4. From

these it is clear that positive (and negative) transfer events are very rare in this data: the

overwhelming majority of experimental runs show negligible difference in the performance

of the two algorithms. Overall, there is no evidence that transfer helps (or hinders) on

permuted max-ones problems on average when aggregating over a large number of source-

task pairs—confirming Hypothesis 4.1.

On the multi-peak problem class, similar bar-plots showing the mean values of the control

results x∗
c(t) and the transfer results x∗

T (t), respectively, are shown in Figure 4.5. Once again

there is no significant trend toward positive transfer, confirming Hypothesis 4.2. On this

problem class (unlike on the permuted max-ones problems), however, it seems that transfer

hinders more often than it helps on average, albeit by a small margin. Some more detailed

histograms of this data are shown in Figure 4.6, where the distribution of results for the

single-task control slightly outperforms the one for transfer, and “peeks out” from behind the
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Figure 4.3: Mean best-found fitness results for a single-task control (red) and transfer from
randomly generated source tasks (blue). The right-hand plots are zoomed-in versions of
the left-hand plots. Shown are results for 20-dimensional tasks (top), 50-dimensional tasks
(middle), and 100-dimensional tasks (right). Standard deviation is shown in the plots on
the left, while 95% confidence intervals on the mean are shown on the right (and zoomed in
to show small differences).
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Figure 4.4: Histograms of fitness differences between transfer and the control on different
permuted max-ones problems. The difference is computed as ∆f = t − c, where t is the
best solution found with transfer from a randomly generated source task, and c is the best
solution found with a single-task control. In most cases, transfer makes no difference. In
some rare cases, transfer works better or worse.

latter. A Wilcoxon signed-rank test [Wilcoxon, 1945] rejects the hypothesis that difference

∆f = t − c between the best transfer solution t and best control solution c is symmetric

around zero (p = 8.05 · 10−12)—further indicating that the observed effect is statistically

significant.

Conclusion on Permuted Max-Ones and Multi-Peaks

In this section I have tested two simple classes of problems for “transferability,” in the sense

of measuring the probability that any two randomly chosen instances of these classes are

able to display a positive transfer relationship.

On the surface, it is reasonable to expect that even with the complex, randomized land-

scapes that are generated by the permuted max-ones and multi-peaks generators, positive

transferability might occur with some non-negligible potential. A population-seeding al-

gorithm, moreover, is not strongly bound to rely on the information that it receives from

transfer: if the transferred individuals are not useful early in the run, they will simply be

discarded by selection and search will focus on the lineages that descent from other, ran-

domly sampled individuals. For that reason, I did not expect to see any significant evidence

of negative transfer occurring in the average on these problem classes.

In fact, however, I find that there is no statistically significant mean trend toward positive
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transfer in either problem class (as predicted by Hypotheses 4.1 and 4.2), and furthermore

that positive transfer is extremely rare in both cases. To the contrary, on the multi-peaks

class, I instead find a significant (if small) mean trend toward negative transfer. Considering

how population-seeding transfer works, this negative effect is likely caused by a loss of useful

diversity early in the run: in the single-task algorithm, µ = 10 initial random individuals

are available to the algorithm as a diverse initial sample of the search space. In the transfer

algorithm, however, only µ−1 = 9 random individuals are available. If the remaining trans-

ferred individual from the source task is neither useful (in the sense of carrying information

helpful for solving the target task in particular) nor randomly distributed in the solution

space, then the effect is that the algorithm is less explorative overall. I believe this explains

the slight negative impact on performance that I observe on the multi-peaks problems—

which, behind highly multi-modal, require a considerable amount of exploration in order to

find high-quality solutions.

Overall I have suggested that these results support the no-free-lunch theorems, and that

they suggest that the proposition that there is “no free lunch for transfer” does hold to some

degree in complex problem classes as the assumptions of the NFL theorems are relaxed.

This argument is informal, however. At the very least, the results here suggest that design-

ing benchmarks for evolutionary transfer algorithms is non-trivial: in order to demonstrate

and test the performance of EKT methods across large numbers of tasks, problem classes

are needed that exhibit stronger similarities on average than can be obtained from simple

approaches to generating randomized problem instances. This is the primary lesson that I

have drawn from my experience applying EKT algorithms to various randomized problem

classes (some of which I have presented here, some of which I have not published).

4.2.3 Discussion of Free Lunches

I have proved some NFLTs for knowledge transfer algorithms that solve optimization prob-

lems, and shown some simple experimental settings that seem to confirm the idea that

knowledge transfer does not yield free lunches.
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Whitley and Watson [2005] suggest that there are “two general reactions” that practition-

ers tend to have when interpreting NFLTs. The first is to take the NFL principle to imply

that problem- or domain-specific knowledge is essential to specializing algorithms so that

they can be effective in solving real-world problem classes. In this view, the NFLTs bolster

the narrative (which I discussed in section 2.2.2—Newell’s “cliche of AI” [Newell, 1982]) that

heuristic algorithms should be rigorously combined with expert insight in an effort to match

algorithms to problems in specific ways. The second reaction, however, is to emphasize

the very strong assumptions that NFLTs require in order to hold (namely averaging over

the space of all functions—most of which are in fact random and incompressible). McDer-

mott [2020], for example, has recently provided an extensive argument that the NFLTs are

routinely and widely misunderstood by practitioners as having stronger implications than

they actually do, and that in many cases NFLTs can be ignored for practical purposes be-

cause many general-purpose algorithms are “already specialized to an appropriate subset of

problems, potentially escaping NFL.”

This interpretive difficulty applies equally to the specific NFLTs that I have presented

here. Personally, I take the results of this section as a caution that knowledge transfer by

itself is not guaranteed to be a magic bullet—in the sense of offering us a way to system-

atically circumvent the limitations of single-task algorithms. But, following the arguments

collected by McDermott [2020], this need not imply that contemporary efforts to design

EKT algorithms that perform better than others at isolating, representing, and transferring

useful knowledge are misguided.

4.3 Transferability in Instance-Based EKT

In the previous section I covered the pessimistic side of knowledge transfer, making clear

that information reuse can only be useful on optimization problems when similar tasks are

readily available that can be used as sources. Now I turn to examples of more constrained

problem classes where positive transfer is common and relatively easy to exploit.
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In this section I will first prove analytical conditions under which the leading-ones

pseudo-Boolean optimization problem becomes asymptotically easier to solve with the help of

instance-based transfer. Then I present experiments on three sets of benchmark problems—

two of which are based on modularly varying binary patterns, and one of which is based

on real-valued optimization problems that commonly appear in the multi-task optimization

literature. In all three cases, I show that positive transfer occurs fairly frequently.

4.3.1 Asymptotic Complexity of Leading Ones with Transfer

Population-seeding is the simplest kind of instance-based knowledge transfer, and its benefits

can arguably be understood via a simple intuition: if the transferred solution (i.e., the

optimum) of the source task is “close to” to a high-quality (or optimal) solution to the target

task (or, more specifically, if the latter is easily reachable from the former via successive

mutations), then positive transfer is likely to occur. If the transferred solution (or optimum

of the source task) is effectively randomly located in the search space, however (or otherwise

not related to the target task in a useful way), then transfer is likely to have no effect or

a negative one. In some cases the story may be more complicated than this (for example,

population-seeding may provide a partial solution that, when combined with other solutions

via crossover, allows a new basin of attraction to be reached), but in many applications this

simple story is sufficient to explain the benefits of rudimentary transfer strategies—and in

any event, the principle that random knowledge sources lead to little benefit still applies.

In this subsection I prove that on the class of generalized leading-ones problems, random

local search (RLS) with transfer from a random leading-ones problem to a target task has

no effect on the asymptotic complexity of leading-ones: it remains O(n2) with or without

transfer. If we require, however, that the source and target task meet a certain similarity

criterion—specifically, if the global optimum of the source task is within a particular distance

bound from the target task—then I show that the asymptotic complexity of leading-ones can

be reduced to O(n log n). The intuition behind the proof is straightforward. If an algorithm
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requires n steps of improvement to solve a leading-ones instance, but I transfer an individual

that has already solved n − log n of them, then only log n steps remain. On leading-ones

with RLS, each iteration has a 1/n chance of improvement, so we thus go from O(n2) down

to O(n log n) with the help of transfer.

This sketch of the idea is not rigorous, however, because it overlooks some complex as-

pects of the problem behavior—namely the fact that while RLS does achieve an improvement

with probability 1/n on leading-ones, the change in fitness that results from one successful

mutation can sometimes be greater than one (because a flipped bit may connect a “run” of

leading-ones). So it is worth pushing through details like this to provide a formal argument

about the conditions that lead to positive transfer. Here I will formalize this results with

some tools from the complexity analysis of evolutionary algorithms, and in particular the

additive drift theorem [Lengler, 2020], which makes it easy to make arguments of this kind

in a rigorous way.

Preliminary Lemma

The leading-ones problem is, like max-ones, one of the most heavily studied problems in the

theory of evolutionary computation. In its generalized form Doerr [2020], the leading-ones

function counts the number of consecutive values, starting from the beginning of a bitstring

x, that match the values at the same position of a reference string z:

f(x) =

n∑
i=1

i∏
j=1

[xi = zi]. (4.9)

A single non-matching bit in the bitstring, then, neutralizes the fitness contribution of any

matches that occur later in the string. This dependency among variables makes leading-ones

more challenging to solve than one-max—as there is only one bit (and exactly one bit) that

can be flipped to yield a fitness improvement at any given step in optimization.

Random local search (RLS) is a very simple (µ + λ)-style search algorithm that uses
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a single search point (µ = 1), generates a single offspring by mutating exactly one gene

(λ = 1), and keeps whichever is better. RLS differs from most evolutionary algorithms in

its mutation operator, but is easier to study analytically as a result. On an n-dimensional

leading-ones problem, the additive drift theorem2 can be used to show that the expected

number of steps E[T ] needed to find the global optimum is bounded as follows:

Lemma 4.3. (RLS Bounds on Leading-Ones). When random local search is run on

leading-ones, its expected running time is bounded by

nE[X0]

2
≤ E[T ] ≤ nE[X0], (4.10)

where X0 is a potential function defined over the initial population—specifically, X0 =

n− f(x0), where f(x0) is the fitness of the initial solution.

Proof. The idea of the proof is to recognize that a single-bit mutation only improves fitness

on leading-ones if exactly the next bit after the current sequence of leading ones is flipped.

Such a mutation may increase fitness by more than 1, however, if the flipped bit “connects”

the leading ones to a sequence of ones that appear later in the genome. This argument leads

to an expression for drift that contains a finite geometric series, which can be bounded via

an infinite series to obtain δ values of 1
n ≤ ∆t ≤ 2

n . See Lengler [2020] for a full proof.

In a single-task setting, where the initial solution is randomly initialized on leading-ones,

n − 1 ≤ E[X0] ≤ n,3 leading to the well-known asymptotic bound of Θ(n2) for RLS on
2A basic result in the area of drift analysis, one of the leading mathematical approaches to EA complexity

analysis today. The additive drift theorem states that if Xt is a function defined over an algorithm’s state
such that Xt ≥ 0 and Xt = 0 when the global optimum is first reached, then

∆t = E[Xt −Xt+1|Xt ̸= 0] ≥ δ ⇒ E[T ] ≤ E[X0]

δ
,

and

∆t = E[Xt −Xt+1|Xt ̸= 0] ≤ δ ⇒ E[T ] ≥ E[X0]

δ
.

That is, if we can bound the one-step change in potential—the drift term ∆t—on either side by a constant
δ for all t ̸= 0, then bounds on the expected running time directly follow.

3Because 0 ≤ E[f(x0)] ≤ 1. This can be shown on leading-ones with the tail-sum formula for probability,
which leads to a finite geometric series.
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leading-ones.

Results

Now consider an RLS algorithm that uses pairwise sequential transfer to initialize the first

search point x0 based on the best-found solution to some source task. Depending on the

relationship between the source and target task, transfer may have a neutral or positive

effect, as I show in the following theorem:

Theorem 4.2. (Population-Seeding Transfer on Leading-Ones). Let random local

search be run on leading-ones (denoted by f(·)) with the initial search point x0 = x∗s seeded

with the solution of some source task s.

a) Neutral Transfer: if x∗s is uniformly distributed on Bn, then E[T ] ∈ Θ(n2).

b) Positive Transfer: if E[f(x∗s)] ≥ n− log n, then E[T ] ∈ O(n log n).

That is, if the global optimum of the source task is randomly located in the search space, then

we expect no performance improvement on the target task. But if the global optimum of the

source task shares at least the first (n− log n) leading-one bits with the target task, then we

will see an asymptotic improvement in performance on leading-ones.

Proof. Part (a): If the source task is completely random (for example, perhaps the source

task is drawn uniformly from the set of all possible n-dimensional pseudo-Boolean functions),

then the expected value of x0 = x∗s is uniform. But in this case, E[X0] is the same as in the

single task case (namely n− 1 ≤ E[X0] ≤ n), and by Lemma 4.3 we have

n(n− 1)

2
≤ E[T ] ≤ n2, (4.11)

and therefore E[T ] ∈ Θ(n2).

Part (b): Recall that the potential X0 is defined as n−E[f(x0)]. So given that E[f(x∗s)] ≥
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n− log n, we have E[X0] = n− E[f(x0)] ≤�n− (�n− log n) = logn. Then by Lemma 4.3,

E[T ] ≤ n log n, (4.12)

and E[T ] ∈ O(n log n).

4.3.2 Population Seeding on Modularly Varying Goals

In this section I demonstrate two simple benchmark problem classes where positive knowl-

edge transfer is possible with high probability. These classes are constructed use the concept

of modularly varying goals (MVGs), which was introduced by Kashtan et al. [2007] and Parter

et al. [2008] as part of their simulated efforts to understand how biological evolution and

developmental processes can reuse knowledge from past experience to accelerate evolution in

new environments. I devise MVG benchmarks that are built atop the dynamics of one-max

and leading-ones problems, respectively.

Hypotheses

Instance-based knowledge transfer on one-max-style problems is straightforward to interpret:

I expect population-seeding transfer to be beneficial whenever a transferred solution has

fitness high enough that it contributes more to solving the target task than random initial

individuals will. Because one-max problems have binary genes and the fitness contribution

of each gene is independent, the average value E[f(x0)] of a random individual’s fitness will

be 1/2 the length of the bitstring.

With this in mind, it seems that transfer will be beneficial on one-max-style problems

when the overlap in the target patterns for the source and target tasks is greater than 50%.

Hypothesis 4.3. On modularly varying max-ones, positive transfer will occur in the average

on all source-target task pairs where target patterns share at least 50% overlap.

On leading-ones problems, by contrast, the average initial fitness E[f(x0)] of random
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individuals is less than or equal to 1.4 This suggests that transfer will happen frequently on

leading-ones-style problems, so long as the source and target task goal patterns overlap in at

least the first two values. In general, however, transfer in this context will only be beneficial

to the extent that the two patterns exactly match for a consecutive run of values beginning

from the beginning of the string. This will only occur when two tasks have a high degree of

similarity.

Hypothesis 4.4. On modularly varying leading-ones, a positive transfer will occur propor-

tionally to the initial overlap in target patterns.

Methods

The two pseudo-Boolean MVG benchmarks I use in these experiments are based on a set 16

binary target patterns which are used to define two sets of pseudo-Boolean functions—shown

in Figure 4.7. These specific patterns are borrowed from Watson and Szathmáry [2016], who

used them to demonstrate the ability of an adaptive developmental encoding of genotypes

to learn to generate compositional patterns. In my version here, each pattern is made up of

400 individual pixels.

I then construct a max-ones MVG benchmark by treating each pattern z as the target

bitstring of a generalized max-ones problem. That is, I construct 16 benchmark functions,
4Because the probability of an initial string of 1’s being generated during initialization is given by the

distribution P (f(x0) ≥ 1) = 1/2, P (f(x0) ≥ 2) = (1/2)2, P (f(x0) ≥ 3) = (1/2)3, . . . , this leads to a
geometric tail-sum expression for the expected initial fitness:

E[f(x0)] =

n∑
k=1

P (f(x0) ≥ k) (4.13)

=

n∑
k=1

(
1

2

)k

= −1 +

n∑
k=0

(
1

2

)k

(4.14)

= −1 +
1−

(
1
2

)n+1

1− 1
2

= −1 + 2(1− 2−n−1) = 1− 2−n. (4.15)

But since n is a positive integer, we have

0 ≤ E[f(x0)] ≤ 1. (4.16)
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Figure 4.7: The sixteen modularly varying Boolean patterns used in the modularly varying
pseudo-Boolean benchmarks. These are formed by selecting one of two possible motifs for
each quadrant. Each 20× 20 pattern is made up of 400 individual bits.
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Table 4.4: Parameters used for the control and population-seeding algorithms on the max-
ones MVG and leading-ones MVG problems.

Parameter Max-Ones MVG Leading-Ones MVG

Genome length L = 400

Parent selection Binary tournament

Mutation type Flip each gene with probability p

Mutation probability p = 1/L

Crossover probability 0 (no crossover)

Population size µ = 10

Generations for the single-task control 2,000 20,000

Generations for transfer during the training phase 2,000 20,000

Generations for transfer during the testing phase 2,000 20,000

Independent runs 100

each of which computes the number of matching bits to one of the 16 MVG patterns us-

ing Equation 4.6. I construct the leading-ones MVG benchmark similarly by treating each

pattern z as the target bitstring of a generalized leading-ones problem as defined by Equa-

tion 4.9.

The algorithm is similar to the one used in section 4.2.2, and the parameters involved

in each experiment are detailed in Figure 4.4. Because the leading-ones problems are more

challenging for an EA to solve, they are given a larger budget of evaluations (generations)

to work with—but otherwise the algorithms are configured identically for both experiments.

In the experiments, I proceed to test a single-task control against population-seeding

transfer on every possible pair of tasks. I run each algorithm 100 times on each task pair.

In this way I gain a clear picture of exactly which pairs of tasks display a positive transfer

relationship, and which do not. Each independent run includes training on the source task

and testing on the target task (so each run potentially transfers a different best-found indi-

vidual from the source task). Specifically, the population-seeding algorithm is run on each

source task in the max-ones (leading-ones) MVG benchmark for 2,000 (20,000) generations,
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saving the best solution found at any point during the run. Then it runs on the target task

for 2,000 (20,000) generations, replacing one individual in the initial population with the

prior best solution from the source task.

For these experiments, because the global optimum is easy to find given sufficient genera-

tions, I focus on the area under the BSF curve (AUC) as a measure of algorithm performance.

I only report metrics on the test phase of the transfer experiments—my focus being on the

cost involved in solving the target task (treating effort spent training on the source task as

a sunk cost).

Results

Average best-so-far fitness curves for all source-target pairs of the max-ones MVG benchmark

are shown in Figure 4.8. Each sub-plot corresponds to a single target task, and each curve

within a subplot corresponds to a difference source task that information was transferred

from, with the bold dashed line indicating the single-task control. From these plots it is

evident that the transfer experiments always perform at least as well as the control, and

often out-perform it. The performance gains on this task come primarily from “jump-start

effects” [Taylor and Stone, 2009], in which transfer confers an initial fitness boost that helps

accelerate convergence to better solutions.

Figure 4.9 aggregates the same data into a bar-plot view showing the mean area under

the curve (AUC) for each source-target pair. Table 4.5 likewise shows the median AUC for

each pair, along with indications of which experiments exhibited a statistically significant

transfer effect (by a Wilcoxon rank-sum test with Bonferroni correction within each row).

As one might expect given the high similarity of the problems in this domain, most task

pairings results in positive transfer—with tasks that have greater overlap in target patterns

leading to higher boosts in performance. Specifically, there is positive transfer in every case

except for when the source and task problems are maximally different. This is the only

case in which the source and target patterns share less than 50% similarity—confirming

Hypothesis 4.3.
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Figure 4.8: Mean best-so-far fitness curves for population seeding on the one-max MVG
tasks. Each subplot represents a target task and each curve is the mean of 100 independent
runs. The bold black line is the single-task control, and the remaining (color) lines indicate
the mean BSF on the target function (during the “testing” phase), each using information
from a different source task.

Table 4.5: Median AUC values for pairwise population seeding on the one-max MVG
tasks. Each row presents experiments for one target task, the columns giving results for the
single-task control and each source-task experiment, respectively. Bold numbers indicate
values that show a statistically significant difference from the single-task control with a
Wilcoxon rank-sum test and a Bonferroni correction (applied within each row). Asterisks
indicate the smallest p-value that significance is achieved at: ∗ = 0.05, ∗∗ = 0.005, and
∗ ∗ ∗ = 0.0005.

Target Single-Task Control MVG #0 MVG #1 MVG #2 MVG #3 MVG #4 MVG #5 MVG #6 MVG #7 MVG #8 MVG #9 MVG #10 MVG #11 MVG #12 MVG #13 MVG #14 MVG #15

MVG #0 7.57e+05 7.88e+05*** 7.88e+05*** 7.77e+05*** 7.88e+05*** 7.77e+05*** 7.77e+05*** 7.67e+05*** 7.89e+05*** 7.77e+05*** 7.77e+05*** 7.66e+05*** 7.77e+05*** 7.67e+05*** 7.66e+05*** 7.57e+05

MVG #1 7.57e+05 7.89e+05*** 7.77e+05*** 7.89e+05*** 7.77e+05*** 7.89e+05*** 7.67e+05*** 7.78e+05*** 7.77e+05*** 7.88e+05*** 7.67e+05*** 7.77e+05*** 7.66e+05*** 7.77e+05*** 7.58e+05 7.67e+05***

MVG #2 7.58e+05 7.88e+05*** 7.78e+05*** 7.89e+05*** 7.78e+05*** 7.66e+05*** 7.88e+05*** 7.78e+05*** 7.78e+05*** 7.66e+05*** 7.88e+05*** 7.77e+05*** 7.67e+05*** 7.58e+05 7.77e+05*** 7.67e+05***

MVG #3 7.58e+05 7.77e+05*** 7.89e+05*** 7.88e+05*** 7.67e+05*** 7.77e+05*** 7.78e+05*** 7.89e+05*** 7.66e+05*** 7.77e+05*** 7.77e+05*** 7.88e+05*** 7.58e+05 7.67e+05*** 7.67e+05*** 7.78e+05***

MVG #4 7.58e+05 7.89e+05*** 7.77e+05*** 7.77e+05*** 7.67e+05*** 7.88e+05*** 7.88e+05*** 7.77e+05*** 7.77e+05*** 7.66e+05*** 7.67e+05*** 7.58e+05 7.89e+05*** 7.77e+05*** 7.77e+05*** 7.67e+05***

MVG #5 7.58e+05 7.77e+05*** 7.89e+05*** 7.66e+05*** 7.77e+05*** 7.88e+05*** 7.77e+05*** 7.89e+05*** 7.66e+05*** 7.78e+05*** 7.57e+05 7.66e+05*** 7.77e+05*** 7.89e+05*** 7.67e+05*** 7.77e+05***

MVG #6 7.58e+05 7.77e+05*** 7.67e+05*** 7.89e+05*** 7.77e+05*** 7.89e+05*** 7.78e+05*** 7.89e+05*** 7.66e+05*** 7.58e+05 7.78e+05*** 7.67e+05*** 7.77e+05*** 7.67e+05*** 7.88e+05*** 7.77e+05***

MVG #7 7.57e+05 7.67e+05*** 7.77e+05*** 7.78e+05*** 7.88e+05*** 7.77e+05*** 7.88e+05*** 7.88e+05*** 7.57e+05 7.67e+05*** 7.67e+05*** 7.78e+05*** 7.66e+05*** 7.77e+05*** 7.77e+05*** 7.89e+05***

MVG #8 7.57e+05 7.89e+05*** 7.77e+05*** 7.77e+05*** 7.67e+05*** 7.78e+05*** 7.67e+05*** 7.67e+05*** 7.57e+05 7.88e+05*** 7.89e+05*** 7.77e+05*** 7.88e+05*** 7.77e+05*** 7.77e+05*** 7.67e+05***

MVG #9 7.57e+05 7.78e+05*** 7.89e+05*** 7.66e+05*** 7.77e+05*** 7.66e+05*** 7.77e+05*** 7.57e+05 7.67e+05*** 7.89e+05*** 7.77e+05*** 7.88e+05*** 7.78e+05*** 7.89e+05*** 7.66e+05*** 7.78e+05***

MVG #10 7.58e+05 7.78e+05*** 7.66e+05*** 7.89e+05*** 7.77e+05*** 7.66e+05*** 7.58e+05 7.78e+05*** 7.66e+05*** 7.88e+05*** 7.77e+05*** 7.89e+05*** 7.77e+05*** 7.67e+05*** 7.88e+05*** 7.78e+05***

MVG #11 7.57e+05 7.66e+05*** 7.77e+05*** 7.78e+05*** 7.88e+05*** 7.57e+05 7.67e+05*** 7.66e+05*** 7.78e+05*** 7.77e+05*** 7.88e+05*** 7.89e+05*** 7.67e+05*** 7.77e+05*** 7.78e+05*** 7.88e+05***

MVG #12 7.58e+05 7.77e+05*** 7.67e+05*** 7.66e+05*** 7.57e+05 7.88e+05*** 7.77e+05*** 7.78e+05*** 7.66e+05*** 7.89e+05*** 7.78e+05*** 7.78e+05*** 7.66e+05*** 7.89e+05*** 7.88e+05*** 7.78e+05***

MVG #13 7.57e+05 7.67e+05*** 7.77e+05*** 7.58e+05 7.66e+05*** 7.77e+05*** 7.88e+05*** 7.67e+05*** 7.77e+05*** 7.77e+05*** 7.88e+05*** 7.66e+05*** 7.77e+05*** 7.88e+05*** 7.77e+05*** 7.89e+05***

MVG #14 7.58e+05 7.67e+05*** 7.58e+05 7.77e+05*** 7.67e+05*** 7.77e+05*** 7.67e+05*** 7.89e+05*** 7.77e+05*** 7.78e+05*** 7.67e+05*** 7.88e+05*** 7.77e+05*** 7.89e+05*** 7.77e+05*** 7.89e+05***

MVG #15 7.57e+05 7.57e+05 7.67e+05*** 7.67e+05*** 7.78e+05*** 7.66e+05*** 7.77e+05*** 7.77e+05*** 7.89e+05*** 7.66e+05*** 7.78e+05*** 7.77e+05*** 7.89e+05*** 7.77e+05*** 7.89e+05*** 7.88e+05***
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Figure 4.9: Bar blots of the performance of population seeding on all source-task pairings
of the one-max MVG tasks. Each individual bar shows the mean area under the best-
so-far curve (AUC) performance of running on a target task given a particular source task
(or a no-transfer control with fully random initialization of the population), along with
95% confidence intervals on the mean. Each subgroup of bars within the plots represents a
different target task. The leftmost bar (indicated with black hatch marks) in each subgroup
is the single-task control; the remaining bars in each subgroup show the performance on the
target task after seeding with the best-found solution in a run on the source task (indicated
by color). Each subgroup of bars has one bar that appears as if it were “missing,” because I
do not plot results of a problem transferring to itself (i.e., the same problem cannot be both
the source and target).

Similar analysis is given in Figures 4.10 for the experiments on the leading-ones MVG

tasks, with AUC bar plots in Figure 4.11. Here I observe a few large positive-transfer effects

within each target-task group. Specifically, these large effects occur when the target patterns

(Figure 4.7) of the source and target tasks exactly share the bottom (earliest) 50% of their

bits—allowing an especially large jump-start effect on leading-ones.

Table 4.5 shows the quantitative results on the leading-ones MVG suite with Wilcoxon

rank-sum tests of differences from the single-task control. I see highly significant (p < 0.0005)

effects for the strongly matching patterns—and beyond that I observe a smattering of weakly

significant effects (p < 0.05). The latter are the small positive effects that occur when just

the first few bits overlap among target patterns: these are not enough to provide a large

jump-start effect, but they do provide some benefit (because the initial fitness of random

solutions on leading-ones is so small, even a small similarity among problems can provide
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Figure 4.10: Mean best-so-far fitness curves for population seeding on the leading-ones
MVG tasks. Each subplot represents a target task and each curve is the mean of 100
independent runs. The bold black line is the single-task control, and the remaining (color)
lines indicate the mean BSF on the target function (during the “testing” phase), each using
information from a different source task.
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Figure 4.11: Bar blots of the performance of population seeding on all source-task pairings
of the leading-ones MVG tasks. Each individual bar shows the mean area under the best-
so-far curve (AUC) performance of running on a target task given a particular source task
(or a no-transfer control with fully random initialization of the population), along with
95% confidence intervals on the mean. Each subgroup of bars within the plots represents a
different target task. The leftmost bar (indicated with black hatch marks) in each subgroup
is the single-task control; the remaining bars in each subgroup show the performance on the
target task after seeding with the best-found solution in a run on the source task (indicated
by color). Each subgroup of bars has one bar that appears as if it were “missing,” because I
do not plot results of a problem transferring to itself (i.e., the same problem cannot be both
the source and target).

some benefit with population seeding). Because the effect size of transfer corresponds to the

degree of initial overlap in the patterns, overall these results confirm Hypothesis 4.4.

4.3.3 Population Seeding on Real-Valued Functions

The results of section 4.3.2 are useful for understanding how population-seeding transfer

operators on different types of simple functions, and how a very simple and easy-to-analyze

form of problem similarity (i.e., overlapping target patterns) affects transfer effects. Max-

ones and leading-ones problems (and thus the benchmarks I have build from them) have

little correspondence to real-world optimization problems, however.

In this section I extend a similar empirical approach to analyze all pairs of a bench-

mark of simple real-valued optimization problems. The problems in this benchmark are
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Table 4.6: Median AUC values for pairwise population seeding on the leading-ones MVG
tasks. Each row presents experiments for one target task, the columns giving results for the
single-task control and each source-task experiment, respectively. Bold numbers indicate
values that show a statistically significant difference from the single-task control with a
Wilcoxon rank-sum test and a Bonferroni correction (applied within each row). Asterisks
indicate the smallest p-value that significance is achieved at: ∗ = 0.05, ∗∗ = 0.005, and
∗ ∗ ∗ = 0.0005.

Target Single-Task Control MVG #0 MVG #1 MVG #2 MVG #3 MVG #4 MVG #5 MVG #6 MVG #7 MVG #8 MVG #9 MVG #10 MVG #11 MVG #12 MVG #13 MVG #14 MVG #15

MVG #0 5.01e+06 5.08e+06 6.82e+06*** 5.19e+06* 6.77e+06*** 5.12e+06* 6.77e+06*** 5.18e+06*** 5.07e+06 5.06e+06 5.08e+06 4.99e+06 5.09e+06 5.04e+06 5.02e+06 5.02e+06

MVG #1 5.03e+06 5.12e+06 5.1e+06 6.81e+06*** 5.19e+06*** 6.77e+06*** 5.11e+06 6.75e+06*** 5.09e+06 4.98e+06 5.04e+06 5.06e+06 5e+06 5.06e+06 5.03e+06 5.1e+06

MVG #2 4.96e+06 6.84e+06*** 5.13e+06*** 5.16e+06*** 6.75e+06*** 5.11e+06*** 6.81e+06*** 5.13e+06*** 5.01e+06 4.97e+06 5.09e+06 5.06e+06 5.06e+06 5.06e+06 5.03e+06 5.05e+06

MVG #3 5.07e+06 5.13e+06 6.85e+06*** 5.14e+06 5.13e+06 6.78e+06*** 5.16e+06 6.83e+06*** 5.03e+06 5.01e+06 4.98e+06 5.05e+06 4.96e+06 5.04e+06 5.04e+06 5.07e+06

MVG #4 4.97e+06 6.76e+06*** 5.16e+06*** 6.73e+06*** 5.12e+06 5.14e+06*** 6.83e+06*** 5.11e+06* 5.06e+06 5e+06 5.07e+06 5.02e+06 5.1e+06 5.03e+06 5.08e+06 5.01e+06

MVG #5 5.05e+06 5.12e+06 6.74e+06*** 5.15e+06 6.75e+06*** 5.13e+06 5.13e+06 6.83e+06*** 5.05e+06 5.07e+06 5.06e+06 5.06e+06 5.01e+06 5.08e+06 5.02e+06 5.02e+06

MVG #6 5.02e+06 6.77e+06*** 5.17e+06* 6.76e+06*** 5.12e+06 6.86e+06*** 5.11e+06 5.1e+06 5.01e+06 5.04e+06 5.05e+06 5.05e+06 5.06e+06 5e+06 5.09e+06 4.98e+06

MVG #7 5.09e+06 5.13e+06 6.71e+06*** 5.15e+06 6.77e+06*** 5.16e+06 6.81e+06*** 5.16e+06* 5.02e+06 5.07e+06 5.05e+06 5.07e+06 4.99e+06 5.03e+06 4.99e+06 5.07e+06

MVG #8 5.06e+06 5.04e+06 5.05e+06 5.02e+06 5.1e+06 5.09e+06 5.03e+06 5.03e+06 5.06e+06 5.1e+06 6.82e+06*** 5.12e+06 6.77e+06*** 5.14e+06 6.75e+06*** 5.14e+06*

MVG #9 5.03e+06 5.11e+06 5.09e+06 5.03e+06 5.1e+06 5.06e+06 5.06e+06 4.99e+06 5.02e+06 5.14e+06 5.15e+06*** 6.84e+06*** 5.14e+06* 6.77e+06*** 5.11e+06 6.73e+06***

MVG #10 5.02e+06 5.09e+06 5.01e+06 5.05e+06 5e+06 5.09e+06 5.03e+06 5.09e+06 5.02e+06 6.81e+06*** 5.11e+06* 5.11e+06 6.73e+06*** 5.11e+06 6.8e+06*** 5.16e+06***

MVG #11 5.05e+06 5.05e+06 5.11e+06 5.06e+06 5.05e+06 5.06e+06 5.01e+06 5.04e+06 5.02e+06 5.13e+06 6.83e+06*** 5.12e+06 5.16e+06 6.74e+06*** 5.11e+06 6.78e+06***

MVG #12 5.01e+06 5.04e+06 5.04e+06 5.08e+06 5e+06 5.02e+06 5.06e+06 5.09e+06 5e+06 6.77e+06*** 5.15e+06*** 6.76e+06*** 5.1e+06* 5.14e+06 6.86e+06*** 5.15e+06***

MVG #13 5.06e+06 5.04e+06 5.08e+06 5.07e+06 4.98e+06 5.02e+06 5.08e+06 5.04e+06 5.09e+06 5.15e+06* 6.74e+06*** 5.13e+06 6.71e+06*** 5.12e+06* 5.16e+06 6.82e+06***

MVG #14 4.99e+06 5.04e+06 5.06e+06 5.08e+06 5.01e+06 5.15e+06 5.08e+06 5.08e+06 5e+06 6.74e+06*** 5.13e+06* 6.78e+06*** 5.13e+06*** 6.8e+06*** 5.11e+06* 5.18e+06***

MVG #15 4.94e+06 5.01e+06 5.07e+06* 5.04e+06* 5.07e+06* 5e+06 5.04e+06 5.05e+06* 5.03e+06 5.11e+06*** 6.75e+06*** 5.1e+06*** 6.78e+06*** 5.18e+06*** 6.84e+06*** 5.14e+06***

taken from the multi-factorial optimization (MFO) problem suite. These functions were col-

lected by Da et al. [2017b] as an extension of the benchmark that Gupta et al. [2016c] first

used to demonstrate the feasibility of their multi-factorial evolutionary algorithm (MFEA).

They were originally presented as 9 pairs of tasks that were selected for certain similarity

properties—partially intersecting global optima, for example, or high fitness correlation—

and these have often served in the literature as an initial empirical sanity check on the

effectiveness of multi-task evolutionary algorithms.

To my knowledge, these functions have not previously been used in experiments with

sequential transfer algorithms. So it is an open question whether sequential transfer ap-

proaches can be effective in transferring knowledge on the MFO tasks. In this section I

perform experiments to address this question, but I also extend my analysis to consider all

pairs of the MFO tasks—that is, rather than considering only the 9 pairs of tasks that Da

et al. [2017b] assigned to source and target roles, I consider all 11 unique functions that

appear in the MFO sweet, and all 11 ∗ 10 = 110 possible pairings of them.
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Hypotheses

First, I expect that population-seeding knowledge transfer will perform effectively in this

domain (much like multi-task algorithms have been shown to in the past).

Hypothesis 4.5. Population seeding on the all-pairs MFO tasks will often lead to positive

transfer.

If true, this suggests that population-seeding—despite being a very simple mechanism for

representing and transferring knowledge—has benefits and utility that are not entirely dis-

similar from those that the MFEA and related multi-task algorithms have shown.

Recall furthermore that in section 4.2.2 I only observed very small negative transfer

effects (if any at all) with population seeding on tasks that were not well-suited to transfer.

I expect, then, that population seeding will rarely or never exhibit negative transfer on the

all-pair MFO benchmark.

Hypothesis 4.6. Population seeding on the all-pairs MFO tasks will rarely or never exhibit

negative transfer.

When this claim holds, it implies that population-seeding transfer does not harm perfor-

mance. This is a desirable property to have when attempting to perform source selection

with various tasks, some of which may not be effective sources for transfer.

Methods

To restate, while I am using the 11 unique functions that appear in the multi-factorial

optimization (MFO) benchmark suite of Da et al. [2017b], I am not limiting my analysis to

the original 9 pairings of these functions. Instead, I consider all possible pairings—forming

an “all-pairs” MFO suite. Surface plots for each are given in Figure 4.12. All functions are

50-dimensional unless otherwise noted.

These 11 MFO functions are based on transformations of 7 classic real-valued functional

forms, summarized in Table 4.7, such that they are defined over a unified 50-dimensional
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Figure 4.12: Two-dimensional projections of the 11 functions in the MFO benchmark. These
surfaces are obtained by projecting the original 50-dimensional (or 25-dimensional, in the
case of the 25D Weierstrass) functions into 2 dimensions by fixing all of the remaining
dimensions of to the values of that function’s global optimum.
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Table 4.7: Definitions of the 7 real-valued functions that underlay the MFO benchmark.
These are scaled, rotated, and/or translated to create a total of 11 unique benchmark func-
tions. In the original MFO benchmark, these are paired to form 9 predefined source-target
pairs—here, however, I consider all 11× 11 pairs of tasks.

Name Basic Equation Original Range

Griewank f(x) =
∑d

i=1
x2
i

4000 −
∏d

i=1 cos
(

xi√
i

)
+ 1 (−50, 50)

Rastrigin f(x) = An+
∑n

i=1 x
2
i −A cos(2πxi) (−50, 50)

Ackley f(x) =− ae

(
−b

√
1
d

∑d
i=1 x

2
i

)
− e(

1
d

∑d
i=1 cos(cxi)) + a+ exp(1) (−50, 50)

Schwefel f(x) =
∑d

i=1

(
−xi · sin

(√
|xi|
))

+ α · d (−500, 500)

Spheroid f(x⃗) =
∑n

i x
2
i (−100, 100)

Rosenbrock f(x) =
∑d−1

i=1

[
100(xi+1 − x2i )

2 + (xi − 1)2
]

(−50, 50)

Weierstrass f(x) =
∑d

i=1

[∑kmax
k=0 ak cos

(
2πbk(xi + 0.5)

)
− n

∑kmax
k=0 ak cos(πbk)

]
(−0.5, 0.5)

search space. Following Da et al. [2017b], I form each of the 11 functions applying scal-

ing, projection, rotation, and/or translation to one of the 7 classic real-valued functions.

Specifically, the ranges of all dimensions of each function are scaled such that that their

input values fall within (0, 1). In the case of the 25D Weierstrass function (whose di-

mensionality differs from the other problems), a projection is additionally used to convert

unified phenotypes in (0, 1)50 to truncated phenotypes in (0, 1)25 (i.e., discarding the un-

used dimensions). Together, scaling and projection provide a unified representation which

ensures that the phenotype space is the same (and of similar scale) for each problem. Some

of the functions are further rotated and translated (as indicated by their labels in Fig-

ure 4.12). The rotation performed is an arbitrary orthonormal transformation (i.e., ro-

tation and reflection)—the exact parameters of each transformation were defined in the

original Matlab implementation of the MFO benchmark, distributed by Da et al. [2017b]

at http://www.bdsc.site/websites/MTO/index.html. I have reused their rotation matrix

values in my Python implementation of the benchmark.

The evolutionary algorithm I use as the single-task control and the base of the population-

seeding transfer strategy in this experiment uses a real-vector representation with additive
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Table 4.8: Parameters used for the control and population-seeding algorithms on the all-pairs
MFO task suite.

Parameter Value

Genome length L = 50

Parent selection Binary tournament

Mutation type Additive Gaussian on each gene with probability p

Mutation probability p = 1/L

Mutation width σ = 0.05

Crossover probability 0 (no crossover)

Population size µ = 50

Generations for the single-task control 2,000

Generations for transfer during the training phase 2,000

Generations for transfer during the testing phase 2,000

Independent runs 30

Gaussian mutation. Genomes are initialized uniformly within the range of the MFO bench-

mark’s “unified representation” (0, 1)50, except that in the population-seeding case a single

individual is replaced with the best-found individual on the source task. The single-task con-

trol runs for 2,000 generations on the target task, whereas the transfer algorithm runs for

2,000 generations on the source task, and then an additional 2,000 generations on the target

task. The evolutionary components and parameters I use are all summarized in Table 4.8.

The metrics I use to quantify transfer effects in this experiment are the (mean) fitness

of the best-solution found and, secondarily, the mean area under the BSF curve (AUC).

Both are calculated from 30 independent runs of the algorithms on each source-target pair

in the all-pairs MFO suite. In practice best-solution-found metrics are often what is most

important (since the quality of the final solution tends to be what matters most) [Luke and

Panait, 2002], but the AUC metrics give us additional insight into algorithm efficiency. As

in section 4.3.2, I only report metrics on the test phase of the transfer experiments.
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Results

The mean best-so-far curves for the control and population-seeding EKT method are shown

in Figure 4.13. Much like the similar plots from section 4.3.2, each subplot in this figure

corresponds to a single target task, and each curve represents transfer from a different source

task (or the control, in the case of the dashed black curve). In this case the functions are

being minimized, and it is evident that on most tasks transfer tends to be favorable. Only

on the Schwefel function do I observe cases of negative transfer.

These results are summarized in the bar-plots of Figure 4.14, which show mean results in

terms of best-solution-found (top) and AUC (bottom). Here it is evident that some functions

(like the 25D Weierstrass) benefit a great deal from many of the transfer conditions, but

other functions do not benefit at all (namely the Schwefel function, and the first translated

Ackley function).

Table 4.9 shows the quantitative results with Wilcoxon rank-sum tests of differences

from the single-task control. Most of the visually discernible improvements are statistically

significant (though not all, since I take a Bonferroni correction, making the tests conserva-

tive). Two of the 11 tasks show no benefit from transfer from any source task: namely the

Translated Ackley (0) and Schwefel functions. There is one statistically significant case of

negative transfer: namely from the Translated Griewank to the Schwefel function.

Overall, from these results I conclude that positive transfer does often occur with popu-

lation seeding on the all-pairs MFO tasks. There are exceptions—some tasks do not benefit

at all—but since the purpose of this experiment was to confirm that population seeding is

an effective EKT approach on this benchmark (rather than a perfect one), I consider Hy-

pothesis 4.5 to be confirmed. Likewise, since there is only one instance of statistically

significant negative transfer, Hypothesis 4.6 is confirmed (namely that negative transfer

rarely occurs).
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Figure 4.13: Mean best-so-far curves for population-seeding transfer on each of the target
tasks in the all-pairs MFO benchmark. Within each subplot, each curve represents the
performance on the target task when transferring knowledge from a given source task. The
dotted black line in each subplot is the control: a single-task algorithm running on the target
task with no transfer.
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Figure 4.14: Bar plots of the performance of population-seeding transfer on all source-task
pairings of the MFO benchmark functions. Each individual bar shows the mean performance
of running on a target task given a particular source task (or a no-transfer control with fully
random initialization of the population), along with 95% confidence intervals on the mean.
The top figure shows mean performance in terms of the fitness of the best solution found,
while the bottom figure shows mean performance in terms of the area under the best-so-far
curve (AUC). Each subgroup of bars within the plots represents a different target task. The
leftmost bar in each subgroup is the single-task control; the remaining bars in each subgroup
show the performance on the target task after seeding with the best-found solution in a run
on the source task (indicated by color). Each subgroup of bars has one bar that appears as
if it were “missing,” because I do not plot results of a problem transferring to itself (i.e., the
same problem cannot be both the source and target).
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Table 4.9: Median best-found fitness values for pairwise population seeding on the MFO
benchmark. Each row presents experiments for one target task, the columns giving results
for the single-task control and each source-task experiment, respectively. Bold numbers
indicate values that show a statistically significant difference from the single-task control with
a Wilcoxon rank-sum test and a Bonferroni correction (applied within each row). Asterisks
indicate the smallest p-value that significance is achieved at: ∗ = 0.05, ∗∗ = 0.005, and
∗ ∗ ∗ = 0.0005. The bold red value highlights a significant instance of negative transfer.

Target Single-Task Control Griewank Rastrigin Ackley Trans. Ackley (0) Schwefel Trans. Spheroid Trans. Ackley (1) Rosenbrock 25D Weierstrass Trans. Griewank Weierstrass

Griewank 0.22 0.138*** 0.218 0.233 0.236 0.181 0.223 0.106*** 0.234 0.195 0.219

Rastrigin 78.391 43.334*** 81.023 86.145 82.84 73.42 81.567 46.652*** 84.428 76.582 82.865

Ackley 20.479 2.881*** 4.078*** 20.471 20.468 5.762*** 20.402 3.363*** 20.47 6.963*** 20.492

Trans. Ackley (0) 20.561 20.56 20.542 20.509 20.536 20.555 20.527 20.546 20.521 20.553 20.527

Schwefel 6293.814 6598.347 6602.557 6979.089 6480.715 6824.837 6677.748 6896.336 6435.193 11178.665* 6879.305

Trans. Spheroid 10.417 7.119* 6.433*** 9.757 10.48 10.506 9.269 6.033*** 11.262 6.495*** 10.064

Trans. Ackley (1) 20.476 3.955*** 4.519*** 20.482 20.457 20.458 4.995*** 3.856*** 20.461 5.88*** 20.438

Rosenbrock 925.065 313.874*** 360.384*** 1051.125 971.292 993.457 702.882* 802.377 993.822 712.475* 1005.737

25D Weierstrass 31.169 3.556*** 4.339*** 32.266 30.954 31.697 1.722*** 32.573 3.58*** 10.046*** 31.45

Trans. Griewank 0.487 0.395*** 0.409 0.461 0.503 0.479 0.43 0.484 0.401* 0.485 0.52

Weierstrass 70.282 8.147*** 10.255*** 70.143 69.561 69.564 32.701*** 69.117 8.775*** 69.293 25.623***

4.3.4 Discussion of Population Seeding

Population seeding is a very simple strategy for evolutionary knowledge transfer. When

successful, it tends to lead to jump-start effects early in the run, which are just one possible

way that knowledge transfer can have an impact on target-task performance [Taylor and

Stone, 2009]. This provides a promising advantage, in that it is possible to determine very

quickly whether seeding-based transfer has had a positive effect or not. In particular, when

transfer is not useful, selection is able to very quickly remove the useless individual and free

up resources for other lineages. This confers a certain resilience to negative transfer upon

population-seeding approaches.

The trade-off, however, is that population seeding is clearly a very limited method of

knowledge representation—and jump-start effects, more generally, are a limited form of

benefit. In their seminal discussion of exaptation, Gould and Vrba [1982] note that suc-

cessful reuse of structures in evolution may not always have an immediate positive impact:

transferred structures may need to undergo considerable refinement before they show an ad-

vantage at performing a new function. The most powerful kinds of success one would like to

see with population seeding, then, may be cases where transferred individuals provide not a
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jump-start effect, but instead a long-term exploratory benefit that leads the algorithm away

from local optima and into higher-quality basins of attraction. Building benchmarks that

elicit this kind of behavior—and studying the conditions under which population seeding

(or other methods) is well or poorly suited to exhibit such benefits—would be an interesting

angle for future research.

In the population-seeding experiments I have presented in sections 4.3.2 and 4.3.3, it is

interesting to now that I did not use crossover of any kind in the algorithm implementations.

When transfer leads to better solutions, then, the high-performing lineage must be entirely

descended from the transferred solution—in which case the randomly sampled portion of

the initial population makes no genetic contribution to the solution. Having a diverse initial

population is typically important for EA performance. This result may suggest, then, that

transfer is beneficial here only when the similarity among problems is so strong and easy to

exploit that it outweighs the benefit of diversity.

This result is surprising, particularly when combined with the fact (which I have not

published here) that I have not found crossover to provide any significant added benefit

to population-based seeding in these domains. Intuitively, it seems likely that recombining

partial solutions to form solutions that have origins partly in transfer, partly in random

exploration ought to improve the performance of instance-based knowledge transfer. I have

yet to succeed in demonstrating this myself, however, and I think this forms an interesting

avenue for future research.

4.4 Source Selection for Sequential Transfer

Having presented preliminary examples of how evolutionary knowledge transfer—and

population-seeding in particular—can show benefits on simple classes of problems, I now

turn to some preliminary investigation of the source-selection problem.

In this section I consider source selection from two perspectives: first, I present a very

preliminary experiment that attempts to apply similarity metrics to problems a priori to
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predict the potential for positive transfer between them. In the second approach, I consider

a many-source population-seeding approach, which exploits the tendency of population-

seeding to be resilient to negative transfer and uses this property as a means of performing

source selection across a moderately large set of source tasks. These two experiments shed

light on Research Questions 5 and 6, respectively.

My experiments here are preliminary investigations that only suggest directions for future

research. But if either of these approaches can be successfully developed into effective source-

selection strategies for sequential transfer, they could open up new possibilities for the kind

of human-machine teaming that I described in section 2.2.5. This in turn could considerably

broaden the applicability of knowledge transfer to new domains —particularly to domains

where the similarities among problems are not immediately obvious to practitioners.

4.4.1 Transferability Prediction with Correlation and Distance

Similarity estimation is a natural fit for knowledge transfer applications. As I discussed

in section 2.2.5, several approaches to online similarity estimation have been developed in

the context of multi-task optimization. But these are not directly applicable to sequential

transfer, and they are limited in their focus on using distributional similarity among popu-

lations (typically via information theoretic measures based on Kullback-Leibler divergence)

as a proxy for understanding problem similarity.

Here I experiment with two very simple offline measures of problem similarity: Spear-

man’s rank-correlation coefficient, and the distance between two tasks’ global optimum.

These correspond to two basic kinds of problem similarity identified by Gupta et al. [2016c]

(namely correlational similarity and intersecting optima). The former can be measured in

practical applications, though the latter is only available to us for retrospectively analyzing

problems whose optimum is already known (a methodology that has often proved useful in

the study of optimization problem structure [Jones and Forrest, 1995]). I also give results

for a hybrid similarity measure that combines both of these measures into a single score.

This preliminary approach to synthesizing information from multiple measures of problem
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similarity suggests that this may be an effective approach.

Methods

I apply similarity metrics to the all-pairs MFO benchmark functions that I used in sec-

tion 4.3.3, and compare the values of these metrics to population-seeding data from that

section to see how predictive the former are of the latter.

To measure the correlational similarity between a pair of functions (f, g) with the domain

(0, 1)50, I first sample 10,000 genomes x ∈ (0, 1)50. For each genome, I then obtain fitness

evaluations F = f(x), G = g(x) for the genome on each fitness functions. In this way I obtain

10,000 paired fitness samples of the landscapes. Then I apply Spearman’s rank-correlation

coefficient, given by

ρs(f, g) =
cov(RF , RG)

σR(F )σR(G)
, (4.17)

where R(·) indicates the rank of the values within each set.

Second, I also measure the solution distance as the Euclidean distance between the two

task’s global optimum:

D(x∗f , x
∗
g) = ∥x∗f − x∗g∥2. (4.18)

This assumes that I know the global optima of our problems a priori. This assumption

doesn’t hold in practice, of course, but the resulting measure still carries information about

how global optimum position relates to transferability.

Third, I also test the predictive power of a combined metric. I construct this as a linear

function of the above two metrics according to the following equation, which converts ρs

(which is a similarity measure) to a distance measure (1−ρs) and adding it to the Euclidean

distance:

Dcombined(f, g) =
D(x∗f , x

∗
g) + (1− ρs(f, g))

2
. (4.19)

The independent variable in this experiment is transferability—i.e., the degree to which
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using a task f as a source task improves our performance on target task g. Here I use the

ratio of the area under the fitness curve (AUC) for the transfer experiment to the AUC for

the single-task control as the measure of transferability:

Tf→g =
AUCf→g

AUCg
, (4.20)

where AUCf→g indicates the area-under-the-curve while solving g using information from

f , and AUCg indicates the AUC while solving g directly in a single-task control. Because

the all-pairs MFO tasks are minimization problems, lower values of Tf→g indicate better

transfer in this case.

Results

A visualization of the pairwise Spearman and Euclidean similarities and are shown in Fig-

ure 4.15 (two small matrices on top), along with the values of the transferability ratio from

population seeding (large matrix on the bottom). This gives us a view of how tasks do (or do

not) cluster into sub-groups of mutually similar tasks. In all three matrices, the tasks have

been ordered by applying a hierarchical agglomerative clustering (HAC) algorithm using the

negative of Spearman’s ρ as a distance function—thus grouping clustered tasks together in

the Spearman-ρ plot and keeping the same ordering for reference in the others.

Visually, it is evident that neither of these two similarity measures is perfectly reliable

at predicting transferability. While the Spearman-ρ metric successfully predicts many of

the successful transfers in the bottom right of the matrix, it fails to predict the successful

transfers to the variations on the Weierstrass and Ackley functions (in the bottom-center

of the matrix). The Euclidean-distance metric, on the other hand, does successfully predict

these transfer instances (with the exception of the translated spheroid, which it registers

as dissimilar from all other tasks), but this metric (being symmetric) erroneously concludes

that transfer will also be useful in the opposite direction, which is not the case.
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Figure 4.15: Similarity matrices (top) and a matrix of transfer performance with popula-
tion seeding (bottom) for the all possible source-task pairings of the 11 tasks in the MFO
benchmark. The row indicates the source task, and each column is a different target task.
Top-left measures the Spearman’s rank-correlation coefficient for each pair, while top-right
indicates the Euclidean distance between the functions’ local optima. The transfer perfor-
mance in the bottom matrix is measured by the ratio of the AUC of the BSF curve on the
target task to the BSF curve of a single-task control on the same task (so an AUC ratio < 1
indicates positive transfer, > 1 indicates negative transfer).
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Figure 4.16: Associations between transferability (on the y axis) and the ρs (left) and
Euclidean distance (right) metrics on the MFO benchmark. The data shown here is the
same as in the matrix in Figure 4.15.

In general, however, high correlation scores do correlate with better (lower) transferabil-

ity ratios, and so does lower Euclidean distance. This can be seen in Figure 4.16, which

shows least-square regression models for each metric independently.

The complementary nature of the two metrics suggests that combining the two would

improve their predictive power. This is indeed the case, as can be seen from a similar analysis

in Figure 4.17, where the “combined distance metric” refers to the distance measure given

in Equation 4.19.

4.4.2 Many-Source Sequential Transfer

As suggested by Research Question 6 in section 2.2.7 and by the analysis of transfer in

population seeding above in section 4.3, many-source sequential transfer may be a powerful

approach to performing source selection for knowledge transfer.

In this section I provide a preliminary test of this hypothesis by applying a many-source

population-seeding strategy to the all-pairs MFO benchmark from section 4.3.3.
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Figure 4.17: Association between transferability (on the y axis) and the combined measure
of task distance on the MFO benchmark. The distance matrix and AUC matrix for the
task pairs are shown at the top, and the linear correlation between the two is evident in the
scatter plot below.
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Methods

I performed many-to-one sequential knowledge transfer with a many-source population-

seeding algorithm as follows. I took turns treating each of the 11 unique functions in the

MFO suite as the target task. In each experimental batch, the remaining 10 tasks all serve

as source tasks. I refer to a particular arrangement of 10 source tasks and 1 held-out target

task as a “source-target split” For each choice of target task, I first performed 30 independent

runs of “training”: this involves running the EA on each source task for 2,000 generations

(for a total of 20,000 generations per independent trial—although the runs can be executed

in parallel). I then saved the best-found solution on each of the 10 source tasks into a

repertoire—a file that stores the solution instances from all of the source tasks.

With 30 repertoires thus collected for each source-target split, I then proceed to the

“testing” phase. For each repertoire, I run 30 additional independent runs of the EA on

the target task, using population seeding. In this population-seeding configuration, all

10 individuals from the repertoire are inserted into the initial population. The remaining

µ− 10 = 40 spaces in the population are filled with random individuals.

In total, this experimental procedure led me to collect 330 repertoires on the source tasks

(30 runs for each source-target split), and to perform 9,900 independent runs of the EA on

the target functions (900 for each target task: 30 runs each for each of the 30 repertoires

trained with that target held-out). The underlying EA used in both population seeding

and a single-task control is the same as in section 4.3.3. The parameters are listed again in

Table 4.10 for unambiguity.

Results

The mean area-under-curve (AUC) results for each target task using many-source transfer

are shown in Figure 4.18. The confidence intervals around the mean estimates are very tight,

indicating highly significant differences between the control and many-source algorithm in

most cases.
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Table 4.10: Parameters used for the control and many-source population-seeding algorithms
on all-pairs MFO task suite.

Parameter Value

Genome length L = 50

Parent selection Binary tournament

Mutation type Additive Gaussian on each gene with probability p

Mutation probability p = 1/L

Mutation width σ = 0.05

Crossover probability 0 (no crossover)

Population size µ = 50

Generations for the single-task control 2,000

Generations for transfer during the training phase 2,000

Generations for transfer during the testing phase 2,000

Independent runs 30

Figure 4.18: Mean AUC results on the held-out target task when performing many-source
population seeding from the remaining 10 tasks. Error bars indicate 95% confidence intervals
on the mean.
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Overall, the many-source transfer approach does not show any evidence of negative

transfer. Not only do I observe significant improvement on most target tasks, but the

degree of improvement closely tracks the best improvement that I observed previously in the

pairwise experiments of section 4.3.3. This suggests that the many-source transfer algorithm

is effectively identifying the source task in the repertoire that has the highest relevance to

the target task in each instance.

4.5 Conclusions & Discussion

In this chapter I have present results of my preliminary efforts to understand where sequen-

tial evolutionary knowledge transfer is likely to be most useful, and how source-selection

strategies might expand the set of applications it can be applied to. Throughout this chap-

ter I have kept the notion of a problem class central to the discussion, rather than narrowing

in on a few carefully selected problem instances where I know that transfer is useful. This is

because I believe that the practical usefulness of transfer is determined largely by the sim-

ilarity structures (“taskonomy,” if you like [Zamir et al., 2018]) that occur within problem

domains.

In addition to the no-free-lunch theorems that I have proved and the proof that leading-

ones is O(n log n) with suitable knowledge transfer, the empirical hypotheses I have tested

are summarized in Table 4.11.

4.5.1 Research Question 4: Problem Classes

In Research Question 4, I asked whether no-free-lunch theorems hold for EKT and, relatedly,

what kinds of problem classes positive transfer is likely to occur in with some frequency.

My proofs of NFLTs have answered the first part of the question in the affirmative. What

the implications of these theorems are is more difficult to say (see section 4.2.3), but of the

five problem classes I have introduced in this chapter for the study of EKT, I have shown

through Hypotheses 4.1 and 4.2 that the two least restricted classes exhibit positive transfer
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Table 4.11: Summary of the hypotheses tested in Chapter 4.
Hypothesis Description Result

Experiments on Permuted Max-Ones and Multi-Peaks Problem Classes

Hyp. 4.1 Positive transfer is rare on permuted max-ones. Supported

Hyp. 4.2 Positive transfer is rare on multi-peaks. Supported

Transferability in Instance-Based EKT

Hyp. 4.3 Positive transfer on most max-ones MVG tasks. Supported

Hyp. 4.4 Positive transfer with overlap on leading-ones MVG. Supported

Hyp. 4.5 Positive transfer common on all-pairs MFO tasks. Supported

Hyp. 4.6 Negative transfer rare on all-pairs MFO tasks. Supported

effects very rarely. This seems to indicate that the no-free-lunch principle for transfer still

holds to some degree as its formal requirements are relaxed; or at least, it suggests that

transfer sources are hard to find in worlds where tasks are generated according to simple

random principles. In real-world problem classes, problems are likely to have richer similarity

structures—perhaps because real-world structures share common causal principles, or tend

to have lower complexity in the sense of Kolmogorov [Cover and Thomas, 2006, ch. 14].

I have presented three problem classes where transfer performs well—the MVG max-

ones, MVG leading-ones, and all-pairs MFO benchmarks. In all of these, population-seeding

transfer proves surprisingly effective at exploiting similar tasks—and, especially, of avoiding

negative transfer in the process. From a practical perspective, this bolsters my belief that

population-seeding is worth using as a simple and easily applicable EKT strategy for many

applications.

4.5.2 Research Question 5: Transfer Prediction

Toward Research Question 5, I have presented a preliminary view into how empirical mea-

sures of problem similarity might be used in the future to predict in advance which source

tasks in a problem class may be useful for solving a particular target task. My analysis here

is based on very simple principles: Spearman’s rank-correlation of fitness landscapes, global
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optima distance, and a combination of the two. These methods have clear limitations in the

kind and amount of information they can gather about inter-task synergies. In the future, I

would like to pursue a study of how the tools of exploratory landscape analysis (ELA) [Ker-

schke, 2017, Scott and De Jong, 2016a]. In particular, the two seminal papers in the field

of ELA by Mersmann et al. [2011] and Kerschke et al. [2014] have established a standard

collection of several dozen easy-to-compute landscape features. These can be used as fea-

tures to quantify a variety of different properties of fitness landscapes. A promising area for

future research would be to investigate the predictive power of these ELA features—perhaps

in conjunction with supervised machine learning—for the task of predicting transferability

and performing source-selection.

4.5.3 Research Question 6: Many-Source Transfer

My main contribution in the context of Research Question 6 has been the introduction of and

validation of many-source population seeding as a viable approach to EKT. This strategy

performs remarkably well on the all-pairs MFO suite that I present here, avoiding negative

transfer while being very quick to isolate solutions in its repertoire that are beneficial for

transfer. On a practical level, algorithms of this kind could dramatically reduce the cost

and difficulty of applying EKT to knew problems: an effective many-source algorithm may

save practitioners the trouble of manually testing a large number of candidate source tasks

by trial-and-error. The reality, however, may not be so simple: the good performance I have

shown of many-source transfer on the all-pairs MFO benchmark is directly attributable to

the fact that transfer provides a jump-start effect on these problems. It is the jump-start

effect that allows many-source EKT to rapidly isolate useful material and discard non-useful

material. In more general cases, many-source transfer is likely to be difficult, because the

problem of source selection within a large repertoire of material raises challenges—including

catastrophic forgetting [Rusu et al., 2016] or the memory swamping problem, depending on

the knowledge representation used [Markovitch and Scott, 1988]. My contributions here are

just a preliminary step, then, toward the larger program of understanding and refining the
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potential of many-source algorithms.

The goal of understanding transferability and source selection in evolutionary compu-

tation is currently held back by a lack of adequate benchmarks. In the EKT literature as

it stands today, there are few benchmark environments that are available to test targeted

questions about how knowledge transfer works. The multi-factorial optimization (MFO)

suite of Gupta et al. [2016c] is perhaps the most widespread, and I have used it as one of my

primary benchmarks here, but it consists of a small set of relatively simple real-valued opti-

mization problems that are limited in the insights they can offer into algorithm performance

and generalization. The MFO suite currently occupies a position much like the De Jong

test suite used to occupy for single-task optimization [De Jong, 1975] (indeed, several of the

MFO functions descend from the De Jong suite): a small set of functions that is widely used

as a first proving grounds to test new algorithms upon. The EC community has long moved

past the De Jong suite, however, in favor of more sophisticated benchmarks that do a bet-

ter job of testing specific properties that are useful for understanding applications [Hansen

et al., 2010, McDermott et al., 2012]. Over time, sub-communities within AI often come

to “blacklist” certain problems or benchmarks that have become overused, as it becomes

evident that these problems are not sufficiently informative to form scientifically useful test

subjects [White et al., 2013]. I believe the evolutionary knowledge transfer community can

and should follow a similar trajectory of progressive methodologies.

One solution to the limitations of simple canonical benchmarks is to focus on more

complex, application-centered benchmarks. Zhang et al. [2021b] for example focus on a set

of automatically generated job-shop scheduling problems, and Bali et al. [2019] apply their

A-MFEA-RL algorithm for multi-task reinforcement learning to the Meta-world benchmark

of robotic arm-manipulation tasks [Yu et al., 2020]. This is a useful route to pursue here,

and one that I intend to pursue in future work. But application-oriented benchmarks of

this kind—while often persuasive and realistic—lack the simplicity that is necessary to

understand how the properties of individual problems interact with an algorithm to offer

causal explanations of their behavior and performance. In the future I would like to see
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more problem classes of the kind I have introduced here—the permuted max-ones, multi-

peak, MVG max-ones, and MVG leading-ones classes—studied and expanded upon to allow

the community to build a deeper understanding of the conditions under which transfer and

source selection can be successful, and the conditions under which it is likely to fail.
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Chapter 5: Representation-Based Evolutionary Knowledge

Transfer

Instead of devoting the necessary time and critical thinking required to frame a

problem, to adjust our representation of the pieces of the puzzle, we have become

complacent and simply reach for the most convenient subroutine, a magic pill

to cure our ills. The trouble with magic is that, empirically, it has a very low

success rate, and often relies on external devices such as mirrors and smoke.

—Michalewicz and Fogel [2013]

In this chapter I address my final remaining research questions: whether genetic repre-

sentations can be automatically learned for evolutionary algorithms to facilitate knowledge

transfer (Research Questions 8 and 7; see section 2.2.7). If successful, representation-based

knowledge transfer may permit information to be learned and transferred a higher level of

abstraction than is possible with the instance-based methods that currently dominate the

EKT literature.

5.1 Multi-Task Evolution via Shared Layers

In this section, I experiment with an implicit kind of representation learning that occurs

naturally in Cartesian genetic programming (CGP).1 The essential feature of this applica-

tion is that the solutions being evolved are themselves executable objects—and in particular

Boolean functions. It is straightforward to represent executable objects with graph struc-

tures, in which some sub-components feed into other sub-components that contribute to the

function’s output.
1I have published all the results from this section in Scott and De Jong [2017].
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In particular, a key feature of CGP is the natural way in which it represents the sharing

of sub-graphs within a function. I exploit this property to achieve multi-task knowledge

transfer by evolving a single graph structure that uses multiple output to encode solutions

to different tasks.

Among the transfer methodologies surveyed and categorized in Chapter 2, the multi-

task CGP algorithm can be seen as either an instance-based knowledge representation or

a representation-based one. This is because where executable objects are concerned, the

distinction between a concrete function instance and the representation of computational

primitives that those functions are built from is blurred. The driving motivation here is the

recognition that, even if complete solutions to a problem are not reusable for other tasks,

some partial solutions or computational sub-components may perform operations that have

some generalized usefulness across tasks. The challenge lies in identifying those reusable

sub-components and effectively exploiting them.

In this section I present results of multi-task CGP applied to the task of synthesizing a

suite of 9 two-valued Boolean functions. I narrow my focus to Cartesian genetic programming

for these experiments because CGP lends itself especially naturally to what I call a shared

sub-graphs model of information reuse. In many application domains, candidate solutions

to a task can be represented as a graph structure that computes some function over a set of

input nodes. The internal nodes of this kind of structure compute intermediate results, which

are converted by further processing into output values which (in a successful solution) solve

the application’s computational objective. Early work on multi-task learning for pattern

recognition tasks quickly recognized that the intermediate results of such computations have

the potential to be reused across related tasks, even in cases where the complete graph is too

specialized to be reused [Caruana, 1998]. In contemporary neural network vocabulary, this

approach is known as the hard parameter sharing strategy for multi-tasking (as opposed to

soft parameter sharing, which maintains entirely separate graphs for different solutions, with

a soft constraint that encourages them to share information) [Crawshaw, 2020]. Specifically,
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Shared input layer

Shared internal components

Output for task 1 Output for task 2

Figure 5.1: In the shared sub-graphs model of multi-task evolution, a single composite
individual aims to solve multiple tasks simultaneously, potentially reusing partial solutions
across two or more tasks.

an otherwise single-task algorithm that operates with graphs can be converted into a multi-

task approach by simply augmenting the graph with a separate set of output nodes for each

task being solved, as shown in Figure 5.1. This basic idea can be generalized to optimization

algorithm design. It gives us a means of incorporating knowledge transfer into existing

single-task algorithms, instead of turning to a more complex, special-purpose algorithm.

The objective in this case is to evolve the edges that connect the nodes so as to synthesize

a circuit that computes several distinct Boolean functions. As mutation alters which nodes

are connected, it has the possibility of causing the sub-graph that computes the output for

one task to reuse a portion of the sub-graph that computes the output for another task. As

a result, mutation itself effectively works to solve a restricted version of the source selection

problem. While in one sense, source selection has already been performed when a human

decides on the set of objectives that a multi-task algorithm will be applied to, the algorithm

must still solve the online problem of determining which tasks information should be trans-

ferred among within this set, which specific information from those knowledge sources should

be transferred, and in what order. By using the shared sub-graphs model to convert a stan-

dard, single-task version of CGP into a multi-task CGP algorithm, I investigate the ability

of this evolutionary approach to automatically find opportunities to reuse information.
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Hypotheses

At a high level, if the multi-task approach leads to a performance boost, it indicates that

some form of beneficial knowledge reuse is occurring. A natural question, then, is to look

for such an improvement:

Hypothesis 5.1. A multi-task approach to Cartesian genetic programming will be able to

reduce the amount of computational resources that are required to solve moderately sized sets

of tasks (on the order of 10).

Now, since multi-task algorithms aim to meet several criteria for success, the demands

posed by the various tasks may sometimes interact in complex ways over the course of an

evolutionary run. The multi-task approach will be successful when these interactions are

generally helpful, as when progress on one task directly facilitates concomitant progress on

another task. But even when information sharing is helpful overall, it may be that the

opposite occurs in some cases or at some points during a run: progress on one task may

sometimes delay progress on another. Such negative effects are often referred to with the

term task interference, which is borrowed from psychology [Pashler, 1994]. Such interference

can affect the efficiency of a multi-task algorithm even if it doesn’t lead to fully fledged

negative transfer in the overall approach.

Hypothesis 5.2. Multi-task Cartesian genetic programming will exhibit task interference.

In particular, one of the ways that task interference may appear is through mutations that

improve the solution to one task by damaging the solution to another. Destructive mutations

of this kind may lead to an unnecessarily inefficient multi-task optimization procedure.

Following this intuition, one might mitigate the effects of this kind of task interference by

explicitly protecting components of successful solutions from mutation:

Hypothesis 5.3. If the point-mutation operator is biased to prefer leaving solutions to suc-

cessfully solved tasks intact, it will improve the performance of multi-task CGP on moderately

sized sets of tasks.
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The hypothesis that mutation weighting of this kind will be beneficial is not a forgone

conclusion. It’s possible, for example, that by seeking to protect established components

of the graph from the destructive effects of mutation (thus mitigating one form of task

interference), the algorithm’s long-term ability to evolve shared components that are useful

across multiple tasks may be impeded (exacerbating another form of task interference).

Background on Cartesian Genetic Programming

Cartesian genetic programming (CGP) is one of several approaches to the evolution of pro-

grams and/or graph structures that are currently popular in the evolutionary computation

community [Miller and Thomson, 2000]. For our purposes in this study, the main advantages

of the Cartesian approach over other common representations (such as tree-based GP) are

twofold. First, CGP explicitly evolves directed acyclic graph (DAG) structures. This makes

it straightforward to represent structures that reuse one or more sub-components across

several regions of a larger solution. “Graphs, by definition,” notes Miller, “allow the implicit

reuse of nodes, as nodes can be connected to the output of any previous node in the graph”

[2011, p. 18–19], whereas more traditional genetic programming approaches lend themselves

less naturally to such reuse. Second, CGP often performs remarkably well with small pop-

ulation sizes and with a point-mutation operator as its only variation strategy. This makes

for a very simple algorithm. CGP algorithms have also been shown to be resistant to devel-

oping bloat—i.e., the widespread problem of rapidly growing program length that plagues

most genetic programming systems [Miller and Smith, 2006]. These features are attractive

to us here because they make it possible to analyze the behavior of the algorithm in isolation

from the more complex dynamics that would likely be introduced by crossover operators,

program bloat, and larger population sizes.

Since its introduction in the early 2000s, several alternative variations of CGP have been

introduced to offer support for crossover operators, cyclic graphs, encapsulated components,

“snapping” connections, and other advanced features [Clegg et al., 2007, Kaufmann and

Platzner, 2008, Khan et al., 2010, Wilson et al., 2018]. Except where otherwise specified,
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Each n-tuple of genes defines a node and its inputs.

Figure 5.2: An example of how a CGP genome is decoded into a graph structure, envisioned
here as a logic circuit.

my focus here is on the original, “standard” CGP algorithm.

The distinguishing feature of CGP is that it uses a linear, fixed-length genome to repre-

sent the nodes and edges of a graph-based solution to some problem. The graph itself can

be thought of as the solution’s “phenotype.” The nodes in this graph are laid out in two

dimensions along CGP’s eponymous Cartesian grid, as illustrated in Figure 5.2. Each of

these grid nodes computes some function over their inputs. In addition to the nodes lying

along the grid, the graph as a whole is fed a fixed number of external inputs and outputs,

which act as non-computational nodes. Edges between all the nodes collectively form a

directed acyclic graph that extends from the external inputs to the external outputs.

The graph topology of CGP candidate solutions is constrained in a few different ways.

Notably, the acyclic property of the graph is enforced by requiring that a node in a given

column can only take its input from nodes in previous columns—thus imposing a topological

sort over the graph’s nodes. Each computational node has a fixed number of inputs, and each

of these inputs must be connected to exactly one other node. As a result, the total number

of edges in each graph is constant throughout the execution of the algorithm. Each node’s
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output, meanwhile, is free to be used as an input by zero or more other nodes that occur

in later columns. The standard CGP algorithm additionally takes three parameters that

constrain the DAG topology, viz. the number of rows and columns nr and nc in the Cartesian

grid, and a “levels back” parameter l that specifies the maximum number of columns that

a connection is allowed to “skip over” to connect two nodes. In practice, however, there is

often no observed performance advantage to restricting the pattern of connections in this

way. When this is the case, and when no restrictions on the graph topology are required by

the problem domain itself, the best performance is achieved by fixing nr = 1 and l = nc.

It would be misleading, then, to place undue emphasis on the two-dimensional “Cartesian”

aspect of Cartesian genetic programming: CGP is simply a strategy for evolving directed

acyclic graphs, which may or may not be constrained to follow a particular layered grid

pattern.

While a candidate solution produced by CGP always contains exactly nr · nc compu-

tational nodes, usually only a subset of these nodes lie on a path to an external output.

A substantial fraction of the nodes typically go unused in a given solution, and can be

discarded without affecting the behavior of the function that the graph computes. This

“intron” material has a significant effect on the algorithm’s evolutionary search strategy, as

mutations can easily activate and deactivate portions of the graph by altering the edges that

connect various components.

As for the genome, CGP represents each computational node as a tuple of genes

(fi(·), a1, . . . , an). These values encode the function fi(·) that the node computes, along

with a sequence of integers a1, . . . , an which identify the nodes that each of its n inputs are

connected to. For example, a node that computes the XOR of the outputs of nodes 4 and 5

would have the corresponding tuple (XOR, 4, 5). By convention, the graph’s external inputs

are given the integer identifiers 0, 1, . . . , Nin where Nin is the number of external inputs.

The integer identifiers for the computational nodes then begin with Nin+1, Nin+2, and so

on. In the graph of logic circuit elements shown in Figure 5.2, for example, the circuit’s two

inputs are labelled 0 and 1, respectively, while the four computational nodes are numbered
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2, 3, 4, and 5. The full genome in CGP is formed by concatenating the tuples for all of

the nodes, along with an additional Nout integral values, where Nout is the fixed number

of external outputs that the graph computes. These values indicate which node’s output

values should be used as the graph’s external outputs.

For simplicity, every node is assumed to have the same arity (number of inputs) n. If the

function set contains functions of differing arity, n is set equal to the maximum arity. Then,

if a node is assigned a function that takes less than n inputs, the extra inputs are simply

ignored during the evaluation of the graph. This allows CGP to work with a fixed-length

genome even as the arity of individual nodes changes over the course of evolution.

Standard CGP uses a simple point-mutation operator as its variation mechanism. At

each generation, each element (gene) in an individual’s genome independently undergoes

mutation with probability m, where m is a fixed global mutation rate. Recall that a CGP

genome contains two kinds of genes: function genes, which are categorical and assume values

from some pre-specified function set, and connection genes, which assume integer values. If

a function gene is mutated, its value is simply replaced with a randomly chosen function

from the function set. Likewise, when a connection gene is mutated, its value is replaced

with a randomly selected integer. The new integer is chosen so as to respect the graph

constraints described above.

The effect is that mutation can alter connections among nodes, and it can alter the

function that a node computes. Nodes are never added or removed, however, and the total

number of nodes remains fixed.

CGP traditionally operates with a (1 + λ)-style, overlapping-generations population

model. In this model, truncation selection is used to select the highest-fitness individual

as a parent, after which λ offspring are generated by applying the mutation operator. The

value of λ is typically a small integer (often 4). The fittest individual from the combined

parent-offspring population is then selected as the parent for the next generation. Impor-

tantly, if no offspring individual has fitness superior to the parent, but some offspring has

equal fitness to the parent, then the algorithm selects the offspring. This ensures that genetic
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drift can occur in the absence of immediate fitness improvements.

In evolutionary algorithms in general, a (1+λ) approach normally induces a notoriously

greedy search strategy. Its use here stands in sharp contrast with the very large population

sizes and diversity-preserving selection operators that are typically used with other genetic

programming algorithms. Several studies of CGP’s behavior have indicated that genetic

drift plays a substantial role in allowing it to achieve high-quality search results with such

a simple population model [Vassilev and Miller, 2000, Yu and Miller, 2001, 2002].

Methods

The initial set of tasks that I will use to investigate the hypotheses presented above is the

9-LOGIC suite. This is a set T of nine basic logic function synthesis tasks that were originally

used by Lenski et al. [2003] to demonstrate that complex tasks are sometimes easier to solve

in conjunction with other tasks than they are to solve directly:

T = {AND, AND_N, EQU, NAND, NOR, NOT, OR, OR_N, XOR}.

The details of these functions are given in Table 5.1. With the exception of NOT, all of them

have an arity of 2, and they output exactly one Binary value.

Because these objective functions are relatively simple logic tasks, our primitive set (i.e.,

the functions that can be used on the nodes of the graphs evolved by CGP) consists only of

{NAND}. Real-world applications almost always use a much less rudimentary primitive set,

but I postpone the investigation of more complex objectives and realistic primitive sets to

future studies.

Using the shared sub-graphs approach to multi-task optimization with CGP requires

only very minimal modifications to the original algorithm. CGP has often been applied

to synthesize graph structure solutions to single tasks with more than one output. The

approach I take here is simply to partition the outputs, such that different output variables

are assigned to different tasks. Specifically, I represent solutions to all nine tasks at once by

225



Table 5.1: The Boolean functions that make up the 9-LOGIC suite.

Objective Description

AND x and y

AND_N x and ¬y

EQU (x and y) or (¬x and ¬y)

NAND ¬(x and y)

NOR ¬x and ¬y

NOT ¬x

OR x or y

OR_N x or ¬y

XOR (x and ¬y) or (¬x and y)

constructing a function over two Boolean inputs with nine Boolean outputs—one for each

task.

To evaluate the fitness of a solution, I enumerate all of the entries of the truth table for

each objective function. In general, truth tables grow exponentially in the number of inputs,

and this is not a tractable way to evaluate the fitness of Boolean functions—but in this case

each function has only 22 = 4 truth table entries, so an exhaustive approach to fitness

evaluation is feasible. I combine the 9-LOGIC objectives into a single, composite objective

based on the truth table shown in Table 5.2. During fitness evaluation, each individual

produces 9 · 4 = 36 Boolean output values (one for each function and truth table row). The

individual’s fitness is equal to the fraction of these Boolean values that correctly match the

target behavior.

Because each task has the same number of outputs, this approach to fitness calculation

is equivalent to averaging the separate task-specific fitnesses to arrive at a single scalar

fitness value. More complex methods for utilizing fitness information from multiple tasks

are of course conceivable—perhaps based on lexicase selection, for instance [Helmuth et al.,

2015]. In keeping with the theme of this chapter, however, I aim to start with the simplest
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Table 5.2: Truth table representation of the composite objective function I use for multi-task
Cartesian genetic programming.

x y AND AND_N EQU NAND NOR NOT OR OR_N XOR

F F T T T T T

F T T T T T

T F T T T T T

T T T T T T

approach to multi-task problem-solving, with the aim of creating a baseline that can be

improved upon with future work.

In the standard (multi-task) CGP configurations discussed so far, every gene has an equal

probability of being mutated. Call this the constant mutation weighting case. To approach

Hypothesis 5.3, I introduce two additional weighted mutation schemes which avoid mutating

genes that belong to a successful solution to a task.

In particular, consider an individual with a genome x⃗. I say that gene i contributes to

a task t ∈ T if the gene encodes either an edge or a node that lies on a path from a graph

input to one of the outputs for task t. Let Ci(x⃗) denote the set of such tasks that the ith

gene’s circuit element contributes information to, and let fj(x⃗) be the fitness of x⃗ on the

jth task. Then I define linear mutation weighting as follows:

mlinear
i (x⃗) = a+

b− a

∥Ci(x⃗)∥
∑

j∈Ci(x⃗)

(1− fj(x⃗)),

where mlinear
i (x⃗) gives the mutation rate for the ith gene of x⃗. Intuitively, this offers us a

mutation rate that scales linearly on [a, b] with the average value of x⃗’s fitness on the tasks

Ci(x⃗) that gene i contributes to.
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I also test an exponential mutation weighting scheme:

m
exp
i (x⃗) = a+ (b− a) exp

 c

∥Ci(x⃗)∥
∑

j∈Ci(x⃗)

fj(x⃗)

 .

Here I likewise have a mutation rate that scales over [a, b], except now scaling occurs ex-

ponentially with the average fitness of the tasks i contributes to. The scaling constant c is

assumed to be negative.

Multi-task optimization approaches can be applied in a number of different ways. It

thus especially important to be clear about the kind of performance goals I am pursuing in

a particular experiment. One may wish to solve all the tasks in the task set, for instance, or

one may be interested only in solving one particular target task (using information gleaned

from other tasks strictly as a means toward that end). The objective I have set for this

experiment takes the former approach: the goal is to find a solution for each of the nine

tasks, assuming that none of them have been solved before the algorithm begins to run.

The usual means of measuring computational cost in an evolutionary computation con-

text is to examine the number of fitness evaluations required to meet some stopping criterion.

In CGP, however, the cost of evaluating an individual depends on the number of nodes that

must be executed in their associated graphical phenotype. Because the size of the graphs

is itself a tunable parameter, a fair comparison of CGP algorithms must take the relative

graph sizes of competing methods into account. With this in mind, I take the product of the

total number of nodes in an individual and the number of fitness evaluations the algorithm

performs as my measure of cost:

cost(x) = nc(x)nr(x)evals(x)

I refer to the units of this quantity as node-evaluations.2

2I have used the total number of nodes nc(x)nr(x) as my estimate of the cost of evaluating a single
individual in CGP. In reality, however, efficient CGP implementations are able to avoid spending unnecessary
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For the multi-task CGP algorithms, then, my measure of performance is the number

of node-evaluations that are necessary on average to find a solution to each of the nine

tasks. I compare these results against a similarly-configured single-task CGP approach that

also aims to find solutions to each of the nine tasks, but without the use of any cross-task

information sharing.

Parameter Tuning

Putting all these pieces together, I have one single-task CGP algorithm and three multi-

behavior algorithms to test the performance of (a constant-mutation case, the linear case,

and the exponential case). In order to achieve a fair comparison, I perform a parameter sweep

over CGP’s free parameters to select configurations of each algorithm that solve the suite of

tasks in the least computational effort on average. Preliminary experiments indicated that

there was no benefit to constraining the CGP graphs through the use of row constraints or

the “levels back” parameter, so I fix the number of rows nr = 1 and the levels back l = nc.

Following convention for these simple experiments, moreover, I fix the number of offspring λ

to 4, yielding a (1+4)-style EA. For the weighted mutation operators, the minimum mutate

rate a is fixed at 0.001, and the exponential scaling factor c is fixed to -3.

These decisions leave just two parameters unspecified, which are easy to set via a grid

search: the constant mutation rate m (or, in the case of the weighted operators, the maxi-

mum mutation rate b), and the number of columns nc. Because I set nr = 1, the total number

of computational nodes in the CGP graph is equal to nc. All the parameters involved in the

four algorithms are summarized in Table 5.3.

For each of the three multi-task CGP approaches, I conducted a two-dimensional param-

eter sweep, taking a sample of n = 25 runs for each parameter configuration, with each run

carried out to a budget of 500,000 node-evaluations. From these results, which are visualized

in Figure 5.3, I selected parameter configuration that was able to find a solution to each of

computation effort to calculate the state of unused “intron” nodes within the graph. Since these introns often
make up a significant fraction of a CGP phenotype, this can yield non-negligible cost savings. The node-
evaluations metric that I use here, then, should technically be viewed as an upper bound on performance.
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Table 5.3: Parameters used by all four CGP algorithms under study.

Parameter Value Description

m (Tuned) Mutation rate (for constant weighting)

b (Tuned) Maximum mutation rate (for linear/exponential weighting)

nc (Tuned) Number of columns in the CGP grid

nr 1 Number of rows in the CGP grid

l = nc Levels back

λ 4 Number of offspring per generation

a 0.001 Minimum mutation rate (for linear/exponential weighting)

c -3 Exponential mutation weighting constant
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Figure 5.3: Parameter sweep results for the three multi-task CGP algorithms. Altitude
indicates the number of node-evaluations that were necessary to find a solution to each of
the nine tasks, averaged over 25 independent runs.

the nine tasks with the smallest number of node-evaluations on average.

For the single-task control, I tuned the parameters for each task independently. That is,

rather than selecting one configuration that performs best over all nine tasks on average, I

chose the nine configurations that performed best on each respective task. Because it allows

for specialization on each task, this parameter tuning strategy is generous to the single-task

approach. The idea is to ensure that our control sets a strong baseline to compare against.

The results of the parameter sweep, again based on n = 25 runs per grid point and a budget

of 500,000 steps, are illustrated in Figure 5.4.
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Figure 5.4: Parameter sweep results for the single-task CGP control, shown here for six of
the nine objectives. Altitude indicates the number of node-evaluations that were necessary
to solve the task, averaged over 25 independent runs.

As a result of this parameter-tuning process, some algorithms are configured to use

different circuit sizes than others. This is why it is important to measure performance in

terms of node-evaluations, rather than raw fitness evaluations.

Results

The algorithm configurations that were selected after parameter tuning are shown in Ta-

ble 5.4. When I ran the tuned algorithms on the 9-LOGIC suite, the individual tasks displayed

a clear progression of difficulty. As can be seen in the distribution of convergence times for

the single-task control, shown in Figure 5.5, by far the easiest task to solve is NOT, whereas

EQU, XOR, and NOR are dramatically more difficult.

On average, I find that the multi-task approaches with constant and exponential weight-

ing are able to find a solution to each of the 9 tasks after considerably fewer node-evaluations
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Table 5.4: Parameter configurations that were selected after tuning. The total cost of solving
all the tasks with the single-task approach are tabulated by summing the cost of solving
each task independently.
Algorithm Mutation Weighting Task Mutation Rate CGP Layers Avg. Steps Avg. Node-Evals Evals

Single-Task Constant NOT 0.015 10 1 40 4

Single-Task Constant NAND 0.045 10 7 280 28

Single-Task Constant OR_N 0.050 10 16 640 64

Single-Task Constant AND 0.045 10 31 1240 124

Single-Task Constant OR 0.050 20 25 2000 100

Single-Task Constant AND_N 0.050 20 50 4000 200

Single-Task Constant EQU 0.040 20 89 7120 356

Single-Task Constant XOR 0.050 40 38 6080 152

Single-Task Constant NOR 0.045 30 65 7800 260

Single-Task Constant Total 322 29200 1288

Multi-Task Constant All 0.050 40 116 18560 464

Multi-Task Exponential All 0.045 60 91 21840 364

Multi-Task Linear All 0.050 60 195 46800 780
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Figure 5.5: Distribution of the computational effort required by the single-task control
across each of the nine tasks. A handful of outliers are omitted from this plot.
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Figure 5.6: Distribution of the computational effort required by each algorithm to solve all
nine tasks. A handful of outliers are omitted from this plot.

time than the single-task method (see Figure 5.6). The performance improvement these al-

gorithms show over the single-task control is statistically significant at p < 0.005 (using

a Wilcoxon rank-sum test to compare median performance). This result offers evidence

that is consistent with a positive reply to Hypothesis 5.1: in the illustrative context

of the 9-LOGIC tasks, a multi-task approach to CGP does show improved efficiency over a

single-task strategy.

This evidence implies that a simple point-mutation mechanism operating on a graph

structure is by itself able to search for and find effective opportunities to reuse information

across a moderately sized set of tasks.

The second hypothesis (Hypothesis 5.2) regards task interference. Two pieces of evidence

emerge from these experiments that suggest that, despite the positive overall performance

results, significant task interference does still occur in multi-task CGP.
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Figure 5.7: Best-of-generation fitness trajectories for two independent runs of the multi-
task CGP method with constant mutation. The algorithm selects for improvements to
composite fitness (solid black line), leading to improvements in the solutions to individual
tasks (light lines).

First, when I plot the best-of-generation fitness for individual runs of multi-task CGP on

the nine tasks, it becomes clear that the evolutionary process often achieves improvement on

one task at the cost of a decrease in performance on some other task. Figure 5.7 shows two

different runs of multi-task CGP with constant mutation weighting, with individual best-of-

generation curves plotted for each of the nine tasks, and the composite objective function

made up of all of the tasks (thick black line, denoted “All”). Because the algorithm uses

truncation selection, the composite fitness is monotonically increasing. But many mutations

still occur that lead to a decrease in the fitness of a specific subtask, balanced out by an

increase in another. These movements show that a trade-off is operating, caused by the

decision to require sub-graph material to be shared across multiple tasks.

The broader effect of the interference engendered by multi-tasking is visible in Figure 5.8.

Here I break down the performance of the multi-task CGP methods by task. Each box indi-

cates the number of node-evaluations that were required to achieve a solution to a particular

task. The single-task results on each task are also shown for comparison. In general, the

multi-task algorithms make for relatively poor single-task problem solvers. While they are
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are omitted from this plot.

usually able to solve all nine tasks with much less effort than it would take to solve each task

independently, the overhead of multi-tasking does slow them down from the perspective of

an individual task.

Considerably more study will be necessary to understand how task interference works in

multi-task genetic programming systems of this kind. But at a high level, I find the data

consistent with an affirmative reply to Hypothesis 5.2: I do observe task interference

in multi-task CGP.

The median performance of the exponential mutation-weighting scheme is statistically

indistinguishable from the constant mutation rate approach (Wilcoxon rank-sum, p > 0.005).

As is evident from Figure 5.6, moreover, I observe a severe performance degradation over all

other alternatives when applying the linear weighting approach (p < 0.005). The evidence

remains inconclusive, then, when it comes to Hypothesis 5.3.
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5.2 Representational Transfer for Real-Valued Optimization

In this section, I consider a different (more explicit) approach to learning representational

information for the purposes of knowledge transfer. Whereas in section 5.1 I relied on the

graph structure of an instance of an executable object to produce a reusable representation,

in this section I consider real-valued optimization problems that do not involve executable

objects. Instead, I explicitly learn a genotype-to-phenotype map for a class of problems,

and show that the resulting representation transfers beneficially to new problem classes.

The research community often thinks of evolutionary algorithms as stochastic processes

that search a genotype space G for solutions that optimize some fitness function f . Geno-

types, however, are often abstract representations that can be conveniently manipulated by

evolutionary operators, but that have no obvious meaning by themselves as solutions to a

problem. Importantly, then—as I discussed in section 2.2.2—in many applications, fitness

functions aren’t defined over genotype space, but instead over a phenotype space, where can-

didate solutions are described in a fashion that is natural to the problem domain. A fitness

function for traveling salesman problems takes graph tours as input, for instance, while a

fitness function for real-valued optimization accepts vectors in Rn. Here, it is necessary to

specify genotype-to-phenotype mapping R (a.k.a. representation, or encoding) as part of the

EA, which transforms individuals from their genetic representation (such as a bitstring) into

a corresponding phenotype (the input to the fitness function).

At a high level of abstraction, the design decisions that go into constructing a simple

(µ, λ)- or (µ + λ)-style EA include choosing the reproduction and selection operators and

their parameters, the values of µ and λ, and a stopping condition. In particular, how-

ever, the search behavior of the algorithm depends heavily on the choice of representation.

This is because the representation determines the pattern of phenotypic change that oc-

curs when reproductive operators are applied to individuals’ genotypes. The selection of a

good representation for the problem domain is commonly seen as one of the most important

components of EA design—a view that is consistent with biologists’ understanding of the
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crucial role that genotype-phenotype relationships play in natural evolution [Gerhart and

Kirschner, 2007].

In this work I present what is to my knowledge one of the first demonstrations of repre-

sentation learning that has been created for evolutionary algorithms. I propose a relatively

simple meta-representation—a representation for representations—that allows a restricted

class of genotype-to-phenotype maps to be specified that convert fixed-length bitstrings into

real-valued vectors. The familiar binary encoding is a special case of this general class of

bitstring encodings. I find that I am able to use meta-evolution to learn a representation

that makes it easy to solve a synthetic set of training, validation, and test problems. I also

show that the resulting representation generalizes in the sense that it is useful on other

problem instances from the same problem class and dimensionality it was trained on, and

even on completely new problems from outside the class.

Methods

A genotype-to-phenotype mapping defines the effect that each gene has on the phenotypic

representation of a solution. In traditional binary representations for real-valued optimiza-

tion, each bit in the genome has an independent additive effect on exactly one phenotypic

trait. For instance, the bitstring g⃗ = 0101 can be converted into the real-valued phenotype

p = 5.0 by interpreting the two non-zero bits as 20 = 1 and 22 = 4 and collecting the sum.

In binary code, A) since the effect of each bit is purely additive, there are no non-linear

interactions among genes with respect to the phenotype, and B) the magnitude of each bit’s

impact varies exponentially, allowing both small and large jumps to occur in phenotype

space when bit-flip mutation is applied.

I construct a general class of bitstring representations that preserve these two properties.

I also allow our mappings to have the property of pleiotropy—genes may influence multiple

traits. Let a phenotype consist of a vector in Rn. Each element of the phenotype vector

is a phenotypic trait. I define a mapping R : Bm 7→ Rn by assigning a weight wij to every

possible gene-trait interaction. Each gene is further assigned a factor si ∈ R, which serves
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as an exponent that scales the magnitude of all the gene’s phenotypic effects. Specifically,

let g⃗ ∈ Bm be a bitstring genome corresponding to an individual in the sub-EA. Then each

trait in the corresponding phenotype vector p⃗ ∈ Rn is determined by the equation

pj =

m∑
i=1

2siwijgi. (5.1)

So when gi is 1, a value proportional to wij is contributed to each trait pj for all j ∈ {1..n}.

When gi is 0, the wij ’s contribute nothing to p⃗. If the si’s are uniformly distributed, then

the magnitude of each gene’s effect will be exponentially distributed. It is sometimes helpful

to think of the parameters in Equation 5.1 as a set of m vectors of length n. The bits in the

sub-EA bitstring g⃗ select which of the vectors 2siw⃗i are added together in the phenotype

space Rn to collectively form a candidate solution:

p⃗ = R(g⃗) =
m∑
i=1

2siw⃗igi. (5.2)

Each mapping of this type can be seen as a linear transformation from the space of bitstrings

to Rn, and any linear transformation between these spaces can be encoded by an appropriate

choice of weights. Accordingly, I refer to mappings of this type as linear pleiotropic encodings.

Since I have allowed gene effects to be pleiotropic, these mappings bear some similarity

to a representation once explored by Altenberg [Altenberg, 1994]. Equation 5.1 can also be

interpreted as a feed-forward neural network with linear activation functions (Figure 5.9).

Since I am limiting our choice of mappings to linear transformations that take binary in-

puts, however, the expressive power of this class of representations is more limited than the

complex neural network mappings studied by Simões et al. [Simões et al., 2014].

Fully m · (n+1) real-valued constants are required to specify the parameters that make

up a single linear pleiotropic mapping R. The question I pose here is whether it is feasible to
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Figure 5.9: A linear pleiotropic encoding can be interpreted as a feed-forward neural network,
in which genes have an additive effect on phenotypes.

automatically search this high-dimensional parameter space for a mapping that is effective

on a class a problems.

For the purpose of meta-evolution, I group the parameters of a linear pleiotropic encoding

into a sequence of m tuples of the form (si, w⃗i) ∈ R×Rn. As is made clear from Equation 5.2,

the values in the ith tuple of a meta-individual completely define the effect that the ith bit

of a sub-EA individual has on the phenotype. This sequence of tuples forms the meta-level

genome, and I treat each tuple as a meta-level gene.

I use a generational evolutionary algorithm with two-point crossover to tune the values

of the tuples (s, w⃗). Each tuple in a child has a chance of being selected for mutation. When

the ith tuple is selected for mutation, I add values drawn i.i.d. from a normal distribution

to both si and to each element of w⃗i, unless otherwise specified. The number of genes m

that the sub-EA uses to represent solutions in Rn is a free parameter that must be chosen a

priori. I opt to use 20 genes per dimension, simply because traditional bitstring encodings

typically need about that many in order to have a sufficiently fine-grained ability to cover

the phenotype space. The remaining design decisions I use to implement the meta-EA are

detailed in Table 5.5.
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The exponential scaling factors si do not add to the expressive power of the meta-

representation scheme. Any linear pleiotropic mapping defined by a sequence of tuples

(si, w⃗i) can be represented by an equivalent mapping (1, v⃗i), where vij = 2siwij . The merit

of explicitly including the si’s is that it changes how the meta-EA’s mutation operator affects

vectors that differ exponentially in length. When si is large, a small Gaussian perturbation

of the values in w⃗i has a large effect on the vector 2siw⃗i. When si is small, perturbing the

values of w⃗i has a small effect, allowing the shorter vectors to be fine-tuned.

The fitness I assign to a candidate mapping R should reflect R’s ability to serve as a

useful component of a sub-EA’s search heuristic. One way to measure this is to plug R into

a sub-EA, and then run the sub-EA several times on an objective function f : Rn 7→ R and

see how it does. This raises the concern of over-fitting, however: if the algorithm succeeds

in adapting an encoding R that can easily solve f every time, has it found a good search

heuristic, or has it simply memorized the location of f ’s global optimum by encoding it into

R? If my goal is only to optimize a single difficult function f , then I don’t care about over-

fitting. If one wishes to reuse R to solve new instances from a class of problems, however,

one needs to encourage the meta-EA to find a more general solution.

Here I assume that I have at our disposal a training set composed of several examples

from a class of problems, all of the same dimensionality. Such classes arise frequently in

algorithmic applications—traveling salesmen problems with 20 cities, for instance, or room-

scheduling problems with 20 rooms. To assign fitness to a mapping R, I plug R into a

sub-EA, and run the sub-EA once on each problem in the training set. The average best

fitness the sub-EA achieves on the training problems becomes R’s fitness.

For this study, I synthesize a problem domain that is diverse enough to demonstrate the

ability for the meta-EA to learn, but that is still relatively simple to analyze. I define the

translation class of f , T (f), as the set of all functions created by applying an arbitrary offset

to f in its input space within some bounds. Every element of T (f) has the same shape,

but the location of the global optimum varies. As such, it is not sufficient to construct a

representation that memorizes the location of the optimum.
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Table 5.5: Default configuration used in the meta-EA experiments, except where otherwise
specified.

Component Meta-EA Sub-EA

Type (µ+ µ) (µ+ µ)

Pop. Size (µ) 50 50

Gene Type (s, w⃗) ∈ R× Rn b ∈ B

Genes/dimension 20 20

Initialization Bounds s ∈ [−4, 4], wi ∈ [−1, 1] n/a

Parent Selection Binary tournament Binary tournament

Reproduction 2-point crossover 2-point crossover

Mutation Gaussian perturbation of all values (σ = 1) Bit-flip

Mutation Rate 1/L chance per gene 1/L

Mutation Bounds Soft n/a

Objective Mean best fitness of 10 sub-EA runs T (Valley) with no rotation

Stopping Condition 500 generations 40 generations without improvement

For the objective f I choose the “valley objective” defined in Bassett [2012]:

f(x⃗) = 10δ(x⃗, L) + ∥x⃗− o⃗∥, (5.3)

where L is some line that passes through the optimum o⃗, and δ(x⃗, L) denotes the distance

between x⃗ and the nearest point on the line. In two dimensions, this function defines a valley

with linearly sloping sides (via the first term) and a slight conical gradient that prevents its

floor from being flat (via the second term) – see Figure 5.10. I define the translation class

T (Valley) such that random translations are applied within the bounds [−15, 15] along

each dimension.

Hypotheses

I have defined a meta-evolutionary scheme for representation learning and a synthetic prob-

lem class to exercise it on—namely the translation class T (Valley). I now investigate the

meta-EA’s ability to learn a genotype-phenotype mapping on a set of training instances that
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Figure 5.10: The valley objective.

is useful for solving new problem instances.

First, I have made a number of design decisions in the implementation of the meta-EA

itself, not all of which may be optimal. In particular, I included an extra scale parameter

si in each gene of the meta-representation. Is this useful? Or is it superfluous? This is the

first hypothesis in this section:

Hypothesis 5.4. It will be easier to improve the training fitness of a mapping R on the

translation class T (Valley) if one mutates both the magnitude and the elements of each

vector in the mapping than if one only mutates one or the other.

Next, I predict that one ought to be able to learn a genotype-to-phenotype map that

allows us to effectively solve arbitrary instances of T (Valley). This is serves as a proof of

concept for this approach to learning representations:

Hypothesis 5.5. Let R be a linear pleiotropic encoding evolved to solve instances of the

translation class T (Valley). Then R will perform competitively against traditional bitstring

encodings when applied to new instances of T (Valley).

Provided that I succeed in learning a good mapping for T (Valley), it would be useful if

242



I could say something about why the learned linear pleiotropic representation works, rather

than just whether it works. I may be able to determine a pattern in the resulting map that

corresponds to features of the landscapes it was trained on:

Hypothesis 5.6. The learned linear pleiotropic encoding for T (Valley) will contain a con-

centration of vectors that are aligned with the bottom of the valley.

Now, one might expect that since I am tailoring the map to a specific problem class,

that it will only be useful for solving instances of that class. In some cases, however, the

implicit search heuristic encoded by R may be of more general use, much like Gray code

is useful on a wide diversity of problems. Stated differently, the information the algorithm

learns about how to solve instances of T (f) may transfer to other problem classes:

Hypothesis 5.7. Let R be a linear pleiotropic encoding evolved to solve instances of the

translation class T (Valley). Then R will perform comparably to traditional bitstring encod-

ings on new problems that do not belong to T (Valley).

Results

As specified in Table 5.5, I ran 50 independent runs of a meta-EA with a population size

of 50 for 500 generations. Each run is initialized with an independent sample of 10 training

problems from T (Valley). The fitness of a mapping R is defined as the average best fitness

that the sub-EA achieves on the 10 training problems. The sub-EA stops when it has gone

40 generations with no improvement in its best fitness. I found that setting the meta-level

population much lower than 50 caused it to converge prematurely, while increasing it beyond

50 did not measurably improve the final best training fitness (not shown).

It is not clear a priori whether it ought to be beneficial to mutate the si’s and weights

wij , or whether only one or the other need to vary for learning to occur. I ran experiments

for four different adaptation schemes (Figure 5.11): A) one in which the scale factors (which

control the magnitudes of the vectors) were all fixed at a value of 1, while the weights wij
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Figure 5.11: Meta-level fitness trajectories for different mutation methods. Error bars denote
standard deviation.

were mutated, B) the si’s were randomly initialized and then held constant while the weights

were mutated, C) the si’s were mutated while the weights were held constant at their initial

random values, and finally D) both the si’s and the wij ’s were allowed to mutate. The

results confirm Hypothesis 5.4: mutating both is more effective than holding one fixed.

For the remainder of the paper all experiments were conducted with both types of mutation

enabled (D).

To determine whether the algorithm begins to over-fit as evolution proceeds, an addi-

tional 20 instances of T (Valley) are reserved as a validation set. Each run of the meta-EA

took several hours to execute on a sequential processor, even though each sub-EA run took

less than one second—so the meta-EA represents a substantial investment of resources. Be-

cause measuring the validation fitness of the population is expensive and does not affect

evolution, I only take validation measurements every 20 generations.

Figure 5.12 shows the improvement in the mean training fitness across the 50 runs for

the meta-EA, compared an experiment where the meta-EA was replaced by a random search

algorithm. The validation curve shows the mean fitness of the best-of-generation individual

with on the validation set. In general, this is a different individual than the individual with
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Figure 5.12: Training and validation fitness for 50 independent runs of the meta-EA. Error
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the best-so-far training fitness (sometimes the individual with the best training fitness in

a generation is not the individual that performs best in terms of validation fitness). The

best-of-generation validation fitness, however, consistently improves for about the first two

hundred generations before becoming unpredictable late in the run (with both mean fitness

and its variance increasing).

My goal in the experiment in Figure 5.12 is to select a mapping that will perform well

on instances it hasn’t been trained on. I obtained a high-quality mapping by selecting the

individual that had the best validation fitness of the run among the times that validation

fitness was measured. So, I do not use information from the validation set during evolution,

but at the end of the run I use the validation set to choose which individual to select as our

trained genotype-to-phenotype mapping R∗. This procedure helps avoid selecting mappings

that are over-fit (in the sense of being unable to generalize to new instances that were not

part of training). To evaluate the performance of the mapping chosen from the validation

results, I construct a tertiary test set by taking 100 more random instances of the translation

class T (Valley). I chose a learned encoding R∗ from a typical run of the meta-EA, plugged
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it into a sub-EA, and ran the sub-EA once on each function in the test set.

The left-hand side of Figure 5.13 shows the results, compared against genetic algorithms

that use Gray code and a standard binary encoding. The only difference between the

three algorithms is the encoding method used. I find that the learned encoding’s average

performance is statistically indistinguishable from Gray code’s performance at solving new

instances of T (Valley), and that it performs better than the standard encoding.

Now, it is well known that most common forms of recombination struggle with rotated

problems if the rotation introduces interactions between variables that aren’t present when

the problem is aligned with the axes [Salomon, 1996]. This is known as epistasis, and is

a well studied problem in EAs. To see how my learned encoding R∗ handles epistasis, I

applied a π/6 radian rotation to every problem in the tertiary test set. The result is shown

in right-hand side of Figure 5.13. The performance of the traditional encodings are very

poor on the rotated version of the valley landscape. Because the mappings the meta-EA

learns are pleiotropic, however, the sub-EA often alters more than one trait at a time when

a single bit is flipped. As a result, it can deal with epistasis much better than the traditional

encodings are able to. So I have confirmed Hypothesis 5.5 (the learned encoding performs

competitively), and I have demonstrated a simple form of transfer: the learned encoding is

able to generalize to solve problems with a rotation that it was not trained on.

My third prediction was that the mappings I trained on the instances of T (Valley)

would hold a particular signature: I anticipate that the weight vectors 2siw⃗i will be pointed

in a direction that aligns with the floor of the valley (the line L in Equation 5.3).

I applied a π/6 radian rotation to the valley objective, and created a translation class

of rotated valleys Tπ/6(Valley). I ran 50 independent runs of the meta-EA with training

and validation sets drawn from Tπ/6(Valley). Then I took the mappings R∗ with the best

validation fitness from each of the 50 runs, and analyzed the 40 vectors that made up each

mapping, for a total of 2,000 vectors.

The results (Figure 5.14) indicate that a large proportion of the vectors are indeed aligned
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with the valley floor (indicated by the dashed red line). This confirms Hypothesis 5.6: a

good pleiotropic mapping is one that permits mutations that take it along the valley floor.

No such rule seems to apply to the larger vectors, however. This could indicate that the

learned bias is more important during the exploitation phase of the search process than

exploration.

I have shown that the mappings that the algorithm was able to learn on the translation

class of the valley objective perform as well as Gray code on other instances of the same

problem class. But how does a learned encoding perform on problems unlike anything it has

seen before, such as multi-modal landscapes?

I took the same mapping R∗ that I trained on T (Valley) above, and applied it to new

test sets of 100 instances each from the sphere, Rastrigin, Rosenbrock, and Ackley functions.

I then applied a π/6 radian rotation to those instances, and ran the learned encoding on those

too, for a total of 8 new translation classes. The results show that the learned encoding per-

formed as well as or better than Gray code on all 8 classes (Figure 5.15), even though R∗ was

not trained on functions of this sort. This preliminary result supports Hypothesis 5.7.
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Figure 5.14: Three ways of summarizing the 2,000 vectors that make up 50 learned mappings
that were trained on Tπ/6(Valley). The dashed line indicates the angle of the valley floor,
which lies at a −π/6 rotation from the axis in these figures.
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Table 5.6: Summary of the hypotheses tested in Chapter 5.
Hypothesis Description Result

Multi-Task Evolution via Shared Layers

Hyp. 5.1 Multi-task CGP reduces computational cost. Supported

Hyp. 5.2 Task interference occurs in multi-task CGP. Supported

Hyp. 5.3 Biasing mutation in multi-task CGP improves performance. Unsupported

Representational Transfer for Real-Valued Optimization

Hyp. 5.4 Better pleiotropic rep. learning when mutating scale parameters. Supported

Hyp. 5.5 Learned pleiotropic encodings rival traditional encodings. Supported

Hyp. 5.6 Learned pleiotropic vectors align with the valley floor on the valley problem. Supported

Hyp. 5.7 Learned pleiotropic encodings transfer to new classes. Supported

5.3 Conclusions & Discussion

The hypothesis that I tested in this chapter are summarized in Table 5.6.

Multi-Task Cartesian Genetic Programming

I’ve shown how a shared sub-graphs approach to multi-task optimization can allow us to

efficiently find solutions to each of a set of target tasks. A very simple genetic programming

algorithm like CGP, when adapted to serve as a multi-task optimization system, is sometimes

capable of improving our ability to solve at least nine tasks at a time. A considerable amount

of overhead and/or task interference is involved, however, so it remains to be seen how well

this sort of approach might be able to scale to larger numbers of tasks, for instance. And

while these results show the promise of a multi-task approach for applications where our

goal is to quickly solve all of a number of tasks simultaneously, it’s not clear how useful this

strategy might be in cases where one wishes to make use of information that is available

from (a large set of) multiple auxiliary tasks as a sort of catalyst or means to the end of

enhancing our ability to solve one particularly tricky target task.
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Linear Pleiotropic Encodings

I have introduced a new ‘representation for representations’—the linear pleiotropic

encodings—to facilitate learning genetic representations for classes of real-valued optimiza-

tion problems. Although this brief study was confined to simple, synthetic problem classes, I

have shown a proof of concept that learned pleiotropic representations can preform competi-

tively with traditional bitstring encodings, that they are robust to rotations of the landscape,

and that in some cases they may even be useful on problem classes that they were not trained

for.

The results of my final experiments in particular indicate that not only does this rep-

resentation learning scheme avoid over-fitting to the specific problems I train it on, but it

also displays a remarkably general-purpose problem-solving ability, akin to Gray code. I

conjecture that this robustness may be a result of the limited expressive power of linear

pleiotropic encodings, which may prevent them from being over-fit to the environment they

evolved for.

Overall, my results suggest that, while meta-evolution remains a costly way to design

algorithms, representation learning may not be as intractable as is commonly believed. The

general approach I have presented here is not necessarily specific to real-valued problems,

either – pleiotropy is a versatile concept, and a similar scheme could be adapted to, for

instance, pseudo-Boolean functions.

A limitation of the present work is that the meta-EA requires a fixed number of genes m

and number of phenotypic dimensions n. In contrast to binary or Gray codes, which scale

easily, a linear pleiotropic mapping learned for one dimensionality n cannot be directly used

on a problem with a different number of dimensions, nor can the number of bits be adjusted

as needed without learning a new encoding from scratch. Additionally, a possible threat to

the validity of the conclusions here is that all of my experiments on tertiary test sets of the

various problem classes were conducted with one learned mapping that was the result of a

single run of the meta-EA. While I believe these results are representative of the meta-EA’s

typical learning behavior, future work will need to confirm these conclusions with statistical
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rigor.

On a more general level, part of the reason that meta-evolution is so expensive is that

there is no obvious way to do credit assignment. If one mapping is better than another,

which tuples in the meta-representation are responsible for the difference in performance?

Soria Alcaraz et al. have demonstrated the usefulness of using measures of ‘effective fitness’ to

predict which components of hyper-heuristics are the most promising as evolution progresses

[Soria Alcaraz et al., 2014]. One could conceive of incorporating a similar credit-assignment

mechanism into the evolution of EA representations.
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Figure 5.15: When I train a pleiotropic encoding on the class of valley objectives and then
use it on instances of other functions, it performs as well as or better than a traditional
binary encoding. Shown here is the sub-EA BSF averaged over 50 instances of each problem
class. Error bars denote 95% confident intervals on the mean.
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Chapter 6: Discussion

At a high level, in this dissertation I have presented research into how evolutionary algo-

rithms can be used in more efficient ways to solve problems. In Chapter 1 I distinguished

between two sides of the EA efficiency coin: on one side are methods that increase the num-

ber of queries per unit time that can be made to an objective function, while on the other

are methods that reduce the number of queries that are needed to solve a problem.

6.1 Asynchronous Parallelism

6.1.1 Contributions

In my research, the first side of the coin has led me to asynchronous parallelism and the

asynchronous steady-state model of evolution. When I began using and studying ASEAs, the

community was uncertain about a number of important aspects of their performance: how

much speedup do they produce in practice? Do they exhibit a strong evaluation-time bias?

Do they create the appearance of efficiency only to trade it off with excess computation? I

have contributed answers to these questions in the form of two theorems and some twenty-

two tests of empirical hypotheses. These results are summarized in detail in the Conclusions

& Discussion section of Chapter 3.

The main contribution of my work on speedup in ASEAs (Research Question 1) has

been an analytical model for predicting the throughput improvement that they

exhibit over a generational algorithm. This impact of this result is that it provides engi-

neers and project managers with better tools for planning evolutionary algorithm projects.

Knowing in advance, for example, that an ASEA will perform much more efficiently on a

given application may allow engineers to plan to use these algorithms from the beginning
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of a project—rather than switching to them after wasting months of effort on less efficient

algorithms. On large super-computing clusters, moreover, users must often apply in advance

for a budget of compute time to use for a project. Being able to estimate how much of that

budget an ASEA will consume in a given experimental iteration can inform project planning

and budget requests. More broadly, my study of speedup in ASEAs has shown that ASEAs

are generally good problem solvers overall: these optimization strategies are practical

tools that promise to be useful on many kinds of applications with different fitness land-

scapes and evaluation-time properties—without exhibiting any severe pathological “gotchas”

that make them inappropriate for many applications. The most sensitive aspect of ASEA

behavior is initialization, so I have contributed a study of asynchronous initialization

strategies, demonstrating how three commonly used strategies impact the behavior and

performance of EAs under different assumptions.

My other major contribution in this area has been to alleviate concerns over

evaluation-time bias in ASEAs (Research Question 2). Through a suite of differ-

ent experiments, I have characterized the impact that evaluation-time properties have on

ASEAs’ dynamics and ability to solve problems, and have found that the effect is weak and

largely limited to initialization effects. The immediate impact of this work is that because

“evaluation-time bias is no big deal,” the primary reason practitioners have had to be con-

cerned about their performance is mitigated. I have found at the same time, however, that

the quasi-generational EA (QGEA) is a poor replacement for ASEAs—it does not

avoid evaluation-time bias, and it essentially has a broken evolutionary feedback loop that

dramatically slows down optimization. This result suggests that while hybrid asynchronous-

generational models of evolution may be a promising way to design next-generation parallel

EAs, future researchers must pursue these chimeras carefully.

My final contribution to asynchronous parallelism has been to show that, in settings

where long-evaluating solutions tend to be of higher quality (Research Question 3), the

Selection WhilE EvaluaTing (SWEET) operator offers a promising approach to

tighten the evolutionary feedback loop and preventing the generation of useless “busy
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work” which wastes resources.

6.1.2 Discussion

Overall, my research on asynchronous EAs—and the ASEA in particular—has convinced me

that these algorithms are the future of the field where applications involving computation-

ally intensive, distributed optimization are concerned. When I speak with my colleagues at

major tech companies throughout the U.S., they immediately understand the importance

of asynchrony and of minimizing idle resources on large compute clusters. Often, however,

they raise concerns about certain other inefficiencies that centralized, asynchronous com-

munication might lead to—such as excess computation that serves no useful purpose, or

evaluation-time bias. I believe that my results in this chapter largely put these concerns to

rest, and suggest practical strategies for managing the concerns that remain.

Ultimately, however, efficient parallelization by itself can only go so far toward scaling

evolutionary algorithm to tackle increasingly challenging search and optimization problems.

The various simulation and parameter-tuning problems that motivated me to begin this

study remain computationally intensive regardless of how many instances of a simulation

are kept running in parallel by an optimization algorithm. And if an algorithm requires

orders of magnitude more fitness queries to solve than are feasible to compute in a given

amount of time, then parallelization may hardly make a dent in certain especially difficult

problems.

6.1.3 Future Work

My discussion of asynchronous EAs in section 3.6 raised several avenues for future work in

this area.

One is to investigate hybrid approaches that use synchronous evaluation for initializa-

tion of the population, and then asynchronous steady-state dynamics for the remainder of

evolution. This may offer a means of significantly reducing evaluation-time bias, while also

avoiding the pathological behavior that I have shown (in section 3.2.2) some asynchronous
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initialization methods can exhibit.

I have also introduced two paths to advancing the theory of ASEAs. One possibility

for future work would pick up where my analytical analysis of throughput in section 3.3.1

left off—extending the bounds on asynchronous speedup to other distributions of evaluation

times. If future work can prove similar bounds for distributions that are likely to appear in

practice, the result would be more useful tools for planning projects that involve distributed

optimization. Second, since the community still lacks a solid analytical understanding of

evaluation-time bias, I would like to pursue a deeper mathematical analysis of this aspect

of ASEA dynamics in future work.

And finally, since most of the ASEA results in this dissertation involved synthetic prob-

lems that targetted particular empirical questions—I should like to continue applying ASEAs

to a variety of applications, collecting data on where they perform best and where specialized

configurations (such as SWEET) are beneficial.

I gave more discussion of these points in section 3.6.

6.2 Evolutionary Knowledge Transfer

6.2.1 Contributions

Evolutionary knowledge transfer (EKT) is a relatively new and speculative approach to

using optimization to solve complex problems. One contribution I have made in this dis-

sertation is a three-part analysis of theoretical motivations for knowledge trans-

fer—articulating how prior work falls into three motivational schools: the identical-elements

principle (IEP), shared causal principles, and innovation engines. I believe these three lenses

will help the research community to clarify the goals, opportunities, and challenges that this

new field presents.

My primary contribution to EKT has been to highlight the importance that a theory of

transferability within problem classes has for the effectiveness of transfer optimization (Re-

search Question 4). I have done this by proving no-free-lunch theorems for transfer
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optimization, by proving the first asymptotic run-time result for transfer opti-

mization, and by engaging in related experiments that demonstrate the degree to which

transfer is possible in different benchmark problem classes. As a side effect of this work, I

have shown that sequential population seeding offers an effective approach to EKT.

Population seeding is a very simple way of representing and transferring knowledge—and

so has rarely been used as a knowledge transfer strategy—but in some problem classes, this

simple mechanism is sufficient for carrying useful heuristic knowledge from one problem to

another.

I have also contributed an initial demonstration of using landscape features of opti-

mization problems to estimate their similarity (Research Question 5), and in particular I

have shown that combining multiple measures of problem similarity can improve

transfer prediction. I hope that this work will continue to inspire novel solutions to the

source-selection problem.

A significant contribution of this dissertation has been to introduce the concept of many-

source sequential transfer (Research Question 6) and to demonstrate many-source

population seeding as an effective knowledge-transfer strategy. Algorithms of this

kind can serve to widen the applicability of EKT by enabling a greater degree of human-

machine teaming in the search for useful heuristic knowledge.

And finally, I have introduced one of the first representation-learning methods for

EAs and EKT, demonstrating the feasibility of a meta-evolutionary approach to evolving

and reusing solution representations (Research Question 8). This contribution is important

because representation learning has been very rarely studied for EAs, despite the powerful

opportunity it offers to encode heuristic knowledge. I have also contributed a study of how

executable structures can implicitly reuse subcomponents while evolving monolithic

solutions that solve multiple tasks simultaneously. Approaches of this kind have a lot in

common with parameter-sharing methods of multi-task learning with neural networks, but

we are only beginning to understand the potential they have to assist in other kinds of

optimization tasks (Research Question 7).
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I have discussed the details and practical importance of all of these contributions in

sections 4.5 and 5.3.

6.2.2 Discussion

Most areas of artificial intelligence (AI)1 continue to struggle today with the widespread

problem of generalization and robustness [Schölkopf et al., 2021]. If algorithms were available

that could generalize better across problems and domains—that could learn from experience,

and that could transfer and adapt that experience to other, distantly related problems—

then the AI-engineering workflow would look quite different. The practice community could

move away from building or training expensive, bespoke algorithms for each application

that often only the most well-funded institutions have the resources to develop, and instead

draw on a rich community of experience to rapidly generalize on past successes to meet new

needs. AI would be easier to scale to large, diverse organizations that face a multiplicity

of domain-specific and computationally expensive challenges (a great many of which live in

a “long tail” of applications that are not adequately met by high-profile developments in

machine learning). And problems that are very difficult to solve at all—whether because

of their inherent complexity, lack of human understanding, or lack of suitable data—could

become easier to tackle.

Thanks in no small part to the proliferation of neural networks as the dominant model in

machine learning, knowledge transfer is a concept that has gotten a great deal of attention in

the AI community in recent years as a solution to generalization challenges. “Deep learning

algorithms are based on learning intermediate representations which can be shared across

tasks,” Bengio [2009] explained at the dawn of this movement. “Hence they can leverage un-

supervised data and data from similar tasks to boost performance on large and challenging

problems that routinely suffer from a poverty of labelled data.” This perspective has ac-

crued more and more momentum ever since, as model zoos, breakthroughs in self-supervised
1If you’ll permit me just for a moment to indulge in the contemporary sin—currently in vogue—of using

“AI” as a vague catch-all. Here I roughly mean “machine learning and heuristic search,” since the two fields
have a lot in common.
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representation learning [Chen et al., 2020a, Devlin et al., 2018], and most recently massive

foundation models that use huge amounts of unsupervised data in a massively multi-task

way [Radford et al., 2019a] have successively become central to the highest-profile uses of

AI. This development was not automatic, however: “transfer learning is what makes founda-

tion models possible,” write Bommasani et al. [2021] in their recent review of the area, “but

scale is what makes them powerful.” It has required a concerted effort over many years for

the machine learning community to build up the array of hardware, modeling techniques,

experience, and datasets that are necessary to take full advantage of knowledge transfer.

As a rule, this is not how evolutionary algorithms operate. Evolutionary computing

also struggles to effectively generalize and to perform robustly on new and diverse classes

of problems. Knowledge transfer for search and optimization is only just beginning to be

developed, however, as a possible response to this problem. In this dissertation, I have been

inspired by the speculative view that natural evolution has not generally taken a linear,

single-task path toward solving complex problems in biological systems—operating instead

as a massively multi-task ecosystem that facilitates transfer, innovation, and “tinkering” on

a wide scale [Arthur, 2009, Gerhart and Kirschner, 2007, Jacob, 1977, Lenski et al., 2003,

Nguyen et al., 2016, Stanley and Lehman, 2015].

Innovation engines, however, have a lot of moving parts—assuming they are possible to

build at all. So for this work I have adopted the more modest goal of aiming to understand a

few of the “ingredients” that are necessary for transfer—with an eye toward how insights in

this area can inform applications in the near-term. Overall, the contributions I have made

here toward EKT offer a solid set of steps toward what I hope will become a larger research

program in evolutionary knowledge transfer. Going forward, I am particularly interested

in helping the community to establish better benchmarks for evaluating and understanding

different EKT approaches.
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6.2.3 Future Work

Evolutionary knowledge transfer is a young field with many lessons still being learned. In

the near-term, I am pursuing a broader array of applications of these algorithms to domains

where it seems transfer may prove especially useful: such as robot control for maze navigation

and the synthesis of images to fool neural networks (a kind of adversarial AI application).

Exploratory work of this kind may serve to help identify useful benchmark domains for

testing the efficiency of different EKT strategies.

On a more fundamental level, I would like to see future work develop a more robust the-

oretical characterization of problem similarity—and of what kind of similarity distribution

is needed in a set of problems in order for different transfer paradigms to be useful. I am

especially interested in applying the tools of exploratory landscape analysis to see if prob-

lem similarity can be characterized empirically in such a way that predicts the prospects for

transfer.

Lastly, the representation learning models that I presented in Chapter 5 likely have the

potential to be much improved upon via further research and tuning. In the future I hope

to more carefully investigate the conditions under which representation learning is possible,

what kind of genotype-phenotype maps that result from such methods, and what kinds of

problem classes make representation learning a good strategy for knowledge transfer.

I gave more discussion of these points for future work in sections 4.5 and 5.3.

6.3 Software Contributions

To support the experimental work in the forgoing chapters, I have also developed a new,

general-purpose evolutionary algorithm framework, the Library for Evolutionary Algorithms

in Python (LEAP), building on code by Jeff Bassett and extending it in collaboration with

Coletti et al. [2020]. LEAP offers an improved framework for impelmenting evolution-

ary algorithms for research, taking advantage of Python’s elegant syntax for higher-order

programming to make it easy to compose new algorithms from combinations of arbitrary
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selection and reproduction opertors, data-collection probes, and visualization operators. In

addition to the many asynchronous steady-state and evolutionary knowledge-transfer al-

gorithms in this dissertation (most of which were built atop LEAP), we have validated

LEAP’s design by implementing island models, cooperative co-evolution, adaptive evolution

strategies, Pittsburgh-style evolutionary rule systems, Cartesian genetic programming, and

distributed optimization on upwards of 2,000 processors, with applications to autonomous

driving, computational neuroscience, image synthesis for adversarial deep learning, robot

control via evolving neural networks, and more. I look forward to continuing to develop

LEAP and support its growing user base in useful applications of distributed optimization

in coming years.

6.4 Conclusion

In this dissertation, I have sought to address two fundamental problems that are facing

evolutionary computation as a field: the problem of managing idle time when scaling to

parallel and distributed applications, and the problem of pre-configuring algorithms with

useful heuristic knowledge—in particulary via reusing knowledge from past tasks. I have

shown that asynchronous EAs are an effective and promising family of algorithms for solving

diverse optimization problems. And while evolutionary knowledge is transfer is a younger

and more speculative field, I have helped to expand our fundamental understanding of this

area with new theoretical and empirical results.
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