
 
 

 

  
Abstract— In this contribution GPTIPS, a free, open source 

MATLAB toolbox for performing symbolic regression by 
genetic programming (GP) is introduced. GPTIPS is 
specifically designed to evolve mathematical models of 
predictor response data that are “multigene” in nature, i.e. 
linear combinations of low order non-linear transformations of 
the input variables. The functionality of GPTIPS is 
demonstrated by using it to generate an accurate, compact 
QSAR (quantitative structure activity relationship) model of 
existing toxicity data in order to predict the toxicity of chemical 
compounds. It is shown that the low-order “multigene” GP 
methods implemented by GPTIPS can provide a useful 
alternative, as well as a complementary approach, to currently 
accepted empirical modelling and data analysis techniques. 
GPTIPS and documentation is available for download at 
http://sites.google.com/site/gptips4matlab/. 
 

Index Terms— genetic programming, symbolic regression, 
QSAR, toxicity, T. pyriformis.  
 

I. INTRODUCTION 
Genetic programming [1] is a biologically inspired 

machine learning method that evolves computer programs to 
perform a task. It does this by randomly generating a 
population of computer programs (represented by tree 
structures) and then mutating and crossing over the best 
performing trees to create a new population. This process is 
iterated until the population contains programs that 
(hopefully) solve the task well.  

When the task is building an empirical mathematical 
model of data acquired from a process or system, the GP is 
often known as symbolic regression. Unlike traditional 
regression analysis (in which the user must specify the 
structure of the model), GP automatically evolves both the 
structure and the parameters of the mathematical model. 
Symbolic regression has had both successful academic [2] 
and industrial applications [3].  

The purpose of this paper is to introduce a free open source 
MATLAB toolbox called GPTIPS [4] that was written for the 
specific purpose of performing symbolic regression. GPTIPS 
employs a unique type of symbolic regression called 
multigene symbolic regression [5], [6] that evolves linear 
combinations of non-linear transformations of the input 
 

Manuscript received December 2, 2009.  
Dominic Searson is with the Northern Institute for Cancer Research, 

Newcastle University, Newcastle upon Tyne, U.K  
David Leahy is with the Northern Institute for Cancer Research, 

Newcastle University, Newcastle upon Tyne, U.K  
Mark Willis is with the School of Chemical Engineering and Advanced 

Materials, Newcastle University, Newcastle upon Tyne, U.K (e-mail: 
mark.willis@ncl.ac.uk). 

variables. When the transformations are forced to be low 
order (by restricting the GP tree depth) this, in contrast to 
“standard” symbolic regression, allows the evolution of 
accurate, relatively compact mathematical models of 
predictor – response (input – output) data sets, even when 
there are a large number of input variables. Hence, the 
authors believe that GPTIPS provides a useful, free and 
complementary alternative to current data analysis 
techniques and has a wide domain of applicability. 

This paper is structured as follows. Section II provides a 
brief overview of the multigene low order GP approach that 
GPTIPS implements. Next, in section III, some of the 
features of GPTIPS are described. In sections IV -VII, the 
capabilities of GPTIPS are demonstrated by using it to evolve 
an accurate, relatively compact mathematical model to 
predict the toxicity of chemical compounds using an data set 
from the literature containing over 1000 compounds along 
with measured toxicity values. Finally, in section VIII we 
provide some concluding remarks. The following material 
assumes a basic familiarity with GP. If this is not the case 
then an excellent, free to download introduction and review 
of the literature is provided by [7]. 

II. MULTIGENE SYMBOLIC REGRESSION 
Typically, symbolic regression is performed by using GP 

to evolve a population of trees, each of which encodes a 
mathematical equation that predicts a (N × 1) vector of 
outputs y using a corresponding (N × M) matrix of inputs X 
where N is the number of observations of the response 
variable and M is the number of input (predictor) variables. 
i.e. the ith column of X comprises the N input values for the 
ith input variable and may be designated as the input variable 
xi. 

In contrast, in multigene symbolic regression each 
symbolic model (and each member of the GP population) is a 
weighted linear combination of the outputs from a number of 
GP trees, where each tree may be considered to be a “gene”. 
For example, the multigene model shown in Fig. 1 predicts an 
output variable using input variables x1, x2 and x3.  

This model structure contains non-linear terms (e.g. the 
hyperbolic tangent) but is linear in the parameters with 
respect to the coefficients d0, d1 and d2. In practice, the user 
specifies the maximum number of genes Gmax a model is 
allowed to have and the maximum tree depth Dmax any gene 
may have and therefore can exert control over the maximum 
complexity of the evolved models. In particular, we have 
found that enforcing stringent tree depth restrictions (i.e. 
maximum depths of 4 or 5 nodes) often allows the evolution 
of relatively compact models that are linear combinations of 
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low order non-linear transformations of the input variables. 
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Fig. 1. Example of a multigene symbolic model. 
 
For each model, the linear coefficients are estimated from 

the training data using ordinary least squares techniques. 
Hence, multigene GP combines the power of classical linear 
regression with the ability to capture non-linear behaviour 
without needing to pre-specify the structure of the non-linear 
model. In [5] it was shown that multigene symbolic 
regression can be more accurate and computationally 
efficient than the standard GP approach for symbolic 
regression and [6] demonstrated that the multigene approach 
could be successfully embedded within a non-linear partial 
least squares algorithm. 

In GPTIPS, the initial population is constructed by creating 
individuals that contain randomly generated GP trees with 
between 1 and Gmax genes. During a GPTIPS run, genes are 
acquired and deleted using a tree crossover operator called 
two point high level crossover. This allows the exchange of 
genes between individuals and it is used in addition to the 
“standard” GP recombination operators. If the ith gene in an 
individual is labelled Gi then a two point high level crossover 
is performed as in the following example. Here, the first 
parent individual contains the genes (G1 G2 G3) and the 
second contains the genes (G4 G5 G6 G7) where Gmax = 5. Two 
randomly selected crossover points are created for each 
individual. The genes enclosed by the crossover points are 
denoted by < … >. 

 
(G1 < G2 > G3)   (G4 < G5 G6 G7 >) 
 
The genes enclosed by the crossover points are then 

exchanged resulting in the two new individuals below. 
 
(G1 G5 G6 G7 G3)   (G4 G2) 
 
Two point high level crossover allows the acquisition of 

new genes for both individuals but also allows genes to be 
removed. If an exchange of genes results in an individual 
containing more genes than Gmax then genes are randomly 
selected and deleted until the individual contains Gmax genes.  

In GPTIPS, standard GP subtree crossover is referred to as 
low level crossover. In this case, a gene is selected randomly 
from each parent individual, standard subtree crossover is 
performed and the resulting trees replace the parent trees in 
the otherwise unaltered individual in the next generation. 
GPTIPS also provides several methods of mutating trees.  

The user can set the relative probabilities of each of these 
recombinative processes. These processes are grouped into 
categories called events. The user can then specify the 

probability of crossover events, direct reproduction events 
and mutation events. These must sum to one. The user can 
also specify the probabilities of event subtypes, e.g. the 
probability of a two point high level crossover taking place 
once a crossover event has been selected, or the probability of 
a subtree mutation once a mutation event has been selected. 
However, GPTIPS provides default values for each of these 
probabilities so the user does not need to explicitly set them. 

III. GPTIPS FEATURES 
GPTIPS is a predominantly command line driven open 

source toolbox that requires only a basic working knowledge 
of MATLAB. A run is configured by a simple configuration 
M file and there are a number of command line functions to 
facilitate post-run analyses of the results. Whilst not an 
exhaustive list, GPTIPS currently contains the following 
configurable GP features: tournament selection & plain 
lexicographic tournament selection [8], elitism, three 
different tree building methods (full, grow and ramped half 
and half) and six different mutation operators: (1) subtree 
mutation (2) mutation of constants using an additive 
Gaussian perturbation (3) substitution of a randomly selected 
input node with another randomly selected input node (4) set 
a randomly selected constant to zero (5) substitute a 
randomly selected constant with another randomly generated 
constant (6) set a randomly selected constant to one. In 
addition, GPTIPS can, without modification in the majority 
of cases, use nearly any built in MATLAB function as part of 
the function set for a run. The user can also write bespoke 
function node M files and fitness functions. 

In addition, GPTIPS has a number of features that are 
specifically aimed at the creation, analysis and simplification 
of multigene symbolic regression models. These include: (1) 
use of a ‘holdout’ validation set during training to mitigate 
the effects of overfitting (2) graphical display of the results of 
symbolic regression for any multigene model in the final 
population (3) mathematical simplification of any model (4) 
conversion to LaTex format of any model (5) conversion to 
PNG (portable network graphics) file of the simplified 
equation of any model (6) conversion of any model to 
standalone M file for use outside GPTIPS (7) graphical 
display of the statistical significance of each gene in a model 
(8) functions to reduce the complexity of any model using 
“gene knockouts” to explore the trade off of model accuracy 
against complexity (9) graphical population browser to 
explore the trade off surface of complexity/accuracy (10) 
graphical input frequency analysis of individual models or of 
a user specified fraction of the population to facilitate the 
identification of input variables that are relevant to the 
output. 

The Symbolic Math toolbox (a commercial toolbox 
available from the vendors of MATLAB) is required for the 
majority of the post run simplification and model conversion 
features and the Statistics Toolbox is required for the display 
of gene statistical significance. The core functionality of 
GPTIPS and the ability to evolve multigene models does not, 
however, require any specific toolboxes. In the following 
section, some of these features will be demonstrated using a 
real world modelling example. 



 
 

 

IV. EVOLUTION OF A PREDICTIVE MODEL OF AQUEOUS 
CHEMICAL TOXICITY USING GPTIPS 

QSAR (Quantitative Structure Activity Relationships) is a 
well established technique for deriving structure property 
relationships for chemical compounds that can be used to 
predict the properties of novel chemical structures. Chemical 
compounds can be represented by a large number of 
computed numerical values, called “descriptors”, each of 
which in some way characterises the structure or behaviour of 
the compound. The idea of QSAR is to build empirical or 
semi-empirical models that relate the descriptors of a 
compound to some physical, chemical or biological property. 
A number of software packages are available to compute 
descriptor values for compounds with a known structure. 
Many of these are commercial products (e.g. DRAGON) but 
there are also free/open source packages (e.g. the Chemical 
Descriptors Library (CDL; [9]) and the Chemical 
Development Kit (CDK; [10]). 

A QSAR modelling scenario involves a data set of known 
chemical compounds and a measured endpoint for each 
compound. The measured endpoint is the property of interest. 
Typical properties of interest are those related to 
pharmaceutical drug development. These include biological 
activities representing the ability of a drug candidate to 
perform its desired function (e.g. IC50, the concentration of a 
compound required to inhibit a particular biological or 
biochemical function by half) and the ADME properties 
(adsorption, distribution, metabolism and excretion) which 
characterise the behaviour of a of a pharmaceutical drug 
compound within the organism.  

The prediction of chemical toxicity is another chemical 
property that is of vital importance in both pharmaceutical 
drug development and managing the environmental risk of 
chemical compounds. In the latter case there are legal 
regulatory structures (e.g. the REACH regulations in the 
European Union - EC 1907/2006) that specify that QSAR 
models should play a part in managing this risk in order to 
reduce the costs of experimental toxicity measurement. 
Hence, the development of effective QSAR modelling 
methods continues to present a very real and relevant 
challenge.  

There are a number of strategies & protocols for 
experimentally evaluating chemical toxicity. One commonly 
accepted method is the measurement of the growth inhibition 
of ciliated protozoan T. pyriformis [11]. There are freely 
available aquatic toxicity data for more than 1000 
compounds, due to the efforts of Schultz and colleagues (e.g. 
see [12]). The authors of [11] have used this to compile a data 
set of 1093 unique compounds and have developed a number 
of predictive QSAR models using various descriptor 
packages and modelling methodologies. Here, the use of 
GPTIPS to evolve a predictive model of chemical toxicity 
using this data set is demonstrated (using the descriptors from 
the commercial DRAGON package) and the results 
compared with those published in [11]. 

V. DATA 
The T. pyriformis toxicity values (i.e. the response y data) 

are measured as the logarithm of the 50% growth inhibition 
concentration log(IGC50-1). The data available for training 

QSAR models contains 644 compounds and another 449 
compounds are used an external test/validation data set to 
verify the predictive ability of the models. For each 
compound 1664 DRAGON descriptor values are used as the 
predictor data (i.e. the input X data contains 1664 input 
variables) - compound structures, toxicity and descriptor 
values are available from the EU CADASTER website at 
http://www.cadaster.eu/node/65. To mitigate against the 
effects of overfitting, 128 compounds (approximately 20%) 
in the training data set were randomly selected for use as a 
holdout validation data set leaving the training data 
containing 516 compounds. In GPTIPS, holdout validation is 
performed as follows: at the end of each generation, the 
“best” individual (as evaluated on the training data) is then 
evaluated on the holdout validation set. The individual that 
performs best on the holdout set (over the course of the run) is 
stored and may be accessed after the run. 

VI. GPTIPS RUN SETTINGS 
A GPTIPS run with the following settings was performed: 

Population size = 500, Number of generations = 500, 
Tournament size = 12 (with lexicographic selection 
pressure), Dmax = 4, Gmax = 8, Elitism = 0.01 % of population, 
function node set = {plus, minus, times, tanh, sin}, terminal 
node set = {1664 DRAGON descriptors x1 – x1664, ephemeral 
random constants in the range [-10 10]}. The default GPTIPS 
multigene symbolic regression function was used in order to 
minimise the root mean squared prediction error on the 
training data. 

The following (default) recombination operator event 
probabilities were used: Crossover events = 0.85, mutation 
events = 0.1, direct reproduction = 0.05.  The following 
sub-event probabilities were used: high level crossover = 0.2, 
low level crossover = 0.8, subtree mutation = 0.9, replace 
input terminal with another random terminal = 0.05, 
Gaussian perturbation of randomly selected constant = 0.05 
(with standard deviation of Gaussian = 0.1). These settings 
are not considered ‘optimal’ in any sense but were based on 
experience with modelling other data sets of similar size. The 
run took approximately 15 minutes on a PC with a dual core 
processor running at 2.2GHz with 3.5GB of RAM. 

VII. RESULTS 
The model that performed best on the holdout validation 

data was chosen. This model has coefficients of 
determination (i.e. proportion of the variation in the response 
explained by the model) of R2(training) = 0.83, R2(holdout) = 
0.78 and R2(test) = 0.78. In [11] the results are reported in 
terms of MAE (mean absolute error) for two test tests 
referred to in the paper as Validation set 1 (339 compounds) 
and Validation set 2 (110 compounds) that comprise the 
whole test set used here. In terms of MAE, the evolved 
GPTIPS model has MAE(training) = 0.3292, MAE(holdout) 
= 0.3573 and MAE(test) = 0.3518.  

The authors of [11] report the results of a number of 
individual models, built using various descriptor packages 
and modelling techniques. Some of these models consider the 
“applicability domain” (AD) of the compounds (i.e. whether 
the compounds lie in the region of descriptor space deemed to 



 
 

 

 
 

 
 

Fig 2. Graphical rendering of evolved symbolic T. pyriformis toxicity model. 
 
be suitable for generating a prediction) whereas others do not 
employ AD considerations. In general, models that consider 
AD give more accurate predictions but only the results of the 
non AD models using the DRAGON descriptors are repeated 
here. The first DRAGON descriptor based model is a support 
vector machine (SVM; [13]) regression that yields 
MAE(Validation set 1) = 0.37 and MAE(Validation set 2) = 
0.42. This corresponds to an MAE(test) = 0.38. The second 
DRAGON based model is a k- nearest neighbour (k-NN) 
approach that achieves MAE(Validation set 1) = 0.29, 
MAE(Validation set 2) = 0.43 corresponding to MAE(test) = 
0.32. Hence it can be seen that the evolved GPTIPS model 
lies between the SVM and the k-NN approaches, i.e. GPTIPS 
can achieve predictive performance of the order of the current 
state of the art empirical modelling methodologies. 

GPTIPS was used to mathematically simplify and export 
the evolved model as a PNG graphics file. This is shown in 
Fig 2. 

It can be seen that the evolved model is reasonably 
compact, consists of both linear terms and low order 
non-linear transformations of the inputs and has selected a 
small number of descriptors from the 1664 available. 

VIII. CONCLUSIONS 
In this article we have introduced the multigene symbolic 

regression capabilities of GPTIPS and demonstrated it with 
an application in which a predictive symbolic QSAR model 
of T. pyriformis aqueous toxicity was evolved. It was 
demonstrated that the evolved model is compact and offers 
similar high performance to recently published QSAR 
models of the same data. The point of this article is not to 
assert that multigene symbolic regression (using low order 
non-linear transforms of the inputs) is better or worse than 
other methods, but that it is an alternative and complementary 
approach to existing empirical modelling and data analysis 
techniques. It is also an approach that is facilitated by the free 
GPTIPS toolbox for MATLAB, a program that is used 
widely in academia and industry. 
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