
Armando Segatori

Classification Algorithms
for Big Data over

Distributed Processing Frameworks

Anno 2016

UNIVERSITÀ DI PISA
Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

Autore:

Armando Segatori ____________________

Relatori:

Prof. Francesco Marcelloni ______________________

Ing. Alessio Bechini ______________________

Prof. Pietro Ducange ______________________

Classification Algorithms
for Big Data over

Distributed Processing Frameworks

Anno 2016

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in

Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

Sommario

I problemi di classificazione sono stati a lungo studiati nel contesto del data mining e, ne-
gli ultimi decenni, sono stati sviluppati diversi approcci in grado di affrontare tali problemi.
Tra questi, gli approcci basati sulla classificazione associativa e gli alberi di decisione si
sono dimostrati molto efficaci e sono stati utilizzati con successo in diversi domini appli-
cativi. Inoltre, alcuni di questi approcci hanno integrato la teoria degli insiemi fuzzy con
l’obiettivo di generare classificatori capaci di tollerare dati incerti e rumorosi. Sfortuna-
tamente, la maggior parte degli approcci proposti fino ad ora sono stati progettati per
massimizzare l’accuratezza, trascurando spesso la complessità sia in termini di memoria
che tempi di esecuzione. Cosí questi approcci non sono generalmente in grado di gestire
in modo adeguato i cosiddetti “big data”.

Il lavoro presentato in questa tesi di dottorato propone differenti soluzioni in ambiente
distribuito per costruire modelli di classificazione accurati e interpretabili per “big data”.
In particolare, sono stati considerati approcci basati sulla classificazione associativa e
su alberi di decisione, integrando le soluzioni proposte con la teoria degli insiemi fuzzy.
Dato che la generazione di tali modelli richiede che gli attributi continui siano discretiz-
zati, è stata anche proposta una nuova soluzione distribuita per la discretizzazione di
attributi continui basata sul concetto di entropia e, successivamente, tale soluzione è sta-
ta estesa con la logica fuzzy per la generazione di partizioni fuzzy. Infine, considerando
la complessità dei modelli generati dalle precedenti soluzioni, è stato introdotto un ap-
proccio evolutivo distribuito per l’ottimizzazione delle prestazioni dei classificatori sia in
termini di accuratezza che di interpretabilità.

Gli algoritmi proposti sono stati sviluppati secondo il paradigma di programmazione
MapReduce ed eseguiti su noti framework per la processazione distribuita dei dati, am-
piamente utilizzati sia in ambito di ricerca che industriale. La valutazione delle prestazioni
è stata svolta attraverso l’utilizzo di differenti benchmark e i risultati ottenuti dagli approc-
ci proposti e da altri algoritmi distribuiti di classificazione allo stato dell’arte sono stati
ampiamente discussi in termini di accuratezza, complessità del modello e scalabilità.

I

II

Abstract

Classification problems have been widely studied in the context of data mining and dif-
ferent approaches to address these problems have been developed in the last decades.
Among them, associative classification and decision trees have proved to be very effec-
tive and have been successfully employed in several application domains. Furthermore,
some of these approaches have integrated the fuzzy set theory with the objective of deal-
ing with uncertain and noise data. Unfortunately, most of the approaches proposed up to
now have been designed for maximizing accuracy, often neglecting the complexity both
in terms of memory that execution times. Thus, these approaches are generally not able
to handle adequately the so-called “big data”.

In this Ph.D. thesis, we propose different solutions in a distributed environment for
generating accurate and interpretable classification models for big data. In particular,
we focus on associative classification and decision trees, integrating our solutions with
fuzzy set theory. Since the generation of such models requires that continuous features
are discretized, we also propose a novel distributed discretization approach based on
information entropy. This approach has been therefore extended with fuzzy logic for gen-
erating fuzzy partitions. Finally, considering the complexity of the models generated by
previous solutions, we propose a distributed evolutionary approach for optimizing both
accuracy and interpretability of the classifiers.

The proposed algorithms are shaped according to the MapReduce programming
model and have been deployed on well-known data processing frameworks, widely em-
ployed in research as well as industrial contexts. The performance evaluation has been
carried out by using different big data benchmarks and the results obtained by the pro-
posed approaches and by some state-of-the-art distributed classification algorithms have
been extensively discussed in terms of accuracy, model complexity, and computation
time.

III

IV

To my beloved and lovely sister Stefania,

for being able to support not only herself but also other people
with her strength, courage and presence despite the dark times.

Contents

1 Introduction . 1

2 Big Data: technologies and state-of-the-art . 7
2.1 Distributed Processing Frameworks . 8

2.1.1 MapReduce . 9
2.1.2 Apache Hadoop . 10
2.1.3 Apache Spark . 14

3 Associative Classification . 17
3.1 Associative Classifiers . 18

3.1.1 Notation . 20
3.2 MRAC: a MapReduce Solution for Associative Classification of Big Data . . 22

3.2.1 Parallel FP-Growth . 22
3.2.2 The distributed approach . 23

Discretization . 23
CAR Mining . 27
Rule Pruning . 33
Classification . 35

3.2.3 MRAC+: a faster version of MRAC . 36
3.2.4 Experimental Study . 38

Performance of MRAC+ and MRAC . 39
Scalability analysis . 42
Tackling the dataset size . 46

3.3 Fuzzy Associative Classifiers . 48
3.3.1 Fuzzy Rule Based Classifiers . 50
3.3.2 Fuzzy association rules for classifications . 51

3.4 AC-FFP: a novel Associative Classification model based on a Fuzzy
Frequent Pattern mining algorithm . 52
3.4.1 The Proposed Approach . 54

Discretization . 54

Fuzzy CAR Mining . 56
Pruning . 59
Classification . 63

3.4.2 Experimental Study . 64
3.5 DAC-FFP: a Distributed implementation of AC-FFP for Big Data 67

3.5.1 The Distributed Approach . 68
Distributed Fuzzy Partitioning . 69
Distributed Fuzzy CAR Mining . 73
Distributed Fuzzy CAR Pruning . 77
Reasoning methods . 79

3.5.2 Experimental Study . 80
Analysis of the fuzzy associative classifier performance 81
Scalability Analysis . 84

4 Tree based Classification . 89
4.1 Fuzzy Decision Trees . 90

4.1.1 Background . 93
4.2 The Proposed Algorithms . 95

4.2.1 Fuzzy Partitioning . 95
4.2.2 Fuzzy Decision Tree Learning . 98
4.2.3 The Distributed Approach . 103

4.3 Experimental Study . 110
4.3.1 Performance analysis . 110
4.3.2 Scalability analysis . 115
4.3.3 Dealing the dataset size . 117

5 Multi-Objective Evolutionary Fuzzy System for Big Data121
5.1 Distributed MOEA: state-of-the-art . 122
5.2 The Proposed Algorithm . 123

5.2.1 PAES-RCS . 123
5.2.2 The Distributed Approach . 124

5.3 Experimental Study . 127
5.3.1 Performance of DPAES-RCS: accuracy and complexity 128
5.3.2 Scalability analysis . 132

6 Conclusions .135

References .139

List of Figures

2.1 The overall MapReduce Flow (R=2). 10
2.2 A MapReduce Job flow executed in top of Apache Hadoop. 12
2.3 A distributed Spark application flow executed on top of Apache Spark. 14

3.1 The Discretization step of the MapReduce Associative Classifier. 25
3.2 Pseudo-code of the first MapReduce phase of the discretization process. . . 26
3.3 Pseudo-code of the second MapReduce phase of the discretization process. 27
3.4 The CAR Mining step of the MapReduce Associative Classifier. 29
3.5 The MapReduce Parallel Counting Phase . 30
3.6 The MapReduce Parallel FP-Growth Phase . 31
3.7 A simple example of the Parallel FP-Growth execution. 32
3.8 The MapReduce Candidate Rule Filtering Phase . 33
3.9 The Pruning step of the MapReduce Associative Classifier. 34
3.10 The MapReduce Training Set Coverage Pruning Job . 35
3.11 The overall workflow of MRAC (on the left) and MRAC+ (on the right). 37
3.12 Runtime and Speedup for MRAC+ (a-b) and MRAC (c-d) on the overall

Susy dataset. 44
3.13 Speedup of the discretization and the two main learning phases 46
3.14 Average Runtime of both MRAC+ (a) and MRAC (b) on the Susy dataset,

varying the dataset size and the number of available cores. 47
3.15 An example of strong fuzzy partition obtained by the fuzzification of the

output of the Fayyad and Irani’s discretizer. 56
3.16 The fuzzy partitions of each variable in the example. 57
3.17 The FP-tree generated by using the example dataset. 59
3.18 Pseudo-code of the fuzzy CAR mining process based on FP-Growth. 60
3.19 Pseudo-code of the first type of pruning. 62
3.20 Pseudo-code of the third type of pruning. 63
3.21 The overall distributed Fuzzy Partitioning of the Fuzzy Decision Tree. 72
3.22 The overall FCAR Mining process of the DAC-FFP algorithm. 74

3.23 The overall FCAR Pruning process of the DAC-FFP algorithm. 78
3.24 Execution time and speedup of DAC-FFP on SUS dataset for increasing

numbers of cores . 86
3.25 Speedup of the different phases of DAC-FFP on SUS dataset for

increasing number of cores . 87

4.1 An example of fuzzy partition defined on the third bin boundary bf,3.
We suppose that the domain [lf , uf] of Sf has been split into eight
equi-freqnecy bins identified by seven bin boundaries {bf,1, ..., bf,7} 97

4.2 An example of application of the recursive procedure to the fuzzy partition
shown in Fig. 4.1 (b0f,lmax = b3). 98

4.3 An example of multiple splitting on a continuous attribute with five
triangular fuzzy sets. The blue circle shows an example of how a given
example contributes to the cardinality computation. 99

4.4 An example of binary split performed by FBDT on a continuous attribute
partitioned by five triangular fuzzy sets. 101

4.5 The overall distributed Fuzzy Partitioning of the FDT. 105
4.6 The overall DFDT Learning approach. 108
4.7 Speedup of Fuzzy Partitioning (a) and FBDT Learning (b) on the overall

Susy dataset, varying the number of cores. 116
4.8 Runtime (in seconds) of Fuzzy Partitioning (a) and Learning (b) on the

Susy dataset, varying the dataset size. 118

5.1 The distributed candidate rules generation phase. 125
5.2 The distributed evolutionary optimization phase. 126
5.3 Average Pareto fronts obtained from each dataset. 130
5.4 Speedup of DPAES-RCS varying the number of cores 133
5.5 Execution time of DPAES-RCS varying the number of cores 133

List of Tables

3.1 Big datasets used in the experiments. 38
3.2 Values of the parameters for each algorithm used in the experiments. 40
3.3 Average accuracy ± standard deviation achieved by MRAC+, MRAC,

Decision Tree (DT), and Random Forest (RF). 41
3.4 The computation times (in seconds) for the learning process in MRAC+,

MRAC, Decision Tree (DT), and Random Forest (RF). 41
3.5 Complexities of MRAC+, MRAC, Decision Tree (DT), and Random Forest

(RF). 42
3.6 Runtime, speedup (σ6), and utilization (σ6(Q)/Q) for MRAC+ and MRAC

on the Susy dataset. 43
3.7 Runtime, speedup (σ6), and utilization (σ6(Q)/Q) of the Discretization,

Parallel FP-Growth, and Training Set Coverage Pruning phases in the
Susy dataset. 45

3.8 Average runtime of MRAC+ and MRAC on the Susy dataset, varying the
dataset size and the number of available cores. 47

3.9 A simple dataset characterized by four input features. 57
3.10 The fuzzy supports of each fuzzy set in the example. 58
3.11 The fuzzy values associated with the highest membership degree and the

corresponding fuzzy objects for each pattern in the example dataset. 58
3.12 Datasets used in the experiments (sorted for increasing numbers of input

variables). 64
3.13 Values of the parameters for each algorithm used in the experiments. 65
3.14 Average results obtained by CMAR, FARC-HD, D-MOFARC and AC-FFP. . . 66
3.15 Results of the Wilcoxon signed-rank test with a significance level α = 0.05. . 67
3.16 Big datasets used in the experiments. 81
3.17 Values of the parameters for each algorithm used in the experiments. 82
3.18 Average accuracy ± standard deviation achieved by DAC-FFP, MRAC+

and MRAC. 82
3.19 Complexities of DAC-FFP, MRAC+ and MRAC. 84

3.20 The computation times (in seconds) for the learning process in DAC-FFP,
MRAC+, MRAC. 84

3.21 Speedup of the overall algorithm for the Susy dataset. 85
3.22 Runtime and speedup of each DAC-FFP phase in the Susy dataset. 86

4.1 Big datasets used in the experiments. 110
4.2 Values of the parameters for each algorithm used in the experiments. 111
4.3 Average accuracy ± standard deviation achieved by FMDT, FBDT and DDT.112
4.4 Complexities of FMDT, FBDT and DDT. 112
4.5 Complexities of Fuzzy Partitioning for both FMDT and FBDT. 113
4.6 The execution time (in seconds) for FMDT, FBDT and DDT. 114
4.7 Run-time, speedup (σ8), and utilization (σ8(Q)/Q) of both Fuzzy

Partitioning and FBDT Learning processes for the Susy dataset. 116
4.8 Run-time (in seconds) of FBDT on the Susy dataset, varying the dataset

size. 117

5.1 Datasets used in the experiments. 128
5.2 Values of the parameters used in the experiments for DPAES-RCS. 128
5.3 Values of the parameters used for the C4.5 and average number of rules

and features in the rule bases extracted from the generated trees. 129
5.4 Average results obtained by the FIRST, MEDIAN and LAST solutions

generated by DPAES-RCS . 129
5.5 Results of the application of DPAES-RCS and of the Decision Tree

implemented in MLlib. 131
5.6 Results of the Wilcoxon signed-rank test on the CRs obtained on the test

sets by DPAES-RCS and DT . 131
5.7 Speedup of the PAES-RCS algorithm in classification. 133

1

Introduction

Object classification is one of the most studied data mining paradigms [57, 79, 197] and
consists of assigning a class label to an object described by a set of features. The clas-
sification task is carried out by using a specific model, namely the classifier, previously
built by using a set of training examples. A large amount of different model types have
been proposed in the literature, such as decision trees, rule-based models, probabilistic
models, SVM, instance-based models, and neural networks. Furthermore, some works
have exploited the use of fuzzy set theory to deal with uncertainty and build noise-tolerant
classifiers. All these approaches have been often trained only on a few examples, at most
thousands. The today classification applications, however, deal with a much larger num-
ber of examples and should produce results in a reasonable time. Indeed, nowadays,
more than 1 exabyte is generated every day and organizations and researchers must
be able to extract information in a few minutes by processing billions of data collected
from different sources. Thus, scalability is one of the major issues that should be ad-
dressed [132, 148].

Dealing with Big Data, that is, datasets whose size is beyond the ability of typical
database software tools to capture, store, manage and analyze [102, 104, 126, 138],
most of the classification learning algorithms proposed in the literature are practically
inapplicable [106, 148]. Indeed, these algorithms have been generally designed for
maximizing the accuracy, often neglecting computational complexity and memory us-
age [21, 30]. New scalable and distributed data mining techniques as well as paral-
lelization of traditional algorithms have to be designed and implemented to address big
data [119, 150, 177, 200, 204].

The most fundamental challenge for Big Data applications is to explore the large vol-
umes of data and extract useful information or knowledge [156, 199] so that companies
can deploy advanced analytics solutions for providing an insight of their businesses, plan-
ning better decisions, and outperforming the competition [9, 111]. A simplistic solution to
deal with massive data relies on selecting only a subset of data objects, so that traditional
data mining algorithms could be executed in a reasonable time. However, downsampling
techniques may delete useful knowledge [17]. Thus, approaches that consider the overall

1

CHAPTER 1. INTRODUCTION

dataset are far more desirable, and in our context this means explicitly addressing Big
Data.

So far, data mining with massive data is intrinsically related to the open source soft-
ware revolution of the last years [199]. Most of the works proposed in the literature deal
with Apache Hadoop, a cluster computing framework for data-intensive distributed appli-
cations, based upon the MapReduce programming model and a distributed file system.
Indeed, Hadoop allows running custom applications that rapidly process large datasets in
parallel on a cluster of machines, taking care of communications among them and possi-
ble failures, and efficiently handling network bandwidth and disk usage. As regards clas-
sification problems, some recent works have proposed several distributed MapReduce
solutions of classical algorithms, such as SVM [8, 27, 82], KNN [209], boosting [150],
Random Forest [48, 105, 176], decision tree [43, 129], naive Bayes, neural network back-
propagation, and logistic regression, investigating performance in terms of speedup [38].
However, only few authors integrate fuzzy logic theories in their parallel and distributed
models for handling big datasets for classification problems. For instance, in [19] the
authors propose a classification algorithm based on an optimized version of the Fuzzy
c-Means clustering algorithm, which partitions the big data into various subsets. The al-
gorithm retrieves clusters on the different subsets and a classifier based on Bayesian
theory assigns labels to these clusters and predicts unlabeled instances. Moreover, in
the last years, parallel versions of genetic/evolutionary fuzzy systems, that is, fuzzy mod-
els designed by means of genetic/evolutionary algorithms, have been recently proposed
in the literature, both for generating fuzzy association rules [85] and Fuzzy Rule Based
Classifiers (FRBCs) [90, 160].

Actually, the first contributions in the context of distributed FRBCs under the MapRe-
duce paradigm have been proposed by the researchers of the University of Granada.
In [119], the authors describe Chi-FRBCS-BigData, a fuzzy rule-based classification sys-
tem based on the Chi et al.’s approach [36]. The algorithm has been modified to deal
with big data using a two-stage MapReduce approach. The first stage builds the model
from chunks of the training set: a group of fuzzy rules is generated from each chunk.
Then, these groups are fused together in the reduce phase. The second stage estimates
the class using the model learned in the first stage. The authors have investigated dif-
ferent approaches for fusing the fuzzy rules by developing two different versions, named
Chi-FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave. Moreover, an improved version,
called Chi-FRBCS-BigDataCS, has been proposed in [119] for handling imbalanced big
datasets. In [58], authors have proposed FDT 2.0, an improved version of FDT, obtained
by integrating the FDT approach into the modern database technology for improving the
scalability of the overall algorithm and handling large data sets. However, the tests have
been carried out on datasets, which involve at most 400,000 instances, using MySQL as
modern database manager. Thus, FDT 2.0 cannot be considered a solution for managing
big datasets.

Generally, classification algorithms proposed in the literature require that a fuzzy par-
tition is defined on each continuous attribute before starting the tree learning: the partition

2

is generally obtained by adopting heuristic approaches, which optimize purposely-defined
indexes [190, 191, 203]. Actually, the discretization process is crucial to performance of
FDTs, especially when a huge amount of data is involved. Recently, in [157, 158] a dis-
tributed implementation of the well-known Entropy Minimization Discretizer [61] has been
proposed in order to partition continuous attributes.The algorithm first distributes the com-
putation of the class frequency for each attribute, then sorts the values of each attribute
in ascending order and selects a set of interval boundaries by retrieving those values
that fall in the class borders. Finally, the generation of cut-points based on the entropy
information is performed. For all attributes characterized by a low number of boundary
values (lower than a fixed threshold), the computation can be processed independently
in a single step. On the other hand, for attributes characterized by a high number of
boundary values, the selection of the best cut-points has to be carried out iteratively. The
first case is obviously more efficient. The second case, although less efficient, happens
more rarely. The algorithm has been tested by using two datasets (up to about 65 millions
of instances) and the generated cut points have been employed by the distributed Naive
Bayes classifier available on the MLlib Library.

Although with the increasing interest on the big data phenomenon, researchers
are continuously investigating new algorithms, taking into account not only the accu-
racy of the classifiers, but also the scalability of the proposed approaches, there is
still a lack on several data mining applications, especially for classification problems.
As described in the previous paragraph, so far the works have been focused only on
a few of the classical algorithms. However, in the last years, different strategies such
as classifier based on association rule mining techniques and decision trees have
proved to be very effective [24, 79, 101, 108, 113, 114, 154, 155, 162, 197, 201]
in terms of classification rate and interpretability, outperforming most of the classi-
cal algorithms proposed in the literature. Moreover, fuzzy set theory has been suc-
cessfully employed for building more accurate and robust models than their crisp ver-
sions [6, 33, 34, 63, 93, 116, 123, 125, 147, 149, 188]. On the other hand, the use of
fuzzy set concepts makes the generation of the classifier models more complex, holding
back their utilization on the big data context. Indeed, in case of fuzzy partitions, an input
value can support more than one fuzzy set with different membership degrees; thus the
amount of information described by the fuzzy approaches is generally bigger than the
one described by crisp approaches. With this aim, in this PhD. thesis, we propose dif-
ferent distributed solutions for building accurate and interpretable classification models
that are able to deal with big datasets. In particular, we focus on associative classifiers
and decision trees approaches, integrating our solutions with the concepts of fuzzy set
theory. Moreover, taking care about complexity of the generated models, we propose a
distributed evolutionary approach for optimizing both accuracy and interpretability of the
classifiers. To the best of our knowledge, no solution which employs such techniques and
is able to handle millions of data has been proposed yet. Moreover, we point out that our
approaches allow handling big datasets even with modest hardware support. For all the
proposed algorithms, we present and discuss the experimental results obtained perform-

3

CHAPTER 1. INTRODUCTION

ing several simulations over big data benchmarks and we compare the performance in
terms of classification rate, model complexity and computational time of our approaches
with the ones achieved by other state-of-the-art distributed learning algorithms.

As regards associative classification, first we propose a distributed association rule-
based classification scheme, denoted MRAC, shaped according to the MapReduce pro-
gramming model. Second, we introduce a novel associative classification model, namely
AC-FFP, which integrates the concepts of fuzzy set theory with the frequent pattern min-
ing algorithm. Finally, we extend the AC-FFP algorithm with the MapReduce approach for
distributing the computation over a cluster of machines, denoted DAC-FFP. At high level,
the scheme mines classification association rules (CARs), using a properly enhanced,
distributed version of the well-known FP-Growth algorithm. Once CARs have been mined,
the proposed scheme performs a distributed rule pruning and the set of survived CARs
is used to classify unlabeled patterns. To design and implement such algorithms, several
novel strategies have been proposed for efficiently generating accurate classifiers. First,
we have proposed a MapReduce approach based on the classical Fayyad and Irani dis-
creitzation classifier [61] for discretizing continuous features. We have also extended the
approach for generating fuzzy partitions. Second, we have introduced a MapReduce ap-
proach of the FP-Growth algorithm for generating association rules for classification. We
have also proposed some design choices for speeding up the overall process. Fourth,
we have extended the FP-Growth algorithm for mining fuzzy CARs. In particular, we have
proposed a novel approach that is able to handle a higher amount of information than the
one described in previous works [37, 109]. Third, after mining the frequent patterns and
generating CARs and fuzzy CARs, we have carefully designed a distributed MapReduce
implementation of the pruning step. Fourth, we have introduced two novel techniques for
classifying unlabeled patterns by performing a ranking of the generated rules.

As regards fuzzy decision trees, we have proposed a distributed fuzzy discretizer and
a distributed FDT (DFDT) learning scheme upon the MapReduce programming model for
managing big data. The discretizer generates a Ruspini fuzzy partition for each continu-
ous attribute by using a purposely adapted distributed version of the well-known method
proposed by Fayyad and Irani in [61]. The fuzzy partitions computed by the discretizer
are used as input to the DFDT learning algorithm. We adopt and compare two different
versions of the learning algorithm based on binary and multi-way splits, respectively. Both
the versions employ the information gain computed in terms of fuzzy entropy for selecting
the attribute to be adopted at each decision node.

So far, to increase the accuracy of the classifiers, all the distributed strategies pro-
posed in the literature have been characterized by a high number of rules, making such
models not interpretable. With the aim to maximizing the accuracy and minimizing the
complexity, we have proposed a distributed multi-objective evolutionary algorithm for
generating fuzzy rule based classifiers. The experimental study has shown that the dis-
tributed version can efficiently extract compact rule bases with accuracy comparable to
the one achieved by state-of-the-art algorithms.

4

The rest of the thesis is organized as follows. In Chapter 2, we provide an overview
of Big Data and technologies that have been developed in the last years: we focus on
MapReduce as programming model, and Apache Hadoop and Apache Spark as data
processing frameworks. We exploit these technologies in our classification problems.
In Chapter 3 we introduce the associative classification and we describe our MapRe-
duce solutions based on a distributed association rule mining technique. In Chapter 4 we
present the fuzzy decision trees and we detail our approach based on MapReduce. In
Chapter 5 first we provide some preliminaries on multi-objective evolutionary algorithms
and then we introduce our distributed approach for building classification models char-
acterized by different trade-offs between accuracy and complexity. For each proposed
algorithm, we present and discuss the experimental results obtained by performing simu-
lations with the proposed approaches and with the comparison methods. Finally, in Chap-
ter 6, we draw some conclusion about the works described in this thesis.

5

6

2

Big Data: technologies and state-of-the-art

Recently, the term “Big Data” has been coined referring to those challenges and advan-
tages derived from collecting and processing vast amounts of data [131, 164]. Every day
more than 1 exabyte (109 gigabytes) of data are generated and in the last two yeara
90% of the total data generated in history has been produced [199]. The rate of data
creation is accelerating and this astonishing growth has profoundly affected businesses.
Nowadays, organizations must deal with petabyte-scale of different data collected from
several sources: click streams, blog posts, tweets, social network interactions, transaction
histories, sensors, photo and so on [132].

Compared to traditional data, big data are characterized by multiple “Vs”, namely,
huge Volume, high Velocity, high Variety, low Veracity, and high Value [95] (actually, in
the very first works only the first three “Vs” were considered). Traditional data manage-
ment and analysis systems, mainly based on relational database management systems
(RDBMSs), are inadequate in tackling the big data challenges [86]. Specifically, the fol-
lowing two aspects deserve attention:

• From the data structure perspective, RDBMSs have been designed to deal mainly
with structured data, and little support is provided to semi-structured or unstructured
data.

• From the scalability perspective, RDBMSs usually scale up with expensive hardware
and cannot scale out with commodity hardware in parallel; this approach is unsuitable
to cope with ever-growing data volumes.

To address these challenges and obtain effective and timely data management, var-
ious ad-hoc solutions for big data systems have been proposed [35]: Cloud computing,
which can be deployed as the infrastructure layer for big data systems to meet require-
ments on cost-effectiveness, elasticity, and ability to scale up/out; Distributed file systems
and NoSQL databases, suitable for persistent storage and the management of massive
scheme-free datasets; MapReduce and Pregel, programming models that simplifies the
parallelization of the computation flow across large-scale clusters of machines [47]; Clus-
ter computing frameworks like Apache Hadoop [77, 82] and Apache Spark [168, 206],
which integrate data storage, data processing, system management, and other modules

7

CHAPTER 2. BIG DATA: TECHNOLOGIES AND STATE-OF-THE-ART

to form comprehensive, powerful system-level solutions. The central role played in this
field by supporting systems and related analysis techniques has lead to a new definition
for Big Data: “Big Data represents the Information assets characterized by such a High
Volume, Velocity and Variety to require specific Technology and Analytical Methods for its
transformation into Value” [45].

In the following, we present an overview of the programming models and frameworks
that have been introduced in the last years for addressing the Big Data challenges.
Indeed, we focus on MapReduce (Section 2.1.1) for the programming model, and on
Apache Hadoop (Section 2.1.2) and Apache Spark (2.1.3), the two most widespread ex-
ecution environments employed so far. We exploit this technologies in our classification
problems.

2.1 Distributed Processing Frameworks

During last years, different programming models have been proposed for simplifying the
parallelization of the computation flow across large-scale clusters of machine. So far,
the best known model is MapReduce [46], mainly due to its simplicity [175]. However,
for specific classes of machine learning algorithms, high-level parallel abstractions like
MapReduce are insufficiently expressive while other low-level tools like MPI (Message
Passsing Interface) [124] leave experts repeatedly solving the same design challenges,
forcing them to address specific issues related to machine hardware and data represen-
tation [122]. For instance, there are many problems that can be intuitively modeled using
graphs with sparse computational dependencies that require multiple iterations to con-
verge. With this aim, Google proposed in 2010 Pregel [128], a computational model for
large-scale graph processing.

A typical graph-parallel problem is expressed using graphs with vertices and edges,
where each vertex and edge have associated data with them. Programs are expressed
as a sequence of iterations and at each iteration, vertex and edge data are updated and
a bunch of messages are exchanged between neighboring entities, modifying the graph
topology. In particular, a vertex can receive messages sent in the previous iteration, send
messages to other vertices and modify its own state. This update function is typically
the same for every vertex, and is written by the user. There may or may not be a syn-
chronization step at the end of every iteration. The synchronization determines the level
of parallelism that is based on the three consistency models: full, edge or vertex [122].
In a distributed environment, the graph is cut and divided across multiple machines and
the communications between vertices is performed by exploiting the message passing
paradigm.

As regards cluster computing frameworks, in the last years, several open source
projects have been developed to deal with big data, thanks also to the contribution
of companies such as Facebook, Yahoo!, Twitter and so on. Some examples are:
Spark [168] and Flink [64], fast and general engines for large-scale and data process-
ing; Dryad [53, 87] and Ciel [143], universal execution engines for distributed data-

8

2.1. DISTRIBUTED PROCESSING FRAMEWORKS

flow computing; Apache S4 [145], a platform for processing continuous data streams;
Storm [170], a software for streaming data-intensive distributed applications similar to
S4, Spark Streaming [169] and Flink Streaming [66]; Dremel [135] and Apache Drill [52],
scalable, interactive low latency ad hoc query systems for analysis of read-only nested
data; Giraph [71], GraphLab [75, 74, 121, 122] and Pegasus [97], iterative graph process-
ing systems built for high scalability.

As regards data mining tools for big data, Mahout [127, 148] is the most popu-
lar machine learning library running on top of Hadoop. It implements a wide range of
machine learning and data mining algorithms for clustering, recommendation systems,
classification problems, dimension reduction and frequent pattern mining. The MLlib li-
brary [140] supports similar features on Spark. Among other machine learning tools, we
highlight MOA (Massive online Analysis) [141, 20], FlinkML [65] Vowpal Wabbit [183], and
H20 [76].

2.1.1 MapReduce

In 2004, Google proposed the MapReduce programming framework [46, 47]. The frame-
work divides the work into a set of independent tasks and parallelizes the computation
flow across large-scale clusters of machines, taking care of communications among them
and possible failures, and efficiently handling network bandwidth and disk usage. MapRe-
duce is a programming model based on functional programming, designed for processing
large volumes of data with parallel and distributed algorithms on a computer cluster. It
divides the computational flow into two main phases: Map and Reduce. By simply de-
signing Map and Reduce functions, developers are able to develop parallel algorithms
that can be executed across the cluster. The overall computation is organized around
〈key, value〉 pairs: it takes a set of input 〈key, value〉 pairs and produces a set of output
〈key, value〉 pairs. Figure 2.1 shows the overall MapReduce flow.

When the MapReduce execution environment executes a user program, it automat-
ically partitions the dataset into a set of Z independent splits that can be processed in
parallel by different machines. While the number of map tasks is determined by the num-
ber Z of the input splits, the number R of reducers is defined by the user. Thus, there are
Z map tasks and R reduce tasks which have to be executed. Furthermore, the MapRe-
duce framework starts up many copies of the user program on the machine cluster. One
copy is denoted as master : the master schedules and handles tasks within the cluster.
The others are called workers. The master assigns a map task or a reduce task to any
idle worker. When a map task is assigned to a worker, the worker reads the contents of
the corresponding input split, parses the 〈key, value〉 pairs of the input data and passes
the computational flow to the user-defined Map function. The Map function takes a sin-
gle 〈key, value〉 pair as input and produces a list of intermediate 〈key, value〉 pairs as
output. This process can be represented as:

reduce(key1, value1)→ list(key2, value2) (2.1)

9

CHAPTER 2. BIG DATA: TECHNOLOGIES AND STATE-OF-THE-ART

Figure 2.1: The overall MapReduce Flow (R=2).

Workers periodically store in the local disk the intermediate values produced by map
functions and partition these values into R regions. Each region represents the interme-
diate subspace of the key space and is generated by a partitioning function (for instance
hash(key) mod R). Finally, these workers return back results to the master that is re-
sponsible for notifying reduce workers. When a reduce worker is notified, it reads remote
intermediate data from the local disks of map workers, and groups and sorts them ac-
cording to the intermediate key. Then, it iterates over the sorted intermediate data and,
for each unique key, passes the computational flow to the Reduce function defined by
the user. The Reduce function takes the key and the associated value list as input and
generates a new list of values as output. This process can be summarized as:

map(key2, list(value2))→ list(value2) (2.2)

Finally, the output of the reduce function is appended to the output final file.

2.1.2 Apache Hadoop

So far, the most widespread execution environment for the MapReduce programming
model has been Apache Hadoop [77, 194]. Hadoop allows the execution of custom ap-
plications that rapidly process big datasets stored in its distributed file system, called

10

2.1. DISTRIBUTED PROCESSING FRAMEWORKS

Hadoop Distributed Filesystem (HDFS). It is designed to scale up from single servers to
thousands of machines, each offering local computation and storage. Rather than rely
on hardware to deliver high-availability, the library itself is designed to detect and han-
dle failures at the application layer, so delivering a highly-available service on top of a
cluster of computers, each of which may be prone to failures. The project includes three
Java-based modules: (i) Hadoop Common, a set of utilities that support the other Hadoop
modules; (ii) Hadoop Distributed File System (HDFS), a distributed file system that pro-
vides high-throughput access to application data; (iii) Hadoop MapReduce, a system for
parallel processing of large data sets.

Inspired by Google File System [70], the HDFS is a distributed file system designed
to run on commodity hardware and to reliably store very large files across machines in
a large cluster around the idea of the most efficient streaming data processing pattern,
namely "write-once, read-many-times". Indeed, HDFS stores each file as a sequence of
blocks of the same size (by default 64MB). Each block is then replicated for fault tolerance
and sent in different nodes among the cluster. This approach allows to store files that are
larger than any single disk of each machine. HDFS is implemented following the mas-
ter/worker architecture: a Namenode (the master) and several Datanodes (the workers).
The Namenode is in charge to (i) manage the filesystem namespace, performing typical
filesystem namespace operations such as opening, closing, and renaming of files, (ii)
regulate the accesses to files by clients, and (iii) keep track of the status of the all Datan-
odes and the metadata of each file stored in the cluster. On the other hand, Datanodes
manage the blocks attached to the nodes that they run on, performing some operations
such as block creation, deletion, and replication upon instruction from the Namenode,
and are responsible for serving read and write requests from filesystem clients.

Similar to HDFS, Hadoop MapReduce has a master/slave architecture. At high-level,
it consists in a single master server or JobTracker and several slave servers or Task-
Trackers, one per node in the cluster. The JobTracker is a Java-based application and
represents the point of interaction between users and the framework. Users submit a so-
called map/reduce jobs to the JobTracker, which puts them in a queue of pending jobs
and executes them according to the FIFO (First-In First-Out) paradigm. The JobTracker
assigns map and reduce tasks to the TaskTrackers. Each TaskTracker hosted in the slave
servers is a Java-based application that executes the tasks which the job has been split
into and handles data transfers between map and reduce phases.

Figure 2.2 illustrates how Hadoop runs a MapReduce job. The overall process can be
summarized into five main sub-processes [194]: (i) job submission, (ii) job initialization,
(iii) task assignment, (iv) task execution, and (v) job completion.

When the job submission process receives the user’s MapReduce program (step 1),
it asks to the JobTracker for a new job ID (step 2) so that each job can be identified within
the cluster. Then, the process checks the input/output parameters of the job, computes
the input splits, and copies all the resources needed to run the job into the JobTracker’s
filesystem (step 3) in a directory identified by the job ID. The resources include JAR file,
job configuration file and the computed input splits, so that each TaskTracker knows how

11

CHAPTER 2. BIG DATA: TECHNOLOGIES AND STATE-OF-THE-ART

JobTracker Node

User

Program
Job JobTracker

TaskTracker

Child

MapTask
or

ReduceTask

1: run Job

Shared
FileSystem

(HDFS)

Client Node

2: get new Job ID

5: initialize Job

3: copy
Job resources

8: retrieve Job resources

7: send heartbeat
(return tasks)

9: launch

Child JVM

10: run

TaskTracker Node

6: retrieve input splits

4: submit Job
13: return

14: read results

12: complete Job

TaskTracker

Child

MapTask
or

ReduceTask

9: launch

Child JVM

10: run

TaskTracker Node

11: write results

7: send heartbeat
(return tasks)

8: retrieve Job resources

11: write results

Figure 2.2: A MapReduce Job flow executed in top of Apache Hadoop.

to run each specific task. Finally, the last step of job submission process is devoted to
notify the JobTracker that a new job is ready to be executed (step 4). At this point, the job
is put into an internal queue from where the job scheduler will pick it up and initialize it.
Initialization involves creating an object, which encapsulates its tasks and some informa-
tion to keep track of the status and progress of each task (step 5). The list of tasks that
must be executed (step 6) are retrieved by the JobTracker from the input splits computed
in step 3. Then, one map task is created for each input split. Note that with the default
parameters, each input split overlaps one HDFS block. A unique ID is given to each task,
map or reduce. We highlight that at this point, two further tasks are created: a job setup
task and a job cleanup task. These are executed by TaskTrackers and are used to run
code to set up the job before any map task runs and to cleanup after all the reduce tasks
are complete. Finally, the job scheduler chooses the job from the queue that must be run.
There are several scheduling algorithms, but by default jobs are scheduled according to
the FIFO paradigm. When a job has been selected, the JobTracker assigns the tasks for
the job. Indeed, the TaskTrackers have a fixed number of slots for both map and reduce
tasks. The default scheduler fills empty map task slots before each reduce task slots. For
a map task, it picks a task whose input split is as close as possible to the TaskTracker, so
that scheduler can take advantage of data locality, minimizing network congestion and
increasing the overall throughput of the system. The assumption is that “moving com-

12

2.1. DISTRIBUTED PROCESSING FRAMEWORKS

putation is cheaper than moving data” and this is especially true when the size of the
data set is huge. On the other hand, for reduce tasks, the scheduler simply takes the
next in the list, since no data locality considerations can be applied. TaskTrackers run a
simple loop that periodically send a heartbeat to the JobTracker to notify that is alive and
send some information about its status (step 7). Moreover, TaskTracker is in charge to
run a task when it has been assigned to him. First, it copies the JAR file from the shared
filesystem into its own filesystem (step 8), then it launches a new Java Virtual Machine
(step 9) to run the task (step 10) so that any exception thrown by the user’s functions do
not affect the TaskTracker. Similar to the job, each task can perform setup and cleanup
actions. In particular, each reduce task runs the user’s reduce function and the cleanup
action is used to commit the task. In case of file-based jobs, the results of the reduce
task are written to the final output location into the shared filesystem (step 11). Each
child communicates with its parent the progress of the task. The JobTracker combines all
the data retrieved by the heartbeats of each TaskTracker and produces a global view of
all the jobs. When the JobTracker receives a notification from the completion of the last
task, it sets the job status to “successful” (step 12). Finally, the computation flow comes
back to the user’s program (step 13) and the results can be read from the HDFS (step
14) as specified in the configuration file of the job.

Apache Hadoop has proved to be very effective in terms of scalability and distributed
processing. However, for very large clusters that involve more than 4,000 nodes, the
architecture described in the previous paragraph begins to suffer from scalability bottle-
necks. To address this issue, a group at Yahoo! begins to design a new generation of
MapReduce, called YARN (or simply MapReduce 2). The idea is to split the responsibil-
ities of the JobTracker into two new separate entities: a resource manager to handle the
resources across the cluster and an application master to manage the lifecycle of jobs
running on the cluster, taking care of task progress monitoring. The application master
negotiates with the resource manager for the cluster resources and then runs the applica-
tion inside to the so-called containers. Unlike to MapReduce 1, each program/application
has its dedicated application master, making this architecture closer to original Google
MapReduce implementation described in Section 2.1.1. The new architecture is more
general than the previous one and allows working not only with MapReduce but also with
other distributed computing models like Spark [206], Hama [78, 165], Giraph [71], and
MPI [124].

Hadoop has been mainly optimized for one-pass batch processing of on-disk data,
which makes it slow for interactive data exploration and more complex multi-pass ana-
lytics algorithms. Moreover, due to a poor inter-communication capability or inadequacy
for in-memory computation [110, 206], Hadoop is not suitable for those applications that
require iterative/online computations or memory intensive algorithms. Even if some ap-
proaches like Twister [178, 59, 60] and HaLoop [25] have tried to addressing these issues
by implementing the concept of iterative MapReduce runtimes, in the last years Apache
Spark is getting more and more popular because of its enhanced flexibility and efficiency.

13

CHAPTER 2. BIG DATA: TECHNOLOGIES AND STATE-OF-THE-ART

2.1.3 Apache Spark

Apache Spark [168, 205, 206] is an open-source framework originally developed in the
AMPLab at UC Berkley. It has emerged as the next generation big data processing tool
due to both its enhanced flexibility and efficiency. Spark is a fast and general-purpose
cluster computing system and provides an optimized engine for supporting general ex-
ecution graphs, allowing employing different distributed programming models, such as
MapReduce and Pregel. Unlike the disk-based MapReduce paradigm supported by
Hadoop, Spark employs the concept of in-memory cluster computing, where datasets
are cached in memory to reduce their access latency. Thanks to this feature, Spark has
proved to perform faster than Hadoop [206], especially in case of iterative and online
applications.

Apache Spark employs a master/slave architecture, with one central coordinator and
many distributed workers [98]. At high level, a Spark application runs as a set of inde-
pendent processes on the top of the dataset distributed over the cluster. Each application
consists of one driver program (the coordinator) and several executors [98, 206] (the
workers).

2: ask for
application resources

User
Program

Driver
Program

Clsuter Manager
(YARN, Mesos, or

Standalone)

1: submit
Spark Application task task

Executor Data
Cache

Worker Node

3: la
unch executor

3: launch executor

task task

Executor Data
Cache

Worker Node

5: send tasks

5: send tasks

6: return results

6: return results

4: create
tasks

Figure 2.3: A distributed Spark application flow executed on top of Apache Spark.

As shown in Figure 2.3, when a Spark application is submitted (step 1), the driver
program (also named Spark driver) acquires the resources on which its operations run by
contacting an external service (step 2) named cluster manager that is in charge to launch
the executors on behalf of the driver program (steps 3). By default, Spark adopts its on
built-in service called Standalone, but it can work with two other popular open source
cluster managers, namely Hadoop YARN (see Section 2.1.2) and Apache Mesos [137,

14

2.1. DISTRIBUTED PROCESSING FRAMEWORKS

84]. The Spark driver, hosted in the master machine, is the process in charge to both
run the user’s main function and distribute operations on the cluster by sending several
units of work, called tasks, to the executors. Indeed, to accomplish these duties, the Spark
driver (i) converts the user program into several tasks by creating a logical directed acyclic
graph (DAG) of operations, (ii) converts this logical graph into a physical execution plan,
(iii) performs a different number of optimizations so that the physical execution plan can
be converted into a set of stages (a set of multiple tasks, step 4), and (iv) schedules the
task to each executor taking advantage of data locality (step 5). Each executor, hosted
in a slave machine, runs several tasks in parallel, returns the results to the driver, and
keeps data in memory or disk storage across them. Note that, in Spark ecosystem, a
task represents the smallest unit of work. Spark architecture implies that applications
are isolated from each other. Indeed, each application gets its own executor processes
and tasks from different applications run in different JVMs. Thus, data cannot be shared
across different Spark applications without writing it to an external storage system.

The main abstraction provided by Spark is the Resilient Distributed Dataset or simply
(RDD) [205], which is a fault-tolerant collection of elements partitioned across the ma-
chines of the cluster that can be processed in parallel. These collections are resilient,
because they can be rebuilt if a portion of the dataset is lost. RDDs support two types of
operations: transformations, which create a new RDD from an existing one, and actions,
which return a value to the driver program after running a computation on the RDD. The
second abstraction provided by Spark is the shared variable that can be used in parallel
operations. Sometimes, a variable needs to be shared across tasks, or between tasks
and the driver program. To reduce the communication cost, Spark supports two types
of shared variables for the two common usage patterns: broadcast variables, which can
be used to cache a read-only variable in memory on each machine, and accumulators,
which are variables for associative operations that allow implementing counters or sums.

15

16

3

Associative Classification

Associative classification integrates two of the most studied data mining paradigms,
namely pattern classification and association rule mining [197]. Pattern classification
deals with assigning a class label to an object described by a set of features. The clas-
sification task is carried out by using a specific model, namely the classifier, previously
built by using a set of training examples. Association rule mining is the task of discov-
ering correlation or other relationships among items in large database [2]. In the last
years, association rule mining has become a very popular method to build highly accu-
rate classification models. However, as stated in [149], such method suffers from some
main weaknesses. First, the algorithms used for learning these classifiers are not able
to adequately manage big data because complexity grows exponentially in terms of both
time and memory with the number of training data objects. Second, association rule min-
ing algorithms deal with binary or categorical itemsets, but real data objects are often
described by numerical continuous features.

To overcome the first drawback, we propose a distributed association rule-based clas-
sification scheme, named MRAC, shaped according to the MapReduce programming
model. The scheme mines classification association rules (CARs) using a properly en-
hanced, distributed version of the well-known FP-Growth algorithm. Once CARs have
been mined, the proposed scheme performs a distributed rule pruning and the set of
survived CARs is used to classify unlabeled patterns. As regards the second issue, we
propose a novel associative classification model, namely AC-FFP, which integrates the
concepts of fuzzy set theory with the frequent pattern mining algorithm. Moreover, its
MapReduce approach, named DAC-FFP, is also described. We implemented our dis-
tributed solutions on the Hadoop framework and we tested our approaches with other
state-of-the-art distributed learning algorithms on different real-world big datasets, com-
paring the results in terms of accuracy, model complexity, and computation time. Memory
usage, computational time, scalability and achievable speedup for each phase of the
learning process are also evaluated, by carrying out a number of experiments on small
computer clusters. We highlight that the proposed approach allows handling big datasets
even with modest hardware support. Moreover, we evaluated our fuzzy approach on

17

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

seventeen real-world small datasets and compared the achieved results with the ones
obtained by using both a non-fuzzy associative classifier, namely CMAR, and two well-
known fuzzy classifiers, namely FARC-HD and MOFARC-HD, based on fuzzy associa-
tion rules. Using non-parametric statistical tests, we show that our approach outperforms
CMAR and achieves accuracies similar to FARC-HD.

The chapter is organized as follows. Section 3.1 provides some preliminaries of as-
sociative classifiers. Section 3.2 describes the proposed MapReduce solution, with de-
tails of each single job, the experimental setup and the results achieved by the model.
Section 3.3 provides an overview of fuzzy associative classifiers and introduces some
notations for the fuzzy association rules. Section 3.4 and Section 3.5 describe the pro-
posed fuzzy scheme and its distributed approach, respectively. Each section details the
algorithms and comments the results in terms of accuracy, computation time, model com-
plexity of the proposed solutions.

3.1 Associative Classifiers

Classifiers based on association relationships, generally known as Associative Classifiers
(ACs), have proven to be very effective in classification problems. Several studies have
shown that ACs have specific advantages over other traditional classification approaches
such as Decision Tree and Rule Induction [192]. ACs are often capable of building efficient
and accurate classification systems, since in the training phase they leverage association
rule discovery methods that find all possible relationships among the attribute values in
the training data set. This in turn leads to extract all hidden rules possibly missed by
other classification algorithms. Notably, unlike Decision Trees, a rule in AC can be ei-
ther updated or tuned without affecting the complete rule set, whereas in the Decision
Tree approach the same task requires reshaping the whole tree [173]. Moreover, in dif-
ferent works [1, 16, 108, 113, 180, 201] it has been highlighted that ACs can achieve
high classification performances and be more accurate than traditional algorithms such
as C4.5 [155]. Also another advantage of using a classification based on association
rules over ordinary classification approaches is that the output of an AC algorithm is rep-
resented by simple if–-then rules, thus allowing the end-user to easily understand and
interpret it [146, 171]. In last years, ACs have been successfully exploited in a number of
real world applications such as phishing detection in websites [4], XML document classi-
fication [41], text analysis [202], and medical disease classification [54, 202].

Generally, an AC operates in three phases. In the first phase, a set of classifica-
tion association rules (CARs) is mined from the training set. Preliminarily, the attribute
values (items in the association rule context) characterized by an occurrence value be-
yond a given threshold, called frequent items, are selected from the dataset. Then,
CARs are mined from frequent items. In the second phase, CARs are pruned accord-
ing to support and confidence thresholds, and redundancy. Finally, the selected CARs
are used to predict the class labels of input unlabeled patterns. The identification of fast

18

3.1. ASSOCIATIVE CLASSIFIERS

and efficient algorithms for association rule mining still represents a challenge for re-
searchers [31, 32, 161, 182].

In the literature, a number of associative classification approaches, such as CBA [113],
LB [136] and PCAR [31, 32] extract itemsets and then mine CARS exploiting the well-
known Apriori algorithm [3]. This algorithm uses a “bottom up” approach, where candidate
itemsets are generated by extending frequent itemsets one item at a time (a step known
as candidate generation), and are tested against the overall dataset for evaluating if they
are frequent. The algorithm terminates when no further successful frequent extension is
possible. In many cases the Apriori candidate generate-and-test algorithm significantly
reduces the size of candidate sets, leading to a good performance gain. However, the
Apriori algorithm can suffer from two non-negligible costs [79]. Indeed, it may still need to
generate a huge number of candidate itemsets, which have to be analyzed for verifying
whether they are frequent. This requires to repeatedly scan the overall dataset. Since
datasets are often very large, scanning the dataset is very expensive, in particular when
the dataset cannot be stored in the main memory.

An interesting approach, which mines the complete set of frequent itemsets without
generating all the possible candidate itemsets has been proposed in Han et al. [80]. The
approach is called frequent pattern growth, or simply FP-Growth, and adopts a divide-
and-conquer strategy. First, it compresses the dataset representing frequent items into
a frequent pattern tree, or FP-tree, which retains the itemset association information. It
then divides the compressed dataset into a set of conditional datasets (a special kind
of projected datasets), each associated with a frequent item or a pattern fragment. For
each pattern fragment, only its associated conditional dataset needs to be examined.
Independently of the number of frequent items, FP-Growth scans the overall dataset only
twice. On the contrary, Apriori can need several scans of the overall dataset. In [108]
the authors have proposed the CMAR algorithm, an associative classification method
based on the FP-Growth algorithm. CMAR exploits a tree structure to efficiently store
and retrieve mined association rules. The authors demonstrate that CMAR outperforms
the CBA algorithm both in terms of memory occupancy and execution time.

In addition to the methods for mining CARs based on Apriori and FP-Growth, in the
literature we can find also the so-called GARC (Gain-based Association Rule Classifi-
cation) approaches [29]. These approaches extend the Apriori-based algorithms as fol-
lows. First, they apply the information gain measure to select the best-split attribute for
1-itemsets: this attribute has to be included in the generation of all candidate k-itemsets.
Second, they integrate the process of frequent itemset generation with the process of
rule generation. Third, they define rule redundancy and rule conflicts, and incorporate
corresponding strategies for rule pruning into the mining process. In the literature, GARC
models have proved to outperform the CBA algorithm.

The different approaches proposed in the literature to generate ACs are focused
on improvements of classification accuracy, often neglecting time and space require-
ments [146] for CARs generation. Dealing with Big Data, that is, datasets whose size
is beyond the ability of typical database software tools to capture, store, manage and an-

19

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

alyze [104, 138], most of the classification learning algorithms proposed in the literature
are practically inapplicable [106].

In the last years, different scalable and parallel implementations have been proposed
for association rule mining. Most of these implementations have focused on the well-
known FP-Growth algorithm. Some works have proposed to parallelize the FP-Growth
algorithm by exploiting multiple threads on a shared memory environment [115, 207].
In [152], a distributed version that takes both data and computation across multiple ma-
chines into account, has been proposed. As pointed out in [106], in the approaches pro-
posed in [152, 207] the high communication costs hamper an effective parallelization.
Further, the multiple threads of the parallelized FP-Growth algorithm share the memory
space. Thus, the problem of processing huge databases is not actually addressed by
such solutions, since they do not eliminate the bottleneck of huge memory requirements.
Other works investigate different parallel implementations, addressing communication
cost, data placement strategies, memory and I/O utilization [26]. All these approaches are
based on the MPI (Message Passing Interface) programming model [124] and achieve
good performance in terms of scalability and speedup. However, as highlighted in [106],
to push scalability to thousands or even more computers, we must significantly reduce
the communication overheads between computers, and support automatic fault recovery
as well. In particular, fault recovery becomes a critical problem in a massive computing
environment, because the probability of no crash in thousands of computers employed in
a single task execution is close to zero. The demands of sustainable speedup and fault
tolerance require highly constrained and efficient communication protocols.

Currently, some popular cluster computing frameworks like Apache Hadoop [77, 82]
and Apache Spark [168, 206] provide all these features. Although some recent works
have proposed several parallel MapReduce solutions of classical frequent pattern mining
algorithms such as FP-Growth [106] and Apriori [107, 112], no works have discussed the
implementation of associative classifiers according to the MapReduce model.

3.1.1 Notation

Pattern classification consists of assigning a class Cl from a predefined set C =

{C1, . . . , CL} of classes to an unlabeled pattern. We consider a pattern as an F -
dimensional vector of features. Let X = {X1, . . . , XF } be the set of the F features and
Uf , f = 1, . . . , F , be the universe of the f th feature. Features can be both continuous
and categorical. Continuous features are discretized, that is, their universes are parti-
tioned into contiguous intervals before performing the association rule mining process.
Let Ps = {[as,1, as,2], (as,2, as,3], . . . , (as,Ts , as,Ts+1]} be a partition of Ts contiguous in-
tervals on the continuous feature Xs. Since each interval can be associated with a label,
continuous features can be managed as categorical features. Let Vf = {vf,1, . . . , vf,Tf }
be the set of values associated with feature Xf , f = 1, . . . , F . In case of continuous
features, each label vf,j , with j ∈ [1..Tf], identifies the jth interval (af,j , af,j+1] of the
partition of Xf .

20

3.1. ASSOCIATIVE CLASSIFIERS

Association rules are rules in the form Z → Y , where Z and Y are sets of items.
These rules describe relations among items in a dataset [79]. Association rules have
been widely employed in the market basket analysis. Here, items identify products and
rules describe dependencies among different products bought by customers [2]. Such
relations can be used for decisions about marketing activities such as promotional pricing
or product placements.

In the associative classification context, the single item is defined as the couple If,j =
(Xf , vf,j), where vf,j is one of the values that the variable Xf , f = 1, ..., F , can assume.
A generic classification association rule CARm is expressed as:

CARm : Antm → Clm (3.1)

where Antm is a conjunction of items, and Clm is the class label selected for the rule
within the set C = {C1, . . . , CL} of possible classes. For each variable Xf , just one item
is typically considered in Antm. Antecedent Antm can be represented more friendly as

Antm : X1 is v1,jm,1 . . . AND . . . XF is vF,jm,F (3.2)

where vf,jm,f is the value used for variable Xf in rule CARm.
Let T = (x1, y1), (x2, y2), . . . , (xN , yN) be the training set, where, for each object

(xi, yi), xi,f , i = 1, . . . , N , is one of the discrete values that feature Xf , f = 1, . . . , F ,
can assume and yi ∈ C. In case of continuous features, we replace the real value with
the corresponding categorical value, that is, the value associated with the interval which
the real value belongs to. We state that xi matches a rule CARm if and only if, for each
item If,j in Antm with f = 1, . . . , F , the value xi,f of xi has the same value vf,jm,f of
item If,j for feature Xf in the rule.

In the association rule analysis, support and confidence are the most common mea-
sures to determine the strength of an association rule. Support of a classification associ-
ation rule CARm, in short supp(Antm → Clm), is the number of objects in the training
set T matching antecedent Antm and having Clm as class label. Usually, the support
value is normalized with the total number of objects. Support can be interpreted as the
coverage of rule CARm in T and estimates the number of instances correctly classified
by rule CARm.

Confidence of CARm, in short conf(Antm → Clm), is the ratio between supp(Antm
→ Clm) and the number of objects in T matching antecedent Antm. The value can be
interpreted as the probability of correctly classifying the class label Clm in the unlabeled
pattern x̂ under the condition that x̂ matches Antm. Formally, support and confidence
can be expressed for a classification association rule CARm as follows:

supp(Antm → Clm) =
supp(Antm ∪ Clm)

N
(3.3)

conf(Antm → Clm) =
supp(Antm ∪ Clm)

supp(Antm)
(3.4)

21

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

where N is the number of objects in T , supp(Antm ∪Clm) is the number of objects in T
matching pattern Antm and having Clm as class label and supp(Antm) is the number of
objects in T matching pattern Antm.

An AC is also characterized by its reasoning method, which uses the information from
the rule base to determine the class label for a specific input pattern. In our AC scheme,
we have experimented both the weighted χ2 and the best rule reasoning methods.

3.2 MRAC: a MapReduce Solution for Associative Classification of
Big Data

In Section 3.1 we have pointed out that the current implementations of associative clas-
sifiers are not able to manage big data. In this section, we describe a distributed associa-
tion rule-based classification scheme shaped according to the MapReduce programming
model. The scheme mines classification association rules (CARs) using an enhanced,
distributed version of the well-known FP-Growth algorithm, purposely adapted to solve
classification problems. Once CARs have been mined, the proposed scheme performs a
distributed rule pruning. The set of survived CARs is used to classify unlabeled patterns.
Referring to an implementation on Hadoop, we show memory usage and time complexity
for each phase of the learning process. We discuss two distinct versions of the classifier,
which differ for the pruning and the inference mechanism.

We adopt seven real-world big datasets with different numbers of instances (up to
11 millions) to analyze scalability and speedup of each parallel job according to differ-
ent work units and problem sizes. Further, focusing on accuracy, model complexity and
computation time, we compare the results obtained by our approach with those achieved
by two state-of-the-art distributed learning algorithms, namely the Random Forest imple-
mented in Mahout on Hadoop and the Decision Tree implemented in Spark.

The rest of the section is organized as follows. Section 3.2.1 describes the distributed
Mahout FP-Growth implementation (over Hadoop) that we properly modified and ex-
tended to serve as a component of our distributed associative classifier. We exploit this
implementation in our distributed associative classifier. Section 3.2.2 and Section 3.2.3
describe the two proposed approaches, with details of each single job that runs on the
cluster of machines. Section 3.2.4 presents the experimental setup and discusses the re-
sults in terms of accuracy, computation time, model complexity, speedup, and scalability.

3.2.1 Parallel FP-Growth

To mine the CARs from the training set, we adopt the well known FP-Growth mining algo-
rithm. In the Hadoop-based version of our proposed classification scheme, we purposely
modified the FP-Growth implementation available on Mahout. Such an implementation is
based on the Parallel FP-Growth (PFP) proposed by Li et al. [106] for an efficient par-
allelization of the frequent patterns mining without generating candidate itemsets. The
PFP algorithm breaks down a large-scale mining task into independent, parallel tasks

22

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

and uses three MapReduce phases to generate frequent patterns. In the first phase,
the algorithm counts the support values for all the dataset items. In the second phase,
each node builds a local and independent tree and recursively mines the frequent pat-
terns from it. Such a subdivision requires the whole dataset to be projected onto different
item-conditional datasets. An item-conditional dataset T (If,j), also called item-projected
dataset, is a dataset restricted to the objects where the specific item If,j occurs. In each
object of the T (If,j), named item-projected object, the items with support smaller than
If,j are removed, and the others are sorted according to the descending support order.
Since the FP-tree building processes are independent of each other, all the item-projected
datasets can be distributed over the nodes and processed independently.

In the last phase, the algorithm aggregates the previously generated results and, for
each item, selects only the highest supported patterns. As shown by empirical studies,
the PFP algorithm achieves a near-linear speedup [106].

3.2.2 The distributed approach

The MapReduce Associative Classifier (MRAC) can be viewed as an extension of the
well-known CMAR [108] algorithm in a distributed execution environment and consists of
the following three steps:

1. Discretization: a partition is defined on each continuous feature by using a MapRe-
duce discretization approach based on the algorithm proposed by Fayyad and Irani
in [61];

2. CAR Mining: a purposely adapted version of the PFP algorithm is exploited to ex-
tract frequent CARs with support, confidence, and chi-squared higher than pre-fixed
thresholds;

3. Pruning: rule pruning based on redundancy and training set coverage is applied to
generate the final rule base.

In the following, we discuss the three steps in detail.

Discretization

The discretization of continuous features is a critical aspect in AC generation, and so far
several different heuristic algorithms have been proposed to this aim [39, 51, 61, 100].
For MRAC we use the method proposed by Fayyad and Irani in [61]. This supervised
method has been already adopted in CMAR and has proven to be very effective [108]. It
determines the cut-points by exploiting the class information entropy of candidate parti-
tions.

Let Tf,0 = [x1,f , ..., xN,f]
T be the projection of the training set T along variable

Xf and let af,r be a cut point for the same variable. Let Tf,1 and Tf,2 be the subsets of
points of the set Tf,0, which lie in the two intervals identified by af,r. The class information
entropy of the discretization induced by af,r, denoted as E(Xf , af,r;Tf,0) is given by

23

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

E(Xf , af,r;Tf,0) =
|Tf,1|
|Tf,0|

· Ent(Tf,1) +
|Tf,2|
|Tf,0|

· Ent(Tf,2) (3.5)

where | · | denotes the cardinality and Ent() is the entropy calculated for a set of
points [61]. The cut point af,min that minimizes the class information entropy over all
possible binary partitions of Tf,0, is selected. The method is then recursively applied to
both the intervals induced by af,min until the following stopping criterion based on the
Minimal Description Length Principle is achieved:

Gain(Xf , af,min;Tf,0) <
log2(|Tf,0| − 1)

|Tf,0|
+
∆(Xf , af,min;Tf,0)

|Tf,0|
(3.6)

where
Gain(Xf , af,min;Tf,0) = Ent(Tf,0)− E(Xf , af,min;Tf,0), (3.7)

∆(Xf , af,min;Tf,0) = log2(3
k0 − 2)− [k0 · Ent(Tf,0)− k1 · Ent(Tf,1)− k2 · Ent(Tf,2)] (3.8)

and ki is the number of class labels represented in the set Tf,i.
The method outputs, for each feature, a set of cut points. Let Uf = [xf,l, xf,u] be

the universe of variable Xf . Let Af = {af,1, . . . , af,Tf+1
}, with ∀r ∈ [1, . . . , Tf], af,r <

af,r+1, be the set of cut points, where af,1 = xf,l and af,Tf+1
= xf,u. Then, the method

identifies the set {[af,1, af,2] , . . . ,
(
af,Tf , af,Tf+1

]
} of contiguous intervals, which parti-

tion the universe of variableXf . If no cut point has been found by the algorithm for feature
Xf , then no interval is generated for such a feature, and Xf is then discarded. We as-
sociate each interval (af,r, af,r+1], r ∈ [1, . . . , Tf] with a categorical value vf,r. Each
categorical value represents an item.

In order to manage a large amount of data, we propose an approximation of the
Fayyad and Irani method. We implement the discretization process by using two MapRe-
duce phases, as shown in Fig. 3.1. Here, CU stands for Computing Unit. In the first
phase, each Mapper splits the data block into a number of equi-frequency bins: the num-
ber is determined as a percentage γ of the HDFS block size. In the experiments, we used
γ = 0.1%. The output of each Mapper is the sorted list of bin boundaries. The Reducers
join all the sorted lists and, for each variable, generate a sorted list of bin boundaries. In
the second phase, for each bin determined by a pair of consecutive bin boundaries in the
list, the Mappers compute the percentage of instances belonging to the different classes.
These percentages are used by the Reducers to compute the Fayyad and Irani discretiza-
tion algorithm on the bins. To limit the number of possible items, the imposed termination
condition corresponds to getting to a partition in which one of two intervals contains less
than a percentage φ of the instances (in the experiments, we adopted φ = 2%). In prac-
tice, we verified that the creation of items with a smaller support leads to a classifier
excessively specialized on the training set, penalizing the performance on the test set.
Hence, lower values for φ increase the overall runtime with no real advantage.

The proposed distributed approach makes it feasible dealing with a very large number
of instances: the equi-frequency bins used in the first phase permit us to reduce the
data amount the Fayyad and Irani discretization is applied to. Obviously, the higher the

24

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

Figure 3.1: The Discretization step of the MapReduce Associative Classifier.

frequency used in the equi-frequency bins, the coarser the approximation in determining
the cut-points for the Fayyad and Irani algorithm. However we must notice that, as we are
managing millions of data, a difference of a few instances determined by choosing the
cut-points between bin boundaries instead of the original instances is generally negligible
in terms of achieved accuracy.

More specifically, the first MapReduce phase scans the dataset and computes at most
Ω = Z · Γ bin boundaries, where Z is the number of mappers and Γ = 100/γ + 1 is
the number of bin boundaries. Let Bz,f = {bz,f1

, . . . , bz,fΓ } be the sorted list of bin
boundaries for the f th feature extracted from the zth HDFS block. First, each mapper
loads all objects of the HDFS block into the main memory: the input key-value pair is
represented by 〈key, value = oi〉, where oi is an object of the training set block. Then,
for each continuous feature, the mapper computes the boundaries of equi-frequency bins,
where each bin contains a number of instances equal to the percentage γ of the HDFS
block size, and outputs a key-value pair 〈key = f, value = Bz,f 〉, where f is the index

25

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

of the f th feature and Bz,f is the list containing all the bin boundaries for the feature Xf

extracted from the zth HDFS block. Each reducer is fed Z lists, denoted as List(Bz,f),
of bin boundaries for each feature f and outputs 〈key = f, value = Bf 〉, where Bf =

{bf1 , . . . , bfΩ}, with ∀ω ∈ [1, . . . , Ω − 1] bfω < bfω+1
, is the sorted list of bin boundaries

for feature f . The pseudo-code of the first MapReduce phase is shown in Fig. 3.2. Space
and time complexities of the Map phase are O(N/Q) and O(F · (N · log(N/Q)/Q)),
respectively, whereQ is the number of CUs. On the contrary, space and time complexities
of the Reduce phase are O(F ·Ω/Q) and O(F · (Ω · log(Ω))/Q) respectively.

1: procedure MAPPER(key, value = oi)
2: for all object oi in HDFS − block do
3: dataBlock ← load(oi);
4: end for
5: for all feature Xf in X do
6: if (ISCONTINUOS(Xf)) then
7: Bz,f ← COMPUTEEQUIFREQUENCYBINBOUNDARIES(dataBlock, f, γ);
8: Call OUTPUT(〈key = f, value = Bz,f 〉);
9: end if

10: end for
11: end procedure
12: procedure REDUCER(key = f, value = List(Bz,f))
13: Bf ← NEWSORTEDLIST()
14: for all Bz,f in List(Bz,f) do
15: Bf ← INSERT(Bz,f);
16: end for
17: Call OUTPUT(〈key = f, value = Bf 〉);
18: end procedure

Figure 3.2: Pseudo-code of the first MapReduce phase of the discretization process.

The second MapReduce phase scans the dataset to compute the frequency of
each class for each bin, and then performs the Fayyad and Irani algorithm on the
bins. For each list Bf of sorted bin boundaries, the mapper first generates the set of
bins {[bf1 , bf2] , . . . ,

(
BfΩ−1

, BfΩ
]
} from the bin boundaries in Bf . Then, it creates a

vector Wz,f of Ω − 1 elements, where each element Wz,f,r corresponds to the bin(
bfr , bfr+1

]
. Wz,f,r contains a vector of L elements, which stores, for each of the L

classes, the number of instances of the class belonging to the r-th bin in the HDFS
block. For each object oi in the HDFS block, the mapper updates Wz,f . The input and
output key-value pairs are 〈key, value = oi〉 and 〈key = f, value = Wz,f 〉, respec-
tively. The reducer is fed a list List(Wz,f) of Z vectors Wz,f . The input key-value pair is
〈key = f, value = List(Wz,f)〉. The reducer creates a vector Wf of Ω − 1 elements,
where each element Wf,r corresponds to the bin

(
bfr , bfr+1

]
and contains the sum of

the corresponding Z elements Wz,f,r. Thus, each element Wz,f stores the frequency for
each class in every bin along the whole dataset. Then, the reducer applies the Fayyad

26

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

and Irani discretization to the sequence of bins, setting the minimum frequency of each in-
terval to φ. Finally, the reducer outputs 〈key = f, value = Af 〉, whereAf is the list of cut-
points for the feature Xf . The pseudo-code of the second MapReduce phase is shown in
Fig. 3.3. We would like to point out that the cut-points correspond to interval boundaries.
Space and time complexities of the Map phase are O(N/Q) and O(N · log(Ω)/Q)),
respectively, where Q is the number of computing units (CUs). On the contrary, for the
Reduce phase, space is O(F ·(Ω−1)/Q) and time complexity depends on the execution
time of the Fayyad and Irani algorithm, O(F · (FayyadAndIraniDis(Ω − 1))/Q).

1: procedure MAPPER(key, value = oi)
2: B,W ← NEWLIST(); . List of Bf and Wz,f respectively
3: for all index of feature f in F do
4: B ← ADD(Bf);
5: Wz,f ← INITIALIZE(size(Bf), L);
6: W ← ADD(Wz,f);
7: end for
8: oi[]← SPLIT(oi); . Array of F+1 values
9: Cli ← GETCLASSLABEL(oi[]);

10: for all index of feature f in F do
11: if (ISCONTINUOS(Xf)) then
12: W ← UPDATEFREQUENCY(f, oi[f], Cli);
13: end if
14: end for
15: for all feature Xf in X do
16: if (ISCONTINUOS(Xf)) then
17: Call OUTPUT(〈key = f, value =Wz,f 〉);
18: end if
19: end for
20: end procedure
21: procedure REDUCER(key = f, value = List(Wz,f))
22: Wf ← INITIALIZE();
23: for all Wz,f in List(Wz,f) do
24: Wf ← UPDATEFREQUENCY(Wz,f);
25: end for
26: Af ← FAYYADANDIRANIALGORITHM(Wf , φ);
27: Call OUTPUT(〈key = f, value = Af 〉);
28: end procedure

Figure 3.3: Pseudo-code of the second MapReduce phase of the discretization process.

CAR Mining

The generation of classification association rules is obtained via a specific adaptation of
the PFP algorithm discussed in Section 3.2.1. We recall that the PFP algorithm generates

27

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

generic frequent patterns. On the other hand, the frequent patterns mined for classifica-
tion are required to contain one class. This led to re-define how the FP-tree is generated
from the instances and how the frequent patterns have to be mined from the FP-tree. Fur-
ther, we have also proposed a sort of rule pre-pruning during the CAR mining process.
The pre-pruning avoids the analysis of several sub-trees and thus the generation of sev-
eral CARs. As shown in Figure 3.4, our algorithm also uses three MapReduce phases:
Parallel Counting, Parallel FP-Growth and Candidate Rule Filtering.

Parallel Counting phase
The first MapReduce phase scans the dataset and counts the support values of each

item. Each mapper analyzes an HDFS block: the input key-value pair is represented by
〈key, value = oi〉, where oi is an object of the training set block. For each item vf,j ∈ oi,
the mapper outputs a key-value pair 〈key = vf,j , value = 1〉. The reducer is fed a list
of corresponding values for each key (in this case a set of 1’s) that we call List(key),
and outputs 〈key = vf,j , value = sum(List(key))〉. The pseudo-code of the Parallel
Counting phase is shown in Fig. 3.5. Space and time complexity are bothO(N/Q), where
Q is the number of CUs. Note that the Parallel Counting phase counts also the support
of the class labels, which we assume to be the last item of each object oi.

Only the items, called frequent items, whose support is larger than the support thresh-
old minSup are retained and stored in a list, called flist, in descending support size
order. Since flist is typically small, this step can efficiently be performed on a single
machine (the time complexity is O(|flist| log(|flist|)), where |flist| indicates the number
of frequent items in the list). The other items are pruned and therefore not considered
anymore in the subsequent phases.

Parallel FP-Growth
The second MapReduce phase, Parallel FP-Growth, is the core of the CAR Mining

process and the relative pseudo-code is reported in Fig. 3.6. The mapper generates
item-projected objects so that reducers can generate conditional FP-trees, which are in-
dependent of each other during the recursive mining process. Like in the previous phase,
each mapper is fed an HDFS block and the input key-value pair is 〈key, value = oi〉. For
each oi, the mapper gets the class label Cli and sorts the feature values according to the
flist. Let soi be the sorted object. Then, for each item soi,p ∈ soi, the mapper outputs the
key-value pair 〈key = id, value = {soi,1, . . . , soi,p, Cli}〉 where id is the index of the item
soi,p in the flist and {soi,1, . . . , soi,p, Cli} is the soi,p-projected object. Since each item is
independent of the others, the reducer processes a set of independent projected objects
for each single item, which represents the vf,j-projected training set T (vf,j). The reducer
inputs a key-value pair 〈key = id, value = T (vf,j)〉, builds the local FP-tree and recur-
sively mines the classification association rules as described in [80]. Finally, it returns only
the CARs whose support, confidence, and χ2 values are greater than the relative thresh-
olds (line 18 in Fig. 3.6). In particular, reducers output 〈key = null, value = CARm〉
pairs, where CARm is the m-th generated rule. Thus, space and time complexities of

28

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

Figure 3.4: The CAR Mining step of the MapReduce Associative Classifier.

29

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

1: procedure MAPPER(key, value = oi)
2: for all item vf,j in oi do
3: Call OUTPUT(〈key = vf,j , value = 1〉);
4: end for
5: end procedure
6: procedure REDUCER(key = vf,j , value = List(key))
7: sum← 0;
8: for all item 1 in List(key) do
9: sum← sum+ 1;

10: end for
11: Call OUTPUT(〈key = vf,j , value = sum〉);
12: end procedure

Figure 3.5: The MapReduce Parallel Counting Phase

each reducer depend on the size and the execution time of all the processed projected
training sets,Ored(Sum(|T (vf,j)|)) andOred(Sum(FPGrowth(T (vf,j)))), respectively.

Figure 3.7 shows a simple example of the Parallel FP-Growth execution, with four
objects and minSupp = 2. Mappers sort frequent items according to the flist and create
item-projected objects for each item. Reducers build the local conditional FP-tree for the
specific item and recursively mine the candidate rule set. Each node on the FP-tree
represents an item and each path represents an item-projected object. Since different
paths share the same prefix, the tree is a compressed view of the vj,i-projected dataset.

The recursive mining of CARs from the local FP-tree can be very time-consuming
and can generate a large number of CARs. To speedup this process and reduce the
number of generated CARs, we adopt a sort of rule pre-pruning during the CAR mining
process. The pre-pruning avoids the inspection of several sub-trees and thus the gener-
ation of several CARs. More precisely, sub-trees that will likely generate redundant rules
are not inspected. The precise explanation of the pre-pruning asks for the introduction of
additional definitions. A CARm is more significant than another CARs if and only if:

1. conf(CARm) > conf(CARs)

2. conf(CARm) = conf(CARs) AND supp(CARm) > supp(CARs);
3. conf(CARm) = conf(CARs) AND supp(CARm) = supp(CARs)

AND RL(CARm) < RL(CARs).

where conf(.), supp(.) and RL(.) are the confidence, the support, and the rule length,
respectively. A rule CARm : Antm → Clm is more general than a rule CARs : Ants →
Cls , if and only if, Ants ⊆ Antm. Thus, a rule CARs can be pruned if there exists a
rule CARm that is more significant and more general than CARs. This lets us discard
redundant rules and cover a larger number of objects in the training set. The rules are
more and more specialized as the recursive visit of a vf,j-conditional FP-tree goes deeper
in the tree. We stop the visit of an FP-tree at a specific node ι if, visiting two further
nodes, the rules generated by adding the items corresponding to the nodes are not more
significant than the rule generated at node ι. Let us assume that CARm : Antm → Clm ,

30

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

1: procedure MAPPER(key, value = oi)
2: flist ← LOADFREQUENTITEMLIST();
3: oi[]← SPLIT(oi); . Array of Items
4: Cli ← REMOVELASTITEM();
5: soi[]← SORT(oi[], flist); . Array of Items Sorted according to flist
6: for p = |soi[]| − 1 to 0 do
7: id← GETINDEXFLIST(soi[p]);
8: Call OUTPUT(〈key = id, value = {soi[1] . . . soi[p], Cli}〉);
9: end for

10: end procedure
11: procedure REDUCER(key = id, value = T (vj,i))
12: FPTree← NEWFPTREE();
13: for all soi in T (vj,i) do
14: FPTree← INSERT(soi);
15: end for
16: CARlist ← FPGROWTH(FPTree);
17: for all CARm in CARlist do
18: if isV alid(CARm) then . Check support, confidence, and χ2

19: Call OUTPUT(〈key = null, value = CARm〉);
20: end if
21: end for
22: end procedure

Figure 3.6: The MapReduce Parallel FP-Growth Phase

CARs : Ants → Cls , and CARd : Antd → Cld , with Ants = {Antm, ṽf,j} and Antd =

{Ants, v̂f,j}, where ṽf,j and v̂f,j are frequent items for the Ants and Antd antecedents,
respectively. We stop the generation of other rules with sub-pattern Antd if and only if:

conf(CARd)− conf(CARs) ≤ 1− supp(CARd)

supp(CARs)

AND (3.9)

conf(CARs)− conf(CARm) ≤ 1− supp(CARs)

supp(CARm)

Eq. 3.9 is not evaluated for the rules with one or two antecedents and for the rules gener-
ated from Antd whose class is different from CARd. This approach avoids the inspection
of paths in the FP-tree that probably will generate redundant rules, which would be pruned
in the next steps anyway. Since this modification of the FP-Growth reduces significantly
the execution time of the mining process, we can reduce the value of the minsup thresh-
old and therefore extract highly confident and specialized rules with a small support. In
our experiments, we verified that this approach represents a good trade-off between time
and accuracy performance. Note that the number of pairs 〈key, list(values)〉 processed
by each reducer is determined by the default partition function hash(key) mod R. Since
in Parallel FP-Growth the intermediate key is the specific item index in flist, more or less
the same number of pairs 〈key, list(values)〉, i.e. of conditional FP-trees, is assigned to

31

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Figure 3.7: A simple example of the Parallel FP-Growth execution.

each reducer by the partition function. However, such a distribution does not necessar-
ily guarantee a perfect load balancing among all the reducers, because the time spent
in processing each specific conditional FP-tree depends on the number and length of
its paths; more precisely, the relative time complexity is exponential with respect to the
longest frequent path in the conditional pattern base [152, 212]. In case of a large number
of frequent items, the conditional FP-trees corresponding to the items with the smallest
support are very deep since they consider in their paths almost all the frequent items.
The rule pre-pruning can reduce this problem for specific datasets, but cannot solve it in
general. Thus, datasets whose objects are described by a small number of features can
be easily managed, but conversely runtime problems may occur in dealing with objects
with a large number of features.

Candidate Rule Filtering
The last MapReduce phase, Candidate Rule Filtering, selects only the K most signif-

icant non-redundant rules for each class label Cl. A rule CARm is not inserted into the

32

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

K most significant non-redundant rules if there exists a rule CARs that is more signifi-
cant and more general than CARm. Each mapper is fed the key-value pair in the form of
〈key = null, value = CARm〉, and it returns a pair 〈key = Clm , value = CARm〉, where
Clm is the CARm class label. Each reducer processes all the rules with the same class
label, List(CARCl), and selects only the K most significant non-redundant rules. For
each of theseK rules the reducer returns a key-value pair 〈key = null, value = CARm〉.
Fig. 3.8 shows the pseudo-code of the Candidate Rule Filtering phase. We highlight that,
at line 8, if the current rule CARm can be inserted into the K most significant non-
redundant rules, the method checkRedundant checks and removes all the rules that
become redundant by adding the new CARm. Space complexity is O(K) and time com-
plexity is O(Max(|CARCl |) · log(K)/Q), where Q is the number of CUs.

1: procedure MAPPER(key, value = CARm)
2: Clm ← GETCLASSLABELRULE(CARm);
3: Call OUTPUT(〈key = Clm , value = CARm〉);
4: end procedure
5: procedure REDUCER(key = Cl, value = List(CARCl))
6: HP ← CREATEMAXHEAP(K); . K defines the HP size
7: for all CARm in List(CARCl) do
8: if checkRedundant(CARm, HP) then
9: if |HP | < K then

10: HP ← INSERT(CARm);
11: else
12: if rank(HP [0]) < rank(CARm) then
13: HP ← DELETETOPELEMENT();
14: HP ← INSERT(CARm);
15: end if
16: end if
17: end if
18: end for
19: for all CARm in HP do
20: Call OUTPUT(〈key = null, value = CARm〉);
21: end for
22: end procedure

Figure 3.8: The MapReduce Candidate Rule Filtering Phase

Rule Pruning

Rule pruning aims to discard less relevant rules to speed up the classification process.
Pruning has to be applied carefully, avoiding to drop useful knowledge along with dis-
carded rules. Among the approaches proposed for rule pruning it is worth recalling lazy
pruning [16], database coverage [113], and pessimistic error estimation [197].

33

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

In MRAC three different types of pruning are used. In the first type, a rule CARm
is pruned if its support, confidence and χ2 are not greater than minSupp, minConf and
minχ2 thresholds, respectively. This type of pruning is performed at the end of the Parallel
FP-Growth phase, when the rule is mined. Since the support value is stored along the
FP-tree, the computation of support, confidence, and χ2 can be performed on the fly.

In the second type of pruning, we remove redundant rules. First, the candidate rules
are sorted according to their ranking position as described in Section 3.2.2 and only theK
most significant non-redundant rules for each class label are selected. Experimentally we
found that this second step can reduce significantly the number of CARs in the CARlist,
without significantly affecting the classification accuracy. This type of pruning is performed
in the new version of the FP-Growth mining algorithm, as described in Section 3.2.2, and
in the reduce phase of the Candidate Rule Filtering job.

In the third type of pruning, shown in Fig. 3.9, the training set coverage is exploited:
the retained rules are only those that are activated by at least one data object in the
training set. Each data object in the training set is associated with a counter initialized to
0. For each object, a scan over the sorted CARlist is performed to find all the rules that
match the object. If CARm classifies correctly at least one data object, then CARm is in-
serted into the rule base. Further, the counters associated with the objects, which activate
CARm, are incremented by 1. Whenever the counter of an object becomes larger than
the coverage threshold δ, the data object is removed from the training set and no longer
considered for subsequent rules. Since rules are sorted in descending significance, it is
very likely that these subsequent rules would have a very limited relevance for the object.
The procedure ends when no more objects are in the training set or all the rules have
been analyzed.

Figure 3.9: The Pruning step of the MapReduce Associative Classifier.

34

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

Fig. 3.10 shows the MapReduce pseudo-code of the third type of pruning.

1: procedure MAPPER(key, value = oi)
2: CARlist ← LOADANDRANKFILTEREDRULESET();
3: δ ← LOADCOVERAGETHRESHOLD();
4: count← 0;
5: for all CARm in CARlist do
6: if CARm matches oi then
7: count← count+ 1;
8: if CARm correctly classifies oi then
9: indexCARm ← GETINDEX(CARm, CARlist);

10: Call OUTPUT(〈key = indexCARm , value = null〉);
11: end if
12: end if
13: if count > δ then
14: break;
15: end if
16: end for
17: end procedure
18: procedure REDUCER(key = indexCARm , value = null)
19: CARlist ← LOADANDRANKFILTEREDRULESET();
20: CARm ← GETRULE(indexCARm , CARlist);
21: Call OUTPUT(〈key = null, value = CARm〉);
22: end procedure

Figure 3.10: The MapReduce Training Set Coverage Pruning Job

Each mapper instance loads and ranks into memory the filtered rule set, CARlist,
mined in the previous step. Further, since each mapper is fed an HDFS block, the key-
value input pair is 〈key = null, value = oi〉. For each object oi, the mapper sets the
counter to 0 and scans the CARlist. If CARm matches oi, then the counter is incre-
mented by 1. Further, if CARm also correctly classifies the object oi, the mapper outputs
to the reducer the index indexCARm of CARm in the CARlist and null as, respectively,
key and value, that is, 〈key = indexCARm , value = null〉. When the counter exceeds
the coverage threshold δ, oi is not processed anymore and the next object is taken into
account. The reducer instance retrieves the correct rule from the CARlist and outputs it.
The key-value input pair is 〈key = indexCARm , value = null〉 and the key-value output
pair is 〈key = null, value = CARm〉. Space complexity is O(N/Q) and time complexity
in the worst case is O(N · |CARlist|/Q), where |CARlist| ≤ L ·K and Q is the number
of CUs.

Classification

The pruned set of rules represents the rule base used to classify an unlabeled pattern x̂.
All rules that match the unlabeled pattern are taken into account: they can predict either

35

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

the same class label or different class labels. In the first case, MRAC simply assigns the
class label to the unlabeled pattern. In the second case, the algorithm splits the rules
into different groups according to the class label and compares the strength strCl of
each group. The strength is computed by adopting the weighted chi-squared [108] as
reasoning method :

strCl =
∑

CARm∈RB(Cl)

χ2
mχ

2
m

maxχ2
m

(3.10)

where RB(Cl) contains all the rules in the rule base with the same class label Cl, which
match the unlabeled pattern, and χ2

m andmaxχ2
m are the chi-square and its upper bound

for the rule CARm, respectively. The maxχ2
m for a generic rule CARm : Antm → Clm

is calculated as follows:

maxχ2
m = (minsupp(Antm, supp(Clm))−

supp(Antm) · supp(Clm)
N

)2 ·N · e (3.11)

where supp(Antm) is the support of the antecedent of rule CARm, supp(Clm) is the
support of the class label Clm , N is the number of objects in the training set and e is
computed as:

e =
1

supp(Antm) · supp(Clm)
+

1

supp(Antm) · (N − supp(Clm))
+

+
1

(N − supp(Antm) · supp(Clm)
+

1

(N − supp(Antm)) · (N − supp(Clm))
(3.12)

MRAC assigns the unlabeled pattern to the class label associated with the top-
strength group. In case no rule matches the pattern, the method classifies x̂ with the
class label with the highest support size.

3.2.3 MRAC+: a faster version of MRAC

The algorithm described in the previous subsections is a MapReduce distributed version
of the well-known CMAR algorithm, with some appropriate variation for speeding-up the
execution time. Indeed, we have limited the number of items by enforcing the frequency
of each interval generated in the distributed discretization process to be greater than a
threshold φ. Then, we have modified the FP-Growth algorithm to avoid the generation
of patterns that likely would yield only redundant rules. Despite such improvements, the
number of rules can still be quite large (at most K ·L), thus making the pruning step per-
formed by the database coverage very time-consuming. This number could be reduced
by increasing the thresholds (confidence and support) used in the rule learning process.

From the previous analysis it becomes clear that any increase for confidence/sup-
port thresholds strongly specializes the classifier on the training set, reducing its gen-
eralization capability and therefore its accuracy on the test set. To elude this drawback,

36

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

we designed a modified version of MRAC, denoted as MRAC+ and described hereafter.
MRAC+ do not use the training set coverage and adopts the best rule method as infer-
ence mechanism. Given an unlabeled pattern x̂, we output the class corresponding to
the first activated rule in the sorted rule base obtained after applying the first two types
of pruning described in Section 3.2.2. Thus, we assign to x̂ the class associated with the
most confident and specialized rule in the rule base. In Section 3.2.4, we highlight that
MRAC+ outperforms MRAC in terms of both accuracy and computation time over the big
datasets used in our experimental study. For the sake of clarity, Figure 3.11 summarizes
the workflow of MRAC and MRAC+ for both the learning and the classification processes.

Figure 3.11: The overall workflow of MRAC (on the left) and MRAC+ (on the right).

37

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

3.2.4 Experimental Study

Specific experimental tests have been devised to characterize the behavior of the pro-
posed algorithms, focusing on the following crucial aspects: i) performance in terms of
classification accuracy, model complexity and computation time, ii) horizontal scalability
analysis with a typical complete dataset, and iii) study on the ability to efficiently accom-
modate an increasing dataset size.

As shown in Table 3.1, we employed 7 well-known big datasets, extracted from the
UCI repository1 and LIBSVM repository2, which are characterized by different numbers of
input/output instances (from 581012 to 11000000), classes (from 2 to 23), and attributes
(from 10 to 54). For each dataset, we report the number of numeric (N) and categorical
(C) attributes.

Table 3.1: Big datasets used in the experiments.

Dataset # Instances # Attributes # Classes
Cover Type (COV) 581012 54 (10 N, 44 C) 2

HIGGS (HIG) 11000000 28 (28 N) 2
KDDCup 1999 2 Classes (KDD99_2) 4856151 41 (26N, 15C) 2
KDDCup 1999 5 Classes (KDD99_5) 4898431 41 (26N, 15C) 5

KDDCup 1999 (KDD99) 4898431 41 (26N, 15C) 23
Poker-Hand (POK) 1025010 10 (10 C) 10

Susy (SUS) 5000000 18 (18 N) 2

All the experiments have been run using Apache Hadoop 1.0.4 as the reference
MapReduce implementation. The chosen testbed corresponds to a typical low-end sys-
tem suitable for supporting the target classification service: a small cluster with one mas-
ter and three slave nodes, connected by a Gigabit Ethernet (1 Gbps). All the nodes run
Ubuntu 12.04. Regarding the deployment of the Hadoop components, the master hosts
the NameNode and JobTracker processes, while each slave runs a DataNode and a
TaskTracker. The NameNode is devoted to handling the HDFS, keeping track of its block
replicas (64 MB by default), and to coordinating all the DataNode processes as well. The
master node has a 4-core CPU (Intel Core i5 CPU 750 x 2.67 GHz), 4 GB of RAM and a
500GB Hard Drive. Each slave node has a 4-core CPU with Hyperthreading (Intel Core
i7-2600K CPU x 3.40 GHz), 16GB of RAM and 1 TB Hard Drive.

Given the practical importance of time efficiency in several data analysis tasks, we
have also carried out preliminary investigations on possible improvements from Spark-
based versions of the proposed classification scheme. To this aim, we have compared
the version of the PFP algorithm, which has been recently implemented in the MLlib
library on Spark (version 1.4.1), with the Mahout version used for our algorithm. Surpris-
ingly, we have verified that the MLlib version outperforms the Mahout one only when the

1 Available at Available at https://archive.ics.uci.edu/ml/datasets.html
2 Available at Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

38

https://archive.ics.uci.edu/ml/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

number of frequent items is small. When the number of frequent items is large, the Ma-
hout version behaves slightly better. This behavior is mainly due to the lack in the MLlib
implementation of the aggregating step suggested in [106] and developed in the Mahout
version. This means that a really effective implementation on Spark of the overall pro-
posed classification scheme will be possible only upon the availability of the overall PFP
proposed in [106] in the MLlib library.

Performance of MRAC+ and MRAC

In this section, we analyze the performance of MRAC+ and MRAC in terms of accuracy,
model complexity, and computation time. To the best of our knowledge, no other imple-
mentation of associative classifiers has been proposed in the literature for handling big
datasets. Thus, to assess the performance of MRAC and MRAC+ in comparison with
other algorithms, we have employed well-known recent distributed implementations of
two different classifier types, namely Decision Tree (DT) and Random Forest (RF).

As regards DT, we used the implementation available in MLlib [140] that performs
a recursive binary partitioning of the feature space. For the generation of partitions (at
most maxBins), the algorithm computes a set of split candidates by performing a quantile
calculation over a sampled fraction of the data. Then, at each decision node, each parti-
tion is chosen greedily by selecting the best split from the set of possible splits, in order
to maximize the information gain, measured as node impurity. The maximum possible
depth maxDepth of the tree can be fixed by the user: deeper trees are more expressive
(potentially allowing higher accuracy on the training set), but they also ask for a longer
learning process and are characterized by a higher probability of overtraining.

As regards RF [23], we used the implementation available in Mahout [127]. An RF
uses bagging in tandem with random attribute selection for generating a multitude of
decision trees and outputs the class that is the mode of the classes of the individual
trees. At each node of each tree of the forest, a subset G of the available attributes is
randomly chosen and the best split available within these attributes is selected for that
node. To deal with big datasets, the Mahout algorithm uses a partial implementation that
builds multiple trees for different blocks of data. First, a partitioning of the dataset into
independent data blocks of dimensionmaxSplitSize is performed. Then, each Mapper is
fed by one data block and builds a subset of the random forest. The set of trees generated
by each Mapper forms the forest.

Table 3.2 summarizes, for each algorithm, the parameters used in the experiments.
For DT and RF, we adopted the values suggested in the guidelines provided with the
libraries. As regard the maxBins parameter of the DT and the KDDCup datasets, we
raise up the value to 70, since for the categorical attributes it has to be at least the same
number of the possible values of feature. For each dataset and for each algorithm, we
performed a five-fold cross-validation by using the same folds for all the datasets.

Table 3.3 shows, for each dataset and for each algorithm, the average values ± stan-
dard deviation of the accuracy, both on the training (AccTr) and test sets (AccTs) ob-
tained by the four algorithms. The highest accuracy values for each dataset are shown

39

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Table 3.2: Values of the parameters for each algorithm used in the experiments.

Method Parameters
MRAC+ γ = 0.1%, φ = 2%,MinSupp = 0.01%,MinConf = 50%,minχ2 = 20%,K = 15000
MRAC γ = 0.1%, φ = 2%,MinSupp = 0.01%,MinConf = 50%,minχ2 = 20%,K = 15000, δ = 4

Decision Tree MaxDepth = 5,maxBins = 32, Impurity = GINI
Random Forest NumTrees = 100, G = dlog2F e,maxSplitSize = 64MB

in bold. Table 3.4 summarizes the computation times (in seconds) spent by each algo-
rithm on a cluster of 3 slaves with 4 cores per slave (12 cores in total). For the Hadoop
configuration, the number of mappers and reducers is set equal to the available cores
on the cluster. Moreover, we report also the number of HDFS blocks (Z) and instances
per block (NBlock). As regards MRAC+ and MRAC, it is worth noting that due to mem-
ory constraint, for the HIG dataset, we set the number of reducers to 2. Moreover, for
the RF and poker-hand datasets, because of limitations due to the computational costs,
we drop down the value of the maxSplitSize parameter to 4.5MB, so that each mapper
computes a subset of the random forest on a quarter of the overall training set (200,002
instances per block). It is worth mentioning that, by using the default configuration, we
did not obtain any result after 26 hours. The analysis of the two tables highlights that, on
average, MRAC+ outperforms MRAC in terms of accuracy on two datasets, and it is com-
parable to MRAC in the other five datasets. Furthermore, the learning process is faster in
MRAC+ than in MRAC of one order of magnitude. Thus, we can conclude that MRAC+ is
certainly more effective than MRAC for the big datasets used in our experiments. As re-
gards DT, we note that MRAC+ achieves higher classification rates than DT on the COV,
POK and SUS datasets: on the other datasets, the classification rates are comparable.
MRAC achieves higher classification rates than DT only on the POK dataset: on the other
datasets, the classification rates are comparable. On the POK dataset, we observe that
both MRAC+ and MRAC obtain classification rates much higher than DT and higher than
RF. This result is due to a specificity of the POK dataset, which contains only categor-
ical attributes. For this type of datasets, the associative classifiers perform particularly
well. This conclusion is supported also by the analysis of the results on the COV dataset,
where the number of categorical attributes is higher than numeric attributes (44 against
10). Also in this case, the associative classifiers outperform the other two types of classi-
fiers. Table 3.4 shows that DT is much faster than the other comparison algorithms. On
the other hand, we have to consider that MRAC+, MRAC, and RF are implemented on
Hadoop, while DT is implemented on Spark, which has been designed to be more effi-
cient in managing data reading/writing than Hadoop [206]. Thus, this runtime difference is
mainly due to the execution environment rather than to the complexity of the algorithms.
As regards RF, MRAC+ and MRAC outperform RF on the COV and POK datasets, as
already observed. RF achieves higher accuracies than MRAC+ and MRAC on the HIG
and SUS datasets, which are the two datasets with only numeric attributes. On the three
KDD datasets, the classification rates of RF are slightly higher than MRAC+ and MRAC.
Table 3.4 shows that the computation time of RF is of the same order of magnitude of

40

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

MRAC+ and MRAC. On the other hand, RF is implemented on Hadoop as MRAC+ and
MRAC.

Table 3.3: Average accuracy ± standard deviation achieved by MRAC+, MRAC, Decision
Tree (DT), and Random Forest (RF).

MRAC+ MRAC DT RF
Dataset AccTr AccTs AccTr AccTs AccTr AccTs AccTr AccTs

COV 78.329± 0.091 78.092± 0.157 74.246± 0.100 74.261± 0.156 74.148± 0.199 74.140± 0.173 70.198± 0.868 70.068± 0.837
HIG 65.942± 0.058 65.904± 0.045 65.079± 0.054 65.050± 0.061 66.376± 0.074 66.375± 0.058 73.006± 0.016 72.542± 0.025

KDD99_2 99.999± 0.000 99.998± 0.000 99.959± 0.002 99.957± 0.004 99.978± 0.014 99.979± 0.013 99.999± 0.000 99.999± 0.000
KDD99_5 99.863± 0.046 99.858± 0.047 99.898± 0.034 99.898± 0.035 99.776± 0.064 99.775± 0.063 99.986± 0.002 99.982± 0.002
KDD99 99.582± 0.020 99.579± 0.020 99.640± 0.024 99.639± 0.024 99.781± 0.059 99.782± 0.057 99.968± 0.006 99.966± 0.006
POK 94.480± 0.000 94.480± 0.000 94.480± 0.000 94.480± 0.000 55.165± 0.213 55.191± 0.203 91.277± 0.127 89.591± 0.287
SUS 78.247± 0.013 78.220± 0.035 76.245± 0.055 76.232± 0.068 77.119± 0.040 77.118± 0.046 80.671± 0.009 80.064± 0.033

Table 3.4: The computation times (in seconds) for the learning process in MRAC+, MRAC,
Decision Tree (DT), and Random Forest (RF).

Dataset Z NBlock MRAC+ MRAC DT RF
COV 1 464,809 504 1059 16 459
HIG 96 91,667 6141 9881 289 196

KDD99_2 6 47,487 669 704 23 246
KDD99_5 6 653,124 1439 1708 29 258
KDD99 6 653,124 1878 2280 28 263
POK 1 800,008 239 1099 10 2212
SUS 29 137,932 738 3713 106 865

For the sake of completeness, we mention that the classification rates of MRAC+
and MRAC are also higher than the ones reported in [175]. Here, the authors investi-
gate several prototype reduction techniques on Hadoop with the aim of improving the
classification rates of the nearest neighbor classifier. These methods have proven to be
very competitive in reducing the computational cost and high storage requirements of
the nearest neighbor classifier, improving its classification performance. Since the au-
thors adopt only three datasets, we have not shown the results in Table 3.3. We highlight
however that their best solutions achieve an average accuracy of 99.94%, 51.81% and
72.82% on the test set for the KDD99_2, POK and SUS datasets, respectively.

Table 3.5 shows the complexity of each algorithm. For MRAC+ and MRAC we report
the numbers of frequent items (|flist|) and of rules (#Rules). Obviously the size of flist
is equal on both algorithms since the discretization process and the Parallel Counting
job is the same for both approaches. For MRAC, we also report the percentage of rules
discarded (Pruning(%)) by the database coverage step. As regards DT and RF, we
report the number of nodes (#Nodes) of the tree for DT and the average maximum
depth (maxDepth) achieved by the forest for RF.

As shown in Table 3.5, both MRAC+ and MRAC turn to be not very interpretable.
Indeed, in both classifiers the number of rules is very high, even if in MRAC the use of the

41

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Table 3.5: Complexities of MRAC+, MRAC, Decision Tree (DT), and Random Forest (RF).

MRAC+ MRAC DT RF
Dataset |flist| #Rules #Rules Pruning(%) #Nodes #Nodes maxDepth

COV 155 15612 6714 57.00 63 46774 17
HIG 319 29999 19468 35.10 63 1807880 38

KDD99_2 189 30000 1174 96.09 35 27545 10
KDD99_5 201 49349 2878 94.17 45 57102 12
KDD99 203 125294 2806 97.76 46 56691 11
POK 85 5980 5353 10.48 63 6166485 7
SUS 345 30000 21963 26.79 63 2106179 47

database coverage step reduces it significantly. Database coverage tends to discard the
rules that are at the bottom of the ranked rule list: when rules generated at the end of the
CAR Mining step are characterized by a large support, such as for KDD99_2, KDD99_5,
and KDD99 datasets, the pruning effects are more evident. As regards MRAC+, since
the activated rules do not contain, in general, a large number of conditions (at most four
or five on average), we can affirm that the classifier can provide a very interpretable
explanation for each conclusion (consider that we consider just a rule in the inference
process). Thus, even if the number of rules is large in the final rule base, we can consider
that, for each unlabeled pattern, the classifier can provide a very intuitive justification of
its reasoning. As regards the other algorithms, RF is characterized by a very high number
of nodes, thus having a higher level of complexity than MRAC+, MRAC, and DT. DT has
a much lower number of nodes than RF and is certainly the least complex algorithm.

Scalability analysis

In this section, we investigate the MRAC+ and MRAC behaviors in employing additional
computing units. To this aim, we measure the values assumed by the speedup σ, taken as
the main metrics, commonly used in parallel computing. For the sake of clarity, we report
the figures obtained with tests on the Susy dataset; similar results can be recorded with
the other datasets.

According to the speedup definition, the efficiency of a program using multiple CUs
is calculated comparing the execution time of the parallel implementation against the
corresponding sequential, “basic” version. In our application setting, because of the large
size of the involved datasets, it is not practically sensible to regard the sequential version
of the overall algorithm as the basic one (it would take an unreasonable amount of time),
so we can refer to a run over Q∗ identical CUs, Q∗ > 1. Hence, we adopt the following
slightly different definition for the speedup on n identical CUs:

σQ∗(n) =
Q∗ · τ(Q∗)

τ(n)
(3.13)

where τ(n) is the program runtime using n CUs, and Q∗ is the number of CUs used to
run the reference execution, which lets us estimate a fictitious, ideal single-core runtime

42

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

as Q∗ · τ(Q∗). Of course, σQ∗(n) makes sense only for n ≥ Q∗. In our case, τ(Q∗)
accounts also for the basic overhead due to the Hadoop platform.

For n > Q∗ the speedup is expected to be sub-linear because of the increasing over-
head from the Hadoop procedures, because of the behavior of the algorithm (considering
also the granularity of the necessary sequential parts) and, in case of multicore physical
nodes, because of contention on resources shared among cores within the same CPU.

In our tests, we assumed Q∗ = 6 to have 2 working cores for each slave available in
the cluster and thus accounting in σ6 also for the basic overhead due to thread interfer-
ence.

Considering the structure of our algorithm, we set the number of reducers equal to
the number of cores and we distribute them uniformly among the slaves.

Horizontal scalability has been studied by varying the number of switched-on cores
per node. To avoid unbalanced loads, we recorded the execution times experienced with
the same number of running cores per node. In practice, we considered 6, 9, and 12
cores distributed on the three slave nodes.

It is worth noticing that the HyperThreading technology was available on our testbed
CPUs, which thus might run two distinct processes per core. The performance gain due
to HypertThreading highly depends on the target application, and in server benchmarks
it reaches 30% [130]. In our case, specific tests showed that HyperThreading yields re-
ally limited performance improvements. For this reason we disabled the HyperThreading
Technology and used only the available physical CUs in all our experiments.

Table 3.6 and Figure 3.12 show the speedup according to the whole dataset for
MRAC+ and MRAC.

Table 3.6: Runtime, speedup (σ6), and utilization (σ6(Q)/Q) for MRAC+ and MRAC on
the Susy dataset.

MRAC+ MRAC
Cores Time (s) σ6(Q) σ6(Q)/Q Time (s) σ6(Q) σ6(Q)/Q

6 1613 6 1.00 7944 6 1.00
9 1224 7.91 0.88 5642 8.45 0.94
12 1006 9.62 0.80 4412 10.80 0.90

With the default Hadoop settings, the number Z of mappers is automatically deter-
mined by the HDFS block size. E.g., for the Susy dataset Hadoop instantiates 36 map-
pers. Furthermore, indicating by Q the number of available cores, if Z ≤ Q then all the
mappers are run simultaneously, and the global runtime practically corresponds to the
longest of the mappers’ runtimes. Otherwise (Z > Q), Hadoop starts from executing Q
mappers in parallel, queuing the rest (Z − Q). As soon as one of the running mappers
completes, Hadoop schedules a new mapper from the queue.

In the ideal case of the same execution time for all the mappers, the map phase
for each MapReduce stage would require dZQe iterations. With the Susy dataset, this

43

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 4 6 8 10 12 14

R
u

n
ti

m
e
 (

se
c
)

Number of Cores (Q)â��

(a) Runtime of MRAC+

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(b) Speedup of MRAC+

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 4 6 8 10 12 14

R
u

n
ti

m
e
 (

se
c
)

Number of Cores (Q)â��

(c) Runtime of MRAC

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(d) Speedup of MRAC

Figure 3.12: Runtime and Speedup for MRAC+ (a-b) and MRAC (c-d) on the overall Susy
dataset.

corresponds to 6, 4 and 3 iterations on 6, 9 and 12 cores, respectively. This observation
can be used to get a very rough estimation of the runtime expected with a certain number
of cores, once the runtime with another given number of cores has been recorded. Such
an estimation cannot be accurate because all the mappers do not have exactly the same
execution time (different input sizes may even be assigned to them) and because of the
influence of the different reducing phases. For instance (see Table 3.6), we expect that
the MRAC+ runtime would decrease from 1613 seconds with 6 cores to about 1613 ×
4 ÷ 6 = 1076 and 1613 × 3 ÷ 6 = 807 seconds with 9 and 12 cores, respectively.
Similarly for MRAC, the runtime should decrease from 7944 seconds with 6 cores to about
7944× 4÷ 6 = 5296 and 7944× 3÷ 6 = 3972 seconds with 9 and 12 cores, respectively.
As it can be noticed, such values do not excessively differ from the measured ones. Of
course, the actual runtimes are necessarily higher due to the incurred overheads.

The actual speedup σ6 in our experiments shows a different behavior depending on
the algorithm. As regard MRAC, σ6 does not excessively diverge from the ideal value,

44

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

i.e. the number of CUs3: σ6(9)/9 = 0.94 and σ6(12)/12 = 0.90. On the other hand,
the MRAC+ speedup rapidly decreases: σ6(9)/9 = 0.88 and σ6(12)/12 = 0.80. How-
ever, within the limitations due to the different experimental settings, this result is in line
with [106] where the PFP was introduced and the utilization is 0.768. It can be noted also
that the contribution of the PFP algorithm on the overall learning process is much more
relevant in MRAC+ than in MRAC.

For a better understanding of the different speedups of the two algorithms, a break-
down of the contributions from the different parts is required. To this aim, in Table 3.7 and
Figure 3.13 we report the speedup σ6 of the discretization process and the most signif-
icant MapReduce phases of the learning step: Parallel FP-Growth and Parallel Training
Set Coverage Pruning. The contribution of the other two, i.e. Parallel Counting and Can-
didate Rule Filtering is negligible (about 2.46% and 1.08% of the overall execution time,
respectively for MRAC).

Table 3.7: Runtime, speedup (σ6), and utilization (σ6(Q)/Q) of the Discretization, Parallel
FP-Growth, and Training Set Coverage Pruning phases in the Susy dataset.

Discretization
Parallel

FP-Growth
Training Set

Coverage Pruning
Cores Time (s) σ6(Q) σ6(Q)/Q Time (s) σ6(Q) σ6(Q)/Q Time (s) σ6(Q) σ6(Q)/Q

6 175 6 1.00 1190 6 1.00 6329 6 1.00
9 147 7.14 0.79 873 8.18 0.91 4418 8.60 0.96
12 125 8.40 0.70 701 10.19 0.85 3405 11.15 0.93

The three charts in Figure 3.13 clearly show that the three phases behave differently
with respect to scalability.

The speedup of the Discretization phase (Figure 3.13a) rapidly degrades, mostly be-
cause the computational cost mainly depends on the number of attributes rather than
on the number of HDFS blocks. Indeed, the overall execution time of the Discretization
phase is affected by the computation of the equi-frequency bins, performed in the map-
ping phase, and the Fayyad and Irani algorithm, executed in the reducing phase. With
the Hadoop default settings, the attributes are evenly distributed among the reducers. In
our tests, the Susy dataset has 18 continuous attributes, thus each reducer processes
3, 2 and 2 attributes in case of 6, 9 and 12 cores, respectively. Note that since with
12 cores only 6 reducers handle 2 attributes, the computational weight is not evenly bal-
anced within the cluster. Thus, by adding cores we can improve the discretization runtime,
decreasing the number of attributes processed by each reducer.

As regards the Parallel FP-Growth phase (Figure 3.13b), the main contribution to the
computational weight is due to the reducing activity, but however the speedup shows a
better trend than in the Discretization phase. The average runtime of each mapper is quite
short (about 40 seconds), and the global runtime is dominated by the reducing phase,
3 The value σ1/Q is the standard utilization index; in our case, as σi(n) ≤ σj(n) ∀n ≥ j, the

utilization index σ6/Q may be slightly greater than standard utilization.

45

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)
Number of Cores (Q)â��

(a) Discretization speedup.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(b)
Parallel FP-Growth

speedup.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(c)
Training Set Coverage Pruning

speedup.

Figure 3.13: Speedup of the discretization and the two main learning phases

where CARs are mined out of the conditional FP-trees. With the Hadoop default settings,
all the conditional FP-trees are evenly distributed among the reducers.

In our tests, Susy has 353 frequent items, thus each reducer processes about 59,
40 and 30 conditional FP-trees in the 6, 9 and 12 cores cases, respectively. In Paral-
lel FP-Growth, adding more cores helps in improving the FP-Growth parallelization, by
decreasing the number of conditional FP-trees processed by each reducer.

Conversely, the Training Set Coverage Pruning is driven by the map phase, with very
satisfactory utilization values. In this case, the average runtime of each mapper is around
18 minutes. The global execution time can be shrunk by reducing the number of iterations,
i.e. by exploiting additional CUs, as witnessed by the results in Table 3.7.

Tackling the dataset size

From a practical point of view, it is crucial to understand how the proposed algorithm
behaves as the input dataset size grows up. To test this aspect, we extracted differently
sized datasets out of Susy. For each given size, three different experiments have been
executed over three distinct subsets of Susy, with records randomly sampled out of the

46

3.2. MRAC: A MAPREDUCE SOLUTION FOR ASSOCIATIVE CLASSIFICATION OF
BIG DATA

complete dataset. We indicate a subset with x% of the records in Susy by the notation
Susyx; thus, the complete dataset is Susy100.

Table 3.8 and Figure 3.14 show the average runtime for building the rule base, ac-
cording to different problem sizes and number of cores.

Table 3.8: Average runtime of MRAC+ and MRAC on the Susy dataset, varying the
dataset size and the number of available cores.

Dataset MRAC+ MRAC
Size (%) Objects Mappers 6 9 12 6 9 12

10 (Susy10) 500,000 4 336 330 322 1230 1247 1224
25 (Susy25) 1,250,000 9 518 431 414 2167 1396 1397
50 (Susy50) 2,500,000 18 842 665 582 3869 2743 2468
75 (Susy75) 3,750,000 27 1208 935 791 5738 4075 3490

100 (Susy100) 5,000,000 36 1613 1224 1006 7944 5642 4412

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0*10
0

1*10
6

2*10
6

3*10
6

4*10
6

5*10
6

R
u

n
ti

m
e

(s
ec

)

Dataset Size (Number of objects)

6 cores
9 cores

12 cores

(a)
Average Runtime of MRAC+

on Susy dataset.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0*10
0

1*10
6

2*10
6

3*10
6

4*10
6

5*10
6

R
u

n
ti

m
e

(s
ec

)

Dataset Size (Number of objects)

6 cores
9 cores

12 cores

(b)
Average Runtime of MRAC

on Susy dataset.

Figure 3.14: Average Runtime of both MRAC+ (a) and MRAC (b) on the Susy dataset,
varying the dataset size and the number of available cores.

As shown for Susy10 and Susy25, whenever the number of available cores Q is suf-
ficient to run all the mappers in parallel, adding more cores does not trivially yield any
benefit. When the number of mappers exceeds the number of cores, Hadoop queues up
the extra mappers to be subsequently scheduled when cores become available again.
Thus, as long as the number of mapper iterations is the same, no significant gain is
expected by adding new cores. For instance, for Susy50 passing from 9 to 12 cores is
of little practical use, since the number of parallel mapper iterations (namely, two) does
not change. In this case, runtime improves only of 83 and 275 seconds for MRAC+ and
MRAC, respectively. On the other hand, the runtime difference passing from 6 to 9 cores

47

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

is more significant (about 177 and 1126 seconds for MRAC+ and MRAC, respectively),
because a reduction of the number of parallel mapper iterations occurs (from 3 to 2).
Similar considerations can be made for Susy75 and Susy100. Note that in the last case,
passing from 6 to 9 cores determines a reduction of iterations from 6 to 4, while by adding
yet other three cores the iterations just go down to 3, i.e. yielding half of the previous gain.

Experiments show that, as the dataset size grows up, the execution time can be effec-
tively reduced by adding a proper number of additional cores, at least whenever dealing
with sizes typical of current big data benchmarks. In particular, performance improve-
ments are mainly related to the reduction in the number of parallel mapper iterations
spent by the algorithm to scan the overall dataset.

3.3 Fuzzy Associative Classifiers

As described in Section 3.1, association rule mining has become a very popular method
to build highly accurate classification models. Such method is able to mine a set of high
quality classification rules from huge amounts of data and to achieve a considerable
performance in terms of classification accuracy. However, as stated in [149], even though
learning based on association rule mining ensures high accuracy in pattern classification
and generates rule-based models that are often “interpretable” by the user, this model
suffers from some main weaknesses. First, the complexity of the learning process grows
exponentially in terms of both time and memory with the number of training data objects.
Second, association rule mining algorithms deal with binary or categorical itemsets, but
real data objects are often described by numerical continuous features. Thus, appropriate
discretization algorithms have to be applied to transform continuous feature domains into
a set of items.

However, as regards the complexity of the learning process, MRAC and his enhanced
version MRAC+ have proved to build accurate models in a reasonable time, achieving
comparable results in terms of classification rate and computational time with the ones
obtained by other algorithms. Thus, MapReduce or more general distributed approaches
can be employed to handle a huge amount of data. On the other hand, rgarding the
issue of managing continuous input variables, associative classification approaches as
well as MRAC described in Section 3.2.2 adopt discretization algorithms for extracting a
set of items and therefore for allowing the rule mining algorithms to work properly. The
discretization is accomplished by assigning each value to a bin. The data ranges (bin
boundaries) and the number of bins are determined by the discretization algorithm. Bin
boundaries are typically crisp, but crisp discretization is not natural. Indeed, the transitions
between bins are not generally abrupt, but rather gradual. Thus, fuzzy sets are certainly
more appropriate for describing attribute partitions. In the last years, several studies and
different algorithms have been proposed to integrate associative classification models
with the fuzzy set theory, leading to the so-called fuzzy associative classifiers. All these
associative classification approaches have used fuzzy boundaries, thus generating fuzzy
association rules [6, 34, 63, 123, 125, 147, 149]. As stated in [123, 125], the use of fuzzy

48

3.3. FUZZY ASSOCIATIVE CLASSIFIERS

association rules can restrain the sharp boundary effect between intervals, because fuzzy
set concepts provide a smooth transition between intervals, resulting in fewer boundary
elements being excluded.

In [34], authors introduce a fuzzy associative classifier based on Apriori to mine all
fuzzy CARs: notions of support, confidence, redundancy and rule conflict have been
extended to the fuzzy context for selecting only the best CARs to build the classifier.
Similarly, in [149], authors propose an associative classification model, which generates
fuzzy CARs by means of a fuzzy version of Apriori. Different methods for generating the
initial fuzzy partitions and for classifying the patterns have been experimented.

Also some recent works [6, 63] exploit the Apriori algorithm for mining fuzzy CARs.
The Fuzzy Association Rule-based Classification model for High Dimensional datasets
(FARC-HD), proposed in [6], is a fuzzy associative classification approach consisting of
three steps. First, all possible fuzzy association rules are mined by applying the Apriori
algorithm, limiting the cardinality of the itemsets, so as to generate fuzzy rules with a
low number of conditions. Then, a pattern weighting scheme is employed to reduce the
number of candidate rules, pre-selecting the most interesting. Finally, a single objective
evolutionary algorithm is applied to select a compact set of fuzzy association rules and
to tune the membership functions. In [63], the authors discuss the D-MOFARC algorithm,
which extends the FARC-HD algorithm to the multi-objective context. In particular, unlike
in FARC-HD, a multi-objective evolutionary algorithm has been employed for the post-
processing stage. Moreover, a tree-based generation mechanism for generating initial
fuzzy partitions has been integrated. This mechanism is based on the recursive applica-
tion of the CAIM discretization algorithm [103] for taking attribute partitioning interdepen-
dencies into consideration.

The most recent papers regarding fuzzy associative classifiers mainly focus on the ap-
plication of these models to specific domains, such as recommender systems [123, 163],
decision making [147], predicting the growth of sellers in an electronic marketplace [125],
dealing with imprecise data [151]. Most of these papers propose fuzzy associative clas-
sifiers that are extensions to the fuzzy context of non-fuzzy associative classifiers pre-
viously proposed in the literature. For example, in [123], the authors introduce a fuzzy
version of the well-known CBA algorithm [113] and discuss an example of how asso-
ciative classification models can be used for building recommender systems. In [147] the
evolution of a learning classifier system, designed to extract quantitative association rules
from unlabeled data streams, is described. The proposed system evolves a population of
fuzzy association rules. At the end of the learning process, the population is expected to
contain rules that capture the most interesting associations between problem attributes.
Finally, the work in [125] presents a fuzzy extension of a GARC classifier, which includes
also a method for learning the initial fuzzy partitions employing the simulated annealing
optimization algorithm.

49

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

3.3.1 Fuzzy Rule Based Classifiers

Pattern classification consists of assigning a class Cl from a predefined set C =

{C1, . . . , CL} of classes to an unlabeled pattern. We consider a pattern as an F -
dimensional point in a feature space <F . Let X = {X1, . . . , XF } be the set of input
variables and Uf , f = 1, . . . , F , be the universe of discourse of the f th variable. Let
Pf = {Af,1, . . . , Af,Tf } be a fuzzy partition of Tf fuzzy sets on variable Xf . The data
base (DB) of an FRBC is the set of parameters which describe the partitions Pf of each
input variable. The rule base (RB) contains a set of M rules usually expressed as:

Rm : IF X1 is A1,jm,1 AND . . .AND XF is AF,jm,F

THEN Y is Cjm with RWm (3.14)

where Y is the classifier output, Cjm is the class label associated with the mth rule,
jm,f ∈ [1, Tf], f = 1, ..., F , identifies the index of the fuzzy set (among the Tf linguistic
terms of partition Pf), which has been selected for Xf in rule Rm. RWm is the rule
weight, i.e., a certainty degree of the classification in the classCjm for a pattern belonging
to the fuzzy subspace delimited by the antecedent of rule Rm.

Let (xn, yn) be the nth input-output pair, with xn = [xn,1 . . . , xn,F] ∈ <F and yn ∈ C.
The strength of activation (matching degree of the rule with the input) of the rule Rm is
calculated as:

wm(xn) =

F∏
f=1

Af,jm,f (xn,f), (3.15)

where Af,jm,f (x) is the membership function (MF) associated with the fuzzy set Af,jm,f .
The association degree hm(xn) with the class Cjm is calculated as:

hm(xn) = wm(xn) ·RWm (3.16)

Different definitions have been proposed for the rule weight RWm [89, 91]. As dis-
cussed in [88], the rule weight of each fuzzy rule Rm can improve the performance of
FRBCs. For our algorithm, we adopt the fuzzy confidence value, or certainty factor (CF),
defined as follows:

RWm = CFm =

∑
xn∈Cjm

wm(xn)∑N
n=1 wm(xn)

(3.17)

where N is the number of input-output pairs contained in the training set T .
An FRBC is also characterized by its reasoning method, which uses the information

from the RB to determine the class label for a specific input pattern. Two different ap-
proaches are often adopted in the literature:

50

3.3. FUZZY ASSOCIATIVE CLASSIFIERS

1. The maximum matching: an input pattern is classified into the class corresponding to
the rule with the maximum association degree calculated for the pattern.

2. The weighed vote: an input pattern is classified into the class corresponding to the
maximum total strength of vote. In particular, for a new pattern x̂, the total strength of
vote for each class is computed as follows:

VCl(x̂) =
∑

Rm∈RB;Cjm=Cl

hm(x̂) (3.18)

where Cl ∈ C = {C1, . . . , CL}. With this method, each fuzzy rule gives a vote for its
consequent class. If no fuzzy rule matches the pattern x̂, we classify x̂ as unknown.

3.3.2 Fuzzy association rules for classifications

Association rules are rules in the form Z → Y , where Z and Y are set of items. These
rules describe relations among items in a dataset [79]. Association rules have been
widely employed in the market basket analysis. Here, items identify products and the
rules describe dependencies among the different products bought by customers [2]. Such
relations can be used for decisions about marketing activities as promotional pricing or
product placements.

In the associative classification context, the single item is defined as the couple
ITf,j = (Xf , vf,j), where vf,j is one of the discrete values that variable Xf , f = 1, ..., F ,
can assume. A generic classification association rule CARm is expressed as:

CARm : Antm → Cjm (3.19)

where Antm is a conjunction of items, and Cjm is the class label selected for the rule
among the setC = {C1, . . . , CL} of possible classes. For each variableXf , just one item
is typically considered in Antm. Antecedent Antm can be represented more familiarly as

Antm : X1 is v1,jm,1 . . . AND . . . XF is vF,jm,F (3.20)

where vf,jm,f is the value used for variable Xf in rule CARm.
Most of the association rule analysis techniques are focused on binary or discrete

attributes. However, in the framework of pattern classification, input variables can be
also continuous. For continuous variables, a discretization process is used to generate a
finite set of Qf atomic values Vf = vf,1, . . . , vf,Qf associated with the specific variable
Xf . In this context, fuzzy set theory can offer a very suitable tool for approaching the
discretization problem, ensuring a high interpretability of the rules, thanks to the use
of linguistic terms, and avoiding unnatural boundaries in the partitioning of the attribute
domain [6].

In fuzzy associative classification context, given a set of attributes X = {X1, . . . , XF }
and a fuzzy partition Pf defined for each attribute Xf , the single item is defined as the

51

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

couple ITf,j = (Xf , Af,j), where Af,j is one of the fuzzy values defined in the partition
Pf of variable Xf , f = 1, ..., F . A generic fuzzy CAR for classification is expressed as:

FCARm : FAntm → Cjm (3.21)

where Cjm is the class label selected for the rule among the set C = {C1, . . . , CL} of
possible classes and FAntm is a conjunction of items. The antecedent FAntm can be
represented more familiarly as

FAntm : X1 is A1,jm,1 . . . AND . . . XF is AF,jm,F (3.22)

where Af,jm,f is the fuzzy value used for variable Xf in rule FCARm.
In the association rule analysis, support and confidence are the most common mea-

sures to determine the strength of an association rule.
Support and confidence can be expressed for a fuzzy rule FCARm as follows:

fuzzySupp(FAntm → Cjm) =

∑
xn∈Cjm

wm(xn)

N
(3.23)

fuzzyConf(FAntm → Cjm) =

∑
xn∈Cjm

wm(xn)∑
xn∈T wAntm(xn)

(3.24)

where T is the training set, N is the number of objects in T , wm(xn) is the matching
degree of rule FCARm and wFAntm(xn) is the matching degree of all the rules which
have the antecedent equal to FAntm.

3.4 AC-FFP: a novel Associative Classification model based on a
Fuzzy Frequent Pattern mining algorithm

The use of fuzzy partitions makes the fuzzy CAR mining more complex. Indeed, while in
the case of crisp partitions an input value supports a unique item, in the case of fuzzy
partitions, an input value can support more than one fuzzy item (in our implementation,
which is based on strong fuzzy partitions, the supported items are at most two). Thus,
the number of possible fuzzy association rules is higher than the number of possible crisp
rules. The approaches proposed so far in the literature for generating fuzzy association
rules have limited the complexity by considering only the most frequent fuzzy item for
each attribute [37, 109]. Obviously, this solution reduces the number of association rules,
but also the amount of information described by these rules. In this context, we aim
to exploit the advantages of fuzzy set theory in terms of modeling capability, without
dramatically reducing the complexity and therefore the information.

In this section, we propose a new efficient fuzzy association rule-based classification
scheme, which mines fuzzy CARs by using a fuzzy version of the well-known FP-Growth
algorithm [80], called AC-FFP. Even though some fuzzy versions of FP-Growth have
been already proposed in the literature [37, 109], our method represents the first attempt

52

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

of using such algorithm for deriving fuzzy CARs. Indeed, the works in [37, 109] just pro-
pose a fuzzy version of the FP-Growth algorithm aimed at mining fuzzy association rules
for descriptive modeling rather than for classification. Moreover, we aim to propose an
approach that is easy to implement, is computationally light and guarantees to achieve
accuracy values comparable with other state-of-the-art approaches. Similar to MRAC and
MRAC+, the ratio behind this approach is to build an accurate and fast fuzzy associative
classifier that is able to handle a huge amount of data. For this reason, unlike some
of the recent contributions discussed above, our fuzzy associative classification scheme
does not use any additional optimization algorithm (such as the evolutionary algorithm
in [6, 63, 147] or the simulated annealing employed in [125]), thus maintaining the time
required to generate the fuzzy association rules acceptable. Furthermore, the FP-Growth
algorithm results more scalable than the Apriori algorithm used in [123, 151, 163] with
respect to the number of instances and attributes.

We have proposed a set of appropriate novel strategies, which allow us to efficiently
generate accurate fuzzy associative classifiers. In particular, the main novelties intro-
duced in the proposed fuzzy association rule-based classification scheme are:

• A novel approach to define strong fuzzy partitions from crisp partitions obtained by
applying the classical Fayyad and Irani discretization algorithm [61].

• The extension of the FP-Growth algorithm to the fuzzy context for mining a set of fuzzy
CARs. In particular, we adopt proper definitions of fuzzy support and confidence.
Further, we consider, for each attribute, all the frequent fuzzy sets rather than only
the most frequent when generating the fuzzy CARs. Finally, we just adopt the FP-
Growth algorithm. Most of the proposed fuzzy associative classifiers, such as the
ones described in [6, 34, 63, 123, 149], are based on the Apriori algorithm. This
algorithm, as discussed in Section 3.3, is characterized by a number of weaknesses,
especially when dealing with large and high-dimensional datasets.

• Three purposely adapted types of fuzzy CAR pruning. The first type considers fuzzy
support and confidence with respect to two thresholds, namely minSupp and min-
Conf. These thresholds are adapted to the number of conditions and number of in-
stances of each class, respectively, so as to take into account the effect of the specific
implementation of the conjunction operator and the imbalance of datasets. The sec-
ond type removes redundant rules based on fuzzy support and confidence, and rule
length. The third type exploits the training set coverage: only the fuzzy rules, which
are activated by at least one data object in the training set, are retained.

• An adjustment of the weighted vote reasoning method for classifying unlabeled pat-
terns: the vote of each single rule is modified accordingly to its rule length. This modifi-
cation balances the relevance of more general and more specific rules, thus improving
the overall classification accuracy.

We compare the results achieved by the proposed approach on seventeen datasets
with the ones obtained by Li2001CMAR [108], an associative classifier based on the
FP-Growth algorithm. By using non-parametric statistical tests, we show that our ap-

53

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

proach outperforms CMAR in terms of accuracy. Further, we compare the proposed fuzzy
associative classifier with two recent state-of-the-art approaches, namely FARC-HD [6]
and D-MOFARC [63], for mining fuzzy CARs. We show that our approach is statistically
equivalent to the comparison approaches. On the other hand, we have to highlight that
FARC-HD and D-MOFARC employ a fuzzy adaptation of the Apriori algorithm for mining
the fuzzy rules and an evolutionary post-processing for pruning these rules and optimiz-
ing the fuzzy partitions. Thus, our fuzzy associative classification scheme, based on the
fuzzy FP-Growth, results to be more scalable, especially when dealing with large and
high dimensional datasets.

The rest of the section is organized as follows. Section 3.4.1 describes each phase
of the proposed approach and includes the details of the fuzzy FP-Growth algorithm.
Section 3.4.2 presents the experimental setup and discusses the results that are obtained
on seventeen real-world datasets.

3.4.1 The Proposed Approach

In this section, we present our Associative Classifier based on a Fuzzy Frequent Pattern
(AC-FFP) mining algorithm. AC-FFP consists of the following three phases:

1. Discretization: a fuzzy partition is defined on each linguistic variable by using the
multi-interval discretization approach based on entropy proposed by Fayyad and Irani
in [61];

2. Fuzzy CAR Mining: a fuzzy frequent pattern mining algorithm, which is an extension
of the well known FP-Growth, is exploited to extract frequent fuzzy classification rules
with confidence higher than a pre-fixed threshold;

3. Pruning: rule pruning based on redundancy and training set coverage is applied to
generate the final RB.

At the end of the three phases, we obtain an FRBC, which can be used for the clas-
sification task of unlabeled patterns.

In the following, we introduce in detail all the mentioned phases.

Discretization

The discretization of continous features is a critical aspect in the generation of association
rule classifiers. In the last years, several different heuristic methods have been proposed
[39, 51, 61, 100]. We use the method proposed by Fayyad and Irani in [61]. This super-
vised method exploits the class information entropy of candidate partitions to select the
bin boundaries for discretization.

Let Tf,0 = [x1,f , ..., xN,f]
T the projection of the training set T along variable Xf and

bf,r a bin boundary for the same variable. Let Tf,1 and Tf,2 be the subsets of points of
the set Tf,0 which lie in the two bins identified by bf,r. The class information entropy of
the discretization induced by bf,r, denoted as E(Xf , bf,r;Tf,0) is given by

54

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

E(Xf , bf,r;Tf,0) =
|Tf,1|
|Tf,0|

· Ent(Tf,1) +
|Tf,2|
|Tf,0|

· Ent(Tf,2) (3.25)

where | · | denotes the cardinality and Ent(·) is the entropy calculated for a set of
points [61]. The boundary bf,min, which minimizes the class information entropy over
all possible partition boundaries bf,r of Tf,0 is selected as a binary discretization bound-
ary. The method is then applied recursively to both the partitions induced by bf,min un-
til the following stopping criterion based on the Minimal Description Length Principle is
achieved. Recursive partitioning stops iff

Gain(Xf , bf,min;Tf,0) <
log2(|Tf,0| − 1)

|Tf,0|
+
∆(Xf , bf,min;Tf,0)

|Tf,0|
(3.26)

where
Gain(Xf , bf,min;Tf,0) = Ent(Tf,0)− E(Xf , bf,min;Tf,0), (3.27)

∆(Xf , bf,min;Tf,0) = log2(3
k0 − 2)− [k0 · Ent(Tf,0)− k1 · Ent(Tf,1)− k2 · Ent(Tf,2)] (3.28)

and ki is the number of class labels represented in the set Tf,i.
The method outputs, for each variable, a set of bin boundaries. Let Uf = [xf,l, xf,u]

be the universe of variable Xf . Let {bf,1, . . . , bf,Qf }, with ∀r ∈ [1, . . . , Qf − 1], bf,r <

bf,r+1, be the set of bin boundaries, where bf,1 = xf,l and bf,Qf = xf,u. Then, the
method identifies the set {[bf,1, bf,2] , . . . ,

[
bf,Qf−1, bf,Qf

]
} of contiguous intervals, which

partition the universe of variable Xf .
To transform the crisp partition into a strong fuzzy partition, we adopt the following pro-

cedure. For each bin [bf,r, bf,r+1], with r ∈ [1, . . . , Qf − 1], we first compute the middle
point mf,r =

bf,r+bf,r+1

2 and then generate three triangular fuzzy sets Af,2r−1, Af,2r and
Af,2r+1 defined as (mf,r−1, bf,r,mf,r), (bf,r,mf,r, bf,r+1) and (mf,r, bf,r+1,mf,r+1),
respectively. We recall that a triangular fuzzy set is defined by three points (a, b, c),
where b represents the core and a and c correspond to the lower and upper bounds
of the support, respectively. The two fuzzy sets Af,1 and Af,2Qf−1 at the lower and
upper bounds of the universe of Xf are defined as Af,1 = (−∞, bf,1,mf,1) and
Af,2Qf−1 = (bf,Qf−1,mQf−1,+∞), respectively. The set Pf =

{
Af,1, . . . , Af,Tf

}
,

where Tf = 2Qf − 1 is the number of fuzzy sets for each feature, defines the fuzzy
partition of feature Xf . If no bin boundary has been found by the algorithm for feature
Xf , then no fuzzy value is generated for this feature and the feature is discarded. Fig-
ure 3.15 shows an example of strong fuzzy partition obtained by the fuzzification of the
output of the Fayyad and Irani’s discretizer.

As shown in Fig. 3.15 and discussed in the text, the cores of the triangular fuzzy sets
are positioned in correspondence to both the middle points and the bin boundaries. We
performed different experiments for determining the best number of fuzzy sets and also
the best positioning of these fuzzy sets. For instance, we generated strong fuzzy parti-
tions by using only the middle points or only the bin boundaries. We verified that the best
results in terms of accuracy are obtained by using fuzzy sets positioned on both middle
points and bin boundaries. On the other hand, the fuzzy sets positioned on the middle

55

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Figure 3.15: An example of strong fuzzy partition obtained by the fuzzification of the
output of the Fayyad and Irani’s discretizer.

points allow modeling accurately the instances belonging to the bin and consequently the
class connected to the bin. Further, the fuzzy sets on the bin boundaries permit to finely
discriminate instances belonging to two different bins and possibly different classes.

Fuzzy CAR Mining

To mine the fuzzy CARs from the dataset, we introduce a novel fuzzy frequent pattern
(FFP) mining algorithm. This algorithm is based on the well known FP-Growth proposed
by Han et al. in [80] for efficiently mining frequent patterns without generating candidate
itemsets. The algorithm consists of two phases. The first phase creates an FP-tree from
the dataset and the second phase extracts frequent patterns from the FP-tree. The cre-
ation of the FP-tree is performed in three steps. First, the dataset is scanned to find the
frequent items. Then, these items are sorted in descending frequency. Finally, the dataset
is scanned again to construct the FP-tree according to the sorted order of frequent items.

In the second phase, all frequent itemsets are mined from the FP-tree. For each item,
a conditional FP-tree is generated and from this tree the frequent itemsets, including the
processed item, are recursively mined.

Some papers have already proposed to integrate the fuzzy theory with the FP-Growth
algorithm. In [37] the authors choose only the most frequent linguistic value for each
variable to build the FP-tree. For example, if the f th partition contains Tf fuzzy sets,
only one of these fuzzy sets is used to mine rules. Thus, only a limited subset of rules
is generated and therefore useful information resulting from other fuzzy items might be
removed. A similar approach is presented in [139]. Unlike these approaches, in AC-FFP
we try to preserve information as much as possible.

AC-FFP performs four scans of the dataset. The first two scans determine the fuzzy
frequent values and build the FP-tree, respectively. The FP-tree is therefore used to mine
fuzzy frequent patterns and then fuzzy CARs. The third and fourth scans are needed
to compute fuzzy support and confidence, and the training set coverage, respectively, in

56

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

the pruning phase. In the following, we will describe in detail the operations performed
in the four scans with the help of an example of application. In the example, we adopt
the training set shown in Table 3.9. Further, we assume that the discretization and the
subsequent fuzzification process have partitioned the input variables as in Figure 3.16.

Table 3.9: A simple dataset characterized by four input features.

ID X1 X2 X3 X4 Class
1 20 20 0 10 C1

2 25 -60 10 80 C3

3 -25 40 100 40 C1

4 75 60 35 110 C2

5 20 80 100 75 C2

6 30 90 75 10 C3

7 120 50 75 -25 C1

A1,1 A1,2 A A A1,3 1,51,4

1.0

0.0

0.5

-25 0

5

50

50

100 120

(a) The fuzzy partition of X1.

1.0

0.0

0.5

-60 0 40 80 90

A2,1 A A

A

A A2,2 2,3 2,4 2,5

(b) The fuzzy partition of X2.
A3,1 A A A A3,2 3,3 3,4 3,5

1.0

0.5

0.0

0 25 50 75 100

(c) The fuzzy partition of X3.

1.0

0.5

0.0

-25 0 50 100 110

A A A A A4,1 4,2 4,3 4,4 4,5

(d) The fuzzy partition of X4.

Figure 3.16: The fuzzy partitions of each variable in the example.

In the first scan, AC-FFP calculates the fuzzy support of each fuzzy value Af,j . The
fuzzy support is computed as:

fuzzySupp(Af,j) =

∑N
n=1Af,j(xf,n)

N
(3.29)

Only the fuzzy values, called frequent fuzzy values, whose support is larger than the
support thresholdminSup (0.2 in the example) are retained and organized in a list, called
flist, in support descending order. The other fuzzy values are pruned and therefore not
considered in the fuzz CAR mining. In Table 3.10, we show the fuzzy supports calcu-
lated for each fuzzy set considered in the example. From the analysis of Table 3.10, the
following flist is generated:

flist = {A2,3 , A1,3 , A1,2 , A4,3 , A3,4 , A3,5 , A4,2 , A2,4 , A3,1 }.
In the second scan, AC-FFP builds the FP-tree in order to mine all the fuzzy CARs.

The generation of the FP-tree is performed as in FP-Growth: the only difference is that

57

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Table 3.10: The fuzzy supports of each fuzzy set in the example.

Fuzzy Value Fuzzy Support Fuzzy Value Fuzzy Support
A1,1 0.14 A3,1 0.23
A1,2 0.30 A3,2 0.14
A1,3 0.34 A3,3 0.06
A1,4 0.07 A3,4 0.29
A1,5 0.14 A3,5 0.29
A2,1 0.14 A4,1 0.14
A2,2 0.07 A4,2 0.26
A2,3 0.38 A4,3 0.30
A2,4 0.25 A4,4 0.16
A2,5 0.14 A4,5 0.14

here the items correspond to fuzzy values. Actually, if we consider the example fuzzy
partition in Figure 3.15, we can observe that each value on the universe belongs to two
different fuzzy values with different membership grades. Thus, two fuzzy values should
be associated with each value. However, if we associate two fuzzy values for each feature
value, each object would generate 2F patterns.

To limit the number of possible patterns, we assign each continuous value to the
fuzzy set with the highest membership value (in case of tie, we randomly select one of
the two fuzzy sets). Each object xn is therefore transformed into a fuzzy object x̃n ={
A1n,j1n

, . . . , AZn,jZn
}

, where Ain,jin , in ∈ [1, . . . , F], jin ∈ [1, . . . Tin], indicates the
frequent fuzzy value selected for feature in. The fuzzy values in x̃n are sorted in the same
order as in the flist, as required by the FP-Growth algorithm. Obviously, the number of
features, which describe the fuzzy object, can be lower than F . Table 3.11 shows for each
pattern of the example dataset, the fuzzy values associated with the highest membership
degree and the corresponding fuzzy objects for each pattern in the example training set.

Table 3.11: The fuzzy values associated with the highest membership degree and the
corresponding fuzzy objects for each pattern in the example dataset.

ID X1 X2 X3 X4 x̃n Class
1 A1,2 A2,3 A3,1 A4,2 (A2,3 , A1,2 , A4,2 , A3,1) C1

2 A1,3 A2,1 A3,1 A4,4 (A1,3 , A3,1) C3

3 A1,1 A2,3 A3,5 A4,3 (A2,3 , A4,3 , A3,5) C1

4 A1,4 A2,4 A3,2 A4,5 (A2,4) C2

5 A1,2 A2,4 A3,5 A4,3 (A1,2 , A4,3 , A3,5 , A2,4) C2

6 A1,3 A2,5 A3,4 A4,2 (A1,3 , A3,4 , A4,2) C3

7 A1,5 A2,3 A3,4 A4,1 (A2,3 , A3,4) C1

The fuzzy objects are used to build the FP-tree. Each branch from the root to a leaf
node describes a fuzzy rule. When a fuzzy object of the training set is added to the FP-
tree, the fuzzy values are considered as labels: if a node already exists, the corresponding
counter is simply incremented by 1. Figure 3.17 shows the FP-tree generated after the
fuzzy CAR mining process on the example dataset.

58

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

Figure 3.17: The FP-tree generated by using the example dataset.

As in the CMAR algorithm, which is an associative classification model based on the
classical version of FP-Growth [108], the rules are extracted from the FP-tree by using
minSupp and minConf . In particular, the association rules, which are not characterized
by a support and a confidence higher than minSupp and minConf , respectively, are
first generated and therefore eliminated. We recall that support and confidence are here
computed by only considering the frequency of the fuzzy values. Further, similar to the
pruning process discussed in [108] for CMAR, we test whether the antecedent of each
rule is positively correlated with the consequent class by performing the χ2 test. Only the
rules with a χ2 value higher than minχ2 are maintained. Figure 3.18 shows the pseudo
code of the fuzzy CAR mining process.

Since we consider only the fuzzy objects for generating the FP-tree, only a high quality
subset of rules is stored in the FCARlist. Indeed, each rule FCARm mined from the FP-
tree represents the rule with the highest matching degree for the specific object xn ∈ T .
Other rules, which could be mined from xn, would have had a lower matching degree
and probably would have been pruned. At the end of the second scan, list FCARlist still
contains a large amount of fuzzy CARs that are pruned in the subsequent phase.

Pruning

Rule pruning aims to discard slightly relevant rules so as to speed up the classification
process. Pruning has to be applied carefully since an excessive elimination of rules may
delete useful knowledge. Several approaches to rule pruning have been proposed in

59

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Figure 3.18: Pseudo-code of the fuzzy CAR mining process based on FP-Growth.

the last years, such as lazy pruning [16], database coverage [113] and pessimistic error
estimation [197].

We perform three different types of pruning. In the first type, a rule FCARm is pruned
if its fuzzy support and confidence are not higher than minFuzzySupp and minFuzzyConf,
respectively. These thresholds correspond to minSupp and minConf adapted to the num-
ber of conditions and number of instances of each class, respectively, so as to take into
account both the effect of the t-norm used as conjunction operator and the imbalance of
datasets.

Indeed, since we use the product as t-norm for implementing the conjunction operator,
rules with a higher number of conditions in the antecedent will be characterized by a lower
support value than rules with a lower number of conditions. Actually, this result is mainly
due to the effect of the t-norm rather than to the activation of each condition. Indeed, each
condition could be activated with a high matching degree, but for the behavior of the t-
norm the matching degree of the rule, when the number of conditions is high, would result
to be quite low. With the aim of reducing this effect and therefore avoiding to penalize
more specific rules, we adapt the threshold minFuzzySupp on the fuzzy support to the
rule length (RL), that is, the number of conditions in the antecedent of the rules, as follows:

minFuzzySuppg = minSupp · 0.5g−1 (3.30)

60

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

where minSupp is the minimum support determined by the expert and g ∈ [1..F] is the
rule length.

For example, for a rule with one condition in the antecedent, we haveminFuzzySupp1
= minSupp. For a rule with two conditions in the antecedent, we have minFuzzySupp2
= minSupp · 0.5, and so on.

To take also the imbalanced datasets into consideration, the confidence threshold is
adapted by considering the imbalance ratio between each class and the majority class
as follows:

minFuzzyConfCj = minConf · NCj
NMajorityClass

(3.31)

where NMajorityClass is the number of occurrences of the majority class label in the
data set, NCj is the number of occurrences of the consequent class Cj in the training
set and minConf is the minimum confidence fixed by the expert. Formula 3.31 allows
decreasing the minConf threshold proportionally to the imbalance ratio between the
class of the rule and the majority class. Thus, rules, which have a minority class in the
consequent, are not pruned only because the number of instances of that class is very
low in the training set.

Figure 3.19 shows the pseudo-code of the first type of pruning, which involves the
third scan of the dataset.

With the adjustments performed by formulas (3.30) and (3.31), we are able to mine
a higher number of fuzzy rules than the other approaches described in [37] and [139],
without losing the advantages of the FP-Growth method, even if a third scan in the dataset
is necessary.

In the second type of pruning, redundant rules are removed. First, the rules are sorted
according to the fuzzy support, confidence and RL. In particular, rule FCARs has higher
rank than rule FCARm, if and only if:

1. fuzzyConf(FCARs) > fuzzyConf(FCARm)

2. fuzzyConf(FCARs) = fuzzyConf(FCARm) AND fuzzySupp(FCARs) > fuzzySupp(FCARm);
3. fuzzyConf(FCARs) = fuzzyConf(FCARm) AND fuzzySupp(FCARs) = fuzzySupp(FCARm)

AND RL(FCARs) < RL(FCARm).

A fuzzy rule FCARm is pruned if and only if there exists a rule FCARs with higher
rank and more general than FCARm. A rule FCARs : FAnts → Cjs is more general
than a rule FCARm : FAntm → Cjm , if and only if, FAntm ⊆ FAnts. Our experimental
results show that this second step can reduce significantly the number of fuzzy CARs in
the FCARlist.

In the third type of pruning, the training set coverage is exploited: only the fuzzy rules
that are activated by at least one data object in the training set are retained. Each data
object in the training set is associated with a counter initialized to 0. For each object, a
scan over the sorted FCARlist is performed to find all the rules that match the object: we
consider only those rules FCARm with matching degree higher than the fuzzy matching
degree threshold wm = 0.5gm−1, where gm is the rule length of FCARm. This threshold

61

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Figure 3.19: Pseudo-code of the first type of pruning.

allows us to take into account only the most significant rules for a specific data object,
without penalizing rules with high rule length. If FCARm classifies correctly at least one
data object, then it is inserted into the RB. Further, the counters associated with the
objects, which activate FCARm, are incremented by 1. Whenever the counter of an
object becomes larger than the coverage threshold δ, the data object is removed from
the training set and no longer considered for subsequent rules. Since rules are sorted in
descending ranks, it is very likely that these subsequent rules would have a very limited
relevance for the object. The procedure ends when no more objects are in the training
set or all the rules have been analyzed. Figure 3.20 shows the pseudo-code of the third
type of pruning.

We would like to point out that the overall rule base is obtained by performing only 4
scans of the overall training set.

62

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

Figure 3.20: Pseudo-code of the third type of pruning.

Classification

The set of rules survived after the pruning are used to classify unlabeled patterns. We
adopt the weighted vote [40] as reasoning method : an input pattern is classified into
the class corresponding to the the maximum total strength of vote, calculated by using
formula (3.18). Given an input pattern x̂ = [x̂1 . . . , x̂F], each fuzzy rule in the RB gives a
vote for its consequent class. If x̂ activates no rule, then x̂ is classified as unknown.

Since we use the product t-norm as conjunction operator, rules with a higher number
of conditions in the antecedent have generally a lower matching degree than rules with
a lower number of conditions in the antecedent. Hence, more general rules are more
influential than specific rules in the prediction phase. To re-balance the influence, we
normalize formula (3.18) as follows:

63

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

VCk(x̂) =
∑

FCARm∈RB;Cjm=Cl

wm(x̂) · 2gm · CFm (3.32)

where wm(x̂) is the matching degree of FCARm for the input x̂, F is the number of
features in the data set, gm is the RL of FCARm and CFm is the certainty factor. For
example, let us assume that three rules have, respectively, one condition, two conditions
and three conditions. Let us suppose that each object is described by 3 features and
each condition is activated by the unlabeled pattern x̂ with membership degree equal to
0.5. The matching degrees for the three rules would be 0.5, 0.25 and 0.125, respectively.
After re-balancing with formula (3.32), all the votes are equal to 1.

This normalization allows considering also the vote of rules with a high number of
conditions. Indeed, the vote of these rules is strongly penalized by the number of con-
ditions, even if all these conditions are activated with a high membership degree. In our
experiments, we verified that this approach is more effective than, for instance, maximum
matching.

3.4.2 Experimental Study

We tested our method on seventeen classification datasets extracted from the KEEL
repository4. As shown in Table 3.12, the datasets are characterized by different numbers
of input variables (from 4 to 16), input/output instances (from 106 to 19020) and classes
(from 2 to 11). For the datasets CLE and WIS, we removed the instances with missing
values. The number of instances in the table refers to the datasets after the removing
process.

Table 3.12: Datasets used in the experiments (sorted for increasing numbers of input
variables).

Dataset # Instances # Variables # Classes
Iris (IRI) 150 4 3

Phoneme (PHO) 5404 5 2
Newthyroid (NEW) 215 5 3

Monk-2 (MON) 432 6 2
Appendicitis (APP) 106 7 2

Ecoli (ECO) 336 7 8
Pima (PIM) 768 8 2
Yeast (YEA) 1484 8 10
Glass(GLA) 214 9 6

Wisconsin (WIS) 683 9 2
Page-Blocks (PAG) 5472 10 5

Magic (MAG) 19020 10 2
Heart (HEA) 270 13 2

Cleveland (CLE) 297 13 5
Wine (WIN) 178 13 3

Vowel (VOW) 990 13 11
Pen-Based (PEN) 10992 16 10

4 Available at http://sci2s.ugr.es/keel/datasets.php

64

http://sci2s.ugr.es/keel/datasets.php

3.4. AC-FFP: A NOVEL ASSOCIATIVE CLASSIFICATION MODEL BASED ON A
FUZZY FREQUENT PATTERN MINING ALGORITHM

We compare the results obtained by AC-FFP with the ones achieved by three different
classification models, namely CMAR [108], FARC-HD [6] and D-MOFARC [63]. We chose
these three algorithms because CMAR exploits as AC-FFP the FP-Growth algorithm for
generating the association rules, and FARC-HD and D-MOFARC are, to the best of our
knowledge, two of the most recent and effective fuzzy rule-based associative classifiers
proposed in the literature.

Similar to our approach, CMAR first adopts the multi-interval discretization method
presented in [61] to split the input domains into bins. Then, it builds a class distribution-
associated frequent pattern tree to efficiently mine CARs. Finally, CARs are pruned based
on the analysis of the: i) confidence, ii) correlation, iii) rule redundancy and iv) database
coverage. The classification is performed based on a weighted χ2 analysis enforced on
multiple association rules. We implemented a JAVA version of CMAR following the de-
scription provided in [108].

FARC-HD and D-MOFARC have been described in Section 3.3. In [6], the authors
have shown that FARC-HD is very efficient since it outperforms a large number of classi-
cal classification algorithms, both based and not based on fuzzy rules and/or on CARs [6].
We recall that D-MOFARC is a recent extension of FARC-HD. In the experiments, we
have used the implementations of FARC-HD available in the KEEL package [7]. As re-
gards D-MOFARC, we extracted the results from the paper in which the method has been
discussed.

Table 3.13 shows the parameters used for each algorithm in the experiments. The
parameters have been chosen according to the guidelines provided by the authors in the
papers in which each algorithm has been introduced. For FARC-HD and D-MOFARC,
the descriptions of the specific parameters can be found in [6] and [63]. Further, for each
dataset and for each algorithm, we performed a ten-fold cross-validation by using the
same folds for all the datasets.

Table 3.13: Values of the parameters for each algorithm used in the experiments.

Method Parameters
CMAR MinSupp = 0.01,MinConf = 0.5, δ = 4,minχ2 = 20%

FARC-HD and D-MOFARC MinSupp = 0.05,MaxConf = 0.80, Depthmax = 3, kt = 2,
Pop = 50, Iterations = 15.000, BITSGENE = 30, δ = 2

AC-FFP MinSupp = 0.01,MinConf = 0.5, δ = 4,minχ2 = 20%

Table 3.14 shows, for each dataset and for each algorithm, the average values of the
accuracy, both on the training (AccTr) and test sets (AccTs), obtained by the associative
classifiers generated by the three algorithms. For each dataset, the values of the highest
accuracies are shown in bold. In Table 3.14 the results achieved by D-MOFARC for 4
datasets are missing because these datasets have not been considered in the experi-
ments carried out in [63]. On the other hand, as stated in [49], even though we consider
just 13 datasets, the significance of the Wilcoxon signed-rank test is ensured.

From Table 3.14, we can observe that, in most of the datasets, the AC-FFP algorithm
generates classifiers more accurate than the ones generated by CMAR. In particular, in

65

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

12 out of 17 datasets, AC-FFP achieves the highest accuracies on the test set. As regards
FARC-HD and D-MOFARC, we observe that AC-FFP, FARC-HD and D-MOFARC achieve
similar average accuracies on the test set. Further, FARC-HD and D-MOFARC suffer from
overtraining more than the other comparison approaches.

Table 3.14: Average results obtained by CMAR, FARC-HD, D-MOFARC and AC-FFP.

CMAR FARC-HD D-MOFARC AC-FFP
Dataset AccTr AccTs AccTr AccTs AccTr AccTs AccTr AccTs

IRI 96.00 93.33 98.59 96.00 98.1 96.0 96.15 98.00
PHO 79.10 78.70 83.50 82.14 84.8 83.5 81.54 81.10
NEW 96.38 93.10 98.98 93.95 99.8 95.5 97.73 95.87
MON 77.78 77.56 99.92 99.77 - - 97.22 97.27
APP 90.87 86.00 93.82 84.18 - - 91.51 85.09
ECO 83.30 76.83 92.33 82.19 94.0 82.7 89.35 83.39
PIM 78.69 74.87 82.90 75.66 82.3 75.5 79.25 74.87
YEA 56.55 54.32 63.81 58.50 - - 57.99 55.60
GLA 80.42 69.44 81.10 70.24 95.2 70.6 83.59 74.18
WIS 97.74 96.80 98.70 96.52 98.6 96.8 98.85 96.06
PAG 93.79 93.68 95.62 95.01 97.8 97.0 94.15 93.88
MAG 79.39 78.94 85.36 84.51 86.3 85.4 73.59 73.40
HEA 90.08 84.07 93.91 84.44 100.0 90.0 94.77 81.85
CLE 54.40 53.88 88.18 55.24 90.9 52.9 80.43 56.91
WIN 99.94 96.05 99.94 94.35 100.0 95.8 100 97.12
VOW 74.14 61.41 80.48 71.82 - - 98.95 91.52
PEN 78.60 77.78 97.04 96.04 97.4 96.2 85.66 83.48

In order to verify if there exist statistical differences among the values of accuracy on
the test set associated with the classifiers generated by the different algorithms, we per-
form a statistical analysis. As suggested in [49], we apply non-parametric statistical tests
combining all the datasets: for each approach we generate a distribution consisting of
the mean values of accuracy calculated on the test set. We compare both CMAR, FARC-
HD and D-MOFARC with AC-FFP by using a pairwise comparison, namely the Wilcoxon
signed-rank test [196], which detects significant differences between two distributions. In
all the tests, we use α = 0.05 as level of significance.

Table 3.15 shows the results of the application of the Wilcoxon signed-rank test be-
tween AC-FFP and CMAR, between AC-FFP and FARC-HD, and between AC-FFP and
D-MOFARC. As regards the first comparison, since the p-value is lower than the signifi-
cance level α, the null hypothesis of equivalence can be rejected. In conclusion, we can
state that AC-FFP statistically outperforms CMAR in terms of classification accuracy on
the test set.

As regards the Wilcoxon signed-rank test between AC-FFP and the remaining two
approaches, since the p-value is higher than the significance level α, the null hypothesis
of equivalence is not rejected. Hence, AC-FFP results to be statistically equivalent, in
terms of classification rate computed on the test set, to both FARC-HD and D-MOFARC.
In FARC-HD and D-MOFARC, however, the steps, which generate the initial set of can-
didate rules, are based on a fuzzy version of the Apriori algorithm. This algorithm suffers

66

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

Table 3.15: Results of the Wilcoxon signed-rank test with a significance level α = 0.05.

Comparision R+ R− P -value Hypothesis
AC-FFP vs CMAR 113 23 0.01825 Rejected

AC-FFP vs FARC-HD 76 77 1 Not Rejected
AC-FFP vs D-MOFARC 43 48 0.83 Not Rejected

from the curse of dimensionality: the higher the number of input variables, the more diffi-
cult the generation of the set of candidate rules. In addition, the last step of FARC-HD and
D-MOFARC requires the execution of an evolutionary algorithm for selecting a reduced
set of rules. As stated in [13], the size of the search space grows with the increase of
the number of input variables, thus leading to a slow and possibly difficult convergence
of the evolutionary algorithm. Further, the computational cost of the fitness evaluation in-
creases linearly with the increase of the number of instances in the dataset, thus obliging
to limit the number of evaluations especially when the dataset is large. On the other hand,
AC-FFP needs only four scans of the dataset.

3.5 DAC-FFP: a Distributed implementation of AC-FFP for Big Data

In Section 3.4, we have pointed out that the use of fuzzy partitions makes the fuzzy
CAR mining more complex. Indeed, while in the case of crisp partitions an input value
supports a unique item, in the case of fuzzy partitions, an input value can support more
than one fuzzy item (in our implementation, which is based on strong fuzzy partitions, the
supported items are at most two). Thus, the number of possible fuzzy association rules
is higher than the number of possible crisp rules. This issue is much more evident when
dealing with big datasets.

So far, the AC-FFP algorithm described in Section 3.4 is not able to deal with both
large and high dimensional datasets. Although the use of the FP-Growth algorithm guar-
antees a higher level of efficiency in terms of memory occupation and computational time
than the Apriori algorithm, this advantage is not enough to manage big data. Indeed, the
high dimensionality might generate very large FP-trees, which cannot be contained in the
main memory. Further, the size of the dataset could preclude storing the overall amount
of data in the main memory. Both these drawbacks require frequent swapping operations,
which dramatically affect the computational time of AC-FFP method. Moreover, the clas-
sification accuracy achieved by AC-FFP, although comparable to the ones obtained by
similar state-of-the-art algorithms proposed recently in the literature, might be improved
by employing a different discretization approach. Indeed, the accuracy depends on how
the continuous attributes are partitioned. Thus, fuzzy discretization approaches, which di-
rectly generate optimal fuzzy partitions rather than fuzzifying discrete partitions are more
desirable.

With this aim, we propose a novel distributed fuzzy partitioning for generating Ruspini
fuzzy partitions on each continuous attribute and an efficient fuzzy associative classifica-

67

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

tion scheme for dealing with big data. The proposed approach, based on the MapReduce
paradigm, is a distributed version of our Associative Classifier based on a Fuzzy Frequent
Pattern (AC-FFP) mining algorithm. The overall algorithm, denoted as DAC-FFP, first dis-
tributes the generation of Ruspini fuzzy partitions by exploiting the fuzzy entropy, then
mines fuzzy associative classification rules by employing a distributed implementation of
the fuzzy frequent pattern mining algorithm proposed in AC-FFP and finally selects a set
of fuzzy CARs by performing different distributed pruning steps. For handling big dataset
and improving the accuracy of the fuzzy classifier as well, we introduce several strate-
gies that improve the performance of DAC-FFP. Indeed, we propose: i) a novel fuzzy dis-
cretization step for generating Ruspini fuzzy partitions, ii) an enhanced fuzzy rules mining
approach for speeding up the execution time similar to the one employed by MRAC, and
iii) an ad-hoc classification method for improving the accuracy of the classifier. Referring
to an implementation on Hadoop, we show memory usage and time complexity for each
phase of the learning process.

We adopt seven real-world big datasets with different numbers of instances (up to 11
millions) to analyze scalability and speedup of the algorithm according to different work
units. Further, focusing on accuracy, model complexity and computation time, we com-
pare the results obtained by our approach with those achieved by two crisp associative
classifiers, namely MRAC and MRAC+, described in Section 3.2.

The rest of the section is organized as follows. Section 3.5.1 describes the proposed
approach, with details of each single job that runs on the cluster of machines. We ex-
ploit Hadoop for the implementation of our distributed fuzzy associative classifier. Sec-
tion 3.5.2 presents the experimental setup and discusses the results in terms of accuracy,
computation time, model complexity, speedup, and scalability.

3.5.1 The Distributed Approach

The overall FCAR mining algorithm, that allow us to generate a classical FRBC, can be
summarized into three main stages:

1. Distributed Fuzzy Partitioning: a strong fuzzy partition is defined on each continuous
attribute using a distributed approach based on fuzzy entropy;

2. Distributed Fuzzy CAR Mining: a distributed fuzzy frequent pattern mining algorithm
is exploited to extract frequent fuzzy classification rules with confidence and sup-
port higher than a pre-fixed threshold. The implementation of this stage is based the
parallel FP-Growth algorithm discussed in [106].

3. Distributed Fuzzy CAR Pruning: the mined CARs are pruned by means of two dis-
tributed rule pruning phases based on redundancy and training set coverage. The re-
maining CARs are kept in the final RB employed for classifying unlabeled instances.

In the following, we first detail the three stages introduced above. Moreover, we will
also discuss how the classification of unlabeled instances can be carried out by employ-
ing the generated FRBC model. For sake of clarity, we refer to its implementation upon

68

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

Hadoop. The overall process is carried out by performing five MapReduce phases that
involve four training set scans.

Distributed Fuzzy Partitioning

As stated before, granularity learning is a critical aspect in the generation of fuzzy associ-
ation rule, and in general in the design of FRBCs. Indeed, the performance of classifiers
can be significantly affected by the different methodologies that can be employed for both
continuous attribute discretization and fuzzy set parameters definition. With this aim, we
propose a novel fuzzy partitioning approach based on fuzzy entropy for generating strong
triangular fuzzy partitions on each continuous feature. In particular, the algorithm is a su-
pervised method that, recursively, determines the core of each triangular fuzzy set by
exploiting the class information fuzzy entropy of each candidate partition.

The algorithm follows a top-down approach working on intervals. In particular, at each
stage, the algorithm aims at identifying, in the considered interval If,s of the variable
Xf , the parameters of a strong fuzzy partitions built using three triangular membership
functions. Let SIf,s = [x1,f , ..., xNIf,s ,f]

T be the set of NIf,s points, in the interval If,s,
of the projection of the training set TS along variable. Let lf,s and uf,s be the lower and
upper bounds of If,s. Let tf,s be a point in SIf,s , we define a candidate fuzzy partition
in If,s by using three triangular fuzzy sets, namely AIf,s,1, AIf,s,2, AIf,s,3. Indeed, the
cores of AIf,s,1, AIf,s,2, AIf,s,3 coincide with lf,s, tf,s, and uf,s, respectively.

Let S1, S2 and S3 be the subsets of points in SIf,s which lie in the support of AIf,s,1,
AIf,s,2 and AIf,s,3, respectively. The class information fuzzy entropy induced by tf,s and
denoted as WFEnt(tf,s;SIf,s) is computed by exploiting the weighted fuzzy entropy:

WFEnt(tf,s;SIf,s) =

3∑
j=1

|Sj |
|S| FEnt(Sj) (3.33)

where |Sj | and |S| are the fuzzy cardinalities of subset Sj and S respectively, and
FEnt(Sj) is the fuzzy entropy of Sj .

We recall that the fuzzy cardinality of a subset of points Sj , which lie in the support of
the fuzzy set AIf,s,j , is computed as

|Sj | =
Nj∑
i=1

µSj (xi) =
Nj∑
i=1

µAIf,s,j (xi) (3.34)

where Nj is the number of points (crisp cardinality) in the subset Sj , µSj (xi) =

µAIf,s,j (xi) is the membership degree of example xi to subset Sj and µAIf,s,j (xi) is
the membership degree of example xi to fuzzy set AIf,s,j . On the other hand, the fuzzy
entropy of Sj is defined as

FEnt(Sj) =

L∑
l=1

−|Sj,Cl ||Sj |
log2(

|Sj,Cl |
|Sj |

) (3.35)

69

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

where Sj,Cl is the set of examples in Sj with class label equal to Cl and L is the total
number of class labels.

The optimal point tminf,s , which minimizes the class information fuzzy entropy over all
possible candidate fuzzy partitions in If,s, is selected as actual core of the central fuzzy
set of the strong partition.

The proposed fuzzy partitioning method starts considering, for each input variableXf ,
an initial interval equal to the whole variable domain, namely If,0 = Uf . The process is
then recursively applied to both intervals If,1 and If,2 identified by tminf,0 . Given a specific
interval If,s, the process stops if the following criterion is achieved:

FGain(tminf,s ;SIf,s) <
log2(

∣∣SIf,s∣∣− 1)∣∣SIf,s∣∣ +
∆(tminf,s ;SIf,s)∣∣SIf,s∣∣ (3.36)

where
FGain(tminf,s ;SIf,s) = FEnt(SIf,s)−WFEnt(tminf,s ;SIf,s), (3.37)

∆(tminf,s ;SIf,s) = log2(3
L − 2)−

[
L · FEnt(SIf,s)−

∑3
j=1 Lj · FEnt(Sj)

]
(3.38)

and Lj is the number of class labels represented in the set Sj .
At the end of overall process, the algorithm identifies a strong fuzzy partition Pf for

each input variable Xf . If no MFs have been defined by the algorithm, Xf is discarded
and not employed in the rule mining process. This situation can happen whenever, during
the exploration of If,0, formula (3.36) is not verified for any candidate central core tf,0.

The complexity of the algorithm depends on the number of candidate fuzzy partitions
evaluated in each interval If,s. Indeed, to determine the best tminf,s , the algorithm first
should sort all the unique values of the variable, and then defines a candidate fuzzy
partition on each unique value. However, this approach is not suitable to deal with a huge
amount of data because sorting values and checking the candidate partitions could be
a computational expensive task in case of very large distributed datasets that involves
millions or even billion of points. To overcome this drawback, we adopt a kind of under-
sampling, in which the set of instances, in the projection of the training set along each
input variableXf , is approximated with a reduced number of representative points. To this
aim, we perform a equi-frequency binning of each variable and identify the boundaries of
each bin. Such boundaries are labeled as the representative points of the specific variable
Xf . During the fuzzy partition identification process, bin boundaries which lie in a specific
interval If,s are analyzed as candidate central cores. To this aim, the class distribution for
each bins is calculated: we considered the number of actual instances belonging to the
different classes in each bins. Note that the calculation of the class distributions is carried
out just once.

For handling big dataset, we propose a distributed implementation of the previously
discussed fuzzy partitioning method under the MapReduce paradigm. The proposed dis-
tributed implementation also includes the undersampling process for the generation of
the representative points of the projection of the training set along each input variable.

70

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

In Figure 3.21, we show the employed architecture, which highlights the implemented
Map and Reduce functions. We consider that Z is the number of blocks used for splitting
the training set and Q is the number of Computing Units (CUs) available across the
cluster. Each block fed only one Map-Task and of course one CU can process several
tasks, both Map or Reduce. Obviously, only Q tasks can be executed in parallel.

The overall distributed fuzzy partitioning process is carried out by using two MapRe-
duce phases. In the first MapReduce step, the algorithm splits each continuous variable
into several bins. First in the map phase, each CU loads a block of training set and then
computes the bin boundaries by splitting the data according to a fixed number of equi-
frequency bins. Then, in the reduce phase, for each variable all the bin boundaries are
grouped together and then each CU generates a sorted list of bin boundaries for each
variable.

The second MapReduce step carries out the fuzzy partitioning of each variable, con-
sidering the bin boundaries as representatives of the actual instances. In the map phase,
each CU computes the number of instances belonging to the different classes for each bin
determined by a pair of consecutive bin boundaries in the list. In the reduce phase, each
CU generates, for each input variable, a strong fuzzy partition employing the fuzzy parti-
tioning method previously discussed. In particular, the bin boundaries generated during
the first MapReduce stage are considered as candidate central cores. The fuzzy entropy
is always calculated by using the distribution of classes in each interval identified by two
consecutive bin boundaries, previously calculated by the mappers.

The proposed distributed approach makes it feasible to handle a large number of
objects: the bin boundaries allow to reduce the data amount on which the Fuzzy Parti-
tioning is applied to. Obviously, the higher the frequency used in the equi-frequency bins,
the coarser the approximation in determining the best fuzzy partition. However, we must
notice that, we are managing millions of data, thus a difference of a few instances be-
tween bin boundaries instead of the original instances is generally negligible in terms of
achieved accuracy.

The first MapReduce phase scans the training set to compute at most Ω = Z · Γ
bin boundaries, where Γ = 100/γ + 1 is the number of bin boundaries per block. This
value depends on the percentage γ of the zth block size. In our experiments, we set
γ = 0.1%. Each Map-Task, first, loads the zth block of the training set, and then for each
variable Xf , computes and outputs the bin boundaries of equi-frequency bins, where
each bin contains a number of instances equal to the percentage γ of the data block. Let
Bz,f = {b(1)z,f , ..., b

(Γ)
z,f } be the sorted list of bin boundaries for the f th variable extracted

from the zth block, the Map-Task outputs a key-value pair 〈key = f, value = Bz,f 〉 where
f is the index of the f th variable. Each Reduce-Task is fed by Z lists, say List(Bz,f),
and for the f th variable, it outputs 〈key = f, value = Bf 〉, where Bf = {b(1)f , ..., b

(Ω)
f }

with ∀w ∈ [1, ..., Ω − 1] b
(w)
f < b

(w+1)
f is the sorted list of the bin boundaries for the

variable Xf . Space and time complexities, for the Map phase, are O(dZQe · N/Z) and
O(dZQe · (F · N · (log(N/Z))/Z)). For the Reduce phase, space and time complexities
are O(F ·Ω/Q) and O(F · (Ω · log(Ω))/Q), respectively.

71

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Bin Boundaries Lists

x
CU CU CU Map

Reduce

CU

CU CU CU

CUs

CUs

x
CU CU CU Map

Reduce

CU

CU CU CPU

CUs

CUs

D
istributed

B
in G

eneration
D

istributed
Fuzzy Sets G

eneration

D
istributed Fuzzy Partitioning

HDFS

Block 1

HDFS

Block 2

HDFS

Block Z-1

HDFS

Block z

HDFS

Block Z

Training Set

HDFS

Block 1

HDFS

Block 2

HDFS

Block

Z-1

HDFS

Block z

HDFS

Block z

Training Set

INPUT DATA

Strong Fuzzy Partitions

to distributed Fuzzy CAR Mining step...

Figure 3.21: The overall distributed Fuzzy Partitioning of the Fuzzy Decision Tree.

As stated before, the second MapReduce phase aims at generating the most suit-
able fuzzy partition for each variable Xf : the map phase computes the number of actual
instances of each class for each bin, and the reduce phase performs the identification
of the best fuzzy partitioning for each variable Xf . Each Map-Task, first, loads the zth

block of the training set and for each input variable Xf , initializes a vector Wz,f of Ω − 1

elements. Each element W (r)
z,f corresponds to the bin (brf , b

(r+1)
f] and contains a vector

of L elements, which stores, for each of the L classes, the number of instances of the
class belonging to the rth bin in the zth block. Then, for each object of the block, the Map-
Task updates Wz,f and finally outputs a key-value pair 〈key = f, value = Wz,f 〉. Each
Reduce-Task is fed by a list, say List(Wz,f), of Z of Wz,f vectors and for each variable
Xf , it first creates a vector Wf of Ω − 1 elements by performing an element-wise addi-
tion of all Z vectors Wz,f . Thus, Wf stores the frequency of each class in every bin along

72

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

the whole training set. Then, the Reduce-Task applies the fuzzy partitioning method as
described above, where the candidate fuzzy partitions are defined upon bin boundaries
and the fuzzy mutual information is computed according to Wf . Finally, each reducer out-
puts the key-pair 〈key = f, value = Pf 〉, where Pf is the strong fuzzy partition defined
on the variable Xf . Space and time complexities of the Map phase are O(dZQe · N/Z)
and O(dZQe · (N · log(Ω)/Z)), respectively. For Reduce phase, space and time complex-
ities are O(F · (Ω − 1)/Q) and O(F · max(FuzzyPart(Xf))/Q), respectively, where
FuzzyPart(Xf) is the time complexity of the fuzzy partitioning method for retrieving the
best central core in each interval If,s of the f th variable. Since for each variable, the
fuzzy partitioning method generates a different number of intervals, the time complexity
is upper bounded by the maximum value max(FuzzyPart(Xf)).

Distributed Fuzzy CAR Mining

The distributed fuzzy CAR mining approach extracts, for each class label, K non-
redundant fuzzy association rules, characterized by the highest confidence, by perform-
ing two scans of the overall training set. The implementation is based on the Parallel
FP-Growth (PFP-Growth) proposed by Li et al. [106] for efficiently distributing the fre-
quent patterns mining without generating candidate item sets. First, the algorithm selects
the frequent items, builds the flist and then distributes item-projected datasets on each
node for building local and independent FP-Trees. An item-projected dataset T (ITf,j)
contains only objects, also called item-projected objets, where the items are sorted ac-
cording to the flist and the items with lower support than ITf,j are removed. In the last
phase, the algorithm aggregates the results and, for each item, selects the highest sup-
ported patterns.

We adapted the PFP-Growth algorithm to generate frequent FCARs characterized by
a high fuzzy confidence. As shown in Figure 3.22, the overall fuzzy FCAR mining process
is carried out by performing three MapReduce phases: (i) parallel fuzzy counting, (ii)
parallel fuzzy FP-Growth, and (iii) parallel rules selection.

The parallel fuzzy counting phase scans the dataset and counts both the fuzzy sup-
port for selecting the frequent fuzzy sets, and the number of occurrences of each class
label. A fuzzy set is frequent if its fuzzy support is higher than a minimum thresh-
old minSup fixed by the expert. The MapReduce framework divides the entire train-
ing set into blocks and assigns each of them to a map task. Each map task is fed
by input key-value pairs represented as 〈key = r, value = or〉, where or = (xr, yr)

is the rth object of the training set block. For each fuzzy set Af,j ∈ Pf , the map-
per outputs a key-value pair 〈key = Af,j , value = Af,j(xr,f)〉, where Af,j(xr,f) is
the membership degree of the ffh component of xr to the jth fuzzy set of partition
Pf . Obviously, only the fuzzy sets with matching degree higher than zero are consid-
ered. Since we use strong partitions, for each xr, we output at most 2F values. Fi-
nally, the mapper outputs also the key-value pair 〈key = yr, value = 1〉. The reducer
is fed by a list of corresponding values for each key: a set of membership degrees for

73

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Figure 3.22: The overall FCAR Mining process of the DAC-FFP algorithm.

74

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

the fuzzy sets, and a set of 1’s for the class labels. The reducer input is formatted as
〈key = Af,j , value = list(Af,j)〉 and 〈key = Cj , value = list(Cj)〉, respectively, and
outputs 〈key = Af,j , value = fuzzySupp(Af,j))〉, where fuzzySupp(Af,j) is calcu-
lated according to the Eq. 3.29, and 〈key = Cj , value = size(list(Cj))〉. Space and
time complexity are both O(N/Q), where Q is the number of CUs.

At the end of the first MapReduce phase, the algorithm selects only the fuzzy sets
whose support is larger than the support threshold minSup, stores them in the flist,
sorting in descending order according to the fuzzy support, and prunes the other ones.
Only the frequent fuzzy sets will be considered in the subsequent phases. Since flist is
generally small, this step can efficiently be performed on a single machine.

The second MapReduce phase, parallel fuzzy FP-Growth, mines fuzzy CARs whose
support, confidence and χ2 values are higher than minSup, minConf and minχ2 thresh-
olds, respectively. The approach is very similar to the classical parallel FP-Growth de-
scribed by Li et al. [106] with the only difference that we extend the projected dataset and
projected object concepts to the fuzzy context. Indeed, each mapper computes the item
projected objects so that the reducers are able to build the item-projected datasets, and
then to generate local conditional FP-Trees. We recall that in our case an item is defined
as ITf,j = (Xf , Af,j). In the following we denote the Af,j-projected dataset as T (Af,j).
Since, the local conditional FP-Trees are independent of each other, the fuzzy CARs can
be mined by each node independently of the other nodes.

As in the first phase, each mapper reads a key-value pair 〈key = r, value = or〉
in the training set block, and then builds the fuzzy object õr from or. As described in
Section 3.4.1, for each xr,f value, the mapper extracts the fuzzy setsAf,j with the highest
matching degree from the two fuzzy sets activated by xr,f . Then, the mapper sorts the
fuzzy sets according to the flist. If a fuzzy set is not present in the flist then it is discarded.
Finally, the mapper retrieves the class label Cjn and, for each extracted fuzzy set, outputs
the key-value pair 〈key = indexAf,j , value = Af,j − projected object〉, where indexAf,j
is the index of the fuzzy set Af,j in the flist.

The MapReduce framework groups all the item-projected objects with the same in-
dex, and passes them to the reducer. Each reducer is able to process the Af,j-projected
training sets independently, and generates the associated FCARs. Indeed, the reducer
receives in input key-value pairs 〈key = indexAf,j , value = T (Af,j)〉, builds the lo-
cal conditional FP-Tree and recursively mines the FCARs, as described in [80]. As in
the AC-FFP, if a node already exists in the tree, the corresponding counter is simply in-
cremented by 1 and no other information about the matching degrees are maintained.
Finally, when rules are extracted from the FP-Tree, only those FCARs whose support,
confidence and χ2 values are greater than the relative thresholds are considered. In par-
ticular, reducers output 〈key = null, value = FCARm〉 pairs, where FCARm is themth

generated rule. Space and time complexities of each reducer depend on the size and the
execution time of all the processed projected training sets, Ored(Sum(|T (vf,j)|)) and
Ored(Sum(FPGrowth(T (vf,j)))), respectively.

75

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

The recursive mining of FCARs from the local FP-tree can be very hard from the
computational point of view, especially when dealing with Big Data. Moreover, handling a
huge number of instances often leads to generating a large number of FCARs. Similar to
MRAC, We designed a methodology to speedup the FCAR mining process by reducing
the number of generated FCARs. In order to avoid the inspection of several sub-trees,
and thus the generation of several FCARs, we adopt a sort of rule pre-pruning during
the FCAR mining process. More precisely, the method avoid to inspect sub-trees that
will likely generate redundant rules. In the following, we introduce some additional defini-
tions is order to give the precise explanation of the pre-pruning step. A FCARm is more
significant than another FCARs if and only if:

1. conf(FCARm) > conf(FCARs)

2. conf(FCARm) = conf(FCARs) AND supp(FCARm) > supp(FCARs);
3. conf(FCARm) = conf(FCARs) AND supp(FCARm) = supp(FCARs) AND
RL(FCARm) < RL(FCARs).

where conf(.), supp(.), and RL(.) are the confidence, the support and the rule length
respectively. A fuzzy rule FCARs is pruned if and only if exists a rule FCARm with
higher rank and more general than FCARs. A rule FCARm : FAntm → Cjm is more
general than a rule FCARs : FAnts → Cjs , if and only if, FAntm ⊆ FAnts. For each
of these K rules the reducer outputs a key-value pair 〈key = null, value = FCARm〉.
This lets us discard redundant rules and cover a larger number of objects in the training
set. The rules are more and more specialized as the recursive visit of a Af,j-conditional
FP-tree goes deeper in the tree. We stop the visit of an FP-tree at a specific node ι

if, visiting two further nodes, the rules generated by adding the items corresponding to
the nodes are not more significant than the rule generated at node ι. Let us assume
that FCARm : FAntm → Clm , FCARs : FAnts → Cls , and FCARd : FAntd →
Cld , with FAnts = {FAntm, Ãf,j} and FAntd = {FAnts, Âf,j}, where Ãf,j and Âf,j
are frequent items for the FAnts and FAntd antecedents, respectively. We stop the
generation of other rules with sub-pattern FAntd if and only if:

conf(FCARd)− conf(FCARs) ≤ 1− supp(FCARd)
supp(FCARs)

AND (3.39)

conf(FCARs)− conf(FCARm) ≤ 1− supp(FCARs)
supp(FCARm)

The pre-pruning method does not evaluate Eq. 3.39 for the rules with one or two an-
tecedents and for the rules generated from FAntd whose class is different from FCARd.
In this way, we avoid to visit the paths in the FP-tree that probably will generate redun-
dant rules. We recall that such paths would be pruned in the next steps anyway. Thanks
to this modification of the FP-Growth, we can significantly reduce the execution time of
the mining process and, thus, we can reduce the value of the minSup threshold. In this
way, the mining process generates highly confident and specialized rules with a small
support. In our experiments, we verified that this pre-pruning allows us to obtain a good
trade-off between execution time and accuracy performance of the generated classifiers.

76

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

Note that the number of pairs 〈key, list(values)〉 processed by each reducer is de-
termined by the default partition function hash(key) mod R. Since in parallel Fuzzy FP-
Growth the intermediate key is the specific item index in flist, more or less the same num-
ber of pairs 〈key, list(values)〉, i.e. of conditional FP-trees, is assigned to each reducer
by the partition function. However, such a distribution does not necessarily guarantee
a perfect load balancing among all the reducers, because the time spent in processing
each specific conditional FP-tree depends on the number and length of its paths; more
precisely, the relative time complexity is exponential with respect to the longest frequent
path in the conditional pattern base [152, 212]. In case of a large number of frequent
items, the conditional FP-trees corresponding to the items with the smallest support are
very deep since they consider in their paths almost all the frequent items. The rule pre-
pruning can reduce this problem for specific datasets, but cannot solve it in general. Thus,
datasets whose objects are described by a small number of features can be easily man-
aged, but conversely runtime problems may occur in dealing with objects with a large
number of features.

Note that the MapReduce framework automatically determines the number of con-
ditional FP-Trees assigned to each reducer through a default partition function, namely
hash(key)mod R, where R is the number of reducers. Even though our implementation
ensures more or less the same number of conditional FP-Trees processed by each re-
ducer, such distribution does not necessarily guarantee a perfect load balancing among
all the nodes, because the time spent in processing each specific FP-Tree depends on
the number and length of its path [152, 212].

Since the number of the rules generated in the previous step can be very high, the
next MapReduce phase, parallel rules selection, selects only the top K non-redundant
rules for each class label Cj . Each mapper is fed by an input key-value pair formatted as
〈key = m, value = FCARm〉 and outputs a pair 〈key = Cjm , value = FCARm〉, where
Cjm is the class label associated with FCARm. Each reducer processes all rules with the
same class label, List(FCARCl) and selects the best K significant non-redundant rules.
For each of these K rules the reducer outputs a key-value pair 〈key = null, value =

FCARm〉. Time complexity is O(Max(|FCARCl |) · log(K)/Q), where Q is the number
of CUs.

Distributed Fuzzy CAR Pruning

Figure 3.23 shows the MapReduce phases which are in charge of executing the pruning
of the mined FCAR rules, with the main aim of reducing noisy information. At this stage,
two additional scans of the overall training set are carried out.

Given an FCARm rule, during the first scan, the algorithm verify if the fuzzy support
and confidence are lower than a minFuzzySupp and minFuzzyConf thresholds, cal-
culated according to formulas 3.30 and 3.31, respectively. If the both conditions are both
verified, rule FCARm is discarded.

The mapper is fed by the training set block where each input takes the form 〈key =

r, value = or〉. Moreover, each mapper loads and ranks the rules mined in the previ-

77

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Figure 3.23: The overall FCAR Pruning process of the DAC-FFP algorithm.

ous steps into a ranked list and calculates the membership degree of each rule for or
according to Eq. 3.15, by using the product as t-norm for implementing the conjunction
operator. For each FCARm with membership degree higher than zero, the mapper out-
puts the key-value pair 〈key = indexFCARm , value = wm(xr)〉, where the key is the
index of rule FCARm in the ranked list and wm(xr) is the membership degree of rule
FCARm. Note that, when the class label Cjm of rule FCARm is different from class
label yr of object or, the mapper outputs a negative value, −wm(xr), thus the reducer
is able to properly compute the fuzzy support and the fuzzy confidence. Indeed, each
reducer inputs a key-value pair as 〈key = indexFCARm , value = list(wm)〉, where
list(wm) is the list of all non-zero matching degrees for the rule FCARm. The fuzzy

78

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

support and the fuzzy confidence are calculated according to Equations 3.23 and 3.24,
where the numerators of both equations is computed by considering only the positive
wm, and the denominator of the second one is computed by considering the absolute
value of each element in the list(wm). Finally, each reducer outputs only FCARs with
confidence and support higher than minFuzzySupp and minFuzzyConf , respectively
〈key = null, value = FCARm〉. Space complexity is O(N/Q) and time complexity is
O(N · |CARlist|/Q), where |CARlist| ≤ L ·K and Q is the number of CUs.

A training set coverage analysis is carried out as the last step of the pruning process.
The training set blocks are used to feed the mappers and 〈key = r, value = or〉 is used
as key-value input pair. Further, the filtered rule set generated in the previous phase is
loaded and ranked by each mapper. As in the AC-FFP, a counter initialized to 0 is as-
sociated with each object or. The mapper scans the rule list and, for each FCARm, if
xr matches the rule, then the counter is incremented by 1. Only those rules with match-
ing degree higher than the fuzzy matching degree threshold wm = 0.5gm−1, where gm
is the rule length of FCARm, are considered. If the FCARm correctly classifies xr,
the mapper outputs a key-value pair as 〈key = indexFCARm , value = null〉, where
the key is the index of the FCARm in the ranked list. When the counter is higher than
a coverage threshold δ, the corresponding object is not considered anymore. The key-
value pair 〈key = indexFCARm , value = null〉 is used to feed the reducer, which gets
the rule from the ranked list and outputs 〈key = null, value = FCARm〉. Space com-
plexity is O(N/Q) and time complexity in the worst case is O(N · |CARlist|/Q), where
|CARlist| ≤ L ·K and Q is the number of CUs.

Reasoning methods

At the end of the previously discussed methodology for generating fuzzy associative clas-
sifiers, we obtain a complete knowledge base which in include both the final rule base
and data base. As stated in Section 3.3.1, on the basis of the knowledge base, a spe-
cific reasoning method is employed to classify unlabeled patterns. In the experiments
that we will discuss in the following, we employ both the weighted vote and the maxi-
mum matching reasoning methods. Since we adopt the product t-norm as conjunction
operator, rules with a higher number of conditions in the antecedent have generally a
lower matching degree than rules with a lower number of conditions in the antecedent.
Hence, more general rules are more influential than specific rules in the prediction phase.
In order to re-introduce a balance on the influence of the rules, for a given input pattern
x̂ = [x̂1 . . . , x̂F] and a given rule FCARm, we normalize the matching degree of rules
as follows:

ŵm(x̂) = wm(x̂) · 2gm (3.40)

where ŵm(x̂) and wm(x̂) are the normalized matching degree and the matching degree
of FCARm for the input x̂, respectively, and gm is the number of antecedent conditions
of FCARm. Note that in case x̂ activates no rules, all the reasoning methods classify the
input pattern as unknown.

79

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

The quality of fuzzy association rules is mainly driven by the value of its confidence.
Even though both maximum matching and weighted vote methods employ such value
as certainty factor, rules with high confidence are not properly rewarded. For instance,
maximum matching tends to select rules that are characterized by higher association
degrees and weighted vote consider the contribution of each rule, taking care also about
those rules with low confidence. On the other hand, a rule with a confidence equals to
100% should be always selected for classifying the input pattern, independently of the
vote or the activation degree of other rules. Such kind of rules are very representative of
training dataset because every time they have been activated during the model learning
process, they have been able to classify the pattern with the right class label.

With the aim to improve the performance of classifier, we also experimented an addi-
tional reasoning method carefully designed for fuzzy associative classifiers. First, we rank
the rule base so that all rules are sorted according to confidence, support and number of
antecedent conditions. Then, given an unlabeled pattern x̂, we output the class label Ĉl
corresponding to the first rule with ŵm(x̂) greater than a pre-fixed threshold. We denoted
this novel reasoning method as best rule. In our experiments, we set the threshold to 1 so
that a rule is considered only when in average the membership degree of each fuzzy set
in the antecedent of rule is at least equal to 0.5. In this case, the threshold helps to filter
those rules that are no representative for the pattern x̂. Moreover, in the experiments, we
employed the best rule reasoning method by setting the value of threshold to 0. In this
case, a rule is considered any time has been activated by the pattern x̂.

3.5.2 Experimental Study

To characterize the behavior of the proposed methodology for generating fuzzy asso-
ciative classifiers for big data, the experimental study focuses on two aspects. First, we
investigate the performance of DAC-FFP in terms of classification accuracy, model com-
plexity and computation time. Then, we carry out a scalability analysis which includes
several tests varying the number of nodes and the size of the datasets.

We tested our algorithm on six well-known big datasets, extracted from the UCI repos-
itory5 and LIBSVM repository6, As shown in Table 3.16, datasets are characterized by
different numbers of input/output instances (up to 11000000), classes (from 2 to 23),
and attributes (up to 54). For each dataset, we report the number of numeric (N) and
categorical (C) attributes.

All the experiments have been run using a typical low-end system testbed for sup-
porting the target classification service: a small cluster with one master with 4-core CPU
(Intel Core i5 CPU 750 x 2.67 GHz), 4 GB of RAM and a 500GB Hard Drive, and four
slave nodes with 4-core CPU with Hyperthreading (Intel Core i7-2600K CPU x 3.40 GHz),
16GB of RAM and 1 TB Hard Drive per each. All nodes are connected by a Gigabit Eth-
ernet (1 Gbps) and run Ubuntu 12.04. The algorithm has been deployed upon Apache

5 Available at https://archive.ics.uci.edu/ml/datasets.html
6 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

80

https://archive.ics.uci.edu/ml/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

Table 3.16: Big datasets used in the experiments.

Dataset # Instances # Attributes # Classes
Cover Type (COV) 581012 54 (10 N, 44 C) 2

HIGGS (HIG) 11000000 28 (28 N) 2
KDDCup 1999 2 Classes (KDD99_2) 4856151 41 (26N, 15C) 2
KDDCup 1999 5 Classes (KDD99_5) 4898431 41 (26N, 15C) 5

KDDCup 1999 (KDD99) 4898431 41 (26N, 15C) 23
Susy (SUS) 5000000 18 (18 N) 2

Hadoop 1.0.4 as MapReduce implementation: the master hosts the NameNode and Job-
Tracker processes, while each slave runs a DataNode and a TaskTracker.

Analysis of the fuzzy associative classifier performance

In this section, we analyze the performance of DAC-FFP in terms of accuracy, model
complexity, and computation time. In particular, we show the results obtained by DAC-
FFP and, with the main aim of showing that the accuracies of the proposed classifier are
comparable with the ones achieved by recent state-of-the-art algorithms, we discuss also
the results achieved by two crisp associative classifiers, namely MRAC and MRAC+ [17].
For the sake of completeness, we mention that to the best of our knowledge only one
other fuzzy classification approach has been proposed for dealing with big datasets [119].
Here, as discussed in the Introduction, the authors present a distributed version of the
Chi et al’s algorithm [36]. Since the authors adopt a ten-fold cross-validation and a fair
comparison is not possible, we have not shown the results achieved by such method in
Table 3.18.

As described in Section 3.2.2, MRAC can be viewed as an extension of the well-
known CMAR [108] algorithm in a distributed execution environment and consists in three
main phases. First, it adopts a MapReduce discretization step of the well-known multi-
interval discretization approach proposed by Fayyad and Irani [61] to split the domain of
each continuous feature into bins. Items are identified by assigning a categorical value to
each bin. Second, the method extracts frequent CARs with support, confidence, and chi-
squared higher than pre-fixed thresholds by employing a parallel version of the FP-growth
algorithm [106] adapted for classification problems. Third, two rule pruning steps based
on redundancy and training set coverage are applied to generate the final rule base.
As well as in CMAR approach, MRAC employ the weighted chi-squared as reasoning
method. MRAC+, in Section 3.2.3, represents an enhanced version of MRAC with the
aim to improve the performance of the algorithm in terms of accuracy and execution time.
In particular, MRAC+ avoids the training set coverage pruning step that represent one of
the most consuming part of the algorithm and employs the a crisp version of the best rule
as inference mechanism. Both algorithms have proved to be very effective comparing
with two well-known distributed implementations of classifier, namely Decision Tree and
Random Forest, available on MLlib [140] and Mahout [127], respectively. In particular,
the experimental study shows that MRAC+ outperforms the decision tree and achieves
comparable results with Random Forest in terms of accuracy and execution time.

81

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Table 3.17 summarizes the parameters used in the experiments. We highlight that for
MRAC and MRAC+, we have just extracted, for the common datasets, the results from
the related paper [17]. However, for sake of clarity, we also report the parameters used
by both algorithms. For all algorithms, a five-fold cross-validation, using the same data
partitions, has been carried out.

Table 3.17: Values of the parameters for each algorithm used in the experiments.

Method Parameters
DAC-FFP γ = 0.1%, φ = 2%,MinSupp = 0.01%,MinConf = 50%,minχ2 = 20%,K = 15000, δ = 4
MRAC+ γ = 0.1%, φ = 2%,MinSupp = 0.01%,MinConf = 50%,minχ2 = 20%,K = 15000
MRAC γ = 0.1%, φ = 2%,MinSupp = 0.01%,MinConf = 50%,minχ2 = 20%,K = 15000, δ = 4

Table 3.18 shows, for each dataset and for each algorithm, the average values ±
standard deviation of the accuracy, both on the training (AccTr) and test sets (AccTs)
obtained by the three algorithms. The highest accuracy values for each dataset are shown
in bold. As regards DAC-FFP, we report also the results achieved by each one of the
four experimented reasoning methods; here WV , MM , BFR(0) and BFR(1) stand
for weighting vote, maximum matching, best rule with no threshold and best rule with
threshold equal to 1, respectively.

Table 3.18: Average accuracy ± standard deviation achieved by DAC-FFP, MRAC+ and
MRAC.

DAC-FFP MRAC+ MRAC
Dataset Inference AccTr AccTs AccTr AccTs AccTr AccTs

COV

WV 77.227± 0.043 77.190± 0.212

78.329± 0.091 78.092± 0.157 74.246± 0.100 74.261± 0.156
MM 75.194± 0.045 75.052± 0.207

BFR (0) 75.550± 0.059 75.519± 0.170
BFR (1) 76.943± 0.124 76.877± 0.174

HIG

WV 66.019± 0.062 66.005± 0.078

65.942± 0.058 65.904± 0.045 65.079± 0.054 65.050± 0.061
MM 63.486± 0.066 63.472± 0.066

BFR (0) 65.514± 0.033 65.507± 0.022
BFR (1) 65.738± 0.036 65.733± 0.023

KDD99_2

WV 99.987± 0.011 99.986± 0.011

99.999± 0.000 99.998± 0.000 99.959± 0.002 99.957± 0.004
MM 99.997± 0.000 99.997± 0.001

BFR (0) 99.998± 0.000 99.998± 0.001
BFR (1) 99.999± 0.001 99.998± 0.001

KDD99_5

WV 99.935± 0.029 99.935± 0.031

99.863± 0.046 99.858± 0.047 99.898± 0.034 99.898± 0.035
MM 99.915± 0.054 99.914± 0.054

BFR (0) 99.941± 0.031 99.939± 0.032
BFR (1) 99.941± 0.031 99.939± 0.032

KDD99

WV 99.839± 0.123 99.838± 0.123

99.582± 0.020 99.579± 0.020 99.640± 0.024 99.639± 0.024
MM 99.845± 0.134 99.843± 0.135

BFR (0) 99.887± 0.150 99.886± 0.150
BFR (1) 99.887± 0.152 99.886± 0.150

SUS

WV 77.728± 0.022 77.716± 0.039

78.247± 0.013 78.220± 0.035 76.245± 0.055 76.232± 0.068
MM 76.670± 0.025 76.664± 0.037

BFR (0) 77.526± 0.038 77.528± 0.076
BFR (1) 78.274± 0.004 78.267± 0.050

82

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

The analysis of Table 3.18 highlights that for the different versions of the KDD datasets
the reasoning method does not influence very much the final results. Indeed, we ver-
ified that for these datasets all rules have a confidence value higher than 99.6%: for
this reason, all the experimented reasoning methods select more or less the same rules
for classifying unlabeled pattern and led to similar classification accuracies. As regards
SUS datasets, we notice that the best accuracy is achieved when the BRF(1) reasoning
method is employed: this is due to the fact that the generated rule bases contain, on av-
erage, 28% and 64.6% of rules with confidence higher than 90% and 80%, respectively.
Finally, as regards COV and HIG datasets, we realize that the best accuracies are ob-
tained when the WV reasoning method is used: indeed, in these cases, the number of
rules with very high confidence is not so high. Hence, most of the rules are not able to
depict a good representation of the training set and a method that takes care of the vote
of all rules is more suitable than an approach which select only one rule for classifying an
unlabeled pattern. On the basis of the aforementioned results, we can advise to use the
BRF reasoning method whenever the final rule base contain a good percentage of rules
characterized by a high confidence. On the other hand, when the amount of confident
rules is reduced, the weighted vote reasoning method can help to improve the number
of patterns correctly classified. Finally, if most of the rules is associated with a very high
confidence, each reasoning method can be used for pattern classification.

As regards the accuracy level achieved by DAC-FPP, Table 3.18 highlights that, on
average, DAC-FFP outperforms MRAC in all datasets, both on training and test sets. On
the other hand, DAC-FFP and MRAC+ achieve similar accuracies on 4 datasets, while
on COV dataset MRAC+ performs better than DAC-FPP and on HIG dataset DAC-FPP
with WV outperforms MRAC+. In general, we can state that the proposed method for
generating fuzzy association rules allow us to achieve similar or better accuracies with
respect to two recent algorithms for generating classifiers for big data.

If we analyze the results shown in Table 3.19, we realize that the complexities, ex-
pressed in terms of average number of rules (#Rules), of the models generated employ-
ing the DAC-FFP are much more lower than the complexities associated to both MRAC+
and MRAC. In particular, we notice that the number of rules of DAC-FFP is almost always
one order of magnitude less than MRAC+ and of the same order of magnitude of MRAC.
In conclusion, the fuzzy associative classifiers generated by the proposed methodology
are characterized by a lower number of parameters, namely the rules, than the ones
generated by two recent algorithms which generate crisp rule-based classifiers. On the
other hand, even though DAC-FFP employs a lower number of rules than both MRAC
and MRAC+, the generated models are not still very interpretable. However, since the
activated rules do not contain, in general, a large number of conditions (at most four or
five on average for all datasets), we can affirm that a reasoning method such as the best
rule that consider just one rule in the inference process, can provide a very interpretable
explanation for each conclusion. Thus, even though the number of rules is still quite large
in the final rule base, we can consider that, for each unlabeled pattern, the classifier can
provide a very intuitive justification of its reasoning.

83

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

Table 3.19: Complexities of DAC-FFP, MRAC+ and MRAC.

Dataset DAC-FFP MRAC+ MRAC
COV 2,646 15,612 6,714
HIG 9,365 29,999 19,468

KDD99_2 890 30,000 1,174
KDD99_5 2,419 49,349 2,878
KDD99 2,347 125,294 2,806

SUS 10,970 30,000 21,963

Table 3.20 summarizes the computation times (in seconds) spent by each algorithm.
All algorithms use the same Hadoop configuration: the number of mappers and reducers
is set equal to the available cores on the cluster. It is worth noting that due to memory
constraint, for DAC-FFP as well as MRAC+ and MRAC, the number of reducers for the
parallel FP-Growth is set equal to 4 and, only for HIG dataset, is set equal to 2. More-
over, we also report the number of HDFS blocks (Z) and instances per block (NBlock). As
shown in Table 3.20, DAC-FFP is slower than the other comparison algorithms. In particu-
lar, DAC-FFP employs an additional pruning step than MRAC based on one MapReduce
job; increasing the execution time of the overall learning process.

Table 3.20: The computation times (in seconds) for the learning process in DAC-FFP,
MRAC+, MRAC.

Dataset Z NBlock DAC-FFP MRAC+ MRAC
COV 1 464,809 1,382 504 1,059
HIG 96 91,667 21,978 6,141 9,881

KDD99_2 6 47,487 9,857 669 704
KDD99_5 6 653,124 23,410 1,439 1,708
KDD99 6 653,124 70,828 1,878 2,280

SUS 29 137,932 10,770 738 3,713

Scalability Analysis

In this section, we investigate the scalability of DAC-FFP, analyzing how the different
phases affect the performance of the algorithm. In particular, we carried out several tests
varying the number of CUs. Similar to MRAC+ in Section 3.2.4, we use the common mea-
sure employed in parallel computing, namely the speedup σ. As stated by the speedup
definition, the efficiency of a program, which employs multiple CUs, can be calculated
comparing the execution time of the parallel implementation against the corresponding
sequential version. Unfortunately, because of the large size of the employed datasets, the
sequential implementation of the algorithm is impracticable and would take an unreason-
able time to be fully executed. To overcome this drawback, we adopt a slightly different
definition, taking as reference a run over Q identical cores, with Q > 1. In particular, we

84

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

redefine the speedup formula on n CUs as σQ∗(n) = Q∗ · τ(Q∗)/τ(n), where τ(n) is the
algorithm runtime using n CUs and Q∗ is the number of CUs used to run the reference
execution. Obviously, Q∗(n) makes sense only for n ≥ Q∗, where the speedup is ex-
pected to be sub-linear due to the overhead from the Hadoop procedures, the contention
of shared resources among cores, and the contention of network bandwidth among ma-
chines. In our experiments, we have set Q∗ = 8 and performed several executions, vary-
ing the number of CUs, with n > 8. To avoid unbalanced loads, we have kept the same
number of running cores per node, adding the number of switched-on slave nodes. Prac-
tically, we have recorded the execution times of each experiment, starting from 1 to 4
slave nodes (from 8 to 32 cores).

Table 3.21 summarizes the results. Figures 3.24a and 3.24b show the execution time
and the runtime, respectively, obtained on the whole Susy dataset. Similar results can
be recorded with the other datasets. We recall that with the default Hadoop settings, the
number Z of mappers is automatically determined by the HDFS block size. Obviously,
only Q mappers can be run simultaneously and the rest (Z −Q) are queued, waiting for
being scheduled and running whenever one of the running mappers completes. Thus,
in the ideal case of the same execution time for all the mappers, the map phase for
each MapReduce stage would require dZQe iterations. In case Z ≤ Q then the global
runtime is practically driven by the longest of the mappers’ runtime. As regards Susy
dataset, Hadoop instantiates 36 mappers; thus the number of iterations corresponds to
5, 3, 2 and 2 iterations on 8, 16, 24 and 32 cores, respectively. Same considerations can
be made for the reduce phase too. In this case, the number R of reducers is defined
by the user and in our experiments, considering the structure of our algorithm we have
set R equal to the number of available cores, with the only exception for the Parallel
Fuzzy FP-Growth phase where, due to memory constraints, we have limited R to 4 per
machine. Each reducer processes sequentially a set of keys generated during the map
phase and each key is assigned to only one reducer according the default partitioning
function hash(key) mod R.

Table 3.21: Speedup of the overall algorithm for the Susy dataset.

Cores Time (s) Speedup σ8(Q)/Q (Utilization)

8 50,740 8 1.000
16 27,251 14.896 0.931
24 19,678 20.628 0.860
32 15,482 26.219 0.819

As shown in Figures 3.24a and 3.24b, the actual speedup σ8 and the utilization index
tend to decrease quite rapidly, due to the increasing overhead of the Hadoop procedures
(adding a new slave node implies adding a new Datanode and Tasktracker as well) and of
the networks communications between master and slaves. However, within the limitations

85

CHAPTER 3. ASSOCIATIVE CLASSIFICATION

0 8 16 24 32 40

20,000

30,000

40,000

50,000

Number of cores (Q)

E
xe

cu
tio

n
tim

e
(s

ec
)

a. Runtime

0 8 16 24 32 40
0

8

16

24

32

40

Number of cores (Q)

S
pe

ed
up

(σ
8
)

b. Speedup

Figure 3.24: Execution time and speedup of DAC-FFP on SUS dataset for increasing
numbers of cores

due to the different experimental settings, this result is in line with [106] and MRAC+ [17],
where the value of the utilization index are 0.768 and 0.80, respectively.

However, a better understanding of the presented overall figures requires a deeper
insight of the contributions from the different MapReduce jobs. To this aim, in Table 3.22
and Figure 3.25 we report the speedup σ8 of the fuzzy partitioning and the four most time
consuming jobs, namely Distributed Fuzzy Partitioning, Parallel Fuzzy FP-Growth, Prun-
ing based on Fuzzy Supp and Conf, and Pruning based on Fuzzy Training Set Coverage.
The contribution of the other two phases, namely Parallel Fuzzy Counting and Parallel
Rules Selection, is negligible.

Table 3.22: Runtime and speedup of each DAC-FFP phase in the Susy dataset.

Distributed
Fuzzy Partitioning

Parallel
Fuzzy FP-Growth

Pruning based on
Fuzzy Supp and Conf

Pruning based on
Fuzzy Training Set Coverage

Cores Time (s) Speedup σ8 σ8(Q)/Q Time (s) Speedup σ8 σ8(Q)/Q Time (s) Speedup σ8 σ8(Q)/Q Time (s) Speedup σ8 σ8(Q)/Q

8 787 8 1 3,161 8 1 40,790 8 1 5,557 8 1
16 625 10.074 0.630 1,688 14.981 0.936 21,612 15.099 0.944 2,929 15.178 0.949
24 504 12.492 0.521 1,249 20.247 0.844 15,556 20.977 0.874 2,104 21.129 0.880
32 484 13.008 0.407 987 25.621 0.801 12,137 26.886 0.840 1,641 27.091 0.847

The four charts in Figure 3.25 clearly show that the phases behave differently with
respect to scalability. As shown in Figure 3.25a, the speedup of Distributed Fuzzy Parti-
tioning rapidly decreases and using 32 cores does not produce a significant advantage;
indeed the execution time from 24 to 32 cores drops down of only few seconds. The
result is mainly affected by the runtime of the last reduce step devoted to the genera-
tion of strong fuzzy partitions. Such step represents the most time consuming part of the
Distributed Fuzzy Partitioning. Since Susy is characterized by 18 continuous attributes,
each reducer processes approximately 3, 2, 1 and 1 attributes in case of 8, 16, 24 and 32
cores, respectively. The result highlights that, as regards the distribution of the computa-
tional flow of the reduce phase, using a number of cores higher than 18 does not produce
a real advantage. On the other hand, the global execution time of the map phases can be
shrunk by reducing the number of iterations, i.e. by exploiting a proper number of cores.

86

3.5. DAC-FFP: A DISTRIBUTED IMPLEMENTATION OF AC-FFP FOR BIG DATA

0 8 16 24 32 40
0

8

16

24

32

40

Number of cores (Q)

S
pe

ed
up

(σ
8
)

a. Distributed Fuzzy Partitioning

0 8 16 24 32 40
0

8

16

24

32

40

Number of cores (Q)

S
pe

ed
up

(σ
8
)

b. Parallel Fuzzy FP-Growth

0 8 16 24 32 40
0

8

16

24

32

40

Number of cores (Q)

S
pe

ed
up

(σ
8
)

c. Pruning based on Fuzzy Supp and Conf

0 8 16 24 32 40
0

8

16

24

32

40

Number of cores (Q)

S
pe

ed
up

(σ
8
)

d. Pruning based on Fuzzy Training Set Coverage

Figure 3.25: Speedup of the different phases of DAC-FFP on SUS dataset for increasing
number of cores

Like the Distributed Fuzzy Partitioning phase, the computational weight of the re-
ducing activity negatively affects the speedup of the Parallel Fuzzy FP-Growth phase
(Figure 3.25b). Indeed, the average runtime of each mapper is quite short (a few sec-
onds), and the global execution time is dominated by the mining of FCARs from each
conditional FP-Tree. With the Hadoop default settings, all the conditional FP-Trees are
evenly distributed among the reducers and adding more cores helps us to improve the
FP-Growth parallelization, decreasing the number of conditional FP-Trees processed by
each reducer. We recall that due to memory constraints, for the Parallel Fuzzy FP-Growth
phase we set the number of reducers to 4 per machine. Hence, since in our tests Susy
has 290 frequent items, each reducer processes more or less 73, 37, 25 and 19 FP-Trees
in case of 4, 8, 12 and 16 reducers, respectively. We highlight that such result shows a
very similar trend to the Parallel FP-Growth phase of both the MRAC+ and MRAC [17].

On the other hand, both Pruning based on Fuzzy Supp and Conf and Pruning based
on Fuzzy Training Set Coverage (Figures 3.25c and 3.25d, respectively) present a similar
behaviour, with satisfactory utilization values. In this case, the overall runtime is mainly
driven by the map phase and the global execution time can be shrunk by reducing the
number of iterations, i.e. by exploiting additional cores, as witnessed by the results in
Table 3.22.

87

88

4

Tree based Classification

Decision trees are very popular classification methods successfully employed in many
application domains. Fuzzy decision trees (FDTs) are an extension of crisp decision
trees to deal with uncertain data. However, FDTs are characterized by higher complexity
than crisp decision trees. First, most of the FDTs require that a fuzzy partition has been
already defined upon each continuous attribute. Second, the splitting method used in
generating child nodes from a parent node generally optimizes purposely-defined index,
exploiting particular fuzzy partitions or quite complex approaches. Third, each node in
fuzzy decision trees represents a fuzzy subset rather than a crisp set as in classical crisp
decision trees. Thus, each instance can activate different branches and reach multiple
leaves, increasing the complexity of the overall learning process. Moreover, FDTs have
been mainly used in the literature for classifying small datasets and they have focused on
increasing classification accuracy, often neglecting time and space requirements.

In this chapter, we propose a distributed fuzzy discretizer and a distributed FDT
(DFDT) learning scheme upon the MapReduce programming model for managing big
data. The discretizer generates a Ruspini fuzzy partition for each continuous attribute
by using a purposely adapted distributed version of the well-known method proposed by
Fayyad and Irani in [61]. The fuzzy partitions computed by the discretizer are used as in-
put to the DFDT learning algorithm. We adopt and compare two different versions of the
learning algorithm based on binary and multi-way splits, respectively. Both the versions
employ the information gain computed in terms of fuzzy entropy for selecting the attribute
to be adopted at each decision node.

We have implemented both the discretizer and the learning scheme on Apache Spark.
We have used eight real-world big datasets characterized by a different number of in-
stances (up to 11 millions) and class labels (from 2 to 23). We have compared the results
obtained by our approach with the ones achieved by a state-of-the-art distributed deci-
sion tree learning algorithm implemented in the MLLib on Spark with respect to accuracy,
complexity and scalability.

The chapter is organized as follows. Section 4.1 describes fuzzy decision trees, dis-
cussing some related works in the framework of distributed discretization algorithms and

89

CHAPTER 4. TREE BASED CLASSIFICATION

distributed decision trees, and introducing the necessary notations used in the rest of
the chapter (Section 4.1.1). Section 4.2 first introduces the fuzzy discretizer and the FDT
learning algorithm and then discusses their distributed implementation, detailing each
single MapReduce job. Section 4.3 presents and discusses the experimental results com-
paring the proposed approach with one state-of-the-art distributed classifier in terms of
accuracy, complexity and computational time.

4.1 Fuzzy Decision Trees

Decision trees are widely used classifiers, successfully employed in many application
domains such as security assessment [50, 193], health system [42, 72, 142] and road
traffic congestion [210]. The popularity of the decision trees is mainly due to the simplicity
of their learning schema, which however allows achieving accuracies comparable to other
well-known classification approaches. Further, decision trees are considered among the
most interpretable classifiers [79, 162, 188, 197], that is, they can explain how an output
is inferred from the inputs. Finally, the tree learning process usually requires only a few
parameters that must be set.

Several algorithms have been proposed in the last decades for generating decision
trees: most of them are extensions or improvements of the well-known ID3 proposed
by Quinlan et al. [154] and CART proposed by Brieman et al. [24]. In a decision tree,
each internal (non-leaf) node denotes a test on an attribute, each branch represents the
outcome of the test, and each leaf (or terminal) node holds a class label.

Several works have exploited the possibility of integrating decision trees with the fuzzy
set theory to deal with uncertainty [33, 93], leading to the so-called fuzzy decision trees
(FDTs). Unlike crisp decision trees, each node in FDTs is characterized by a fuzzy set
rather than a crisp set. Thus, Moreover, Both crisp and fuzzy decision trees are gener-
ated by applying a top-down approach that partitions the training data into homogeneous
subsets, that is, subsets of instances belonging to the same class [155]

Like crisp decision trees, FDTs can be categorized into two main groups, depending
on the splitting method used in generating child nodes from a parent node [116]: binary
(or two-way) split trees and multi-way split trees. Binary split trees are characterized by
recursively partitioning the attribute space into two subspaces so that each parent node is
connected exactly with two child nodes. On the other hand, multi-way split trees partition
the space into a number of subspaces so that each parent node generates in general
more than two child nodes. Since a tree with multi-way splits can be always redrawn as
a binary tree [81], apparently the use of multi-way split seems to offer no advantage. We
have to consider, however, that binary split implies that an attribute can be used several
times in the same path from the root to a leaf. Thus, the binary split tree is characterized
by a higher number of leaves, is deeper, and sometimes harder to interpret for experts
than multi-way splits [18, 99]. Further, in some domain [99], multi-way splits seem to lead
to more accurate trees but, since multi-way splits tend to fragment the training data very
quickly [81], they generally need larger data size in order to work effectively.

90

4.1. FUZZY DECISION TREES

Generally, FDT learning algorithms require that a fuzzy partition has been already de-
fined upon each continuous attribute. For this reason, each continuous attribute is usually
discretized by optimizing purposely-defined indexes [191, 203]. Discretization can drasti-
cally affect the accuracy of classifiers [68, 100, 208] and therefore should be performed
with great care. In [208], authors perform an interesting analysis by investigating how
different discretization approaches influence the accuracy and the complexity (in terms
of number of nodes) of the generated fuzzy trees: they employ several well-known fuzzy
partitioning methods and different approaches for, given a crisp partition generated by
well-known discretization algorithms [68, 100], defining membership functions such as
triangular, trapezoidal and Gaussian. The experimental results on 111 different combina-
tions highlight that seven of them outperform the others both in accuracy and number of
nodes.

FDTs have been mainly used in the literature for classifying small datasets. Thus,
FDT learning approaches have focused on increasing classification accuracy, often ne-
glecting time and space requirements, by adopting several heavy tasks such as pruning
steps, genetic algorithms, and computation of the optimal split among all points at each
node [28, 44, 92, 144]. Thus, these approaches are not generally suitable for dealing
with a huge amount of data. A possible simple solution for applying these approaches
would be to select only a subset of data objects by applying some downsampling tech-
nique. However, these techniques may delete useful knowledge, making FDT learning
approaches purposely designed for managing the overall dataset more desirable and
effective. In our context, this means explicitly addressing Big Data.

In the last years, some decision tree learning algorithms have been proposed for man-
aging big data by adopting the MapReduce paradigm on the top of Apache Hadoop [43,
186, 187]. MapReduce is based on functional programming and divides the compu-
tational flow into two main phases, namely Map and Reduce, which communicate by
〈key, value〉 pairs. The MapReduce implementation of a distributed decision tree pro-
posed in [43] employs, for instance, four map-reduce stages. The first stage scans the
dataset for creating the initial data structures employed in the other three stages. These
stages are executed iteratively for, respectively, (i) selecting the best attribute, (ii) up-
dating the statistics for the new nodes and (iii) growing the tree. The experimental re-
sults discussed in the paper are limited only to the scalability analysis by varying the
number of nodes and the dataset size (up to 3 millions of instances). The effective-
ness of the decision trees for managing big data has been proved in real application
domains such as stock futures prediction [184] and clinical decision support [129]. Other
works [48, 105, 176] exploit decision trees for generating ensemble of classifiers such
as random forest. To deal with big data, the proposed algorithms first build concurrently
multiple trees from different chunks of data and then group all of them for generating
the forest. However, the generation of each tree is not distributed on the cluster but is
performed sequentially on a single chunk of the entire dataset.

However, as introduced in Secition 1, only a few classifiers proposed for managing
big data employ fuzzy sets. In [119], the authors describe Chi-FRBCS-BigData, a fuzzy

91

CHAPTER 4. TREE BASED CLASSIFICATION

rule-based classification system based on the Chi et al.’s approach [36]. This approach
has been modified to deal with big data by employing two map-reduce stages. The first
stage builds the model from chunks of the training set: a group of fuzzy rules is gener-
ated from each chunk. Then, these groups are fused together in the reduce phase. The
second stage estimates the class using the model learned in the first stage. The authors
have investigated different approaches for fusing the fuzzy rules by developing two differ-
ent versions, named Chi-FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave. Moreover,
an improved version, called Chi-FRBCS-BigDataCS, has been proposed in [120] for han-
dling imbalanced big datasets. As regards FDTs, in [58], authors have proposed FDT 2.0,
an improved version of FDT, obtained by integrating the FDT approach into the modern
database technology for improving the scalability of the overall algorithm and handling
large data sets. However, the tests have been carried out on datasets, which involve at
most 400,000 instances, using MySQL as modern database manager. Thus, FDT 2.0
cannot be considered a solution for managing big datasets.

Most of the classical FDT implementations proposed in the literature require that
a fuzzy partition is defined on each continuous attribute before starting the tree learn-
ing: the partition is generally obtained by adopting heuristic approaches, which optimize
purposely-defined indexes [190, 191, 203]. Actually, the discretization process is crucial
to performance of FDTs, especially when a huge amount of data is involved. Recently,
in [157, 158] a distributed implementation1 of the well-known Entropy Minimization Dis-
cretizer [61] has been proposed in order to partition continuous attributes. The algorithm
first distributes the computation of the class frequency for each attribute, then sorts the
values of each attribute in ascending order and selects a set of interval boundaries by
retrieving those values that fall in the class borders. Finally, the generation of cut-points
based on the entropy information is performed. For all attributes characterized by a low
number of boundary values (lower than a fixed threshold), the computation can be pro-
cessed independently in a single step. On the other hand, for attributes characterized by
a high number of boundary values, the selection of the best cut-points has to be carried
out iteratively. The first case is obviously more efficient. The second case, although less
efficient, happens more rarely. The algorithm has been tested by using two datasets (up
to about 65 millions of instances) and the generated cut points have been employed by
the distributed Naive Bayes classifier available on the MLlib Library.

Although in the last decades different methods [36, 134] have been investigated for
generating suitable membership functions (MFs) for each linguistic variable, only a few
works have addressed this task for big data. For instance, in [119] and [120], authors
use the method proposed by Chi et al. [36], that is an extension of the well-known Wang
and Mendel algorithm [185], for tackling classification problems. However, this approach
requires that the fuzzy partitions are already available; otherwise they can be generated
by equally distributing a fixed number of triangular fuzzy sets on the domain of each at-
tribute. A similar approach is performed in [167], where authors introduce a novel model

1 The algorithm has been integrated as a third-party package of MLlib Library and can be down-
loaded from https://github.com/sramirez/spark-MDLP-discretization

92

https://github.com/sramirez/spark-MDLP-discretization

4.1. FUZZY DECISION TREES

for time series forecasting based on the hybridization of fuzzy sets and artificial neural
networks. However, due to involvement of voluminous data, the time series is fuzzified by
adopting a two-step algorithm: first the domain of each attribute is partitioned by using
a fixed number of equal length intervals and then a fuzzy partition is defined on these
intervals by employing triangular fuzzy sets. Even if the complexity of the proposed ap-
proaches is independent of the number of data, the equal-width binning is sensitive to
outliers and many data points could fall into one or a few bins. Thus the generated fuzzy
partitions could be not meaningful for the distribution of data, affecting the performance
of the models [208].

4.1.1 Background

Instance classification consists of assigning a class Cm from a predefined set C =

{C1, . . . , CM} of M classes to an unlabeled instance. Each instance can be described
by both numerical and categorical attributes. Let X = {X1, . . . , XF } be the set of at-
tributes. In case of numerical attributes, Xf is defined on a universe Uf ⊂ <. In case
of categorical attributes, Xf is defined on a set Lf = {Lf,1, . . . , Lf,Tf } of categorical
values.

An FDT is a directed acyclic graph, where each internal (non-leaf) node denotes
a test on an attribute, each branch represents the outcome of the test, and each leaf
(or terminal) node holds one or more class labels. The topmost node is the root node.
In general, each leaf node is labeled with one or more classes Cm with an associated
weight wm: weight wm determines the strength of class Cm in the leaf node.

Let TR = {(x1, y1), (x2, y2), ..., (xN , yN)} be the training set, where, for each in-
stance (xi, yi), with i = 1, ..., N , yi ∈ C and xi,f ∈ Uf in case of continuous attribute
and xi,f ∈ Lf in case of categorical attribute, with f = 1, ..., F . FDTs are generated
in a top-down way by performing recursive partitions of the attribute space. Algorithm 1
shows the scheme of a generic FDT learning process.

The SelectAttribute procedure selects the attribute used in the decision node and
determines the splits generated from the values of this attribute. The selection of the
attribute is performed by using appropriate metrics, which measure the difference be-
tween the levels of homogeneity of the class labels in the parent node and in the child
nodes generated by the splits. The most popular of these metrics are the fuzzy informa-
tion gain [208], fuzzy Gini index [28], minimal ambiguity of a possibility distribution [203],
maximum classification importance of attribute contributing to its consequent [189] and
normalized fuzzy Kolmogorov-Smirnov discrimination quality measure [22]. In this work,
we adopt the fuzzy information gain, which will be defined in Section 4.2.2. The splitting
method adopted in the SelectAttribute procedure determines the attribute to be selected
and also the number of child nodes. In the literature, both multi-way and binary splits are
used. We have implemented both the approaches and evaluated pros and cons of them.

After the tree has been generated, a given unlabeled instance x̂ is assigned to a
class Cm ∈ C by following the activation of nodes from the root to one or more leaves. In
classical crisp decision trees, each node represents a crisp set and each leaf is labeled

93

CHAPTER 4. TREE BASED CLASSIFICATION

Algorithm 1 Pseudo code of a generic FDT learning process.
Require: training set TR, set X of attributes, splitting method SplitMet, stopping

method StopMet
1: procedure FDTLEARNING(in: TR, X, SplitMet, StopMet)
2: root← create a new node
3: tree← TREEGROWING(root, TR, X, SplitMet, StopMet)
4: return tree
5: end procedure
6: procedure TREEGROWING(in: node, S, X, SplitMet, StopMet)
7: if STOPMET(node) then
8: node← mark node as leaf
9: else

10: splits← SELECTATTRIBUTE(X, S, SplitMet)
11: for each splitz in splits do
12: Sz ← get the set of instances from S determined by splitz
13: childz ← create one node by using splitz and Sz
14: node ← connect the node with TREEGROWING(childz, Sz, Xz, SplitMet,

StopMet)
15: end for
16: end if
17: return node
18: end procedure

with a unique class label. It follows that x̂ activates a unique path and is assigned to a
unique class. In FDT, each node represents a fuzzy subset. Thus, x̂ can activate multiple
paths in the tree, reaching more than one leaf with different strengths of activation, named
matching degrees. Given a current node CN , the matching degree mdCN (x̂) of x̂ with
CN is calculated as:

mdCN (x̂) = TN(µCN (x̂f),md
PN (x̂)) (4.1)

where TN is a t-norm, µCN (x̂f) is the membership degree of x̂f to the current node CN
and mdPN (x̂) is the matching degree of x̂f with the parent node PN .

The association degree ADLN
m (x̂) of x̂ with the class Cm at leaf node LN is calcu-

lated as:
ADLN

m (x̂) = mdLN (x̂) · wLNm (4.2)

where mdLN (x̂) is the matching degree of x̂ with LN and wLNm is the class weight asso-
ciated with Cm at leaf node LF . In the literature, different definitions have been proposed
for weight wLNm [89, 91]. Further, it has been proved that the use of class weights can
increase the performance of fuzzy classifiers.

To determine the output class label of the unlabeled instance x̂, two different ap-
proaches are often adopted in the literature:

• maximum matching: the class corresponds to the maximum association degree cal-
culated for the instance;

94

4.2. THE PROPOSED ALGORITHMS

• weighed vote: the class corresponds to the maximum total strength of vote. The total
strength of vote for each class is computed by summing all the activation degrees in
each leaf for the class. If no leaf has been reached, the instance x̂ is classified as
unknown.

In our approaches, we adopt the weighed vote.

4.2 The Proposed Algorithms

In this section, we introduce the DFDT learning algorithm for handling Big Data. We aim
to propose an approach that is easy to implement, is computationally light and guaran-
tees to achieve accuracy values and execution times comparable with other distributed
classifiers. We discuss two distinct versions, which differ from each other on the nature
of the splitting mechanism.

The workflow of the DFDT learning process consists of two main steps:

1. Fuzzy Partitioning: a Ruspini fuzzy partition is determined on each continuous at-
tribute by using a novel discretizer based on fuzzy entropy;

2. FDT Learning: an FDT is induced from data by using either a multi-way or a binary
splitting mechanism based on the concept of fuzzy information gain.

In the following, we first discuss the two steps in detail and then we describe the
adopted distributed implementation for handling Big Data, by specifying how the execu-
tion can be parallelized and distributed among the Computing Units (CUs) available on
the cluster. We highlight that our approach can be easily employed to perform different
tree learning procedures with different membership functions in any cloud-computing en-
vironment.

4.2.1 Fuzzy Partitioning

As discussed in Section 4.1, partitioning of the continuous attributes is a crucial aspect
in the generation of FDTs. Thus, the choice of how partitioning the continuous variables
before executing the decision tree learning algorithm should be performed carefully. An
interesting study proposed in [208] has investigated 111 different approaches for generat-
ing fuzzy partitions and has analysed how these approaches can influence the accuracy
and the complexity (in terms of number of nodes) of the generated FDTs. Among them,
Fuzzy Partitioning based on Fuzzy Entropy (FPFE) has proved to be very effective. In
this section, we propose an FPFE for generating strong triangular fuzzy partitions when
handling big datasets.

The proposed FPFE is an iterative supervised method, which generates candidate
fuzzy partitions and evaluates these partitions employing the fuzzy information gain, com-
puted using the fuzzy entropy. The algorithm selects the candidate fuzzy partition that
maximizes the fuzzy information gain and then splits the continuous attribute domain into
two subsets. Similar to the Entropy Minimization method proposed by Fayyad and Irani

95

CHAPTER 4. TREE BASED CLASSIFICATION

in [61], the process is repeated for each generated subset until the Minimum Description
Length Principle (MDLP) stopping criterion is satisfied. The candidate fuzzy partitions are
generated for each attribute by first sorting all the values of the attribute and determining
equi-frequency bins. Then, the bin-boundaries are used to generate candidate fuzzy par-
tition. Since the sorting process is computationally heavy when dealing with big data, we
will discuss in Section 4.2.3 an approximated version of the fuzzy partitioning approach,
which concurrently performs the sorting operation and the generation of equi-frequency
bins on chunks of the training set and then aggregates the lists of bin boundaries for
determining a unique sorted list used to generate the candidate fuzzy partitions.

Let TR0
f = [x1,f , ..., xN,f]

T be the projection of the training set TR along variable
Xf . First of all, the values xi,f are sorted in increasing order. We denote the set of sorted
values as Sf . Let lf and uf be the lower and upper bounds of Sf . Then, we generate
L equi-frequency bins on Sf . For each bin boundary bf,l between lf and uf (at the
beginning of the partitioning procedure, l = 1, . . . , L − 1), we define a Ruspini fuzzy
partition of the universe [uf , lf] by using three triangular fuzzy sets, namely B0

f,1, B0
f,2

and B0
f,3, as shown in Fig. 4.1. The cores of B0

f,1, B0
f,2 and B0

f,3 coincide with lf , bf,l and
uf , respectively. Let Sf,1, Sf,2 and Sf,3 be the subsets of points in Sf , which correspond
to the supports of B0

f,1, B0
f,2 and B0

f,3, respectively. For each partition induced by bf,l,
we compute the fuzzy information gain FGain(bf,l;Sf) as:

FGain(bf,l;Sf) = FEnt(Sf)−WFEnt(bf,l;Sf) (4.3)

where FEnt(Sf) is the fuzzy entropy of Sf and WFEnt(bf,l;Sf) is the weighted fuzzy
entropy of the partition induced by bf,l. WFEnt(bf,l;Sf) is computed as:

WFEnt(bf,l;Sf) =

3∑
j=1

|Sf,j |
|Sf |

FEnt(Sf,j) (4.4)

where |Sf,j | and |Sf | are the fuzzy cardinalities of subsets Sf,j and Sf , respectively, and
FEnt(Sf,j) is the fuzzy entropy of Sf,j .

We recall that the fuzzy cardinality of a subset Sf,j , with membership function Bf,j
defined on it, is computed as

|Sf,j | =
Nf,j∑
i=1

µSf,j (xi) =
Nf,j∑
i=1

µBf,j (xf,i) (4.5)

where Nf,j is the number of points (crisp cardinality) in Sf,j , µSf,j (xi) = µBf,j (xf,i) is
the membership degree of xi to subset Sf,j and µBf,j (xf,i) is the membership degree of
xi to fuzzy set Bf,j . The fuzzy entropy of Sf,j is defined as

FEnt(Sf,j) =

M∑
m=1

−|Sf,j,Cm ||Sf,j |
log2(

|Sf,j,Cm |
|Sf,j |

) (4.6)

where Sf,j,Cm is the set of examples in Sf,j with class label equal to Cm.

96

4.2. THE PROPOSED ALGORITHMS
1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

Figure 4.1: An example of fuzzy partition defined on the third bin boundary bf,3. We sup-
pose that the domain [lf , uf] of Sf has been split into eight equi-freqnecy bins identified
by seven bin boundaries {bf,1, ..., bf,7}

The optimal bin boundary b0f,lmax , which maximizes FGain(bf,l;Sf) over all possible
candidate fuzzy partitions is selected. The partition is applied if and only if the following
condition based on the Minimal Description Length Principle is satisfied:

FGain(b0f,lmax ;Sf) >
log2(|Sf |−1)
|Sf | +

∆(b0f,lmax ;Sf)

|Sf | (4.7)

where
∆(b0f,lmax ;Sf) = log2(3

kf − 2)−
[
kf · FEnt(Sf)−

∑3
j=1 kf,j · FEnt(Sf,j)

]
(4.8)

and kf and kf,j are the numbers of class labels represented in the sets Sf and Sf,j ,
respectively.

Let TR1
f and TR2

f be the subsets of points of the set TR0
f , which lie, respectively,

in the two intervals [lf , b
0
f,lmax

] and (b0f,lmax , uf] identified by b0f,lmax . Then, we apply
recursively the procedure described above for TR1

f and TR2
f by considering Sf = TR1

f

and Sf = TR2
f . The procedure stops when the stopping criterion is met.

Fig. 4.2 shows an example of application of the recursive procedure to the fuzzy
partition shown in Fig. 4.1. We can observe that both the partitioning of TR1

f and TR2
f

are performed, thus generating three fuzzy sets in both [lf , b
0
f,lmax

] and in (b0f,lmax , uf].
Actually, the two fuzzy sets, which have the core in b0f,lmax , are fused for generating a
unique fuzzy set. Thus, the resulting partition is a Ruspini partition with five fuzzy sets.
This fusion can be applied at each level of the recursion. The final result is a Ruspini fuzzy
partition Pf =

[
Af,1, ..., Af,Tf

]
on Uf , where Af,j with j = 1, ..., Tf is the jth triangular

fuzzy set.
If no partition is possible for attribute Xf , that is, the condition in (4.7) is not satisfied

already for TR0
f , then Xf is discarded and not employed in the FDT learning.

Since triangular MFs are defined by three parameters (a, b, c), where b represents the
core and a and c correspond to the lower and upper bounds of the support, respectively,
Af,j and Af,j+1 are defined as (af,j , bf,j , cf,j) and (af,j+1 = bf,j , bf,j+1 = cf,j , cf,j+1),

97

CHAPTER 4. TREE BASED CLASSIFICATION

respectively. The fuzzy sets Af,1 and Af,Tf defined on Pf are identified by the parame-
ters (−∞, lf , cf,1) and (af,Tf , uf ,+∞), respectively.

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

1

B0
f,1

B0
f,2

B0
f,3

Af,1 = B1
f,1

Af,2 = B1
f,2

Af,3 = B1
f,3 [B2

f,1

Af,4 = B2
f,2

Af,5 = B2
f,3

TR1
f

TR2
f

TR0
f

lf

bf,1

bf,2

bf,3

bf,4

bf,5

bf,6

bf,7

bf,3 = bf,l

uf = bf,3 = lf

Figure 4.2: An example of application of the recursive procedure to the fuzzy partition
shown in Fig. 4.1 (b0f,lmax = b3).

The procedure adopted for the fuzzy partition generation is simple and computation-
ally light. Further, it generates Ruspini fuzzy partitions that are widely assumed to have
a high semantic interpretability [67]. Finally, it allows performing an attribute selection
because it may lead to the elimination of attributes, speeding up the FDT learning.

4.2.2 Fuzzy Decision Tree Learning

In this section, we introduce the FDT learning algorithm proposed in this paper. We de-
scribe two distinct approaches, which differ from each other for the splitting mechanism
(binary or multi-way) used in the decision nodes.

Let Pf = {Af,1, . . . , Af,Tf } be a fuzzy partition of Tf fuzzy sets defined on each
continuous attribute Xf .

We adopt the FDT learning scheme described in Alg. 1. The SelectAttribute pro-
cedure selects the attribute, which maximizes the fuzzy information gain. Then Z child
nodes are created. The number of child nodes as well as the computation of the fuzzy
information gain depend on the employed splitting method. We have experimented two
different methods: binary and multi-way split. The two methods generate Fuzzy Binary
Decision Trees (FBDTs) and Fuzzy Multi-way Decision Trees (FMDTs), respectively. Both
the trees use fuzzy linguistic terms to specify recursively branching condition of nodes
until one of the following termination conditions (StopMethod in Fig. 1) is met:

1. the node contains only instances which belong to the same class;
2. the node contains a number of instances lower than a fixed threshold λ;
3. the tree has reached a maximum fixed depth β;

98

4.2. THE PROPOSED ALGORITHMS

4. the value of the fuzzy information gain is lower than a fixed threshold ε. In our exper-
iments, we set ε = 10−6;

In case of multi-way splitting, for each parent node, FMDT generates as many child
nodes as the number Tf of linguistic values defined on the splitting attribute Xf : each
child node contains only the instances that belong to the support of the fuzzy set corre-
sponding to the linguistic value. Let G be the set of instances in the parent node and Gj
be the set of instances in the jth child node. Set Gj contains the instances that belong
to the support of Af,j . As defined in Eq. 4.5, the cardinality of Gj is defined as:

|Gj | =
Nj∑
i=1

µGj (xi) =
Nj∑
i=1

TN(µAf,j (xf,i), µG(xi)) (4.9)

where Nj is the number of instances (crisp cardinality) in the set Gj , µGj (xi) is the
membership degree of instance xi to set Gj , µAf,j (xf,i) is the membership degree of
instance xi to fuzzy set Af,j , µG(xi) is the membership degree of example xi to set G
(for the root of the decision tree, µG(xi) = 1) and the operator TN is a T-norm.

Figure 4.3 illustrates an example of how multi-way splitting is performed. Let us sup-
pose that a fuzzy partition Pf with five triangular fuzzy sets has been defined on a continu-
ous attribute Xf . For a given parent node, the method generates exactly five child nodes,
one for each fuzzy set. Let us suppose that, a given instance, represented as a blue circle
in Figure 4.3, belongs to Af,1 and Af,2 with membership degree equal to 0.3 and 0.7,
respectively. Thus, the instance belongs to only the child nodes corresponding to Af,1
and Af,2 and contributes to |G1| and |G2| with TN(0.3, µG(xi)) and TN(0.7, µG(xi)),
respectively.

to leaves to leaves to leaves to leaves to leaves

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

0.3

0.7

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

1

µG1
(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

G

G1

G2

G3

G4

G5

Pf

Xf

Uf

Af,1

Af,2

Af,3

Af,4

Af,5

TR1
f

TR2
f

TR0
f

...

Figure 4.3: An example of multiple splitting on a continuous attribute with five triangular
fuzzy sets. The blue circle shows an example of how a given example contributes to the
cardinality computation.

The fuzzy information gain FGain for a generic attribute Xf is computed as:

FGain(Xf ;Gj) = FEnt(Gj)−WFEnt(Xf ;Gj) (4.10)

. The fuzzy entropy FEnt(Gj) and the weighted fuzzy entropy WFEnt(Xf ;Gj) are
determined as:

FEnt(Gj) =

M∑
m=1

−|Gj,Cm ||Gj |
log2(

|Gj,Cm |
|Gj |

) (4.11)

99

CHAPTER 4. TREE BASED CLASSIFICATION

WFEnt(Gj) =

M∑
m=1

|Gj |
|G| FEnt(Gj) (4.12)

respectively, where Gj,Cm is the set of examples in Gj with class label equal to Cm.
In case of categorical variables, we split the parent node into a number of child nodes

equal to the number of possible values for the variable. Cardinality is computed as follows:

|Gj | =
Nl∑
i=1

TN(1, µG(xi)) (4.13)

where Gj corresponds to the subset of the jth categorical value. Note that a variable can
be considered only once in the same path from the root to the leaf.

Algorithm 2 details the pseudo code of the multi-way splitting to generate child nodes
for a given parent node PN .

Algorithm 2 Pseudo code of multi-way splitting applied to a given parent node.
Require: Let PN be the parent node on which performing the multi-way splitting, and G

be the subset of examples which belong to PN
1: procedure MULTISPLITTINGNODE(in: PN , G)
2: for each attribute Xf in X do
3: if Xf is continuous then
4: compute FGain by using Eq. 4.10 for cardinality
5: else
6: compute FGain by using Eq. 4.13 for cardinality
7: end if
8: end for
9: f̂ ← get attribute with the highest value of FGain

10: children← create an empty list
11: for each Af̂ ,j defined in f̂ do
12: Gj ← get points from G belonging only to Af̂ ,j
13: child← create node by using Af̂ ,j and Gj
14: children← insert child
15: end for
16: return children
17: end procedure

Unlike FMDT, FBDT performs binary splitting at each node. As shown in Figure 4.4,
the algorithm generates exactly 2 child nodes. To calculate the split with the maximum
FGain, we exploit all possible candidates, by grouping together adjacent fuzzy sets into
two disjoint groups Z1 and Z2. The two subsets of examples, G1 and G2, contain the
points which belong to the support of the fuzzy sets contained in Z1 and Z2, respectively.
A fuzzy partition with Tf fuzzy sets generates Tf − 1 candidates. Starting with Z1 =

{Af,1} and Z2 = {Af,2, ..., Af,Tf }, we compute the fuzzy information gain by applying
Eq. 4.11 and Eq. 4.12, where j = {1, 2}, andG1 andG2 contain only the examples which

100

4.2. THE PROPOSED ALGORITHMS

belong to the support of fuzzy sets in Z1 and Z2, respectively. Iteratively, the algorithm
investigates all candidates by moving the first fuzzy set in Z2 to Z1 and computing the
corresponding FGain, until Z2 = {Af,Tf }. The pair (Z1,Z2), which obtains the highest
FGain, is used for creating the two child nodes. The two nodes contain, respectively, the
examples that belong to the support of the fuzzy sets in Z1 and Z2.

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

to leaves

to leaves

to leaves to leaves

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = Af,1, Af,2, Af,3

Z1
2 = Af,4, Af,5

Z2
1 = Af,1

Z2
2 = Af,2, Af,3

Z3
1 = Af,2

Z3
2 = Af,3

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 20, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT

1

Xf

Uf

Pf

Af,1

Af,2

Af,3

Af,4

Af,5

G

G1

G2

G3

G4

G5

µG1(xi) = TN(0.3, µG(xi))

µG2(xi) = TN(0.7, µG(xi))

µG1(xi) = TN(µAf,1
(xf,i), µG(xi))

µG2(xi) = TN(µAf,2
(xf,i), µG(xi))

G1
1

G1
2

G2
1

G2
2

G3
1

G3
2

Z1
1 = {Af,1, Af,2, Af,3}

Z1
2 = {Af,4, Af,5}

Z2
1 = {Af,1}

Z2
2 = {Af,2, Af,3}

Z3
1 = {Af,2}

Z3
2 = {Af,3}

µG1
1
(xi) = TN(µAf,1

(xf,i) + µAf,2
(xf,i)

+µAf,3
(xf,i), µG1(xi))

March 21, 2016 DRAFT
2

µG1
1
(xi) = TN(1, µG1(xi))

µG2
1
(xi) = TN(µAf,1

(xf,i), µG2(xi))

µG2
1
(xi) = TN(0.3, µG2(xi))

µG2
2
(xi) = TN(µAf,2

(xf,i) + µAf,3
(xf,i), µG2(xi))

µG2
2
(xi) = TN(0.7, µG2(xi))

µG3
1
(xi) = TN(1, µG3(xi))

March 21, 2016 DRAFT

2

µG1
1
(xi) = TN(1, µG1(xi))

µG2
1
(xi) = TN(µAf,1

(xf,i), µG2(xi))

µG2
1
(xi) = TN(0.3, µG2(xi))

µG2
2
(xi) = TN(µAf,2

(xf,i) + µAf,3
(xf,i), µG2(xi))

µG2
2
(xi) = TN(0.7, µG2(xi))

µG3
1
(xi) = TN(1, µG3(xi))

March 21, 2016 DRAFT

2

µG1
1
(xi) = TN(1, µG1(xi))

µG2
1
(xi) = TN(µAf,1

(xf,i), µG2(xi))

µG2
1
(xi) = TN(0.3, µG2(xi))

µG2
2
(xi) = TN(µAf,2

(xf,i) + µAf,3
(xf,i), µG2(xi))

µG2
2
(xi) = TN(0.7, µG2(xi))

µG3
1
(xi) = TN(1, µG3(xi))

March 21, 2016 DRAFT

Figure 4.4: An example of binary split performed by FBDT on a continuous attribute par-
titioned by five triangular fuzzy sets.

In case of categorical variables, FBDT still performs binary splits. However, since a
categorical attribute with L values generates 2L−1−1 candidates, the computational cost
can become very prohibitive for a large number of values. In case of binary classification,
we can reduce the number of candidates to L − 1 by sorting the categorical values ac-
cording to the probability of membership to the positive class. As proved in [24] and [159],
this approach gives the optimal split in terms of entropy. In case of multiclass classifica-
tion, we adopt the heuristic method proposed in [118] to approximate the best split: the
number of candidates is reduced to L− 1 by sorting the categorical values according to
their impurity.

In FBDT, both categorical and continuous attributes can be considered in several
fuzzy decision nodes in the same path from the root to a leaf. In each node, we ap-
ply the same binary splitting approach described above but restricted only to the cate-
gorical values or fuzzy sets considered in the node. Figure 4.4 shows the splitting ap-
proach performed by FBDT, considering the same fuzzy partition used for FMDT. Let
us suppose that, at the root, the attribute Xf is selected. Further, let us assume that
the two child nodes of the root node contain instances belonging to the supports of
Z1
1 = {Af,1, Af,2, Af,3} and Z1

2 = {Af,4, Af,5}, respectively. If Xf is selected again
in the path starting from Z1 , then the two child nodes are created by considering only
the three fuzzy sets in Z1

1 and the instances contained in [af,1, cf,3], where af,1 and cf,3
are the lower and upper bounds of the supports of Af,1 and Af,3, respectively. If the

101

CHAPTER 4. TREE BASED CLASSIFICATION

highest fuzzy information gain is obtained by splitting the three fuzzy sets into {Af,1} and
{Af,2, Af,3}, then the two child nodes contain the instances belonging to the intervals
[af,1, cf,1] and [af,2, cf,3], respectively.

Due to the use of the T-norm, and in particular of the product employed in our ex-
periments, the binary splitting approach tends to penalize the cardinality of continuous
attributes that are repeatedly selected along a same path. To limit this effect, we use a
strategy that keeps track of the fuzzy sets, which have been activated by an instance in
the path from the root to the leaves: we consider the membership value to a fuzzy set
only the first time the fuzzy set is met. The subsequent times the membership value is
set to 1 in the computation of the T-norm. For example, let us suppose that an instance
xi belongs to fuzzy sets Af,1 and Af,2 with membership values 0.3 and 0.7, respectively,
as shown in Figure 4.4 (see blue circle). When splitting G2, the instance contributes to
the cardinality computation of G2

1 and G2
2 with µG2

1
(xi) = TN(µAf,1(xi), µG2(xi)) and

µG2
2
(xi) = TN((µAf,2(xi)), µG2(xi)), respectively. When splitting G3, the membership

degree µAf,2(xi) of the instance xi to Af,2 is considered equal to 1 and the instance con-
tributes to the cardinality computation of the subset G3

1 with µG3
1
(xi) = TN(1, µG3(xi)).

On the other hand, the actual fuzzy membership value µAf,2(xi) of instance xi to Af,2
has been already considered in the computation of µG3(xi). In general, cardinality of Gz
with z = 1, 2 is computed as:

|Gz| =
Nz∑
i=1

µGz (xi) (4.14)

where Nz is the number of instances in Gz and µGz (xi) is the membership degree of xi
to set Gz calculated as described above. For categorical attributes, the cardinality can
still be computed with Eq. 4.14, where ∀xi ∈ TR, µGz (xi) = TN(1, µG(xi)).

Algorithm 3 details the pseudo code of the binary splitting approach for generating
two child nodes from a given parent node PN .

Unlike crisp decision trees, for both FMDT and FBDT, we label each leaf node LN
with all the classes that have at least one example in the leaf node. Each class Cm has
an associated weight wLNm proportional to the fuzzy cardinality of training instances of
that mth class in the node. More formally, wLNm is computed as:

wLNm =
|GCm |
|G| (4.15)

where GCm is the set of instances in G with class label equal to Gm.
Both FMDT and FBDT adopt the weighed vote for deciding the class to be output for

the unlabeled instance. For each class, the vote is computed as sum of the activation de-
grees determined by any leaf node of the tree for that class, where the activation degree
is calculated by Eq. 4.2 . In case of FBDT, the fuzzy cardinality used in the computation
of the matching degree is determined by considering the membership value to a specific
fuzzy set only one time, also if the fuzzy set is met more times in the path from the root to
the leaf, as explained above. Each activated leaf produces a list of class association de-

102

4.2. THE PROPOSED ALGORITHMS

Algorithm 3 Pseudo code of binary-splitting approach given a parent node.
Require: Let PN be a parent node on which performing the binary splitting, and let G

be the subset of instances which belong to PN
1: procedure BINARYSPLITTINGNODE(in: PN , S)
2: for each attribute Xf in X do
3: for each candidate binary split in Xf do
4: compute FGain by using the cardinality expressed by Eq. 4.14
5: end for
6: end for
7: (Z1, Z2)← get the split with the highest value of FGain
8: children← create empty list
9:

10: /*** Create left child node ***/
11: G1 ← get points from G belonging to Z1

12: child1 ← create node by using Z1 and G1

13: /*** Create right child node ***/
14: G2 ← get points from G belonging to Z2

15: child2 ← create node by using Z2 and G2

16:
17: children← insert child1 and child2
18: return children
19: end procedure

grees, which are summed up to compute the strength of vote for that class, as described
in Eq. 4.2. The unlabeled pattern x̂ is associated with the class with the highest strength
of vote.

4.2.3 The Distributed Approach

In Section 4.1 we have pointed out that the current implementations of FDTs are not
suitable for managing big data. In this section we describe our distributed approach by
describing in detail the distributed implementation of the two main steps of the overall
algorithm, namely Fuzzy Partitioning and FDT Learning. We highlight that our approach
is based on the Map-Reduce paradigm and can be easily deployed on several cloud-
computing environments such as Hadoop, Flink and Spark.

Let V be the number of chunks used for splitting the training set and Q the number
of CUs available in the cluster. Each chunk fed only one Map task, while one CU can
process several tasks, both Map and Reduce. Obviously, only Q tasks can be executed
in parallel.

The distributed implementation of the fuzzy partitioning approach described in Sec-
tion 4.2.1 is similar to the one we have proposed in Section 3.5.1. In particular, the ap-
proach described in Section 4.2.1 is not suitable for dealing with a huge amount of data
because both the sorting of the values and the computation of fuzzy information gain for
each possible candidate fuzzy partition are computationally expensive in case of datasets

103

CHAPTER 4. TREE BASED CLASSIFICATION

with millions or even billion of instances. To overcome this drawback, we adopt an approx-
imation of FPFE by limiting the number of possible candidate partitions to be analyzed.
In particular, for each single chunk of the training set, independently of the others, we
apply the sorting of the values and split the domain of the continuous attributes into a
fixed number of equi-frequency bins. Then, we aggregate the lists of the bin boundaries
generated for each chunk and, for each pair of consecutive bin boundaries, we generate
a new bin and compute the distribution of the classes among the instances belonging to
the bin. Finally, we generate candidate fuzzy partitions for each bin boundary and exploit
the class distribution in each bin for computing the fuzzy information gain at each iteration
of the algorithm. Obviously, the lower the number of bins used for splitting the domain of
the attribute is, the coarser the approximation in determining the fuzzy partition is.

Figure 4.5 shows the overall Fuzzy Partitioning process. In the first Map-Reduce step,
the algorithm determines the bin boundaries. In the map phase, each CU loads a chunk
of the training set and, for each attribute, sort the values and computes the bin bound-
aries by splitting the data according to a fixed number of equi-frequency bins. Then, in
the reduce phase, for each attribute, all the bin boundaries are grouped together and
sorted. Thus, the output of the first Map-Reduce step is a sorted list of bin boundaries for
each attribute. The second Map-Reduce step defines a Ruspini fuzzy partition for each
attribute. In the map phase, each Map task computes, for each bin determined by con-
secutive bin boundaries, the percentage of instances belonging to the different classes.
In the reduce phase, each reduce task generates a fuzzy partition for a specific attribute,
as described in Section 4.2.1, using the bin boundaries for defining candidate fuzzy par-
titions and the distribution of the classes in the bin for computing the fuzzy information
gain. The proposed distributed approach can manage a large number of instances: the
bin boundaries allow reducing the number of candidate fuzzy partitions to be explored.
Obviously, the number of equi-frequency bins is a parameter of the approach, which af-
fects both the fuzzy partitioning of the continuous attributes and the results of the FDT.
However, this parameter is not particularly critical. Indeed, we have to consider that we
are managing millions of data. Thus, a difference of a few instances in determining the
best fuzzy partition is generally negligible in terms of the accuracy achieved by the FDTs.

The first Map-Reduce phase scans the training set to compute at most Ω = V ·Γ bin
boundaries, where Γ = 100/γ+1 is the number of bin boundaries per chunk. This value
depends on the percentage γ of the vth chunk size. In our experiments, we set γ = 0.1%.
Algorithm 4 details the pseudo code of the first Map-Reduce phase.

Each Map-Task, first, loads the vth chunk of the training set, and then for each
continuous attribute Xf , computes and outputs the bin boundaries of equi-frequency
bins, where each bin contains a number of instances equal to the percentage γ of
the data chunk. Let BBv,f = {b(1)v,f , ..., b

(Γ)
v,f } be the sorted list of bin boundaries for

the f th attribute extracted from the vth chunk. The Map-Task outputs a key-value pair
〈key = f, value = BBv,f 〉, where f is the index of the f th attribute. Each Reduce-Task
is fed by V lists List(BBv,f) and, for the f th attribute, outputs 〈key = f, value = BBf 〉,
where BBf = {b(1)f , ..., b

(Ω)
f } with, ∀w ∈ [1, ..., Ω − 1], b(w)

f < b
(w+1)
f is the sorted list of

104

4.2. THE PROPOSED ALGORITHMS

Bin Boundaries Lists

x
CU CU CU Map

Reduce

CU

CU CU CU

CUs

CUs

x
CU CU CU Map

Reduce

CU

CU CU CU

CUs

CUs

D
istributed

B
in G

eneration
D
istributed

Fuzzy Sets G
eneration

D
istributed Fuzzy Partitioning

chunk1 chunkv chunkV-1 chunkV

Training Set

chunk1 chunkV-1chunkv chunkV

Training Set

INPUT DATA

Fuzzy Partitions

to distributed FDT Learning step...

chunk2

chunk2

Figure 4.5: The overall distributed Fuzzy Partitioning of the FDT.

Algorithm 4 Pseudo code of the first Map-Reduce phase of distributed Fuzzy Partition-
ing.
Require: TR split into V chunks. In the following, each chunk is denoted as chunkv.
1: procedure MAP-TASK(in: chunkv, γ)
2: for each continuous attribute Xf in X do
3: sort values of Xf

4: BBv,f ← compute boundaries of equi-frequency bins according to γ
5: output 〈key = f, value = BBv,f 〉
6: end for
7: end procedure
8: procedure REDUCE-TASK(in: f , List(BBv,f))
9: BBf ← group and sort elements of List(BBv,f)

10: output 〈key = f, value = BBf 〉
11: end procedure

105

CHAPTER 4. TREE BASED CLASSIFICATION

the bin boundaries for attribute Xf . Space and time complexities, for the Map phase, are
O(dVQe·N/V) and O(dVQe·(F ·N ·(log(N/V))/V)), respectively. For the Reduce phase,
space and time complexities are O(F ·Ω/Q) and O(F · (Ω · log(Ω))/Q), respectively.

The second Map-Reduce step scans the training set again: in the map phase, for each
chunk of the training set, it computes the percentage of instances belonging to each class
for each bin, and in the reduce phase it generates the fuzzy partition. Algorithm 5 details
the pseudo code of the second Map-Reduce phase.

Algorithm 5 Pseudo code of the second Map-Reduce step of the distributed Fuzzy Par-
titioning.
Require: TR split into V chunks (in the following, each chunk is denoted as chunkv).

Matrix BB that contains for each row a list of sorted bin boundaries BBf .
1: procedure MAP-TASK(in: chunkv, BB, M)
2: Wv,f ← create F vectors according to each BBf and M
3: for each instance xn in chunkv do
4: for each continuous attribute Xf in X do
5: Wv,f ← update number of instances belonging to each class
6: end for
7: end for
8: for each continuous attribute Xf in X do
9: output 〈key = f, value =Wv,f 〉

10: end for
11: end procedure
12: procedure REDUCE-TASK(in: f , List(Wv,f), BBf)
13: Wf ← element-wise addition of List(Wv,f)
14: Pf ← compute Fuzzy Partitioning with Wf and Bf
15: output 〈key = f, value = Pf 〉
16: end procedure

Each Map-Task, first, loads the vth chunk of the training set and, for each attribute
Xf , initializes a vector Wv,f of Ω − 1 elements. Each element W (r)

v,f corresponds to the

bin (brf , b
(r+1)
f] and contains a vector of M elements, which stores, for each of the M

classes, the number of instances of the class belonging to the rth bin in the vth chunk.
Then, for each instance of the chunk, the Map-Task updates Wv,f and finally outputs a
key-value pair 〈key = f, value = Wv,f 〉. Each Reduce-Task is fed by a list List(Wv,f)

of V vectors. For each attribute Xf , it first creates a vector Wf of Ω − 1 elements by
performing an element-wise addition of all V vectors Wv,f . Thus, Wf stores the number
of instances for each class in each bin along the overall training set. Then, the Reduce-
Task applies the Fuzzy Partitioning as described in Section 4.2.1, where candidate fuzzy
partitions are defined upon bin boundaries and the fuzzy mutual information is computed
according to Wf . Finally, it outputs the key-pair 〈key = f, value = Pf 〉, where Pf is the
Ruspini fuzzy partition defined on the f th attribute. Space and time complexities of the
Map phase areO(dVQe·N/V) andO(dVQe·(N · log(Ω)/V)), respectively. For the Reduce

106

4.2. THE PROPOSED ALGORITHMS

phase, space and time complexities are O(F · (Ω−1)/Q) and O(F · (max(|TRf |) · (Ω−
1)2)/Q), respectively, where |TRf | is the number of intervals generated recursively by
the Fuzzy Partitioning for retrieving the best core of triangular fuzzy sets in each interval
TRf,p for the f th attribute. Since for each attribute, fuzzy partitioning generates a different
number of intervals (in case no fuzzy set is defined on attribute Xf , |TRf | = 1), the time
complexity is upper bounded by the maximum value max(|TRf |).

As regards the DFDT learning, in order to manage a large amount of data, we dis-
tribute the computation of the best split for each node across the CUs. Figure 4.6 il-
lustrates the overall DFDT learning algorithm. The algorithm executes iteratively a Map-
Reduce step which operates on the list of nodes to be split. At each iteration, a group of
nodes is retrieved from the list and is processed as follows: first, in the map phase, a scan
over the training set is performed for collecting the necessary statistics for each node of
the set; then, in the reduce phase, the statistics of each node are aggregated together
and the best split for a given node is computed by each CU; finally the FDT and the list
of nodes are updated for the next iteration. Note that, at each iteration, the considered
nodes are the deepest ones in the branches of the tree.

The proposed distributed approach allows managing a large amount of data: per-
forming the splitting on a group of nodes significantly reduces the number of scans over
the training set, but also requires a larger quantity of memory and a longer computation
time for each iteration (the computational cost is limited by collecting and aggregating the
necessary statistics). Thus, the maximum number of nodes, which can be processed in
parallel at each iteration, depends on the memory availability on the cluster. Obviously,
the higher the number of categorical values and fuzzy sets defined by the fuzzy parti-
tioning, the higher the memory used for collecting the statistics for each attribute and the
lower the number of nodes that can be processed in parallel at each iteration.

Algorithm 6 details the pseudo code of the DFDT learning.
More formally, let H be the number of iterations performed by the algorithm and h

be the index of the hth iteration. The proposed approach first initializes a list of nodes
R with only one element consisting of the root of the tree and then iteratively retrieves a
group Rh of Y nodes from R, where Y = min(size(R),maxY) is computed according
to the number of nodes in R and a fixed threshold maxY , which defines the number
of nodes processed at most at each iteration. Finally, it performs a Map-Reduce step
for distributing the growing process of the tree. The vth Map-Task, first, loads the vth

chunk of the training set and then, for each node NTy in Rh, initializes a vector Dv,y of
|D| =∑∀f∈F Tf instances. We recall that if Xf is continuous, then Tf is the number of
fuzzy sets defined by the Fuzzy Partitioning process; otherwise, if Xf is categorical, then
Tf is number of categorical values. For each attribute of each instance of the chunk, the
Map-Task updates all Dv,y vectors by exploiting Eq. 4.9 or Eq. 4.13 in case the attribute
is continuous or categorical, respectively, and then, for each node, outputs the key-value
pair 〈key = y, value = Dv,y〉, where y is the index of the yth node in Rh. At the end
of the map phase, each element of Dv,y stores the cardinality of each attribute value
from the root to NTy only for the instances in the vth chunk. Each Reduce-Task is fed by

107

CHAPTER 4. TREE BASED CLASSIFICATION

x
CU CU CU Map

Reduce

CU

CU CU CU

CUs

CUs

D
istributed

N
ode Splitting

D
istributed Fuzzy D

ecision T
ree L

earning

chunk1 chunkV-1chunkv chunkV

Training Set

children

chunk2

CU

Nodes to be split in the h­th iteration (Rh)

Nodes to be split (R)
(Initialized with only root node)

CU

R is
empty?

yes

no

Fuzzy Decision Tree

up
da
te

Figure 4.6: The overall DFDT Learning approach.

a list, say List(Dv,y), of vectors Dv,y and first it creates a vector Dy by performing an
element-wise addition of all V vectors in List(Dv,y). Thus, Dy stores the cardinality of
each attribute value from the root toNTy along the overall training set. Then, the Reduce-
Task generates and outputs the child nodes by employing Algorithm 2 or Algorithm 3 in
case of multi-way or binary splitting methods, respectively. The children generated from
each NTy are finally used to update the tree and R: if a child node is not labeled as
leaf, then it is inserted into the list and employed at the next iterations. The algorithm
repeats all the steps until R is empty. Space and time complexities of the Map phase are
O(dVQe ·N/V) and O(dVQe · (N · Y · log(|D|)/V)), respectively. For the Reduce phase,
space and time complexities are O(Y/Q) and O(Y · |allSplits|/Q), respectively, where
|allSplits| is the number of splits that have to be investigated for computing the best split

108

4.2. THE PROPOSED ALGORITHMS

Algorithm 6 Pseudo code of the DFDT Learning.
Require: TR split into V chunks, splitting method splitMet, stopping method stopMet.

In the following, each chunk is denoted as chunkv.
1: procedure FDTLEARNING(in: TR, splitMet, stopMet, maxY)
2: tree← create root
3: R← create list and insert root
4: repeat
5: Rh ← get min(size(R),maxY) nodes from R
6: children← call Map-Reduce Tasks
7: for each child in children do
8: tree← update model with child
9: if ISNOTLEAF(child, stopMet) then

10: R← insert child
11: end if
12: end for
13: until R is not empty
14: return tree
15: end procedure
16: procedure MAP-TASK(in: chunkv, Rh)
17: for each node NTy in Rh do
18: Dv,y ← create a vector of |D| elements
19: for each instance xn in chunkv do
20: Dv,y ← update statistics with xf,n according to Eq. 4.9 or Eq. 4.13
21: end for
22: output 〈key = y, value = Dv,y〉
23: end for
24: end procedure
25: procedure REDUCE-TASK(in: y, List(Dv,y))
26: Dy ← element-wise addition of List(Dv,y)
27: if splitMet is multiple splitting then
28: children← MULTISPITTINGNODE(NTy, Dy) (See Algorithm 2)
29: else
30: children← BINARYSPITTINGNODE(NTy, Dy) (See Algorithm 3)
31: end if
32: output 〈key = y, value = children〉
33: end procedure

among all attribute for the node. Note that |allSplits| = F and |allSplits| = |D| for multi-
way and binary splitting approaches, respectively. Since time complexity of Map phase
represents the heaviest part of computational cost, the time complexity of Algorithm 6 is
O(H · (dVQe · (N · log(|D|)/V))).

109

CHAPTER 4. TREE BASED CLASSIFICATION

4.3 Experimental Study

We performed several experiments for investigating the behavior of the proposed ap-
proach, focusing on the performance in terms of classification accuracy, model complexity
and execution time.

As shown in Table 4.1, we employed 8 well-known big datasets freely available from
UCI2 and LIBSVM3 repositories. The datasets are characterized by different numbers of
input/output instances (from 1 million to 11 millions), classes (from 2 to 23), and attributes
(from 10 to 41). For each dataset, we also report the number of numeric (num) and
categorical (cat) attributes.

Table 4.1: Big datasets used in the experiments.

Dataset # Instances # Attributes # Classes
ECO (ECO) 4,178,504 16 (num:16) 10
EME (EME) 4,178,504 16 (num:16) 10
Higgs (HIG) 11,000,000 28 (num:28) 2

KDDCup 1999 2 Classes (KDD99_2) 4,856,151 41 (num:26, cat:15) 2
KDDCup 1999 5 Classes (KDD99_5) 4,898,431 41 (num:26, cat:15) 5

KDDCup 1999 (KDD99) 4,898,431 41 (num:26, cat:15) 23
Poker-Hand (POK) 1,025,010 10 (cat:10) 10

Susy (SUS) 5,000,000 18 (num: 18) 2

All the experiments have been executed on a cluster consisting of one master
equipped with a 4-core CPU (Intel Core i5 CPU 750 x 2.67 GHz), 8 GB of RAM and
a 500GB Hard Drive, and three slave nodes equipped with a 4-core CPU with Hyper-
threading (Intel Core i7-2600K CPU x 3.40 GHz, 8 threads), 16GB of RAM and a 1 TB
Hard Drive. All nodes are connected by a Gigabit Ethernet (1 Gbps) and run Ubuntu
12.04. The algorithm has been deployed upon Apache Spark 1.5.2 as data-processing
framework: the master hosts the driver program, while each slave runs an executor. The
training sets are stored in the HDFS.

4.3.1 Performance analysis

In this section, we analyze the performance of both FMDT and FBDT in terms of accu-
racy, model complexity, and execution time and compare both of them with the distributed
implementation of a Distributed Decision Tree (DDT) available in MLlib [140]. DDT per-
forms a recursive binary partitioning of the attribute space. The partitions of the continu-
ous attributes are generated by dividing each attribute into equi-frequency bins (at most
maxBins) over a sampled fraction of the data. Then, at each decision node, the best split
is chosen by selecting the one that maximizes the information gain. Entropy or Gini index
can be used for computing impurity of the node. Further, a maximum depth maxDepth
of the tree can be fixed by the user.

2 Available at https://archive.ics.uci.edu/ml/datasets.html
3 Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

110

https://archive.ics.uci.edu/ml/datasets.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

4.3. EXPERIMENTAL STUDY

Table 4.2 summarizes, for each algorithm, the parameters used in the experiments.
For FMDT, we limit the number of fuzzy sets defined for each attribute during the fuzzy
partitioning process and the number of instances belonging to each node. by setting
φ = 2% and λ = 0.01%, respectively. In particular, we force that the support of each
fuzzy set contains at least φ = 0.02 ·N instances and the number of instances for each
node is λ = 0.00001·N . We have performed different experiments varying φ from 0.01·N
to 0.1 ·N with step 0.01 ·N , and λ from 0.00001 ·N to 0.01 ·N , with step 0.00001 ·N . We
have observed that the best accuracy is achieved with φ = 0.02 ·N and λ = 0.00001 ·N .
In practice, we have verified that smaller supports tend to fragment the data too quickly,
leaving insufficient instances at the deepest nodes of the tree. After a limited number
of levels, it is unlikely to perform further splits. On the other hand, wider supports do
not allow obtaining satisfactory fuzzy partitions. Further, higher and lower values of λ
lead to a classifier, respectively, excessively general and specialized on the training set,
penalizing the performance on the test set. Also, lower values for φ and λ increase the
overall runtime with no real advantage.

Binary splitting overcomes the previous discussed drawbacks. Thus, for FBDT no
specific limitation is imposed and we set φ = λ = 1 instance. For both FMDT and FBDT,
we set γ = 0.1% as suggested by authors in [17] and TNorm = product. As regard
DDT, we adopted the values suggested in the guidelines provided with the library.

Table 4.2: Values of the parameters for each algorithm used in the experiments.

Method Parameters
FMDT γ = 0.1%, φ = 0.02 ·N,λ = 0.00001 ·N,TNorm = product
FBDT γ = 0.1%, φ = 1, λ = 1, TNorm = product
DDT maxBins = 32, Impurity = Entropy

For each dataset and for each algorithm, we performed a five-fold cross-validation by
using the same folds for all the datasets and varying the maximum depth β of the tree.
Table 4.3 shows, for each dataset and for each algorithm, the average values ± standard
deviation of the accuracy, both on the training (AccTr) and test sets (AccTs) obtained by
the algorithms. The highest accuracy values for each dataset are shown in bold. Table 4.4
shows the complexity of each algorithm. For each experiment, we report the number
of nodes (#Nodes), the number of leaves (#Leaves) and the minimum (minDpt), the
maximum (maxDpt) and average (avgDpt) depths of the trees.

The analysis of the three tables highlights that, on average, both FMDT and FBDT
outperform DDT in all datasets. As regards FDTs, we can observe that, when compar-
ing trees with the same depth, the multi-way splitting tends to achieve higher accuracy
because it is able to investigate a higher number of correlations between attributes by
generating a higher number of nodes at each level. On the other hand, as shown in Ta-
ble 4.4, the trees are characterized by a significantly higher number of nodes, increasing
the complexity. For instance, for ECO, EME, HIG and SUS, FMDT employs more than

111

CHAPTER 4. TREE BASED CLASSIFICATION

Table 4.3: Average accuracy ± standard deviation achieved by FMDT, FBDT and DDT.

FMDT FBDT DDT
Dataset β AccTr AccTs AccTr AccTs AccTr AccTs

5 97.641± 0.019 97.585± 0.041 78.244± 0.015 78.242± 0.037 77.718± 0.765 77.721± 0.729
ECO 10 − − 89.347± 0.105 89.335± 0.142 88.099± 0.164 88.082± 0.179

15 − − 97.315± 0.025 97.262± 0.045 95.874± 0.269 95.756± 0.286
5 96.962± 0.008 96.913± 0.018 77.381± 0.245 77.354± 0.303 77.270± 1.569 77.254± 1.592

EME 10 − − 90.751± 0.051 90.705± 0.051 89.756± 0.171 89.729± 0.186
15 − − 96.991± 0.021 96.928± 0.032 95.856± 0.203 95.726± 0.194
5 72.638± 0.018 71.253± 0.029 66.451± 0.013 66.441± 0.025 66.344± 0.080 66.335± 0.106

HIG 10 − − 70.723± 0.013 70.697± 0.022 70.481± 0.040 70.403± 0.063
15 − − 72.631± 0.019 72.266± 0.008 73.073± 0.031 71.871± 0.013
5 99.986± 0.006 99.986± 0.005 99.989± 0.000 99.987± 0.000 99.980± 0.008 99.979± 0.008

KDD99_2 10 − − 99.999± 0.000 99.999± 0.000 99.999± 0.001 99.999± 0.001
15 − − 99.999± 0.000 99.999± 0.000 100.000± 0.000 99.999± 0.000
5 99.976± 0.002 99.973± 0.003 99.893± 0.000 99.894± 0.002 99.669± 0.010 99.882± 0.010

KDD99_5 10 − − 99.995± 0.000 99.992± 0.001 99.991± 0.001 99.989± 0.001
15 − − 99.999± 0.000 99.995± 0.000 99.999± 0.001 99.994± 0.001
5 99.950± 0.001 99.948± 0.002 99.597± 0.008 99.598± 0.009 99.669± 0.104 99.669± 0.103

KDD99 10 − − 99.990± 0.000 99.971± 0.001 99.991± 0.001 99.989± 0.001
15 − − 99.997± 0.000 99.994± 0.001 99.999± 0.000 99.993± 0.001
5 78.479± 0.031 77.176± 0.068 54.708± 0.405 54.696± 0.432 54.708± 0.405 54.696± 0.432

POK 10 − − 58.806± 0.508 58.490± 0.599 58.806± 0.508 58.490± 0.599
15 − − 67.553± 0.422 62.479± 0.504 67.553± 0.422 62.479± 0.504
5 80.962± 0.007 79.639± 0.016 77.312± 0.060 77.230± 0.057 77.023± 0.025 77.018± 0.038

SUS 10 − − 79.118± 0.016 79.091± 0.024 79.022± 0.043 78.940± 0.052
15 − − 79.969± 0.030 79.722± 0.043 80.393± 0.026 79.304± 0.032

Table 4.4: Complexities of FMDT, FBDT and DDT.

FMDT FBDT DDT
Dataset β #Nodes #Leaves maxDpt #Nodes #Leaves maxDpt #Nodes #Leaves maxDpt

5 222,694 200,048 5 63 32 5 63 32 5
ECO 10 - - - 1,695 849 10 1,530 765 10

15 - - - 17,532 8,741 15 12,323 6,162 15
5 240,406 218,557 5 63 32 5 63 32 5

EME 10 - - - 1,694 847 10 1,521 761 10
15 - - - 20,996 10,477 15 14,515 7,258 15
5 972.779 920,942 5 63 32 5 63 32 5

HIG 10 - - - 1,686 844 10 2,045 1,023 10
15 - - - 34,444 17,209 15 49,822 24,911 15
5 703 630 5 41 21 5 37 19 5

KDD99_2 10 - - - 131 66 10 95 48 10
15 - - - 222 112 15 121 61 15
5 2,716 2,351 5 46 24 5 49 25 5

KDD99_5 10 - - - 335 168 10 356 179 10
15 - - - 779 389 15 544 272 15
5 2,164 1,875 5 37 19 5 40 20 5

KDD99 10 - - - 369 185 10 303 152 10
15 - - - 972 485 15 581 291 15
5 30,940 28,561 4 63 32 5 63 32 5

POK 10 - - - 2,024 1,012 10 2,024 1,012 10
15 - - - 44,297 22.149 15 44,297 22,149 15
5 805,076 758,064 5 63 32 5 63 32 5

SUS 10 - - - 1,360 681 10 1,984 993 10
15 - - - 21,452 10,723 15 35,133 17,567 15

112

4.3. EXPERIMENTAL STUDY

200,000 leaves with only five levels of depth. For higher values of β the algorithm gener-
ates too many nodes and the overall process takes an unreasonable amount of time. For
this reason, no result for higher values of β has been reported in Table 4.3. However, we
can observe that for β = 5, FMDT achieves accuracy comparable to the other algorithms.
On the other hand, FBDT and DDT are able to generate deeper trees. Note that deeper
trees are more expressive and achieve higher accuracy on the training set, but they can
be also affected by higher probability of over-training. However, FBDT tends to be more
tolerant to the over-training issue than DDT. In particular, unlike DDT, for β = 15 FBDT
achieves comparable results on both training and test sets, with the only exception for
POK.

For the sake of completeness, we mention that the classification rates of both FMDT
and FBDT are also higher than the ones reported in [177]. In [177], the authors investi-
gate several prototype reduction techniques on Apache Hadoop with the aim of improv-
ing the classification rates of the nearest neighbor classifier. The experimental results
on three big datasets have proven that these methods are very competitive in reducing
the computational cost and high storage requirements of the nearest neighbor classifier,
improving its classification performance. Due to the limited number of datasets adopted
by the authors, we have not shown the results in Table 4.3, but however, we highlight that
the average accuracy achieved by FMDT and FBDT in the common datasets is higher
than the one obtained by the algorithm proposed in [177].

Table 4.5 shows the main characteristics of the partitions obtained by applying the
fuzzy partitioning approach. In particular, the table reports the average number (NFS)
of fuzzy sets determined for the continuous attributes, the number of fuzzy sets for the
attributes with the lowest (minNFS) and highest (maxNFS) number of fuzzy sets, and the
number of attributes DA discarded by the fuzzy partitioning process. Obviously, for POK,
which is characterized by only categorical attributes, fuzzy partitioning is not performed.

Table 4.5: Complexities of Fuzzy Partitioning for both FMDT and FBDT.

FMDT FBDT
Dataset NFS minNFS maxNFS DA NFS minNFS maxNFS DA

ECO 36.625 35 41 0 180.05 91 257 0
EME 36.875 35 42 0 176.225 98 245 0
HIG 8.229 3 32 6 10.136 3 42 6

KDD99_2 2.654 3 15 4 9.315 3 31 0
KDD99_5 3.3 3 15 4 15.131 3 42 0
KDD99 3.269 3 15 4 14.962 3 41 0

SUS 13.989 5 25 3 18.9 5 45 3

As shown in Table 4.5, for ECO, EME, HIG and SUS, fuzzy partitioning generates
a high number of fuzzy sets, making the partitions hardly interpretable. For instance,
ECO and EME are characterized, on average, by 180.05 and 176.225 triangular fuzzy
sets per attribute. To limit the number of fuzzy set, a possible solution is to increment

113

CHAPTER 4. TREE BASED CLASSIFICATION

the value of φ as exploited for FMDT. On the other hand, the parameter can affect the
number of attribute discarded from the fuzzy partitioning. For instance, contrary to FBDT,
for KDD99_2, KDD99_5 and KDD99, the algorithm removes 4 attributes that will be not
employed by the FMDT.

Table 4.6 summarizes the execution times (in seconds) spent by each algorithm. For
all algorithms we show the execution time of the tree learning processes (Learning), and
for FMDT and FBDT, we report also the execution time performed by the fuzzy partition-
ing (FP) and the overall execution time (Tot). Here, the datasets have been split into a
number of chunks equal to the number of cores available in the cluster, so that each core
processes more or less the same number of instances.

Table 4.6: The execution time (in seconds) for FMDT, FBDT and DDT.

FMDT FBDT DDT
Dataset β FP Learning Tot FP Learning Tot Learning

5 28 364 392 29 64 93 11
ECO 10 - - - 29 215 244 13

15 - - - 29 691 720 16
5 23 349 372 24 42 66 11

EME 10 - - - 24 138 162 13
15 - - - 24 579 603 17
5 180 182 362 180 131 311 130

HIG 10 - - - 180 224 404 132
15 - - - 180 424 604 149
5 15 17 32 21 26 47 15

KDD99_2 10 - - - 21 49 70 16
15 - - - 21 68 89 17
5 16 24 40 30 41 71 17

KDD99_5 10 - - - 30 67 97 20
15 - - - 30 86 116 21
5 16 22 38 46 41 87 17

KDD99 10 - - - 46 67 113 19
15 - - - 46 78 124 20
5 - 3 3 - 4 4 4

POK 10 - - - - 6 6 6
15 - - - - 11 11 11
5 122 86 208 126 22 148 47

SUS 10 - - - 126 66 192 49
15 - - - 126 130 255 54

As shown in Table 4.6, DDT is much faster than the other comparison algorithms:
in general, the execution time is one order of magnitude lower than DFDT. Such result
is mainly due to two different factors. First of all, the total execution time of FMDT and
FBDT is affected by the fuzzy partitioning process. Such process is not performed by
DDT, speeding up the execution time of the overall algorithm. Second, the amount of
information managed by the FDT learning is higher than the one managed by the DDT
learning. Indeed, since each point xf,n ∈ Uf belongs to two fuzzy sets, space complexity
of FDT learning step is, in the worst case, twice than the one of DDT. The overall execution
time of FBDT is comparable with the one obtained by FMDT. In particular, as shown in

114

4.3. EXPERIMENTAL STUDY

Table 4.5, although FBDT employs a lower number of nodes than FMDT, it evaluates
different binary splits for each attribute. However, the choice of the best split is bounded
by the number of fuzzy sets defined on the attribute, which is significantly lower than
the number of instances. On the other hand, FMDT can perform only one split for each
attribute for a given node, thus speeding up the computation of the splitting procedure.

4.3.2 Scalability analysis

In this section, we investigate the scalability of the proposed approaches by employing an
increasing number of CUs. To this aim, we measure the values assumed by the speedup
σ that represents the main metrics used in parallel computing. According to the speedup
definition, the efficiency of a program using multiple CUs is calculated comparing the ex-
ecution time of the parallel implementation against the corresponding sequential version.
Unfortunately, due to the large size of the involved datasets, the sequential version of the
overall algorithm would take an unreasonable amount of time. Thus, for the scalability
analysis we refer to a run over Q∗ identical CUs, with Q∗ > 1. With this aim, we adopt
the following slightly different definition for the speedup on n identical CUs:

σQ∗(n) = Q∗·τ(Q∗)
τ(n) (4.16)

where τ(n) is the run-time using n CUs, and Q∗ is the number of CUs used to run
the reference execution, which lets us estimate a fictitious, ideal single-core run-time as
Q∗ · τ(Q∗). Of course, σQ∗(n) makes sense only for n ≥ Q∗. Note that τ(Q∗) accounts
also for the basic overhead due to the Apache Spark platform. Obviously, for n > Q∗

the speedup is expected to be sub-linear due to the increasing overhead from the Spark
tasks, the behavior of the algorithm (considering also the granularity of the necessary
sequential parts) and the contention for shared resources. In our tests, we assumed
Q∗ = 8 so as to have 1 working slave available in the cluster and thus accounting in σ8
also for the basic overhead due to thread interference. Horizontal scalability has been
studied by varying the number of switched-on CUs: we vary the number of slaves from 1
to 3, each with one executor with 8 cores. Considering the structure of our approach, we
split the RDD into a number of partitions equal to the total number of cores available on
the cluster.

Table 4.7 summarizes the results obtained on the Susy dataset by FBDT with β = 15.
For the sake of brevity, we considered only one dataset and FBDT. However, similar
results can be obtained on the other datasets and/or using FMDT.

The actual speedup shows a different behavior depending on the algorithm. As re-
gards Fuzzy Partitioning, σ8 rapidly decreases and using 24 cores does not produce a
real advantage; indeed the execution time with 24 cores is higher than the one obtained
by using 16 cores. The result is mainly affected by two factors. First, the number of bins,
namely Ω = V ·γ, used to split the domain of each attribute is equal to 8,000, 16,000 and
24,000 for 8, 16 and 24 cores, respectively. Thus, in case of 24 cores, the amount of infor-
mation handled by the algorithm is higher than the one handled for the other experiments,

115

CHAPTER 4. TREE BASED CLASSIFICATION

Table 4.7: Run-time, speedup (σ8), and utilization (σ8(Q)/Q) of both Fuzzy Partitioning
and FBDT Learning processes for the Susy dataset.

Fuzzy Partitioning Learning
Cores Time (s) σ8(Q) σ8(Q)/Q Time (s) σ8(Q) σ8(Q)/Q

8 185 8 1.00 636 8 1.00
16 141 10.50 0.66 324 15.70 0.98
24 153 9.67 0.40 230 22.12 0.92

0 8 16 24 32
100

125

150

175

200

Number of Cores (Q)

R
un

tim
e

(s
ec

)

(a) Runtime of Fuzzy Partitioning.

0 8 16 24 32
0

8

16

24

32

Number of Cores (Q)

S
pe

ed
up

(σ
8
)

(b) Speedup of Fuzzy Partitioning.

0 8 16 24 32

200

400

600

800

Number of Cores (Q)

R
un

tim
e

(s
ec

)

(c) Runtime of FBDT Learning.

0 8 16 24 32
0

8

16

24

32

Number of Cores (Q)

S
pe

ed
up

(σ
8
)

(d) Speedup of FBDT Learning.

Figure 4.7: Speedup of Fuzzy Partitioning (a) and FBDT Learning (b) on the overall Susy
dataset, varying the number of cores.

116

4.3. EXPERIMENTAL STUDY

affecting the overall execution time. Second, the fuzzy partitioning of each continuous at-
tribute is distributed among the cores available in the cluster so that each attribute is
assigned to one core. Since Susy is characterized by 18 continuous attributes, each core
processes approximately 3, 2 and 1 attributes in case of 8, 16 and 24 cores, respectively.
However, as shown in Table 4.5, three attributes are discarded by the fuzzy partitioning
process, thus for such attributes the overall process is performed in a few milliseconds (it
requires exactly one scan for the exploration of candidate fuzzy partitions). Considering
this result, the overall execution time can be roughly approximated with the same time
required for 18-3=15 continuous attributes, thus each core processes approximately 2, 1
and 1 attributes in case of 8, 16 and 24 cores, respectively. The result highlights that, as
regards the distribution of the computational flow, using a number of cores higher than 16
does not produce a real advantage and in such cases the execution time is only affected
by the number of bins employed to explore the candidate fuzzy partitions.

As regard FBDT learning, σ8 does not excessively diverge from the linear trend, i.e.
the number of CUs: σ8(16)/16 = 0.98 and σ8(24)/24 = 0.92. The overhead is mainly due
to higher number of executors handled by the Spark frameworks and the communication
cost required to send the nodes that must be split from the master to the slaves.

4.3.3 Dealing the dataset size

From a practical point of view, it is crucial to understand how the proposed algorithms
behave as the size of the input dataset increases. To evaluate this aspect, we have per-
formed several experiments using different dataset sizes. We have employed the Susy
dataset and have used different percentages of this dataset. We indicate with the nota-
tion Susyx the dataset composed with x% of instances of the Susy dataset (the complete
dataset is Susy100). Moreover, we limit the experiments only to FBDT with β = 15 but
similar considerations can be applied to FMDT.

Table 4.8 and Figure 4.8 show the run-time (in seconds) for building the tree (includ-
ing the fuzzy partitioning), according to different dataset sizes. We report also the total
number of instances N and the total number of instances in each chunk Nv = N/V . Like
in the previous experiments, we distribute uniformly the entire dataset upon the num-
ber of available cores, i.e. V = Q = 24 in our tests. Note that for Susy50, the average
run-time of three different experiments executed over three distinct subsets of Susy (with
instances randomly sampled) is reported.

Table 4.8: Run-time (in seconds) of FBDT on the Susy dataset, varying the dataset size.

Dataset FBDT
Size (%) N Nv Fuzzy Partitioning Learning Tot

50 (Susy50) 2,500,000 104,167 124 111 238
100 (Susy100) 5,000,000 208,333 153 230 383
200 (Susy200) 10,000,000 416,667 204 477 681
300 (Susy300) 15,000,000 625,000 255 800 1055

117

CHAPTER 4. TREE BASED CLASSIFICATION

0 5 10 15
0

200

400

600

800

Number of objects (106)

R
un

tim
e

(s
ec

)

(a) Runtime of Fuzzy Partitioning on different
Susy dataset size

0 5 10 15
0

200

400

600

800

Number of objects (106)

R
un

tim
e

(s
ec

)

(b) Runtime of FBDT learning on different Susy
dataset size

Figure 4.8: Runtime (in seconds) of Fuzzy Partitioning (a) and Learning (b) on the Susy
dataset, varying the dataset size.

As shown in Figures 4.8a and 4.8b, the execution time of the two algorithms increases
with different trends. However, the results are consistent with the time complexity analy-
sis described in Section 4.2.3. As regards Fuzzy Partitioning, the computational cost is
mainly driven by the number of bins Ω employed to explore the candidate fuzzy parti-
tions. Since such value is constant in all tests, i.e. Ω = 24, 000, the execution time of
the two reduce phases of fuzzy partitioning is more or less the same in all experiments.
On the other hand, both map phases depend on the number of instances processed by
each Map-Task. We recall that the first Map-Task performs a sorting of the instances for
retrieving the equi-frequency bins and the second Map-Task computes for each bin the
number of instances belonging to the different classes. Such operations are performed
in O(F · Nv · log(Nv)) and O(F · Nv · log(Ω)), respectively. However, considering the
experiments and the number of instances involved, Ω and F are constants and log(Nv)
assumes more or less the same values (i.e. log(Nv) ranges from about 5.02 to 5.8).
Thus, we can expect that the run-time trend for both Map-Tasks is slightly higher than
the linear one. These observations can be used to get a very rough estimation of the
run-time expected for different dataset sizes. For instance, if adding 2,500,000 instances
(from Susy50 to Susy100), the run-time increases of 153− 129 = 24 seconds, in the ideal
case, we expect that adding 5,000,000 instances the execution time is slightly longer than
twice. Thus we should obtain about 153+24× 2 = 201 and 153+24× 4 = 249 seconds
for Susy200 and Susy300, respectively. As it can be noted, such values do not excessively
differ from the measured ones. Of course, the actual run-times are necessarily higher due
to the logarithmic factor log(Nv) of the first Map-Task and the overheads for the sharing
of memory resources.

As regards FBDT learning, we can perform the same observations exploited for Fuzzy
Partitioning. In particular, as described in Section 4.2.3, time complexity of Reduce-Task

118

4.3. EXPERIMENTAL STUDY

depends only on the number of splits, which have to be evaluated for computing the best
splits among all attributes for the node, and is not affected by the number of instances.
On the other hand, time complexity of Map-Task is equal to O(Nv · Y · log(|D|)). Since
the number of nodes to split Y and the total number of fuzzy sets |D| defined by Fuzzy
Partitioning are more or less the same in all experiments, the overall run-time is mainly
affected by Nv. Thus, increasing the number of instances, we expect that in the ideal
case the execution time trend is linear, i.e. 111× 2 = 222, 111× 4 = 444 and 111× 6 =

666 for Susy100, Susy200 and Susy300, respectively. As it can be noted, such values
do not excessively differ from the measured ones. Of course, the actual run-times are
necessarily higher due to the overheads for the sharing of memory resources.

119

120

5

Multi-Objective Evolutionary Fuzzy System for Big Data

A number of methods have been proposed in the literature to generate and optimize the
structure of a Fuzzy Rule-Based Classifier. While at the beginning these methods have
mainly focused on optimizing the accuracy of the FRBCs, in the last years a particular at-
tention has been also devoted to their interpretability. Indeed, one of the most appealing
features of fuzzy rule-based classifiers is the capability of explaining how the conclusions
are inferred. This feature is hard to preserve when fuzzy rules are extracted from a very
large amount of data. Since accuracy and interpretability are conflicting objectives, the
generation of the FRBC structure has been modeled as a multi-objective optimization
problem. Multi-objective evolutionary algorithms (MOEAs) have been successfully em-
ployed to tackle this optimization problem with the main aim of generating sets of FRBCs
characterized by different trade-offs between accuracy and interpretability [55, 62].

In this chapter, we propose a distributed implementation, denoted as DPAES-RCS,
of PAES-RCS [14], a multi-objective evolutionary approach to learn concurrently the rule
and data bases of FRBCs by maximizing accuracy and minimizing complexity. PAES-
RCS has proven to be very efficient in obtaining satisfactory approximations of the Pareto
front using a limited number of iterations [14]. This result has been obtained by learning
the rule base through a rule and condition selection strategy, which selects a reduced
number of rules from a heuristically generated set of candidate rules and a reduced
number of conditions, for each selected rule, during the evolutionary process. We imple-
mented DPAES-RCS on Apache Spark. We show the effectiveness of this implementa-
tion in terms of classification rate and scalability by using three real-world big datasets
and comparing our results with the ones obtained by well-known state-of-art distributed
algorithms. We highlight that the proposed approach allows handling big datasets even
with modest hardware support.

The chapter is organized as follows. In Section 5.1, we introduce some preliminaries
on FRBCs. Section 5.2 describes PAES-RCS in short and therefore DPAES-RCS and in
Section 5.3, we illustrate the experimental results.

121

CHAPTER 5. MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR BIG DATA

5.1 Distributed MOEA: state-of-the-art

Although different solutions for classification problems have been proposed for dealing
with a huge amount of data [17, 38, 48, 175], only few works have integrated the fuzzy
theory in their approaches [56, 119, 120]. All these works investigate the performance
of classifiers only in terms of accuracy and scalability without considering interpretability.
Indeed, to push up the accuracy of the model, the classifiers employ a high number of
rules making them not interpretable.

In the last decades, multi-objective evolutionary algorithms (MOEAs) have been suc-
cessfully employed for generating sets of FRBCs characterized by different trade-offs
between accuracy and interpretability [55, 62]. However, since the computation of the
accuracy of each solution generated in the evolutionary process requires the scan of
the overall training set, when dealing with big data, the application of MOEA-based ap-
proaches to the FRBC generation is very critical. The solutions proposed so far in the liter-
ature have mainly focused on reducing the number of instances in the training set [10], by
adopting some instance selection method, and on adopting techniques for speeding-up
the convergence of the MOEA [14]. The use of the overall training set remains however
a critical aspect when executing the MOEA on a unique machine, due mainly to storage
and computational issues. Thus, the natural solution is to adopt a distributed approach
on a computer cluster. Actually, in the last years, researchers have proposed several
solutions to parallelize and distribute evolutionary algorithms [5, 15, 73, 96, 179] by in-
vestigating different models [15, 73], such as master-slaves, island, cellular, hierarchy,
pool, coevolution and multi-agent models.

In a recent survey [73], authors highlight some different research hot-spots of dis-
tributed evolutionary algorithms and review several algorithms by classifying them ac-
cording to the parallelism level, the adopted model and the infrastructure employed in
their implementation (MPI, grid computing, P2P network, cloud computing and MapRe-
duce, GPU and CUDA). In the following, we will briefly describe some of the approaches
that are closer to the distributed implementation of the multi-objective evolutionary fuzzy
system discussed in this chapter.

Exploiting the MapReduce paradigm, McNabb et al. [133] have proposed a parti-
cle swarm optimization able to scale up until 256 processors. Tagawa et al. [172] have
investigated a concurrent differential evolution by testing the strategy on a multi-core pro-
cessor. Chao et al. [94] have proposed MRPGA, an ad-hoc extension of MapReduce
on a .NET-based enterprise grid system for parallelizing and therefore speeding up the
computation of genetic algorithms. The attention on the MapReduce paradigm has been
further pushed forward in 2007, with the first release of Apache Hadoop. Due to its sim-
plicity and capability of handling very large datasets by scaling computational flow up to
thousands of machines, researchers have implemented several distributed evolutionary
algorithms on Hadoop not only for reducing the execution time of the algorithms, but also
for investigating the opportunity of mining knowledge from big data. Thus, distributed im-
plementations on Hadoop of genetic algorithms [69, 117, 174, 181], ant colony optimiza-

122

5.2. THE PROPOSED ALGORITHM

tion [198] and differential evolution [211] have been proposed and applied to different
domains such as undersampling for imbalanced big data classification [174] and combi-
natorial optimization problems [198], achieving good performance in terms of scalability
and proving the effectiveness of Hadoop in dealing with big data [117]. On the other hand,
as shown in [211], the extra costs of the Hadoop distributed file system I/O operations
and of the system bookkeeping overhead significantly reduce the benefits of parallelism.
Hence, as we will discuss in Section 2.1, different new data processing environments that
implement the concept of in-memory cluster computing should be employed. In [153], the
authors have proposed a pairwise test generation based on parallel genetic algorithm
and Apache Spark. The experimental study has however focused on a comparison with
different algorithms without investigating scalability performance in terms of speedup.

5.2 The Proposed Algorithm

In this section, we first introduce the PAES-RCS algorithm proposed in [14]. Then, we de-
scribe in detail its distributed implementation DPAES-RCS on the Apache Spark frame-
work.

5.2.1 PAES-RCS

The PAES-RCS algorithm generates a set of FRBCs with different trade-offs between ac-
curacy and complexity by selecting rules and conditions from a set of candidate rules, and
concurrently learning membership function parameters of the fuzzy sets used in the con-
ditions of the rules. This objective is achieved by adopting a chromosome C composed
of two parts (CRB , CDB), which define the RB and the membership function parameters
of the input variables, respectively. We apply both crossover and mutation operators to
each part of the chromosome independently. The set of candidate rules is extracted from
a decision tree obtained by applying the well-known C4.5 algorithm to the training set.

Before applying the C4.5 algorithm, each continuous input variable Xf is transformed
into a categorical and ordered variable by using a fuzzy uniform partition Pf of Tf trian-
gular fuzzy sets: each category is the linguistic value corresponding to a fuzzy set in Pf .
The category associated with each continuous value is determined by the index of the
fuzzy set of the partition Pf to which the value belongs at maximum grade; in case of tie,
we choose randomly.

Let RBC4.5 and MC4.5 be the RB generated by applying the C4.5 algorithm to the
data set and the number of rules of this RB, respectively. Especially when dealing with
large and high dimensional datasets, the C4.5 algorithm could generate RBs composed
of a high number of rules. For this reason, in order to generate compact and interpretable
RBs, we allow that the RBs of the solutions generated by PAES-RCS contain at most
MMAX rules. This value allows us to achieve a reasonable accuracy maintaining the
complexity at an adequate level. Obviously, if the number of rules extracted from the

123

CHAPTER 5. MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR BIG DATA

decision tree is lower than MMAX , MMAX is set to the actual number of rules extracted
by the C4.5 algorithm.

The CRB part of the chromosome is a vector of MMAX pairs pm = (km,vm), where
km ∈ [0, . . . ,MC4.5] identifies the index of the rule in RBC4.5 selected for the current RB
and vm = [vm,1, . . . , vm,F] is a binary vector which indicates, for each condition in the
rule, if the condition is present or corresponds to a “don’t care”. In particular, if km = 0,
the mth rule is not included in the RB. Thus, we can generate RBs with a lower number
of rules than MMAX . Further, if vm,f = 0, the f th condition of the mth rule is replaced
by a “don’t care” condition; otherwise it remains unchanged.

The CDB part of the chromosome consists of F vectors of real numbers: the f th

vector contains the [bf,2, ...bf,Tf−1] cores which define the positions of the membership
functions for the linguistic variable Xf . Indeed, we adopt triangular fuzzy sets Af,j de-
fined by the tuple (af,j ,bf,j ,cf,j), where af,j and cf,j correspond to the left and right
extremes of the support of Af,j , and bf,j to the core. Since we adopt strong fuzzy parti-
tions with, for j = 2, ..., Tf − 1, bf,j = cf,j−1 and bf,j = af,j+1, in order to define each
fuzzy set of the partition it is sufficient to fix the positions of the cores bf,j throughout
the universe Uf of the f th input variable. Since bf,1 and bf,Tf coincide with the extremes
of the universe, the partition of each input variable Xf is completely defined by Tf − 2

parameters.
We apply the two-point crossover to the CRB part and the BLX-α crossover, with

α = 0.5, to the CDB part. As regards the mutation, for the CRB part, we use two well-
known operators, namely, random mutation [83] and flip-flop mutation [195]. Random
mutation is also applied to the CDB part.

As multi-objective evolutionary algorithm we use the (2+2)M-PAES that has been
successfully employed in our previous works [10, 11, 12]. Unlike classical (2+2)PAES,
in (2+2)M-PAES, current solutions are randomly extracted at each iteration rather than
maintained until they are not replaced by solutions with particular characteristics.

5.2.2 The Distributed Approach

With the aim of dealing with big data, we propose DPAES-RCS, a distributed implemen-
tation of the PAES-RCS algorithm [14] on the Spark framework. DPAES-RCS consists of
two main phases, which have been carefully designed for exploiting the potentialities of
the distributed approach. In particular, the first phase, named distributed candidate rules
generation, generates the candidate rule base that is employed by the distributed MOEA
in the second phase, named distributed evolutionary optimization.

Let V be the number of chunks used for partitioning the training set andQ the number
of Computing Units (CUs) available in the cluster. Each chunk chunkv, with v ∈ [1..V],
contains a subset of T = |N/V | instances (xvt , y

v
t) of the training set and feds only one

task. On the other hand, a CU can process several tasks.
As shown in Figure 5.1, the distributed candidate rules generation consists of three

steps. First, each continuous input variableXf is discretized by using a uniform fuzzy par-
tition with Tf = 5 fuzzy sets. For each chunkv, we associate each pattern xvt,f in chunkv

124

5.2. THE PROPOSED ALGORITHM

with a categorical value corresponding to the label of the fuzzy set with the highest mem-
bership degree. The discretization is applied in parallel on each chunk of the RDD. Then,
a distributed C4.5 algorithm is executed on the discretized training set. Finally, RBC4.5 is
extracted from the decision tree.

Uniform Fuzzy Partitions
D

istributed
D

iscretization

D
istributed candidate rules generation

Chunk1 Chunk2 ChunkV ChunkV-1 ChunkV

Discretized Training Set

Chunk1 ChunkVChunkV-1ChunkVChunk2

Training Set

INPUT DATA

CU CU CU executorsCUCUs

CU CU CU executorsCUCUs

D
istributed

D
T G

eneration

Decision Tree

CU
driver

programCU

Extraction
of rules

RB

Figure 5.1: The distributed candidate rules generation phase.

As regards the distributed C4.5 algorithm for big datasets, we have modified the deci-
sion tree (DT) implementation1 provided by MLlib [140]. In particular, similar to the CART
algorithm [24], DT performs a recursive binary partitioning of the feature space. Each
partition is chosen greedily by selecting the best split from a set of possible splits based
on the information gain computed as difference between the parent node impurity and
the weighted sum of the child node impurities. We have modified the DT implementation
so as to manage categorical features as in the original C4.5. Thus, the arcs coming from
a node labeled with a feature are labeled with each of the possible categorical values of
the feature. If the node is associated with a discretized continuous input variableXf , then

1 For a complete description of this implementation, please refer to https://spark.apache.
org/docs/1.4.1/mllib-decision-tree.html

125

https://spark.apache.org/docs/1.4.1/mllib-decision-tree.html
https://spark.apache.org/docs/1.4.1/mllib-decision-tree.html

CHAPTER 5. MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR BIG DATA

it will have Tf arcs. Node impurity is computed by using entropy. Unlike classical C4.5
algorithm [155], no pruning step is performed.

Once the decision tree has been generated, RBC4.5 is extracted from the tree. Then,
two solutions are generated by using MMAX rules randomly selected from RBC4.5 and
added to the 2+2MPAES archive for starting the execution of the distributed evolutionary
optimization phase as shown in Figure 5.2.

CU CU CU executorsCUCUs

D
is

tr
ib

u
te

d

e
v

a
lu

a
tio

n

CU
driver

programCU

O
b

je
c

tiv
e

s

e
v

a
lu

a
tio

n

Chunk1 ChunkvChunk2 ChunkVChunkV-1

Training Set

INPUT DATA

archive

driver
 program

CU

candidate solutions ([o1,o2])

patterns correctly classified [acc1, acc2]

in
se

rt
o 1

 a
nd

 o
2

in
to

 th
e

ar
ch

iv
e

≤

#current iteration > #Max. Iterations

CU

random extraction

D
istributed evolutionary optim

ization

#current
iteration

#Max.
Iterations

Stop

Figure 5.2: The distributed evolutionary optimization phase.

In particular, we distribute the computation of the classification rate at each iteration
of the multi-objective evolutionary algorithm by adopting a master-slave model. Indeed,
this computation is the most time-consuming part of the algorithm since it requires to
scan the overall training set. More in detail, the driver program generates sequentially
two new candidate offspring solutions, o1 and o2, by applying the genetic operators to
two solutions, s1 and s2, randomly extracted from the archive. Each candidate solution is
then evaluated by scanning the overall dataset: for each chunkv, both o1 and o2 classify
all the xvt instances belonging to the chunk.

126

5.3. EXPERIMENTAL STUDY

Let acc1 and acc2 be the counters associated with o1 and o2, respectively. For each
solution, if the pattern xvt is correctly labeled with yvt , the corresponding counter is in-
cremented by 1. The counters have been implemented as accumulators, which are effi-
ciently handled by Spark. After the RDD scan, the driver program computes the classi-
fication rate by dividing the values of the two accumulators by the number of instances
in the training set. Further, the driver program calculates the total number of conditions
that compose the antecedents of the rules in the RB, denoted as total rule length TRL.
Finally, o1 and o2 are added to the archive only if they are dominated by no solution
contained in the archive; possible solutions in the archive dominated by the candidate
solutions are removed. Typically, the size of the archive is fixed at the beginning of the
execution of the (2+2)M-PAES. In this case, when the archive is full and a new solution z
has to be added to the archive, if z dominates no solution in the archive, then we insert
z into the archive and remove the solution (possibly z itself) that belongs to the region
with the highest crowding degree. If the region contains more than one solution, then, the
solution to be removed is randomly chosen. The overall process is iteratively executed
until the maximum number of fitness evaluations is achieved.

Note that the discretization, the decision tree generation and the accuracy evaluation
procedures are distributed and executed concurrently on each of the V chunks of the
RDD. Obviously, only Q tasks can be executed in parallel. Thus, if V ≤ Q, then all tasks
can be run simultaneously and the global runtime practically corresponds to the longest
of the task runtimes. In case V > Q, only Q tasks can be executed in parallel and the
rest (V −Q) tasks are queued, waiting for being executed as soon as one of the running
Q task completes. Thus, in the ideal case where the execution time is the same for all
tasks, each CU executes at most dVQe tasks. In our experiments we have set V = Q.

5.3 Experimental Study

We tested our method on ten real-word big datasets extracted from the UCI repository2.
As shown in Table 5.1, the datasets are characterized by different numbers of instances
(up to 11 millions), attributes (from 10 to 54) and classes (from 2 to 23).

For each dataset, we performed a five-fold cross-validation with one trial for each fold.
We implemented our algorithm by using Apache Spark 1.4.1 as distributed processing
framework and we performed all the experiments using a small computer cluster. All the
nodes are connected by a Gigabit Ethernet (1 Gbps) and run Ubuntu 12.04. The master
node has a 4-core CPU (Intel Core i5 CPU 750 x 2.67 GHz), 8 GB of RAM and a 500GB
Hard Drive and it is in charge to run the driver program. Each slave node is equipped by
a 4-core CPU with Hyperthreading (Intel Core i7-2600K CPU x 3.40 GHz), 16GB of RAM
and 1 TB Hard Drive. The training sets are stored in the Hadoop Distributed File System.

2 https://archive.ics.uci.edu/ml/datasets.html

127

CHAPTER 5. MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR BIG DATA

Table 5.1: Datasets used in the experiments.

Datasets
Name # Instances # Attributes # Classes
Covertype 2 581,012 54 2
Covertype 7 581,012 54 7
eCO 4,178,504 16 10
eME 4,178,504 16 10
Kddcup 2 4,856,151 41 2
Kddcup 5 4,898,431 41 5
Kddcup 23 4,898,431 41 23
Higgs 11,000,000 28 2
PokerHand 1,025,010 10 10
Susy 5,000,000 18 2

5.3.1 Performance of DPAES-RCS: accuracy and complexity

Table 5.2 reports the parameters used in the experiments. In order to determine the
number of fitness evaluations we have exploited the work reported in [14], where we
have proved that 50,000 fitness evaluations guarantee the same performance as 1 mil-
lion evaluations. We observe that each iteration of the (2+2)M-PAES requires two fitness
evaluations. Thus, the maximum number of iterations (# Max. Iterations) executed by
(2+2)M-PAES is 25,000.

Since the C4.5 algorithm generates too many rules for Higgs and Susy datasets, we
have tried different values for the parameter “minimum number of instances per leaf” in
order to limit the number of candidate rules. Table 5.3 shows, for each dataset, the setting
used for the C4.5 algorithm, the average number of rules generated and the average
number of features selected at the end of the execution.

Table 5.2: Values of the parameters used in the experiments for DPAES-RCS.

Fitness Evaluations Maximum number of fitness evaluations 50,000
AS (2+2)M-PAES archive size 64
Tf Number of fuzzy sets in each variable Xf 5
MMAX Maximum number of rules in an RB min(100, MC45)
PCRB Probability crossover operator for CRB 0.1
PCDB Probability crossover operator for CDB 0.5
PMRB1

Probability first mutation operator for CRB 0.1
PMRB2

Probability second mutation operator for CRB 0.7
PMDB

Probability mutation operator for CDB 0.6

As in [11, 12], the evaluation of the solutions generated by DPAES-RCS is based
on the analysis of three representative solutions of the Pareto front approximation: the
most accurate (denoted as FIRST), the last accurate (denoted as LAST) and the median
between the FIRST and the LAST (denoted as MEDIAN) solution. In practice, for each
of the five folds, we compute the Pareto front approximation and sort the solutions in

128

5.3. EXPERIMENTAL STUDY

Table 5.3: Values of the parameters used for the C4.5 and average number of rules and
features in the rule bases extracted from the generated trees.

Dataset min # instances per leaf Rules Features
Covertype 2 1 290.4 12.0
Covertype 7 1 18,176.20 53.04
eCO 1 591.4 12.0
eME 1 1,244 16.0
Higgs 1100 5,270.6 26.4
Kddcup 2 1 494.6 26.4
Kddcup 5 1 1,311 33.4
Kddcup 23 1 1,342.4 33.8
PokerHand 1 323,428.2 10.0
Susy 500 2,286 18.0

each approximation for increasing accuracy. Then, for each approximation, we select the
first (the most accurate), the median and the last (the last accurate) solution (this is the
reason why we denote the points as FIRST, MEDIAN and LAST).

Table 5.4 shows, for each dataset and for each solution, the average classification
rate on both training (CRTrain) and test (CRTest) sets, the average TRL, the average
number NR of rules and the average number NA of attributes used in the rule base.
Moreover, in Figure 5.3 we plot the mean values of Classification Rate and the Total Rule
Length for the FIRST, MEDIAN and LAST solutions for all the datasets, on both training
and test set, respectively.

Table 5.4: Average results obtained by the FIRST, MEDIAN and LAST solutions gener-
ated by DPAES-RCS

FIRST MEDIAN LAST
Dataset CRTrain CRTest TRL NR NA CRTrain CRTest TRL NR NA CRTrain CRTest TRL NR NA

Covertype 2 75.753 75.732 74.4 33.6 9.0 74.968 74.909 38.7 21.7 7.7 72.708 72.681 10.0 9.2 4.2
Covertype 7 72.383 72.374 145.0 36.2 32.0 71.940 71.924 84.2 29.4 25.9 57.921 57.907 58.2 28.0 24.0

eCO 77.133 77.115 168.4 54.0 12.0 74.995 74.984 117.7 45.4 11.8 56.228 56.244 54.4 35.2 11.4
eME 80.600 80.570 187.4 58.6 15.8 78.221 78.201 112.0 48.1 15.4 61.407 61.391 75.2 44.6 14.8
Higgs 65.008 64.998 125.2 30.2 19.0 64.389 64.370 78.7 25.8 15.2 59.825 59.849 48.6 23.2 14.4

Kddcup 2 99.948 99.947 35.4 21.8 12.6 99.933 99.934 19.5 13.2 8.8 98.508 98.514 8.2 8.0 5.4
Kddcup 5 99.740 99.734 80 34.8 17.8 99.717 99.711 50.4 26.5 14.1 82.920 82.925 30.2 23.4 13.2
Kddcup 23 99.802 99.803 77.8 33.2 20.0 99.735 99.735 42.2 23.5 15.7 63.384 63.374 23.6 20.0 11.2
PokerHand 60.233 60.221 113.2 50.0 5.0 58.423 58.430 68.1 35.2 5.0 48.772 48.749 34.2 25.4 5.0

Susy 78.123 78.11 80.4 28.0 13.6 77.658 77.659 45.6 19.9 12.1 68.131 68.128 22.0 15.0 9.6

Comparing the results obtained on the training and test sets in all datasets, we can
state that our approach is not affected from the overtraining problem. Indeed, the values
of the CRTrain for the FIRST, MEDIAN and LAST solutions are approximately equal to
the ones of CRTest.

To better investigate the goodness of our results, we compare the performance of
DPAES-RCS with the ones achieved by the DT implementation available in MLlib [140].

129

CHAPTER 5. MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR BIG DATA

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length
C

la
ss

ifi
ca

ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length
C

la
ss

ifi
ca

ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length
C

la
ss

ifi
ca

ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Training

20 40 60 80

70

75

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Susy, Test

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Training

60 80 100 120

60

62

64

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

Higgs, Test

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Training

10 20 30

98.5

99

99.5

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 2, Test

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Training

30 40 50 60 70 80

85

90

95

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 5, Test

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Training

20 40 60 80
60

70

80

90

100

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

KDD 23, Test

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Training

20 40 60 80

73

74

75

76

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 2, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

CoverType 7, Test

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Training

60 80 100 120 140

60

65

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

PokerHand, Test

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Training

60 80 100 120 140 160

60

70

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eCO, Test

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Training

80 100 120 140 160 180
60

70

80

Total Rule Length

C
la

ss
ifi

ca
ti
o
n

R
a
te

(%
)

eME, Test

Figure 5.3: Average Pareto fronts obtained from each dataset.

As described in Section 5.2.2, this implementation performs a recursive binary parti-
tioning of the feature space similar to the classical CART algorithm. To deal with big data,
we follow the guidelines provided by MLlib: we set the maximum depth of the tree to 5
and the number of bins used to discretize continuous features to 32.

Table 5.5 shows the results achieved by the two approaches. The results have been
obtained by employing the same folds for all the algorithms. For DPAES-RCS, we re-
port only the results achieved by the FIRST solution. As regards the complexity of the
decision-tree, we compute the total number of nodes (NN) and rules (NR), generated
from DT. We observe that NR coincides with the total number of leaves of the model.

We highlight that we have not taken into consideration the number of antecedents be-
cause the ones exploited in the solutions of DPAES-RCS are different from the ones gen-

130

5.3. EXPERIMENTAL STUDY

erated from the DT. Indeed, since DT performs a binary split at each node, it generates
antecedents that are represented as intervals rather than single values as in DPAES-
RCS. Obviously, the rules generated are more complex and hardly interpretable and a
comparison considering TRL is not meaningful.

Table 5.5: Results of the application of DPAES-RCS and of the Decision Tree imple-
mented in MLlib.

DPAES-RCS Decision Tree
Datasets CRTrain CRTest TRL NR CRTrain CRTest NN NR

Covertype 2 75.753 75.732 74.4 33.6 73.890 73.810 62.2 31.6
Covertype 7 72.383 72.374 145.0 36.2 69.880 69.990 63.0 32.0
eCO 77.134 77.115 168.4 54.0 77.907 77.895 63.0 32.0
eME 80.600 80.570 187.4 58.6 78.085 78.048 62.2 31.6
Kddcup 2 99.948 99.947 35.4 21.8 99.950 99.950 43.0 22.0
Kddcup 5 99.740 99.734 80.0 34.8 99.693 99.694 58.2 29.6
Kddcup 23 99.802 99.803 77.8 33.2 99.730 99.730 48.2 24.6
Higgs 65.008 64.998 125.2 30.2 66.338 66.336 63.0 32.0
PokerHand 60.233 60.221 113.2 50.0 54.708 54.696 63.0 32.0
Susy 78.123 78.110 80.4 28.0 77.016 76.965 63.0 32.0

The analysis of Table 5.5 shows that DPAES-RCS outperforms DT in terms of accu-
racy. As regards the complexity, the number of rules of the FRBCs generated by DPAES-
RCS is comparable with DT for the Covertype and Susy datasets, while it is higher for
the eME dataset. We have to consider however that the rules extracted from the tree
generated by DT are different from the rules generated by DPAES-RCS, since they have
conditions with not only one linguistic value but with an “or” of linguistic values.

To statistically compare the three approaches, for both algorithms we generate a dis-
tribution consisting of the mean values of the accuracy of solutions on the test set by us-
ing all the datasets. Then, we apply a non-parametric test, namely Wilcoxon signed-rank
test for pairwise comparison of two sample means [166]. Table 5.6 shows the result of
Wilcoxon test. Here R+ and R− represent the ranks corresponding to the DPAES-RCS
and DT, respectively. We observe that the p-value is lower than the level of significance
α = 0.10. Thus, the null hypothesis is rejected.

Table 5.6: Results of the Wilcoxon signed-rank test on the CRs obtained on the test sets
by DPAES-RCS and DT

R+ R- Hypothesis (α = 0.10) p-value

DPAES-RCS vs DT 44 11 Rejected 0.0831

131

CHAPTER 5. MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR BIG DATA

We would like to point out that the best average classification rate obtained on the
Susy dataset by the K-NN classifier with prototype reduction proposed in [175] for dealing
with big data classification was 72.82%. The reduction rate3 is equal to 97.769%. The
best classification rates obtained on the common datasets by MRAC+ (Table 3.3) and
DAC-FFP (Table 3.18) are slightly higher than the ones achieved by DPAES-RCS, with
the only exceptions for Kddcup 2 and Kddcup 23. Thus, both MRAC+ and DAC-FFP
outperform DPAES-RCS in terms of accuracy but they use a larger number of rules, as
shown in Table 3.5 and Table 3.19, respectively.

We can conclude that DPAES-RCS generates both accurate and interpretable FRBCs
by employing a low number of fuzzy rules even with very large datasets.

5.3.2 Scalability analysis

In order to evaluate the scalability of the proposed approach, we use as metric the
speedup, which is commonly used in parallel computing. As stated by the speedup defini-
tion, the efficiency of a program, which uses multiple CUs, can be calculated comparing
the execution time of the parallel implementation against the corresponding sequential
version. Unfortunately, due to the large size of the dataset, the sequential implementa-
tion of the algorithm is impracticable because it would take an unreasonable amount of
time. To overcome this drawback, we take as reference a run over Q identical cores, with
Q > 1. We redefine the speedup formula on n CUs as σQ∗(n) = Q∗ ·τ(Q∗)/τ(n), where
τ(n) is the program runtime using n computing units and Q∗ is the number of comput-
ing units used to run the reference execution. In our tests, we have assumed Q∗ = 8.
According to the scalability experiments, for avoiding unbalanced loads, we perform sev-
eral executions by varying the number of computing units, keeping the same number
of running cores per node. Obviously, Q∗(n) makes sense only for n ≥ Q∗, where the
speedup is expected to be sub-linear due to the overhead from the Spark procedures and
the contention of shared resources among cores. Indeed, we vary the number of slave
nodes from 1 to 3, each of these with 8 cores and one executor. Moreover, considering
the structure of DPAES-RCS, we split the RDD into a number of partitions equal to the
total number of cores available on the slaves.

Table 5.7 summarizes the results. Figures 5.4 and 5.5 show the speedup and the
execution time, respectively, obtained on the Covertype 2 dataset.

As shown in Figures 5.4 and 5.5, the speedup does not excessively differ from a linear
trend. The overhead is mainly due to the time required to send the solutions (CRB , CDB)
from the master to each slave node.

3 The measure has been computed as 1 − size(RS)/size(TR), where size(RS) is the total
number of prototypes of the NN classifier and size(TR) is the total number of objects in the
training set.

132

5.3. EXPERIMENTAL STUDY

Table 5.7: Speedup of the PAES-RCS algorithm in classification.

Cores Time (s) Speedup σ8(Q)/Q (Utilization)
8 13,297.264 8.0 1.0
16 6,901.795 15.4131 0.9633
24 4,858.456 21.8955 0.9123

0 8 16 24 32
0

8

16

24

32

Number of Cores (Q)

S
pe

ed
up

(σ
8
)

Speedup

Figure 5.4: Speedup of DPAES-RCS varying the number of cores

0 8 16 24 32

0.6

0.8

1

1.2

1.4
·104

Number of Cores (Q)

R
un

tim
e

(s
ec

)

Execution time

Figure 5.5: Execution time of DPAES-RCS varying the number of cores

133

134

6

Conclusions

In this Ph.D thesis, we have proposed different solutions shaped according to the MapRe-
duce programming model for handling Big Data and generating accurate and inter-
pretable classifier. In particular, we have focused on associative classification and de-
cision trees, integrating our solutions with fuzzy set theory as well. Furthermore, to in-
crease the interpretability of classifiers, we have proposed a distributed multi-objective
evolutionary approach to learn concurrently the rule and data bases of FRBCs by maxi-
mizing accuracy and minimizing complexity.

As regards associative classification, we have proposed MRAC, a MapReduce As-
sociative Classifier based on frequent pattern mining. MRAC first extracts the frequent
items; then, it generates the most significant classification association rules from them
by exploiting a modified parallel version of the well-known FP-Growth algorithm; finally, it
prunes noisy and redundant rules by applying a distributed dataset coverage approach.
Memory usage and time complexity have been shown for each phase of the learning
process. We have also discussed MRAC+, a faster version of MRAC, which does not
employ the dataset coverage, exploiting instead the best rule inference mechanism. Both
MRAC and MRAC+ are able to process millions of data for learning the classification as-
sociation rules. Experimental results performed on seven big datasets show that MRAC+
and MRAC are able to achieve speedup and scalability close to the ideal ones.These re-
sults have been compared against with achieved on the same hardware platform by two
state-of-the-art distributed classification algorithms, namely the Random Forest (RF) in
Mahout over Hadoop, and the Decision Tree (DT) in MLlib over Spark; in the comparison,
accuracy, complexity, and runtime have been taken into account. We have concluded
that, considering accuracy, MRAC+ achieves higher classification rates than MRAC, out-
performing DT, and with results that closely compare to those obtained by RF. From the
runtime perspective, MRAC+ is faster than MRAC, but both their implementations over
Hadoop are much slower than the Spark implementation of DT (not surprisingly, consid-
ering the typical efficiency gap between the Spark and Hadoop platforms).

We have also proposed a new efficient fuzzy association rule-based classification
scheme based on a fuzzy version of the well-known FP-Growth algorithm, denoted as

135

CHAPTER 6. CONCLUSIONS

AC-FFP. Moreover, we have presented a MapReduce version of AC-FFP, denoted as
DAC-FFP, able to deal with big data. The development of the classification schemes has
required to introduce a number of purposely-defined strategies for: (i) appropriately gen-
erating the fuzzy partitions, (ii) extending the FP-Growth algorithm to the fuzzy context,
(iii) selecting the most accurate and non-redundant fuzzy rules and (iv) performing the
classification of unlabeled patterns. More in detail, for AC-FFP, the strong fuzzy partitions
have been generated by appropriately defining fuzzy sets on crisp partitions obtained by
applying a classical discretization algorithm for continuous attributes. On the other hand,
DAC-FFP employs a distributed fuzzy partitioning based on fuzzy entropy for generating
Ruspini fuzzy partitions for each continuous feature. The FP-Growth has been extended
to the fuzzy context by adopting proper definitions of fuzzy support and confidence. Fur-
ther, unlike previous extensions proposed in the literature, which reduce the complexity
by considering only the most frequent fuzzy value for each attribute in the generation of
the fuzzy rules, we have considered all the frequent fuzzy sets for each attribute. For the
third strategy, we have defined and applied three different types of rule pruning. Finally, for
the classification of unlabeled patterns, we have proposed an adjustment of the classical
reasoning method with the aim of balancing the importance of both general and specific
rules. As regards the accuracy of the generated fuzzy associative classifiers, AC-FFP
has been tested on seventeen small classification benchmarks. We have compared the
results achieved by our fuzzy model with the ones achieved by a well-known non-fuzzy
associative classification model, namely the CMAR algorithm, and by two state-of-the-
art algorithms for generating fuzzy rule-based association classifiers, namely FARC-HD
and D-MOFARC. By performing non-parametric statistical tests, we have highlighted that
the proposed approach outperforms the CMAR algorithm, in terms of classification ac-
curacy on the test set, and achieves accuracies similar to FARC-HD and D-MOFARC.
However, we have to highlight that FARC-HD and D-MOFARC employ a fuzzy adaptation
of the Apriori algorithm for mining the fuzzy rules and an evolutionary post-processing
for pruning these rules and optimizing the fuzzy partitions. On the other hand, DAC-FFP
has been tested on six real-world big datasets. Scalability analysis shows that DAC-FFP
is able to achieve speedup close to the ideal achievable targets. As regards the accu-
racy, the results show that DAC-FFP outperforms MRAC in all the employed datasets
and achieves accuracies similar to or better than MRAC+. Moreover, DAC-FFP employs
a lower number of rules than both MRAC+ and MRAC, but on the other hand is much
more slower than the comparison algorithms. In particular, DAC-FFP employs an addi-
tional MapReduce pruning step than MRAC, increasing the exectuion time of the overall
learning process.

As regards tree-based classification, we have proposed a distributed fuzzy decision
tree learning scheme shaped according to the MapReduce programming paradigm. As
well as DAC-FFP, the overall algorithm first employs the distributed fuzzy partitions for
generating Ruspini fuzzy partition for each continuous attribute. Then, the fuzzy parti-
tions are used as input to the distributed MapReduce-based tree learning algorithm. In
particular, we have adopted two different versions of the learning algorithm based on

136

multi-way and binary splits, namely FMDT and FBDT, respectively. Both the versions em-
ploy the information gain computed in terms of fuzzy entropy for selecting the attribute
to be adopted at each decision node. In the experimental study, we have compared our
proposals with the decision tree available in MLlib on eight real-world big datasets. Both,
FMDT and FBDT outperform decision tree in most of the employed datasets. Further, al-
though binary splits are able to generate deeper trees than multi-way splits, FBDT tends
to be more tolerant to overtraining issues than decision trees. Comparing trees with the
same depth, FMDT outperforms binary splits approaches due to the higher number of
nodes that can be generated at each decision node, affecting both complexity of the tree
and execution time.

As regards multi-objective evolutionary algorithm (MOEA), we have proposed a dis-
tributed, scalable and effective implementation of PAES-RCS, namely DPAES-RCS,
which learns concurrently the rule and data bases of fuzzy rule-based classifiers by max-
imizing accuracy and minimizing complexity. The overall algorithm consists of two main
phases. In the first phase, we have employed a distributed step for generating candidate
rules. These rules are then randomly extracted to build the starting rule base that is em-
ployed by the distributed MOEA in the second phase. In particular, we have adopted a
master-slave model approach deployed on Apache Spark. Thanks to the in-memory com-
putation, Apache Spark is more suitable for iterative and online applications than Apache
Hadoop. In the experimental study, we have compared our proposal with the decision tree
available in MLlib on ten real-world big datasets, pointing out that our approach generates
accurate classifiers with very low complexity. Moreover, by performing non parametric sta-
tistical tests, we have highlighted that the proposed approach outperforms the distributed
decision tree implemented in MLlib, in terms of classification accuracy on the test set.
Further, scalability analysis shows that the algorithm achieves speedup close to the ideal
achievable targets.

137

138

References

1. Neda Abdelhamid, Aladdin Ayesh, Fadi Thabtah, Samad Ahmadi, and Wael Hadi. MAC: A
Multiclass Associative Classification Algorithm. Journal of Information & Knowledge Manage-
ment, 11(02), 2012.

2. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining Association Rules between
Sets of Items in Large Databases. SIGMOD Record, 22(2):207–216, June 1993.

3. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Pub-
lishers Inc.

4. Moh’d Iqbal AL Ajlouni, Wa’el Hadi, and Jaber Alwedyan. Detecting Phishing Websites Using
Associative Classification. European Journal of Business and Management, 5(15):36–40,
2013.

5. Enrique Alba and José M Troya. A survey of parallel distributed genetic algorithms. Complex-
ity, 4(4):31–52, 1999.

6. J. Alcala-Fdez, R. Alcala, and F. Herrera. A fuzzy association rule-based classification model
for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Transac-
tions on Fuzzy Systems, 19(5):857–872, 2011.

7. J. Alcalá-Fdez, L. Sánchez, S. García, M.J. Jesus, S. Ventura, J.M. Garrell, J. Otero,
C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, and F. Herrera. KEEL: a software tool
to assess evolutionary algorithms for data mining problems. Soft Computing, 13(3):307–318,
2009.

8. Nasullah Khalid Alham, Maozhen Li, Yang Liu, and Suhel Hammoud. A MapReduce-based
distributed SVM algorithm for automatic image annotation. Computers & Mathematics with
Applications, 62(7):2801–2811, 2011.

9. Xavier Amatriain. Mining Large Streams of User Data for Personalized Recommendations.
ACM SIGKDD Explorations Newsletter, 14(2):37–48, 2013.

10. M. Antonelli, P. Ducange, and F. Marcelloni. Genetic Training Instance Selection in Multi-
Objective Evolutionary Fuzzy Systems: A Co-evolutionary Approach. IEEE Transactions on
Fuzzy Systems, 20(2):276–290, 2012.

11. Michela Antonelli, Pietro Ducange, Beatrice Lazzerini, and Francesco Marcelloni. Learning
concurrently data and rule bases of mamdani fuzzy rule-based systems by exploiting a novel
interpretability index. Soft Computing, 15(10):1981–1998, 2011.

12. Michela Antonelli, Pietro Ducange, Beatrice Lazzerini, and Francesco Marcelloni. Learning
knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing
accuracy, complexity and partition integrity. Soft Computing, 15(12):2335–2354, 2011.

139

References

13. Michela Antonelli, Pietro Ducange, and Francesco Marcelloni. An efficient multi-objective evo-
lutionary fuzzy system for regression problems. International Journal of Approximate Rea-
soning, 54(9):1434 – 1451, 2013.

14. Michela Antonelli, Pietro Ducange, and Francesco Marcelloni. A fast and efficient multi-
objective evolutionary learning scheme for fuzzy rule-based classifiers. Information Sciences,
283:36–54, 2014.

15. Jaume Bacardit and Xavier Llorà. Large-scale data mining using genetics-based machine
learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1):37–
61, 2013.

16. Elena Baralis and Paolo Garza. A lazy approach to pruning classification rules. In Proceed-
ings of 2002 IEEE International Conference on Data Mining, pages 35–42, 2002.

17. Alessio Bechini, Francesco Marcelloni, and Armando Segatori. A MapReduce solution for
associative classification of big data. Information Sciences, 332:33–55, 2016.

18. Fernando Berzal, Juan-Carlos Cubero, Nicolás Marın, and Daniel Sánchez. Building multi-
way decision trees with numerical attributes. Information Sciences, 165(1):73–90, 2004.

19. Neha Bharill and Aruna Tiwari. Handling Big Data with Fuzzy based Classification Approach.
In Advance Trends in Soft Computing, pages 219–227. Springer, 2014.

20. Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive online
analysis. The Journal of Machine Learning Research, 11:1601–1604, 2010.

21. Danah Boyd and Kate Crawford. Critical Questions for Big Data. Information, Communication
& Society, 15(5):662–679, 2012.

22. Xavier Boyen and Louis Wehenkel. Automatic induction of fuzzy decision trees and its appli-
cation to power system security assessment. Fuzzy Sets and Systems, 102(1):3–19, 1999.

23. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
24. Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and

regression trees. CRC press, 1984.
25. Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. HaLoop: Efficient Iterative

Data Processing on Large Clusters. Proceedings of the VLDB Endowment, 3(1-2):285–296,
2010.

26. Gregory Buehrer, Srinivasan Parthasarathy, Shirish Tatikonda, Tahsin Kurc, and Joel Saltz.
Toward Terabyte Pattern Mining: An Architecture-conscious Solution. In Proceedings of the
12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’07, pages 2–12, New York, NY, USA, 2007. ACM.

27. G. Caruana, Maozhen Li, and Man Qi. A MapReduce based parallel SVM for large scale
spam filtering. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth Interna-
tional Conference on, volume 4, pages 2659–2662, July 2011.

28. B Chandra and P Paul Varghese. Fuzzy SLIQ decision tree algorithm. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(5):1294–1301, 2008.

29. Guoqing Chen, Hongyan Liu, Lan Yu, Qiang Wei, and Xing Zhang. A new approach to classi-
fication based on association rule mining. Decision Support Systems, 42(2):674–689, 2006.

30. Hsinchun Chen, Roger H. L. Chiang, and Veda C. Storey. Business Intelligence and Analytics:
From Big Data to Big Impact. MIS Q., 36(4):1165–1188, December 2012.

31. Wen-Chin Chen, Chiun-Chieh Hsu, and Yu-Chun Chu. Increasing the effectiveness of asso-
ciative classification in terms of class imbalance by using a novel pruning algorithm. Expert
Systems with Applications, 39(17):12841–12850, 2012.

32. Wen-Chin Chen, Chiun-Chieh Hsu, and Jing-Ning Hsu. Adjusting and generalizing CBA
algorithm to handling class imbalance. Expert Systems with Applications, 39(5):5907–5919,
2012.

33. Yi-lai Chen, Tao Wang, Ben-sheng Wang, and Zhou-jun Li. A Survey of Fuzzy Decision Tree
Classifier. Fuzzy Information and Engineering, 1(2):149–159, 2009.

34. Zuoliang Chen and Guoqing Chen. Building an associative classifier based on fuzzy as-
sociation rules. International Journal of Computational Intelligence Systems, 1(3):262–273,
2008.

140

References

35. X.-Q. Cheng, X.-L. Jin, Y.-Z. Wang, J.-F. Guo, T.-Y. Zhang, and G.-J. Li. Survey on big data
system and analytic technology. Ruan Jian Xue Bao/Journal of Software, 25(9):1889–1908,
2014.

36. Zheru Chi, Hong Yan, and Tuân Pham. Fuzzy Algorithms: With Applications to Image Pro-
cessing and Pattern Recognition, volume 10. World Scientific, 1996.

37. Chin-Tzong Pang Chien-Hua Wang, Wei-Hsuan Lee. Applying Fuzzy FP-Growth to Mine
Fuzzy Association Rules. International Journal of Computer, Electrical, Automation, Control
and Information Engineering, 4(5):788–794, 2010.

38. Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng,
and Kunle Olukotun. Map-Reduce for Machine Learning on Multicore. In Bernhard Schölkopf,
John C. Platt, and Thomas Hoffmanan, editors, Advances in Neural Information Processing
Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Pro-
cessing Systems Vancouver, British Columbia, Canada, December 4-7, 2006, pages 281–
288. MIT Press, 2006.

39. Ellis J. Clarke and Bruce A. Barton. Entropy and MDL discretization of continuous variables
for Bayesian belief networks. International Journal of Intelligent Systems, 15(1):61–92, 2000.

40. Oscar Cordón, María José del Jesus, and Francisco Herrera. A proposal on reasoning meth-
ods in fuzzy rule-based classification systems. International Journal of Approximate Reason-
ing, 20(1):21–45, 1999.

41. Gianni Costa, Riccardo Ortale, and Ettore Ritacco. X-Class: Associative classification of XML
documents by structure. ACM Transactions on Information Systems, 31(1):3:1–3:40, 2013.

42. GM Cramer, RA Ford, and RL Hall. Estimation of toxic hazard—a decision tree approach.
Food and cosmetics toxicology, 16(3):255–276, 1976.

43. Wei Dai and Wei Ji. A MapReduce Implementation of C4.5 Decision Tree Algorithm. Inter-
national Journal of Database Theory and Application, 7(1):49–60, 2014.

44. Adriano Donato De Matteis, Francesco Marcelloni, and Armando Segatori. A new approach
to fuzzy random forest generation. In Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International
Conference on, pages 1–8. IEEE, 2015.

45. Andrea De Mauro, Marco Greco, and Michele Grimaldi. What is big data? A consensual
definition and a review of key research topics. AIP Conference Proceedings, 1644(1):97–
104, 2015.

46. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM, 51(1):107–113, January 2008.

47. Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing Tool. Com-
mun. ACM, 53(1):72–77, January 2010.

48. Sara del Río, Victoria Lǿpez, Josè Manuel Benítez, and Francisco Herrera. On the use of
MapReduce for imbalanced big data using Random Forest. Information Sciences, 285:112–
137, 2014.

49. Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Herrera. A practical tutorial
on the use of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3 – 18, 2011.

50. Ruisheng Diao, Kai Sun, Vijay Vittal, Robert J O’Keefe, Michael R Richardson, Navin Bhatt,
Dwayne Stradford, and Sanjoy K Sarawgi. Decision tree-based online voltage security as-
sessment using pmu measurements. Power Systems, IEEE Transactions on, 24(2):832–839,
2009.

51. James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and Unsupervised Dis-
cretization of Continuous Features. In Proceedings of the Twelfth International Conference
on Machine Learning, pages 194–202. Morgan Kaufmann, 1995.

52. Apache Drill. http://drill.apache.org, Accessed: May 2016.
53. Dryad. http://research.microsoft.com/en-us/collaboration/tools/dryad.aspx/,

Accessed: May 2016.

141

http://drill.apache.org
http://research.microsoft.com/en-us/collaboration/tools/dryad.aspx/

References

54. Sumeet Dua, Harpreet Singh, and H.W. Thompson. Associative classification of mammo-
grams using weighted rules. Expert Systems with Applications, 36(5):9250–9259, 2009.

55. Pietro Ducange and Francesco Marcelloni. Multi-objective evolutionary fuzzy systems. In
Proceedings of the 9th international conference on Fuzzy Logic and Applications, pages 83–
90. Springer-Verlag, 2011.

56. Pietro Ducange, Francesco Marcelloni, and Armando Segatori. A MapReduce-based fuzzy
associative classifier for big data. In Proceedings of the 2015 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pages 1–8, 2015.

57. Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons,
2012.

58. Erin-Elizabeth Durham, Xiaxia Yu, Robert W Harrison, et al. FDT 2.0: Improving scalability
of the fuzzy decision tree induction tool-integrating database storage. In Computational In-
telligence in Healthcare and e-health (CICARE), 2014 IEEE Symposium on, pages 187–190.
IEEE, 2014.

59. Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu,
and Geoffrey Fox. Twister: A Runtime for Iterative MapReduce. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing, pages 810–818.
ACM, 2010.

60. Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox. MapReduce for Data Intensive
Scientific Analyses. In eScience, 2008. eScience’08. IEEE Fourth International Conference
on, pages 277–284. IEEE, 2008.

61. Usama M. Fayyad and Keki B. Irani. Multi-Interval Discretization of Continuous-Valued At-
tributes for Classification Learning. In Proceedings of IJCAI, pages 1022–1029, 1993.

62. M. Fazzolari, R. Alcalá, Y. Nojima, H. Ishibuchi, and F. Herrera. A Review of the Application
of Multi-Objective Evolutionary Fuzzy Systems: Current Status and Further Directions. IEEE
Transactions on Fuzzy Systems, 21(1):45–65, 2013.

63. Michela Fazzolari, Rafael Alcalá, and Francisco Herrera. A multi-objective evolutionary
method for learning granularities based on fuzzy discretization to improve the accuracy-
complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm. Ap-
plied Soft Computing, 24:470–481, 2014.

64. Apache Flink. https://flink.apache.org/. Accessed: May 2016.
65. Apache FlinkML. https://ci.apache.org/projects/flink/flink-docs-master/

libs/ml/. Accessed: May 2016.
66. Apache Flink Streaming. https://flink.apache.org/news/2015/02/09/

streaming-example.html. Accessed: May 2016.
67. María José Gacto, Rafael Alcalá, and Francisco Herrera. Interpretability of linguistic

fuzzy rule-based systems: An overview of interpretability measures. Information Sciences,
181(20):4340–4360, 2011.

68. Sergio Garcia, Julián Luengo, José Antonio Sáez, Victor López, and Francisco Herrera. A
survey of discretization techniques: taxonomy and empirical analysis in supervised learning.
Knowledge and Data Engineering, IEEE Transactions on, 25(4):734–750, 2013.

69. Linda Di Geronimo, Filomena Ferrucci, Alfonso Murolo, and Federica Sarro. A Parallel Ge-
netic Algorithm based on Hadoop MapReduce for the Automatic Generation of JUnit Test
Suites. In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation (ICST), pages 785–793, 2012.

70. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. SIGOPS
Oper. Syst. Rev., 37(5):29–43, October 2003.

71. Apache Giraph. http://giraph.apache.org/. Accessed: May 2016.
72. Thomas Goetz. The decision tree: taking control of your health in the new era of personalized

medicine. Rodale, 2010.
73. Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.-J. Li. Distributed evolu-

tionary algorithms and their models: A survey of the state-of-the-art. Applied Soft Computing
Journal, 34:286–300, 2015.

142

https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-master/libs/ml/
https://ci.apache.org/projects/flink/flink-docs-master/libs/ml/
https://flink.apache.org/news/2015/02/09/streaming-example.html
https://flink.apache.org/news/2015/02/09/streaming-example.html
http://giraph.apache.org/

References

74. Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 17–30, 2012.

75. GraphLab. https://dato.com/products/create/open_source.html. Accessed: May
2016.

76. H2O. http://h2o.ai/. Accessed: May 2016.
77. Apache Hadoop. http://hadoop.apache.org, Accessed: May 2016.
78. Apache Hama. https://hama.apache.org/. Accessed: May 2016.
79. Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques. Elsevier,

2011.
80. Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining Frequent Patterns without Candi-

date Generation: A Frequent-Pattern Tree Approach. Data Min. Knowl. Discov., 8(1):53–87,
2004.

81. Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The Elements of
Statistical Learning: data mining, inference and prediction. The Mathematical Intelligencer,
27(2):83–85, 2005.

82. Qing He, Changying Du, Qun Wang, Fuzhen Zhuang, and Zhongzhi Shi. A parallel incre-
mental extreme SVM classifier. Neurocomputing, 74(16):2532–2540, 2011.

83. Francisco Herrera, Manuel Lozano, and Jose L. Verdegay. Tackling real-coded genetic algo-
rithms: Operators and tools for behavioural analysis. Artificial intelligence review, 12(4):265–
319, 1998.

84. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy H
Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center. In NSDI, volume 11, pages 22–22, 2011.

85. Tzung-Pei Hong, Yeong-Chyi Lee, and Min-Thai Wu. An effective parallel approach for
genetic-fuzzy data mining. Expert Systems with Applications, 41(2):655 – 662, 2014.

86. H. Hu, Y. Wen, T.-S. Chua, and X. Li. Toward scalable systems for big data analytics: A
technology tutorial. IEEE Access, 2:652–687, 2014.

87. Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. SIGOPS Oper. Syst. Rev., 41(3):59–
72, March 2007.

88. H. Ishibuchi and T. Nakashima. Effect of Rule Weights in Fuzzy Rule-Based Classification
Systems. IEEE Transactions on Fuzzy Systems, 9(4):506–515, 2001.

89. H. Ishibuchi and T. Yamamoto. Rule Weight Specification in Fuzzy Rule-Based Classification
Systems. IEEE Transactions on Fuzzy Systems, 13(4):428–435, 2005.

90. Hisao Ishibuchi, Satoshi Mihara, and Yusuke Nojima. Parallel Distributed Hybrid Fuzzy GBML
Models With Rule Set Migration and Training Data Rotation. IEEE Transactions on Fuzzy
Systems, 21(2):355–368, 2013.

91. Hisao Ishibuchi, Tomoharu Nakashima, and Manabu Nii. Classification and Modeling with
Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining (Advanced
Information Processing). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

92. Cezary Z Janikow. A genetic algorithm method for optimizing fuzzy decision trees. Information
Sciences, 89(3):275–296, 1996.

93. Cezary Z Janikow. Fuzzy Decision Trees: Issues and Methods. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, 28(1):1–14, 1998.

94. Chao Jin, Christian Vecchiola, and Rajkumar Buyya. MRPGA: An extension of MapReduce
for parallelizing genetic algorithms. In Proceedings of the 4th IEEE International Conference
on eScience, eScience 2008, pages 214–221, 2008.

95. X. Jin, B.W. Wah, X. Cheng, and Y. Wang. Significance and Challenges of Big Data Research.
Big Data Research, 2(2):59–64, 2015.

143

https://dato.com/products/create/open_source.html
http://h2o.ai/
http://hadoop.apache.org
https://hama.apache.org/

References

96. Fauzi Mohd Johar, Farah Ayuni Azmin, Mohamad Kadim Suaidi, Abdul Samad Shibghat-
ullah, Badrul Hisham Ahmad, Siti Nadzirah Salleh, Mohamad Zoinol Abidin Abd Aziz, and
M Md Shukor. A Review of Genetic Algorithms and Parallel Genetic Algorithms on Graphics
Processing Unit (GPU). In 2013 IEEE International Conference on Control System, Comput-
ing and Engineering (ICCSCE), pages 264–269, 2013.

97. U. Kang, D.H. Chau, and C. Faloutsos. Pegasus: Mining billion-scale graphs in the cloud.
In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference
on, pages 5341–5344, March 2012.

98. Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learning Spark:
Lightning-Fast Big Data Analysis. " O’Reilly Media, Inc.", 2015.

99. Hyunjoong Kim and Wei-Yin Loh. Classification trees with unbiased multiway splits. Journal
of the American Statistical Association, 2011.

100. Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization techniques: A recent survey.
GESTS International Transactions on Computer Science and Engineering, 32(1):47–58,
2006.

101. Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised Machine Learning: A Review of
Classification Techniques, 2007.

102. Tim Kraska. Finding the Needle in the Big Data Systems Haystack. IEEE Internet Computing,
17(1):84–86, 2013.

103. Lukasz A Kurgan and Krzysztof J Cios. Caim Discretization Algorithm. Knowledge and Data
Engineering, IEEE Transactions on, 16(2):145–153, 2004.

104. Douglas Laney. 3D Data Management: Controlling Data Volume, Velocity, and Variety. Tech-
nical report, META Group, February 2001.

105. Bingguo Li, Xiaojun Chen, Mark Junjie Li, Joshua Zhexue Huang, and Shengzhong Feng.
Scalable Random Forests for Massive Data. In Advances in Knowledge Discovery and Data
Mining, pages 135–146. Springer, 2012.

106. Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. PFP: Parallel FP-
Growth for Query Recommendation. In Proceedings of the 2008 ACM Conference on Rec-
ommender Systems, RecSys ’08, pages 107–114, New York, NY, USA, 2008. ACM.

107. Lingjuan Li and Min Zhang. The Strategy of Mining Association Rule Based on Cloud Com-
puting. In Proceedings of the 2011 International Conference on Business Computing and
Global Informatization, BCGIn 2011, pages 475–478, July 2011.

108. Wenmin Li, Jiawei Han, and Jian Pei. CMAR: Accurate and Efficient Classification based on
Multiple Class-Association Rules. In Proceedings of IEEE International Conference on Data
Mining 2001, pages 369–376, 2001.

109. Chun-Wei Lin, Tzung-Pei Hong, and Wen-Hsiang Lu. Linguistic data mining with fuzzy FP-
trees. Expert Systems with Applications, 37(6):4560 – 4567, 2010.

110. Jimmy Lin. MapReduce is good enough? If all you have is a hammer, throw away everything
that’s not a nail! Big Data, 1(1):28–37, 2013.

111. Jimmy Lin and Dmitriy Ryaboy. Scaling big data mining infrastructure: the twitter experience.
ACM SIGKDD Explorations Newsletter, 14(2):6–19, 2013.

112. Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based Frequent Itemset Mining
Algorithms on MapReduce. In Proceedings of the 6th International Conference on Ubiquitous
Information Management and Communication, ICUIMC ’12, pages 76:1–76:8, New York, NY,
USA, 2012. ACM.

113. Bing Liu, Wynne Hsu, and Yiming Ma. Integrating Classification and Association Rule Mining.
In Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining, pages 80–86, 1998.

114. Bing Liu, Yiming Ma, and Ching-Kian Wong. Classification using association rules: Weak-
nesses and enhancements. In RobertL. Grossman, Chandrika Kamath, Philip Kegelmeyer,
Vipin Kumar, and RajuR. Namburu, editors, Data Mining for Scientific and Engineering Appli-
cations, volume 2 of Massive Computing, pages 591–605. Springer US, 2001.

144

References

115. Li Liu, Eric Li, Yimin Zhang, and Zhizhong Tang. Optimization of Frequent Itemset Mining on
Multiple-core Processor. In Proceedings of the 33rd International Conference on Very Large
Data Bases, VLDB ’07, pages 1275–1285. VLDB Endowment, 2007.

116. Xiaodong Liu, Xinghua Feng, and Witold Pedrycz. Extraction of fuzzy rules from fuzzy deci-
sion trees: An axiomatic fuzzy sets (AFS) approach. Data & Knowledge Engineering, 84:1–
25, 2013.

117. Xavier Llora, Abhishek Verma, Roy H Campbell, and David E Goldberg. When huge is rou-
tine: scaling genetic algorithms and estimation of distribution algorithms via data-intensive
computing. In Parallel and Distributed Computational Intelligence, pages 11–41. Springer,
2010.

118. Wei-Yin Loh and Nunta Vanichsetakul. Tree-structured classification via generalized discrim-
inant analysis. Journal of the American Statistical Association, 83(403):715–725, 1988.

119. Victoria López, Sara del Río, José Manuel Benítez, and Francisco Herrera. On the use of
MapReduce to build linguistic fuzzy rule based classification systems for big data. In 2014
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1905–1912, 2014.

120. Victoria López, Sara del Río, José Manuel Benítez, and Francisco Herrera. Cost-sensitive
linguistic fuzzy rule based classification systems under the MapReduce framework for imbal-
anced big data. Fuzzy Sets and Systems, 258:5–38, 2015.

121. Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed GraphLab: A Framework for Machine Learning and Data
Mining in the Cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

122. Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. GraphLab: A New Framework for Parallel Machine Learning. CoRR,
abs/1006.4990, 2010.

123. Joel Pinho Lucas, Anne Laurent, Maria N Moreno, and Maguelonne Teisseire. A fuzzy as-
sociative classification approach for recommender systems. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 20(04):579–617, 2012.

124. S. Otto M. Snir. MPI-The Complete Reference: The MPI Core. MIT Press, 1998.
125. Yue Ma, Guoqing Chen, and Qiang Wei. A novel business analytics approach and case

study–fuzzy associative classifier based on information gain and rule-covering. Journal of
Management Analytics, 1(1):1–19, 2014.

126. Sam Madden. From Databases to Big Data. IEEE Internet Computing, 16(3):4–6, 2012.
127. Apache Mahout. http://mahout.apache.org, Accessed: May 2016.
128. Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty

Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 135–146. ACM, 2010.

129. Kulwinder Singh Mann and Navjot Kaur. Cloud-deployable health data mining using secured
framework for Clinical decision support system. In Computing and Communication (IEM-
CON), 2015 International Conference and Workshop on, pages 1–6, Oct 2015.

130. Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, Alan J. Miller,
and Michael Upton. Hyper-Threading Technology Architecture and Microarchitecture. Intel
Technology Journal, 6(1):4–15, February 2002.

131. Vivien Marx. Biology: The big challenges of big data. Nature, 498(7453):255–260, 2013.
132. Nathan Marz and James Warren. Big Data: Principles and best practices of scalable realtime

data systems. Manning Publications Co., 2015.
133. Andrew W McNabb, Christopher K Monson, and Kevin D Seppi. Parallel PSO Using MapRe-

duce. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 7–14. IEEE,
2007.

134. Swarup Medasani, Jaeseok Kim, and Raghu Krishnapuram. An overview of membership
function generation techniques for pattern recognition. International Journal of approximate
reasoning, 19(3):391–417, 1998.

145

http://mahout.apache.org

References

135. Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: Interactive Analysis of Web-scale Datasets. Proc. VLDB
Endow., 3(1-2):330–339, September 2010.

136. Dimitris Meretakis and Beat Wuthrich. Extending Naive Bayes Classifiers Using Long Item-
sets. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’99, pages 165–174, New York, NY, USA, 1999. ACM.

137. Apache Mesos. http://mesos.apache.org/. Accessed: May 2016.
138. Ambiga Dhiraj Michael Minelli, Michele Chambers. Big data big analytics: emerging business

intelligence and analytic trends for today’s businesses. John Wiley & Sons, 2013.
139. Debahuti Mishra, Shruti Mishra, Sandeep Kumar Satapathy, and Srikanta Patnaik. Genetic

Algorithm based Fuzzy Frequent Pattern Mining from Gene Expression Data. In Soft Com-
puting Techniques in Vision Science, pages 1–14. Springer, 2012.

140. Apache MLlib. https://spark.apache.org/mllib/, Accessed:February 2016.
141. MOA - Massive Online Analysis. http://moa.cms.waikato.ac.nz/. Accessed: May 2016.
142. Muriel J Montbriand. Decision tree model describing alternate health care choices made by

oncology patients. Cancer Nursing, 18(2):117, 1995.
143. Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Mad-

havapeddy, and Steven Hand. Ciel: a universal execution engine for distributed data-flow
computing. In Proc. 8th ACM/USENIX Symposium on Networked Systems Design and Im-
plementation, pages 113–126, 2011.

144. AJ Myles and SD Brown. Induction of decision trees using fuzzy partitions. Journal of chemo-
metrics, 17(10):531–536, 2003.

145. L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed Stream Computing Platform.
In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, pages 170–
177, Dec 2010.

146. Loan T.T. Nguyen, Bay Vo, Tzung-Pei Hong, and Hoang Chi Thanh. CAR-miner: An efficient
algorithm for mining class-association rules. Expert Systems with Applications, 40(6):2305–
2311, 2013.

147. Albert Orriols-Puig, Francisco J Martínez-López, Jorge Casillas, and Nick Lee. Unsuper-
vised KDD to creatively support managers’ decision making with fuzzy association rules: A
distribution channel application. Industrial Marketing Management, 42(4):532–543, 2013.

148. Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in Action. Manning
Shelter Island, 2011.

149. Ferenc Peter Pach, Attila Gyenesei, and Janos Abonyi. Compact fuzzy association rule-based
classifier. Expert Systems with Applications, 34(4):2406 – 2416, 2008.

150. Indranil Palit and Chandan K. Reddy. Scalable and Parallel Boosting with MapReduce. Knowl-
edge and Data Engineering, IEEE Transactions on, 24(10):1904–1916, Oct 2012.

151. Bin Pei, Tingting Zhao, Suyun Zhao, and Hong Chen. Fuzzy Associative Classifier for Prob-
abilistic Numerical Data. In Foundations and Applications of Intelligent Systems, pages 563–
578. Springer, 2014.

152. Iko Pramudiono and Masaru Kitsuregawa. Parallel FP-Growth on PC Cluster. In Advances in
Knowledge Discovery and Data Mining, volume 2637 of Lecture Notes in Computer Science,
pages 467–473. Springer Berlin Heidelberg, 2003.

153. RZ Qi, ZJ Wang, and SY Li. Pairwise Test Generation Based on Parallel Genetic Algorithm
with Spark. In International Conference on Computer Information Systems and Industrial
Applications. Atlantis Press, 2015.

154. J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
155. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1993.
156. Anand Rajaraman, Jeffrey D Ullman, Jeffrey David Ullman, and Jeffrey David Ullman. Mining

of massive datasets, volume 1. Cambridge University Press Cambridge, 2012.

146

http://mesos.apache.org/
https://spark.apache.org/mllib/
http://moa.cms.waikato.ac.nz/

References

157. Sergio Ramirez-Gallego, Salvador Garcia, Hector Mourino-Talin, and David Martinez-Rego.
Distributed Entropy Minimization Discretizer for Big Data Analysis under Apache Spark. In
Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 2, pages 33–40. IEEE, 2015.

158. Sergio Ramírez-Gallego, Salvador García, Héctor Mouriño-Talín, David Martínez-Rego,
Verónica Bolón-Canedo, Amparo Alonso-Betanzos, José Manuel Benítez, and Francisco Her-
rera. Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2015.

159. Brian D. Ripley. Pattern recognition and neural networks. Cambridge university press, 1996.
160. Miguel Rodríguez, Diego M Escalante, and Antonio Peregrín. Efficient Distributed Genetic

Algorithm for Rule Extraction. Applied soft computing, 11(1):733–743, 2011.
161. Ansel Y Rodríguez-González, José Fco Martínez-Trinidad, Jesús A Carrasco-Ochoa, and

José Ruiz-Shulcloper. Mining frequent patterns and association rules using similarities. Ex-
pert Systems with Applications, 40(17):6823–6836, 2013.

162. Lior Rokach and Oded Maimon. Data mining with decision trees: theory and applications.
World scientific, 2014.

163. Diego Sánchez-Moreno, Ana Belén Gil, and María N Moreno. TV-SeriesRec: A recommender
system based on fuzzy associative classification and semantic information. In Trends in
Practical Applications of Agents and Multiagent Systems, pages 201–208. Springer, 2013.

164. Tawny Schlieski and Brian David Johnson. Entertainment in the Age of Big Data. Proceedings
of the IEEE, 100(Special Centennial Issue):1404–1408, 2012.

165. Sangwon Seo, Edward J Yoon, Jaehong Kim, Seongwook Jin, Jin-Soo Kim, and Seungryoul
Maeng. HAMA: An Efficient Matrix Computation with the MapReduce Framework. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International Confer-
ence on, pages 721–726. IEEE, 2010.

166. David J Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. crc
Press, 2003.

167. Pritpal Singh. Big Data Time Series Forecasting Model: A Fuzzy-Neuro Hybridize Approach.
In Computational Intelligence for Big Data Analysis, pages 55–72. Springer, 2015.

168. Apache Spark. https://spark.apache.org, Accessed: May 2016.
169. Apache Spark Streaming. http://spark.apache.org/streaming/, Accessed: May 2016.
170. Apache Storm. https://storm.apache.org, Accessed: May 2016.
171. Yanmin Sun, Yang Wang, and Andrew K.C. Wong. Boosting an associative classifier. Knowl-

edge and Data Engineering, IEEE Transactions on, 18(7):988–992, July 2006.
172. Kiyoharu Tagawa and Takashi Ishimizu. Concurrent differential evolution based on MapRe-

duce. International Journal of Computers, 4(4):161–168, 2010.
173. F. Thabtah. A review of associative classification mining. Knowledge Engineering Review,

22(1):37–65, 2007.
174. I Triguero, M Galar, S Vluymans, C Cornelis, H Bustince, F Herrera, and Y Saeys. Evolution-

ary undersampling for imbalanced big data classification. In Proceedings of IEEE Congress
on Evolutionary Computation (CEC 2015), 2015.

175. I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera. MRPR: A MapReduce solution
for prototype reduction in big data classification. Neurocomputing, 150(PA):331–345, 2015.

176. Isaac Triguero, Sara del Río, Victoria López, Jaume Bacardit, José M Benítez, and Francisco
Herrera. ROSEFW-RF: The winner algorithm for the ECBDL’14 big data competition: An
extremely imbalanced big data bioinformatics problem. Knowledge-Based Systems, 87:69–
79, 2015.

177. Isaac Triguero, Daniel Peralta, Jaume Bacardit, Salvador García, and Francisco Herrera.
MRPR: A MapReduce solution for prototype reduction in big data classification. neurocom-
puting, 150:331–345, 2015.

178. Twister: Iterative MapReduce. http://iterativemapreduce.org/. Accessed: May 2016.
179. AJ Umbarkar and MS Joshi. Review of parallel genetic algorithm based on computing

paradigm and diversity in search space. ICTACT Journal on Soft Computing, 3:615–622,
2013.

147

https://spark.apache.org
http://spark.apache.org/streaming/
https://storm.apache.org
http://iterativemapreduce.org/

References

180. Adriano Veloso, Wagner Meira Jr., and Mohammed J. Zaki. Lazy Associative Classification.
In Proceedings of the Sixth International Conference on Data Mining, ICDM ’06, pages 645–
654, Washington, DC, USA, 2006. IEEE Computer Society.

181. Abhishek Verma, Xavier Llora, David E Goldberg, and Roy H Campbell. Scaling genetic
algorithms using MapReduce. In ISDA 2009 - 9th International Conference on Intelligent
Systems Design and Applications, pages 13–18, 2009.

182. Bay Vo, Tzung-Pei Hong, and Bac Le. A lattice-based approach for mining most generaliza-
tion association rules. Knowledge-Based Systems, 45(0):20–30, 2013.

183. Vowpal wabbit. http://hunch.net/~vw/, Accessed: May 2016.
184. Dingxian Wang, Xiao Liu, and Mengdi Wang. A DT-SVM Strategy for Stock Futures Pre-

diction with Big Data. In Computational Science and Engineering (CSE), 2013 IEEE 16th
International Conference on, pages 1005–1012. IEEE, 2013.

185. Li-Xin Wang and Jerry M Mendel. Generating fuzzy rules by learning from examples. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 22(6):1414–1427, 1992.

186. Ran Wang, Yu-Lin He, Chi-Yin Chow, Fang-Fang Ou, and Jian Zhang. Learning ELM-Tree
from big data based on uncertainty reduction. Fuzzy Sets and Systems, 258:79–100, 2015.

187. Shanshan Wang, Junhai Zhai, Hong Zhu, and Xizhao Wang. Parallel Ordinal Decision Tree
Algorithm and Its Implementation in Framework of MapReduce. In Machine Learning and
Cybernetics, pages 241–251. Springer, 2014.

188. Xianchang Wang, Xiaodong Liu, Witold Pedrycz, and Lishi Zhang. Fuzzy rule based decision
trees. Pattern Recognition, 48(1):50–59, 2015.

189. XiZhao Wang, Daniel S. Yeung, and Eric C. C. Tsang. A comparative study on heuristic
algorithms for generating fuzzy decision trees. Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, 31(2):215–226, 2001.

190. R. Weber. Automatic knowledge acquisition for fuzzy control applications. In Proc. Interna-
tional Symposium on Fuzzy Systems (Japan). July, pages 9–12, 1992.

191. Rosina Weber. Fuzzy-id3: a class of methods for automatic knowledge acquisition. In The
second international conference on fuzzy logic and neural networks, pages 265–268, 1992.

192. S. Wedyan. Review and Comparison of Associative Classification Data Mining Approaches.
International Journal of Computer, Electrical, Automation, Control and Information Engineer-
ing, 8(1):34 – 45, 2014.

193. Louis Wehenkel and Mania Pavella. Decision tree approach to power systems security as-
sessment. International Journal of Electrical Power & Energy Systems, 15(1):13–36, 1993.

194. Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc, 3rd edition edition, 2012.
195. Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.
196. Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6):pp.

80–83, 1945.
197. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann, 3rd edition, June
2011.

198. Bihan Wu, Gang Wu, and Mengdong Yang. A MapReduce based Ant Colony Optimization
approach to combinatorial optimization problems. In The Eighth International Conference on
Natural Computation (ICNC), pages 728–732, 2012.

199. Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data. Knowl-
edge and Data Engineering, IEEE Transactions on, 26(1):97–107, 2014.

200. J. Xin, Z. Wang, L. Qu, and G. Wang. Elastic extreme learning machine for big data classifi-
cation. Neurocomputing, 149(PA):464–471, 2015.

201. Xiaoxin Yin and Jiawei Han. CPAR: Classification based on predictive association rules.
In Proceedings of the third SIAM international conference on data mining, pages 331–335,
2003.

202. Yongwook Yoon and Gary G. Lee. Two scalable algorithms for associative text classification.
Information Processing and Management, 49(2):484–496, 2013.

148

http://hunch.net/~vw/

203. Yufei Yuan and Michael J Shaw. Induction of fuzzy decision trees. Fuzzy Sets and systems,
69(2):125–139, 1995.

204. H. Yuwen. Cost-sensitive incremental Classification under the MapReduce framework for
Mining Imbalanced Massive Data Streams. Journal of Discrete Mathematical Sciences and
Cryptography, 18:177–194, 2015.

205. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 2–2, 2012.

206. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster Computing with Working Sets. In Proceedings of the 2nd USENIX Confer-
ence on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

207. O.R. Zaiane, M. El-Hajj, and P. Lu. Fast parallel association rule mining without candidacy
generation. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference
on, pages 665–668, 2001.

208. Mohsen Zeinalkhani and Mahdi Eftekhari. Fuzzy partitioning of continuous attributes through
discretization methods to construct fuzzy decision tree classifiers. Information Sciences,
278:715–735, 2014.

209. Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel kNN joins for large data in MapRe-
duce. In Proceedings of the 15th International Conference on Extending Database Technol-
ogy, EDBT ’12, pages 38–49, New York, NY, USA, 2012. ACM.

210. Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation mode from raw
gps data for geographic applications on the web. In Proceedings of the 17th international
conference on World Wide Web, pages 247–256. ACM, 2008.

211. Chi Zhou. Fast parallelization of differential evolution algorithm using MapReduce. In Pro-
ceedings of the 12th annual conference on Genetic and evolutionary computation, pages
1113–1114, 2010.

212. Le Zhou, Zhiyong Zhong, Jin Chang, Junjie Li, J.Z. Huang, and Shengzhong Feng. Balanced
parallel FP-Growth with MapReduce. In Proc. of 2010 IEEE Youth Conference on Information
Computing and Telecommunications (YC-ICT), pages 243–246, Nov 2010.

149

150

Acknowledgments

Foremost, my deepest and sincere gratitude is to my advisor Prof. Francesco Marcelloni,
for his patient, continuous support and motivation during my studies and related research.
I have been extremely lucky to have such advisor who gave me the freedom to explore on
my own but at the same time helped me when my steps faltered. Despite the myriad of
commitments, he has been always present and his expertise and knowledge have been
a precious treasure for my research. I should like to take this opportunity to congratulate
Prof. Marcelloni for his recent promotion to Full Professor. The extra hours spent for work-
ing on several fields such as research, projects, and teaching, and the careful attention
to the details have been a symbol and guide to follow for me and my future career. Best
wishes for continued success.

Moreover, I would like to acknowledge the other two professors Pietro Ducange and
Alessio Bechini for their contribution, encouragement and practical advices in the most
of my papers and projects. I consider myself very fortunate to have had the possibility to
work with them. Besides the academic activities, I would like to express my congratula-
tions to Pietro for the newborn daughter. I know that he will be a lovely dad and I truly
wish all the best to him and his family.

During my doctoral, I spent about four months at the University of Alberta in Canada
as Ph.D visiting student. They have been one of the most important experience of my
doctorate and life as well. In that period, I had the occasion of collaborating with Prof.
Witold Pedrycz who supervised my research while in Edmonton whose results are dis-
cussed in the fourth chapter. I want to thank Prof. Pedrycz. Further, in Canada I met very
good people from all around the world and I want to say thank to all of them, especially
to my friends Orion, Eliezyer and Riccardo, Tom and my roommates Richards, Spencer
and Steve. It has been nice spent times with them, tasting different typical foreign dishes
and beers and hiking in the Rocky Mountains.

I am also grateful to all my colleagues and especially to my labmates of Department
of Information Engineering. It was nice alternating times of hard work with funny moments
and jokes and I wish to all of them the best for their careers.

151

I would warmly thank all my friends of my home town, especially “Real Moda & Pelle”
football team, Mario Emme, Manuel (Lele), Er Pera (Alessandro), Claudio (Er Drago/Sa-
tana), Daniele (Er Biondo), Pierpaolo (Billy), Guido and Maurizio (Er Banana). I shared
beautiful and funny moments with them from the first years of my life and I established
invaluable friendship despite the distance and the time.

During my last ten years in Pisa, I have met always wonderful people. Among them
I would like to thank my football teams “I Passi”, “Tremanza” and “Le Fere”. It was an
honor have played with them as well as the special dinners spent together. A grateful
thanks goes to my friends that I met during my first years at the university, especially to
Antonio (Gigione), Francesco, Alessandro (Loki) and Daniela, Daniele e Santina, Chiara
and Anna, Andrea (Who?) and Viviana. They let me laugh everyday even when I had to
face some unhappy moments.

Special thanks go to my best friend Marco. He has been always present and even if
in the last year we are living in different countries, he has still supported, encouraged,
entertained, and helped me every times. I consider myself really lucky to have met a guy
like him and I’m sure that our “bromance” is strong enough to be stable despite distance
and time.

A heartfelt thanks goes to Federica for being such a patient and comprehensive girl-
friend even when I was only thinking about simulations and optimizations of code. Her
smile and spontaneity have always made my days, especially in harsh times. She is
definitively the best that could happen to me in the last years and I hope she will be on
my side when I will face any kind of problems.

Last but not the least, I would like to thank my family: my beloved parents and
my lovely sister (and his husband Vittorio) for supporting me financially and spiritually
throughout my studies and my life as well. I would not be able to become who I am now
without their precious advices, constant comprehension, and boundless love and kind-
ness. I hope one day to be a good example for my family as well as you have been for
me.

Finally, I owe my gratitude to all those people who have made this dissertation pos-
sible. Someone I may have forgotten but I hope I have cited the most important ones.
However, to all of them who have shared my social and scientific growth go my sincerely
gratitude because my graduate experience has been one that I will cherish forever.

152

	Introduction
	Big Data: technologies and state-of-the-art
	Distributed Processing Frameworks
	MapReduce
	Apache Hadoop
	Apache Spark

	Associative Classification
	Associative Classifiers
	Notation

	MRAC: a MapReduce Solution for Associative Classification of Big Data
	Parallel FP-Growth
	The distributed approach
	Discretization
	CAR Mining
	Rule Pruning
	Classification

	MRAC+: a faster version of MRAC
	Experimental Study
	Performance of MRAC+ and MRAC
	Scalability analysis
	Tackling the dataset size

	Fuzzy Associative Classifiers
	Fuzzy Rule Based Classifiers
	Fuzzy association rules for classifications

	AC-FFP: a novel Associative Classification model based on a Fuzzy Frequent Pattern mining algorithm
	The Proposed Approach
	Discretization
	Fuzzy CAR Mining
	Pruning
	Classification

	Experimental Study

	DAC-FFP: a Distributed implementation of AC-FFP for Big Data
	The Distributed Approach
	Distributed Fuzzy Partitioning
	Distributed Fuzzy CAR Mining
	Distributed Fuzzy CAR Pruning
	Reasoning methods

	Experimental Study
	Analysis of the fuzzy associative classifier performance
	Scalability Analysis

	Tree based Classification
	Fuzzy Decision Trees
	Background

	The Proposed Algorithms
	Fuzzy Partitioning
	Fuzzy Decision Tree Learning
	The Distributed Approach

	Experimental Study
	Performance analysis
	Scalability analysis
	Dealing the dataset size

	Multi-Objective Evolutionary Fuzzy System for Big Data
	Distributed MOEA: state-of-the-art
	The Proposed Algorithm
	PAES-RCS
	The Distributed Approach

	Experimental Study
	Performance of DPAES-RCS: accuracy and complexity
	Scalability analysis

	Conclusions
	References

