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Abstract. An approach is presented in which the object under design
can grow continually and infinitely. First, a small object (that we call the
embryo) has to be prepared to solve the trivial instance of a problem.
Then the evolved program (the constructor) is applied on the embryo to
create a larger object (solving a larger instance of the problem). Then
the same constructor is used to create a new instance of the object from
the created larger object and so on. Every new instance of the object is
able to perform the function of all previous instances. As an example,
constructors for growing sorting and median networks are evolved and
analyzed.

1 Introduction

In the past few years, evolutionary algorithms have successfully been applied
to automatically design various objects including computer programs, neural
networks, electronic circuits, etc. [1, 16]. However, these methods have produced
interesting results only for design of relatively small objects.

For instance, the problem of scale is usually considered as a major problem of
evolvable hardware. It is practically impossible to evolve really complex circuits
from scratch nowadays. Complex systems require huge number of gates (inputs,
outputs, etc.) to be implemented, i.e. long genotypes in the case of the evolu-
tionary approach. Long genotypes imply large search spaces. Then it is usually
difficult to design an efficient search algorithm. Miller et al. offer two ways to
build large systems [17]: (1) to discover a general scalable principle of design or
(2) to produce building blocks as efficient and large as possible. Three major
approaches have been developed in order to overcome the scaling problem [19]:
functional level evolution, incremental evolution and the embryonic approach.

The concept of development in which the entire organism is built from
a mother cell was adopted from biology to allow the “growth” of objects’ com-
plexity. When such a concept is implemented, the chromosome has to contain a
prescription for constructing a target object.

It is a common feature of artificial developmental systems that the object
under construction is not functional during its development. In contrary, bio-
logical systems are able to perform some operations at any given time point
of the development. These “skills” are improved and new skills are continually



created during the growth of the system. The organism does not usually forget
the obtained skills.

In this paper we present an approach in which an object can grow continually
and infinitely. First, a small object (that we call the embryo) has to be prepared
to solve the trivial instance of a problem. Then the evolved program (the con-
structor) is applied on the embryo to create a larger object (solving a larger
instance of the problem). Then the constructor is used to create a new instance
of the object from the created larger object and so on. Every new instance of
the object is able to perform the function of all previous instances.

The main objective of this research is to design the constructor automati-
cally by means of evolutionary techniques. The constructor will consist of two
basic operations: copy and modify. It is shown that such the constructor can be
evolved. As examples large sorting networks and median networks will be con-
structed because it is difficult to evolve large instances of these objects directly.

This paper is organized as follows. In Section 2 related research is presented
in which evolutionary algorithms were combined with developmental systems.
Sorting networks and medians are considered as the application domain in Sec-
tion 3. The evolutionary algorithm utilized to design constructors of an infinitely
growing median network is described in Section 4. Section 5 summarizes and dis-
cusses the obtained results. Finally conclusions are given in Section 6.

2 Related Work

Nature approaches the problem of scale by using a complicated mapping em-
bodied in the process of biological development. Biological genomes contain a
complex process of regulated gene expression to map genotype to phenotype.

In bioinspired hardware and software systems this mapping is often im-
plemented by means of re-writing systems. Boers and Kuiper have utilized
L-systems to create the architecture of feed-forward artificial neural networks
(numbers of neurons and their connections) [2]. Haddow et al. have adopted
L-system in order to evolve scalable circuits [7]. Kitano have applied a matrix
re-writing to develop digital circuits. Three dimensional mechanical objects have
been designed by evolution that also utilized a variant of L-system [9].

John Koza has introduced an original method in which analog circuits (com-
petitive with best human designs) have been constructed according to the in-
structions produced by genetic programming [16]. Koza’s team employed this
technique for routine duplication of fourteen patented inventions in the analog
circuit domain [20].

In another approach, Gordon and Bentley have utilized the interaction of
genes and proteins to model the development in digital circuits [6]. CAM Brain
machine [5] and POEtic platform [21] are examples of those systems that use
cellular automata-based development.

Miller and Thomson have invented a developmental method for growing
graphs and circuits using Cartesian genetic programming in order to evolve sim-
ilar constructors to ours (referred to as iterators in [18]). Because they worked at



a very low level of abstraction (as configuration bits of a hypothetical reconfig-
urable hardware) no general constructor has been found for even parity circuits.
However, other researchers have successfully evolved completely general solu-
tions to even-parity problems; for instance Huelsbergen, who has worked at the
machine code level [10].

3 Sorting Networks and Medians

The concept of sorting networks was introduced in 1954; Knuth traced the his-
tory of this problem in his book [14].

A compare—swap of two elements (a,b) compares and exchanges a and b so
that we obtain a < b after the operation. A sorting network is a sequence of
compare—swap operations that depends only on the number of elements to be
sorted, not on the values of the elements [14].

Although a standard sorting algorithm such as quicksort usually requires a
lower number of compare operations than a sorting network, the advantage of the
sorting network is that the sequence of comparisons is fixed. Thus it is suitable
for parallel processing and hardware implementation, especially if the number
of sorted elements is small. Figure 1 shows an example of a sorting network.
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Fig.1. (a) A 3-sorting network consists of 3 components, i.e. of 6 subcomponents
(elements of maximum or minimum). A 3-median network consists of 4 subcomponents.
(b) Alternative symbol. This sorting network can be tested in a single run if 2%bits can
be stored in a single data unit.

Having a sorting network for N inputs, the median is simply the output
value at the middle position (we are interested in odd N only in this paper).
For example, efficient calculation of the median value is important in signal
processing where median filters are widely used with N = 3x3 or 5x5 [19].

The number of compare—swap components and the delay are two crucial pa-
rameters of any sorting network. Since we will only be interested in the number of
components in this paper, the following Table 1 shows the number of components
of some of the best currently know sorting networks, i.e. those which require the
least number of components for sorting N elements. Some of these networks



(N =13-16) were discovered using evolutionary techniques [3, 8, 12, 16]. How-
ever, the evolutionary approach is not scalable. For instance, we were not able
to directly evolve any 25-median network up to now.

Note that the compare-swap consists of two subcomponents: maximum and
minimum. Because we need the middle output value only in the case of the
median implementation, we can omit some subcomponents (dead code at the
output marked in gray in Fig. 1) and so to reduce implementation cost in hard-
ware. Hence in the case of K components, we obtain 2K — K + 1 subcomponents
(Table 1, line 3). However, in addition to deriving median networks from sorting
networks, specialized networks have been proposed to implement optimal median
networks. Table 1 (line 2) also presents the best-known numbers of subcompo-
nents for optimal median networks. These values are derived from the table on
page 226 of Knuth’s book [14] and from papers [4, 15, 22]. The space complexity
of the general algorithm constructing sorting networks is O(N (logN)?) [14].

Table 1. Best known minimum-comparison sorting networks and median networks for
some N. ¢(N) denotes the number of compare-swap operations, s(N) is the number of
subcomponents. The last line holds for median networks derived from sorting networks.
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The zero—one principle helps with evaluating sorting networks. It states that
if a sorting network with N inputs sorts all 2V input sequences of 0’s and 1’s into
nondecreasing order, it will sort any arbitrary sequence of N numbers into non-
decreasing order [14]. Furthermore, if we use a proper encoding, on say 32 bits,
and binary operators AND instead of minimum and OR instead of maximum,
we can evaluate 32 test vectors in parallel and thus reduce the testing process 32
times. Figure 1 illustrates this idea for 3 bits. Note that it is usually impossible
to obtain the general solution if only a subset of input vectors is utilized during
the evolutionary design [11].

4 Development Using Copy and Modify

Consider that we have a 3-median network (i.e. N = 3 as seen in Fig. 1) and
we are going to evolve a program (constructor) that will create a 5-median
network from the 3-median network. The same program has to be able to create
a 7-median network from the 5-median network and so on. Another available
information is the number of active inputs (i.e. N) of the currently constructed
network.
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Fig. 2. Designing larger sorting networks from smaller sorting networks by means of
constructor.

4.1 Representation

The 3-median network is represented by the sequence of pairs (1, 0)(2, 1)(1, 0)
indicating the ordering of compare—swap operations over the inputs 0, 1 and 2.
The constructor is also a sequence of instructions: each of which is encoded as
three integers. Only three instructions are utilized: copy, modify and skip. Table 2
introduces their operational codes and parameters. The sequences representing
sorting networks as well as constructors are implemented using variable-length
arrays. A sentinel (STOP) indicates the end of the valid sequence.

Table 2. Instruction set. The pc pointer is increased to pc < pc + 3 after execution of
each instruction. The former sequence (a, b)(c, d)...is transcribed to new sequence (a’,
b’)(c’, d’)... M denotes the number of inputs of the currently created median network.

Instruction|Opcode |Opl|Op2 |Description

ModifyN 0 x |y [(@,b)« ((a+z)mod M, (b+y)mod M)
pn —pn+ 2

ModifyR 1 x |y [(@,b)« ((a+z)mod M, (b+y)mod M)
pf+<pf+2,pn+pn+2

CopyN 2 x | y |copies M — z pairs from former to new sequence
pn < pn+2(M — x)

CopyR 3 x | y |copies M — z pairs from former to new sequence
pf < pf +2(M — =), pn + pn+2(M — )

Skip 4 x |y |pfpf+2

The constructor, according to its program, sequentially reads the embryo and
copies (or copies and modifies) the embryo into the next instance. Three pointers
are utilized in order to indicate the current position in sequences: the embryo
pointer (pf), the next instance pointer (pn) and the constructor pointer (pc).
The constructor creates the next instance of the network not from the entire
previous instance, but only from its newest part. The process of construction
terminates when either STOP symbol is read in the sequence of “embryo” or



all instructions of the constructor have been executed. The constructed median
network is then tested in the process of fitness calculation.

4.2 Evolutionary algorithm

Any chromosome consists of a sequence of integers that represents a constructor.
We initially approached the problem with variable-length chromosomes. How-
ever, the approach did not produce general constructors. Hence we had to use
the fixed size of chromosomes. After some experiments we learned that useful
constructors consist of 5-8 instructions, i.e. 15-24 integers.

A typical setting of the evolutionary algorithm is as follows. Initial popula-
tion of 320 individuals is seeded randomly using alleles of 0—4. New individuals
are generated using operators of crossover (p. = 60%) and mutation (1 integer
per chromosome). Tournament selection with base 2 is combined with elitism.
The evolutionary algorithm is left running until a fully correct individual is
found or 2000 generations are exhausted. We also increase mutation rate if no
improvement is observable during the last 30 generations.

The objective is to evolve a general constructor. However, because of scala-
bility problems only several instances of the median network can be evaluated
in the fitness calculation process. Hence a candidate constructor is used to build
the 5-median, 7-median, 9-median and 11-median network from the 3-median
embryo. We have not been able to evolve general constructors by testing smaller
networks. The fitness value is calculated as follows:

fitness = ms + m7 + mg + ma1,

where my, denotes the number of median values calculated correctly from 2F test-
ing binary vectors of size k. Hence 32+128+512+2048=2720 is the best possible
value that we could obtain.

5 Results and Discussion

If a constructor is able to create the median network for a sufficiently high value
of N (N=27 in our case) then we consider the constructor as general. In our
experiments, 108 of 180 runs led to the perfect fitness. However, we identified only
11 general constructors. These general constructors (listed in Table 3) consist
of 5 to 8 instructions. For example, gr5-3 and gr5-4 are practically the same
programs because they differ only in the last integer, which represents the second
(meaningless) operand of the Modify instruction as seen in Table 2.

We were also interested in reducing the number of components in the evolved
designs. Table 4 shows the size of two median networks generated using gr5-4
and gr6-1 constructors. While the gr5-4 constructor consists of six instructions,
the gr6-1 utilizes only five instructions. The gr5-4 constructor — and thus also
gr5-1 and gr5-3 constructors — are probably the best constructors we have ever
evolved. We were not able to reduce the size of networks if only 5 instructions
should be used. Furthermore, Table 4 also shows that we were not able to



Table 3. Chromosomes of eleven general constructors evolved.

Constructor | Chromosome

gr3-6 0,2,2, 0,3,3, 2,24, 0,2,2, 3,4,4, 3,4,0, 2,1,3, 2,1,3
grd-6 0,2,2, 0,3,2, 0,2,2, 0,3,3, 0,2,1, 3,0,4, 2,2,0
grd-7 0,2,2, 0,3,1, 0,2,4, 0,3,3, 0,2,2, 3,0,1, 2,2,3
grd-8 0,2,2, 0,2,3, 0,0,2, 0,3,3, 0,2,1, 3,34, 3,2,3
grd-9 0,2,2, 0,1,1, 0,3,2, 0,3,3, 3,2,3, 3,1,4, 0,2,0
gro-1 0,2,2, 0,3,2, 0,3,1, 0,3,3, 3,1,0, 2,3,2

grb-3 0,2,2, 0,3,1, 0,3,3, 0,2,2, 3,2,3, 2,0,3

grb-4 0,2,2, 0,3,1, 0,3,3, 0,2,2, 3,2,3, 2,0,4

gré-1 1,2,1,0,2,2, 0,1,1, 2,3,2, 2,1,1

grl3-8 1,2,1,0,2,2, 0,1,1, 2,30, 3,1,2

grl3-9 1,2,1,0,2,2, 0,1,1, 2,3,2, 3,1,3

beat the well-known general approach for designing larger networks illustrated
in Fig. 5.

Table 4. The number of compare-swap operations ¢(IN) used by two evolved construc-
tors and the conventional approach (according to Fig. 5) to realize growing median
networks.

N 3|5 | 7119|1113 15 17 | 19 | 21 23 | 25 | 27
gro-4 3110|121 (36|55 |78 | 105 | 136 | 171 | 210 | 253 | 300 | 351
gr6-1 3110|2340 |61 |86 | 115 | 148 | 185 | 226 | 271 | 320 | 373
conventional | 3 |10 [ 21 |36 |55 | 78 | 105 | 136 | 171 | 210 | 253 | 300 | 351

Figure 3 shows that the gr4-5 constructor generates regular pattern of compare—
swap operations. First, new four compare—swap operations are generated in order
to deal with two emerging inputs. Then the median network is copied from the
previous instance. It is interesting to see that the first two comparisons can be
performed in parallel.

It was surprising for us that although we wanted to evolve general construc-
tors only to create median networks, we obtained general constructors for build-
ing sorting networks. We used all 11 general constructors to generate sorting
networks and they worked! An open question is whether general constructors
exist that create median networks only but they do not create sorting networks.
We can observe after the analysis of growing networks that their structure is
very similar to the well-known principle of building a sorting network for N + 1
elements from a sorting network of N elements (see [14]). Thus we rediscovered
this principle by artificial evolution.
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Fig. 3. Constructing larger networks using the evolved gr5-4 constructor.
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Fig. 4. Constructing larger networks using the evolved gr6-1 constructor.
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Fig. 5. Making (n+1)-sorters from n-sorters: (a) insertion, (b) selection.



Another question is whether the created networks are of practical interest.
Although a number of developmental systems have been proposed to make the
evolutionary design scalable, only a few of them have been applied to design ob-
jects more complex than we can do without development. The created networks
are large and fully operational; however, inefficient in terms of compare-swap
operations.

The proposed algorithm produced the expected results, since a lot of problem-
domain knowledge (such as the usage of copy and modify instructions) has been
presented in its inductive bias. The idea of evolving constructors for infinitely
growing objects is generally applicable. However, it is difficult to define embryo
and appropriate domain knowledge for a particular problem. Although it seems
that no really innovative designs can be discovered by means of development,
large sorting and median networks represent typical examples that can benefit
from inspiration in ontogeny.

6 Conclusions

A simple method with strong inductive bias was proposed for evolving con-
structors of infinitely growing median networks. It was not a problem to evolve
general constructors for sorting network since they are the same as for grow-
ing median networks. However, the open questions are whether it is possible to
evolve general constructors for creating (1) more area—efficient median networks
and (2) those area—efficient networks that do not fully operate during develop-
ment. These problems will be investigated in our future research.

Acknowledgment

The research was performed with the Grant Agency of the Czech Republic under
No. 102/03/P004 Evolvable hardware based application design methods and the
Research intention No. CEZ MSM 262200012 — Research in information and
control systems.

References

1. Bentley, P.: Evolutionary Design By Computers. Morgan Kaufmann Publishers,
San Francisco CA 1999

2. Boers, E. J. W., Kuiper, H.: Biological Metaphors and the Design of Artificial Neu-
ral Networks. Master Thesis, Departments of Computer Science and Experimental
and Theoretical Psychology, Leiden University, 1992

3. Choi, S. S., Moon, B. R.: More Effective Genetic Search for the Sorting Net-
work Problem. In. Proc. of the Genetic and Evolutionary Computation Conference
GECCO’02, Morgan Kaufmann, 2002, p. 335-342

4. Devillard, N.: Fast Median Search: An ANSI C Implementation. 1998
http://ndevilla.free.fr/median/median/index.html



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

de Garis, H. et al.: ATR’s Artificial Brain (CAM-Brain) Project: A Sample of
What Individual “CoDi-1 Bit” Model Evolved Neural Net Modules Can Do With
Digital and Analog I/O. In Proc. of the 1st NASA/DoD Workshop on Evolvable
Hardware, IEEE CS Press, 1999, p. 102-110

Gordon, T. G. W., Bentley P.: Towards Development in Evolvable Hardware. In
Proc. of the 2002 NASA /DoD Conference on Evolvable Hardware, IEEE CS Press,
2002, p. 241-250

Haddow, P., Tufte, G., van Remortel, P.: Shrinking the Genotype: L-systems for
EHW? In Proc. of the 4th International Conference on Evolvable Systems: From
Biology to Hardware, LNCS 2210, Springer—Verlag, p. 128-139

Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42, 1990, p. 228234

Hornby, G. S., Pollack, J. B.: The Advantages of Generative Grammatical Encod-
ings for Physical Design. In. Proc. of the 2001 Congress on Evolutionary Compu-
tation CEC2001, IEEE CS Press, p. 600-607

Huelsbergen, L.: Finding General Solutions to the Parity Problem by Evolving
Machine-Language Representations. In Proc. of Conf. on Genetic Programming,
1998, p. 158-166

Imamura, K., Foster, J. A., Krings, A. W.: The Test Vector Problem and Limita-
tions to Evolving Digital Circuits. In: Proc. of the 2nd NASA /DoD Workshop on
Evolvable Hardware, IEEE CS Press, 2000, p. 7579

Juillé, H.: Evolution of Non-Deterministic Incremental Algorithms as a New Ap-
proach for Search in State Spaces. In Proc. of 6th Int. Conf. on Genetic Algorithms,
Morgan Kaufmann, 1995, p. 351-358

Kitano, H.: Morphogenesis for Evolvable Systems. In Towards Evolvable Hardware:
The Evolutionary Engineering Approach, LNCS 1062, Springer—Verlag, 1996, p.
99-117

Knuth, D. E.: The Art of Computer Programming: Sorting and Searching (2nd
ed.), Addison Wesley, 1998

Kolte, P., Smith, R., Su, W.: A Fast Median Filter Using AltiVec. In Proc. of the
IEEE Conf. on Computer Design, Austin, Texas, IEEE CS Press, 1999, p. 384-391
Koza, J. R., Bennett III., F. H., Andre, D., Keane, M. A.: Genetic Program-
ming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, 1999
Miller, J., Job, D., Vassilev, V.: Principles in the evolutionary design of digital
circuits — Part II. Genetic Programming and Evolvable Machines. 1(2), 2000, p.
259-288

Miller, J., Thomson, P.: A Developmental Method for Growing Graphs and Cir-
cuits. In: Proc. of the 5th Conf. on Evolvable Systems: From Biology to Hardware
ICES 2003, LNCS 2606, Springer—Verlag, 2003, p. 93-104

Sekanina, L.: Evolvable Components: From Theory to Hardware Implementations.
Natural Computing Series, Springer—Verlag, 2003

Streeter, M. J., Keane, M. A.] Koza, J. R.: Routine Duplication of Post-2000
Patented Inventions by Means of Genetic Programming. In: Proc. of the 5th Euro-
pean Conference on Genetic Programming, Kinsale, Ireland, LNCS 2278, Springer-
Verlag, 2002, p. 26-36

Tempesti, G. et al.: Ontogenetic Development and Fault Tolerance in the POEtic
Tissue. In: Proc. of the 5th Conf. on Evolvable Systems: From Biology to Hardware
ICES 2003, LNCS 2606, Springer—Verlag, 2003, p. 141-152

Zeno, R.: A Reference of the Best-Known Sorting Networks for up to 16 Inputs.
2003, http://wuw.angelfire.com/blog/ronz/



