
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

21 | P a g e

www.ijacsa.thesai.org

Many-Objective Cooperative Co-evolutionary Linear

Genetic Programming applied to the Automatic

Microcontroller Program Generation

Wildor Ferrel Serruto
1
, Luis Alfaro

2

Departamento Académico de Ingeniería Electrónica
1

Departamento Académico de Ingeniería de Sistemas
 2

Universidad Nacional de San Agustín de Arequipa, Perú

Abstract—In this article, a methodology for the generation of

programs in assembly language for microcontroller-based

systems is proposed, applying a many-objective cooperative co-

evolutionary linear genetic programming based on the

decomposition of a program into segments, which evolve

simultaneously, collaborating with each other in the process. The

starting point for the program generation is a table of

input/output examples. Two methods of fitness evaluation are

also proposed. When the objective is to find a binary

combination, the authors propose fitness evaluation with an

exhaustive search for the output of each bit of the binary

combination in the genetic program. On the other hand, when

the objective is to generate specific variations of the logical values

in the pins of the microcontroller’s port, the authors propose

calculating the fitness, comparing the timing diagrams generated

by the genetic program with the desired timing diagrams. The

methodology was tested in the generation of drivers for the 4x4

matrix keyboard and character LCD module devices. The

experimental results demonstrate that for certain tasks, the use

of the proposed method allows for the generation of programs

capable of competing with programs written by human

programmers.

Keywords—Many-objective optimization; cooperative

coevolution; linear genetic programming; program synthesis;

microcontroller-based systems

I. INTRODUCTION

A microcontroller is an integrated circuit with the basic
characteristics of a computer. Microcontrollers perform
specific tasks in various types of hardware, from general-
consumption electronic hardware to industrial electronic
hardware. There are microcontrollers of different architectures
currently on the market: Intel 8051, Microchip PIC, Atmel
AVR, ARM Holdings ARM, etc. In the current research
project, an 8-bit 8051 architecture is employed, which is
frequently used in embedded systems. For the tests, an
AT89S52 microcontroller, belonging to this architecture, was
utilized.

The electronic circuit within which the microcontroller
functions is called a ‗microcontroller-based system‘ (MBS) or
an ‗embedded system‘. Depending on the function that it
performs, the MBS includes other peripheral devices such as
matrix keyboard, LCD screen, physical-magnitude sensors,
switches, etc. During the functioning of a MBS, the

microcontroller‘s central processing unit (CPU) executes the
programs stored in machine language in the program memory.

The development process of a MBS includes the design of
the hardware (the electronic circuitry of the MBS) and the
software (the program that will execute the CPU of the
microcontroller). Very frequently, the time invested in the
elaboration of the software is an important fraction of the total
development time of the system [1]. As mentioned in [2], when
the developed software becomes more and more complex and
its management becomes more difficult, the necessity arises to
possess tools, which permit the generation of programs.

Program synthesis is a topic that has attracted the attention
of many researchers. According to [3], the most common
techniques that are currently used in program synthesis are:
stochastic search, enumerative search, constraint solving, and
programming based on deduction through examples. In the
present project, a methodology is developed that permits one to
generate automatically programs for the microcontroller in
certain frequent tasks in MBSs, such as the scanning of matrix
keyboard and the character display on the LCD module.

For the solution of complex problems, multiobjective
optimization algorithms or cooperative co-evolutionary
algorithms can be used. The former seek to minimize or
maximize several objectives at the same time, such as the
recent algorithm called Multi-Objective Grasshopper
Optimization Algorithm (MOGOA), which is described in [4].
The latter divide the problem into subcomponents that evolve
in parallel collaborating with each other, for instance the
algorithm named Multi-Modal Optimization Enhanced
Cooperative Coevolution (MMO-CC) explained in [5]. For the
synthesis of programs for the MBSs we propose to establish
several objectives, each of which corresponds to a bit of the
result, and we also divide the program into segments that
evolve in parallel. The proposed methodology is based on the
application of the many-objective cooperative co-evolutionary
linear genetic programming (MaOCCLGP), which is classified
as a stochastic-synthesis technique.

Linear genetic programming (LGP) has been widely used
in computer program generation for the solution of different
problems, for example, symbolic regression problems [6], [7],
robotic problems [8], [9], control problems [10], [11], etc. In
the literature, research projects having to do with the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

22 | P a g e

www.ijacsa.thesai.org

application of LGP in program generation for microcontrollers
are scant. In [12] LGP is applied in the automatic synthesis of
programs in assembly language for the Microchip PIC18F452
microcontroller in optimal-time control problems. In [13] the
authors describe the generation of the 4x3 matrix keyboard
scanning program, the initialization program of the LCD screen
and the character display program on LCD screen using
classical multiobjective LGP following the EMOEA and
NSGA II algorithms. It is concluded that the application of the
NSGA II algorithm in the generation of the LCD screen drivers
is not satisfactory.

The novel contribution of the present project is the
application of the MaOCCLGP in the generation of
microcontroller programs for specific tasks of peripheral
device management: 4x4 matrix keyboard scanning and display
of the two-digit decimal number on the LCD module. These
problems are considered more complex than those solved in the
paper [13]. The performance of the proposed methodology has
been evaluated by comparing the results produced by
MaOCCLGP with the results of the application of EMOEA in
the generation of the mentioned programs. Also, the programs
generated by MaOCCLGP have been compared with those
written by a human programmer.

The subsequent sections are organized in the following
way: In Section II, the theoretical fundamentals necessary to be
able to understand the proposed methodology are summarized.
In Section III, the problem is laid out. In Section IV, the
methodology for the automatic synthesis of programs for
microcontrollers is formulated. In Section V, the experimental
results and validation are analyzed. In Section VI conclusions
regarding the research conducted, as well as recommendations
for future research are given.

II. THEORETICAL FUNDAMENTALS

A. Linear Genetic Programming

Genetic programming, introduced by John Koza [14], is a
technique that uses the principles of Charles Darwin‘s theory
of evolution in order to produce automatically programs that
perform a defined task. Linear genetic programming is a
variant of genetic programming, which evolves sequences of
instructions in an imperative-programming language or
machine language.

The control parameters for the synthesis of a program with
LGP are: register quantity, initial values of the registers,
program size, and population size. In [15] some important
conclusions relative to the control parameters are established: a
small number of working registers can produce lack of fluency
in the genetic program, while a very large number of working
registers can unnecessarily increase the search space. It is
recommended to start the registers with the input values instead
of putting in constant values. Evolving programs of a fixed
length is not recommended because this would not permit one
to optimize the program size. For the population size, there is
no special recommendation. In the current research project, the
premise that large populations permit a greater diversity but
require more processing time has been considered. For this
reason, the authors tried to take large populations, taking
precaution that the evolution time was not too great.

B. Many-Objective Evolutionary Optimization

In this work, in the generation of programs for
microcontrollers, many-objective genetic programming is used.
Toward this end, first, a general proposal of the multi-objective
optimization problem and its relationship with the program-
generation problem will be explained.

In multi-objective optimization, two or more objectives,
which in some cases could be in conflict, are optimized
simultaneously [16], [17]. In the K-objective optimization
problem, the vector (

) is searched for, which
satisfies the inequality restrictions () ()
and the equality restrictions () () , and

minimizes or maximizes the objective function ()
(() () ()) , where () is the
decision vector of n variables, and each one of the objective
functions f performs the mapping .

For the problem of the automatic synthesis of programs for
microcontrollers, () represents a program in
machine language (instruction sequence). Given that the
problem is confronted with the use of genetic programming,
the objective function () is the fitness function of the
genetic program that indicates the degree of similarity between
the input/output table that is generated after running the genetic
program and the desired table of input/output examples. The
multi-objective genetic programming algorithm looks to make
the table generated equal to the one desired. When this occurs,
the fitness function will have the highest value. Consequently,
the multi-objective optimization will look to maximize the
fitness function.

For the comparison of objective vectors, Pareto‘s
dominance concept is used, and in the search for the solution,
Pareto‘s optimality concept is employed. Given two solutions
 , , it is said that dominates in accordance with

Pareto‘s dominance () if the following conditions are

met:

 * + () () and

 * + () (),

On the contrary, it is said that is a non-dominated

solution with respect to . A decision vector is Pareto-
optimal if there is not another vector , such that dominates
 . The set of Pareto‘s optimal vectors is also named Pareto
front.

The method of solving multi-objective optimization
problems using evolutionary algorithms is known by the name
of ‗multi-objective evolutionary optimization‘.

Multi-objective evolutionary algorithms are oriented for
working toward a maximum of three objectives [18]. When the
quantity of objectives is greater than three, it is recommended
to apply algorithms that go by the name of ‗many-objective
evolutionary algorithms‘, better known by the abbreviation
MaOEA. In the two problems studied in the present work, the
number of objectives is seven.

In order to overcome the problems presented by an increase
in objectives, there are different methods available [19]. One of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

23 | P a g e

www.ijacsa.thesai.org

these methods is based on the use of aggregation functions in
order to differentiate solutions for many objectives. In the
present work, the ‗individual information aggregation‘ method
is used. In the fitness function, the degree of similarity between
the input/output table generated and the one desired will be
diminished by a value proportional to the program size. In this
way, the objective function will permit the differentiation of
solutions. At the same time, its maximization will help to
reduce the program size.

C. Cooperative Coevolution

Another way to solve complex problems by way of
evolutionary algorithms is to use ‗cooperative coevolution‘.
The cooperative coevolution algorithm (CCEA), which was
formulated by Potter [20], is based on the ―divide and conquer‖
strategy, and it consists of decomposing the initial problem into
subcomponents, also called species, which evolve in parallel
while collaborating amongst each other in the process. In a
CCEA in order to calculate the fitness of an individual of a
species, a complete solution is formed, combining the
individual with the representatives selected from other species.

In the present work, the authors apply cooperative
coevolution in the synthesis of programs for microcontrollers,
for which several species are formed. Each species corresponds
to a program segment. In order to form a complete solution,
individuals taken from each species are concatenated (one
individual per species, as is shown in Fig. 1).

D. Microcontroller based Systems (MBS)

The electronic circuitry of a MBS, depending on its
application, includes other peripheral devices apart from the
microcontroller that are connected to it through input/output
lines. Each device possesses a way of managing and in some
cases a complex protocol for communication with the
microcontroller.

In the present work, in order to put the proposed
methodology to the test, the MBS is composed of the
microcontroller, a matrix keyboard connected to port P2
(Fig. 2), and a text LCD module connected to port P1 (Fig. 3).
If one desires to connect the matrix keyboard to another port, it
is necessary to verify that the port lines possess ‗pull-up‘
resistors.

Fig. 1. Formation of a Complete Solution.

Fig. 2. 4x4 Matrix Keyboard Connection with the Microcontroller.

Fig. 3. LCD Module Connection with the Microcontroller with a 4-Bit

Interface.

III. FORMULATION OF THE PROBLEM

As the technique used in the proposed methodology is
inductive programming, the starting point for the synthesis of a
program is a table of input/output examples. The problem can
be laid out, modifying the formulation given in [21], in the
following manner: given a set of M input/output examples:

() () ()

The objective is to find a program P that correctly
transforms all the examples:

 () () ()

In this section, the problem is laid out regarding the
generation of the matrix-keyboard scanning program and also
that of the text-LCD-module display program.

A. Problem of Generation of 4x4 Matrix-Keyboard Scanning

Program

In the 4x4 matrix keyboard of Fig. 2, the keys, represented
as switches, have been numbered in hexadecimal code. In this
system, when the user presses down on a key, the matrix-
keyboard scanning program must identify the key, placing into
the accumulator register (A) a binary combination which
corresponds to the key pressed. The correspondence between
the key number and the identifier is established in an
input/output table. As an example, in Table 1, the identifiers of
a 7-bit ASCII telephone keypad are shown. When there is not a
key pressed, the identifier is 00h. It is assumed that only one
key is pressed at a time or none.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

24 | P a g e

www.ijacsa.thesai.org

TABLE I. INPUT/OUTPUT TABLE FOR THE 4X4 KEYBOARD

Key number

Identifiers of a 7-bit ASCII telephone keypad

Hex
Binary

S 6 S 5 S 4 S 3 S 2 S 1 S 0

0 31 0 1 1 0 0 0 1

1 34 0 1 1 0 1 0 0

2 37 0 1 1 0 1 1 1

3 2A 0 1 0 1 0 1 0

4 32 0 1 1 0 0 1 0

5 35 0 1 1 0 1 0 1

6 38 0 1 1 1 0 0 0

7 30 0 1 1 0 0 0 0

8 33 0 1 1 0 0 1 1

9 36 0 1 1 0 1 1 0

A 39 0 1 1 1 0 0 1

B 23 0 1 0 0 0 1 1

C 41 1 0 0 0 0 0 1

D 42 1 0 0 0 0 1 0

E 43 1 0 0 0 0 1 1

F 44 1 0 0 0 1 0 0

No pressed key 00 0 0 0 0 0 0 0

Therefore, the problem is laid out in the following way:
using the proposed methodology, a 4x4 matrix-keyboard
scanning program is generated, which complies with the
input/output table given in Table 1.

The generated program is compared to a human-written
program whose algorithm obeys the following reasoning: the
pins that control the rows are configured as inputs, while the
pins that control the columns as outputs. Only one column is
activated, putting ―0‖ in the corresponding pin, while all the
other columns are deactivated with ―1‖. The activation of a
column allows one to verify if some key of this column is
pressed through the reading of the pin of each row. If the read
value is ―1‖, this means that the key is not pressed, and if the
value is ―0‖, the key is pressed. This process is repeated for
each column.

B. Problem of Generation of Two-Digit BCD Number

Display Program in the Text LCD Screen

The text liquid-crystal screen (LCD) is a device that
permits the visualization of text messages, where each
character is shown in a dot matrix with a standard size of 5x7
dots [22]. Generally, the dots of the matrix darken in order to
form the symbols. The control of the dot state of all screen
matrices is carried out by a controller, which receives from the
microcontroller the ASCII code of a character and displays it
on the screen in the current position of the cursor. In this work,
an LM016L text LCD screen is used, which has 2 lines of 16
characters per line, connected to port P1.

The LCD screen‘s signals, which are utilized for its
connection with the microcontroller, are: the D7, D6, … , D0
data bus; and control signals E, RS, and R/W. Through the RS

signal, the microcontroller indicates to the LCD screen if an
instruction (RS=0) or a character (RS=1) is sent. With the R/W
signal, the microcontroller determines the operation to run:
reading (R/W=1) or writing (R/W=0). The E signal, called
‗data enabling‘, initiates the operation with a falling edge.

The LCD screen‘s connection with the microcontroller can
be performed by way of an 8-bit or 4-bit data interface. In the
present work, authors use the 4-bit interface in which only the
D7, D6, D5, and D4 lines are employed. Through these lines,
the 8-bit commands and characters are sent. First, the high
nibble is sent and later the low nibble. For each nibble, a falling
edge is generated in E signal.

The problem can be formulated in the following way: using
the proposed methodology, a program is generated, which
permits one to visualize in the text LCD screen the two-digit
decimal number that is found in the accumulator in packed
BCD code. In this case, the input/output table has 100 rows.
The input values are the BCD numbers from 00h to 99h. The
output values are the timing diagrams that must be generated in
the port pins for the visualization of the two-digit decimal
number. In the input/output table, the timing diagrams are
represented as a decimal or hexadecimal number chain.

One characteristic of the problems laid out is that the
generated program must precisely comply with 100% of the
input/output table. This is a difference between the application
of the LGP to device driver generation and the application of
the LGP to symbolic regression problems, where the result
generated by the synthesized program can be approximated.

IV. PROPOSED METHODOLOGY

The methodology is based on the application of the many-
objective cooperative co-evolutionary linear genetic
programming, whose realization will be described in detail in
this section.

A. Instruction Subset and Working Registers

The instruction set of the 8051-architecture-microcontroller
CPU possesses 256 instructions, explained in the technical
documentation of the microcontroller [24] [25], of which the
instructions figuring in Table 2 will be used in the evolutionary
process. In Table 2, it is observed that the used registers are: A
(ACC o accumulator), B, R0, R7, and PX. PX is the register of
input/output port P0, P1, P2, or P3, used in the peripheral
device‘s connection. The registers A, B, and R0 function as
working registers. The R7 register in genetic programs serves
to store the input value with the objective that it can be
retrieved by the working register. The operand #data is a
number in a range from 0 to 255 called ‗immediate value‘. The
operand ‗bit address‘ is the address of a bit. In the evolutionary
process, through bit addresses, the bits of the register A, B, and
PX can be accessed. In the program‘s completion stage, the
state register (PSW) is initialized.

B. Chromosome and Population Representation

Chromosome representation is very important in
evolutionary algorithms. In LGP, the programs are represented
by a linear sequence of instructions of an imperative
programming language. For this work, an LGP chromosome
representation with a dynamic size was adopted.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

25 | P a g e

www.ijacsa.thesai.org

TABLE II. INSTRUCTIONS USED IN GENETIC PROGRAMS

MNE. OPER. MNE. OPER. MNE. OPER. MNE. OPER.

ADDC A,PX INC A SETB bit_addr DEC B

ADD A,PX RR A CLR bit_addr INC B

ANL A,PX DEC A DEC PX ANL B,A

ORL A,PX RRC A INC PX ORL B,A

XRL A,PX RL A ORL PX,A XRL B,A

SUBB A,PX RLC A ANL PX,A MOV B,A

XCH A,PX SWAP A XRL PX,A MOV B,R0

ADD A,R0 CPL A MOV PX,R0 ADD A,#data

MOV A,PX CLR A MOV PX,A MOV A,#data

ADDC A,R0 ADD A,B INC R0 ADDC A,#data

ORL A,R0 ADDC A,B DEC R0 ORL A,#data

ANL A,R0 ORL A,B MOV R0,A ANL A,#data

XRL A,R0 ANL A,B MOV R0,B XRL A,#data

SUBB A,R0 XRL A,B MOV R0,PX SUBB A,#data

XCH A,R0 SUBB A,B MOV A,R7 MOV R0,#data

MOV A,R0 XCH A,B MOV B,R7 CLR C

MUL AB MOV A,B MOV R0,R7 SETB C

 NOP

According to [23], program synthesis using genetic
programming presents two problems: epistasis and
deceptiveness. Epistasis consists in the effects of the action of
the instructions in a program being strongly interrelated. The
deceptiveness pathology consists in the following: if the fitness
is a scalar value, and there are two solutions with different
fitness values, the solution with greater fitness is not
necessarily the one that is closer to the correct solution.
Selecting solutions only by the scalar fitness value can trap the
search in a local optimum. In order to avoid the deceptiveness
pathology, the authors use many-objective optimization, in
which the fitness of an individual is a vector that will be used
in the insertion of new individuals into the populations. What is
more, in each species there will be two Pareto fronts, P1t and
P2t, of variable size N1t and N2t, respectively.

C. Variation Operator

In each generation, each Pareto front will be kept sorted
according to the sum value of fitness vector elements. In the
selection of parents, (0.75·N1t + 0.25·N2t)·0.4 parent couples
are selected. Upon selecting a parent, its index in the list is
found with the following formula:

 (()())

where N is the length of the list, the function trunc returns
the integer smaller value of a real number, and a is a real
random number uniformly distributed in the interval
 . Therefore, the result i has a greater probability of finding
itself among the lower indices, where individuals of greater
fitness are found.

Once the parent couples are selected, to each couple the
variation operator is applied, which consists of: crossover (with

0.3 probability) or mutation (with 0.7 probability). The
crossover operator consists of the exchange of tails (with 0.3
probability) or the exchange of instructions (with 0.7
probability).

In the crossover operation, the exchange of instructions is
performed in randomly-selected positions of the parent
sequences, and for the exchange of tails, the same position in
the parent sequences is randomly selected.

In a sequence, the mutation is performed, with the same
probability, in one of the following ways:

1) Removing a randomly-selected instruction.

2) Inserting, in a randomly-selected position, a randomly-

generated instruction.

3) Exchanging two consecutive instructions.

4) Adding to the end of the sequence a randomly-

generated instruction.

5) Changing a randomly-selected instruction with a

randomly-generated instruction.

D. Fitness Evaluation

From now on, , - represents a
genetic program.

1) Exhaustive fitness: When, in the table of input/output

examples, the output is a binary combination, the authors

propose calculating the fitness through a search of the output

of each bit of the binary combination after the execution of

each instruction of the genetic program and in each bit of the

working registers. This way of calculating the fitness has

called ‗exhaustive fitness‘.

In order to describe the exhaustive fitness evaluation, the
authors use the representation of the input/output table of
Fig. 4, where each column of the target output in binary
representation is a combinational function, corresponding to a
bit of the output combination.

In [26] a way of executing a genetic program in order to
improve the output quality is proposed. The approach is
oriented toward the genetic program based on trees. The
authors apply part of this approach, taking into consideration
that, in place of trees, there is a sequence of instructions P. The
approach consists of forming a table in which each row
corresponds to an instruction of the genetic program, and each
column corresponds to a row of the input/output table. To this
table, the name ‗register value matrix‘ (RVM) is given.

Input

Target output

(decimal or

hexadecimal)

Target output in the binary representation

S K-1 … S t … S 0

E0 S0 S0
 K-1 … S0

 t … S0
 0

… …

Ej Sj Sj
 K-1 … Sj

 t … Sj
 0

… …

EM-1 SM-1 S M-1
 K-1 … S M-1

 t … S M-1
 0

Fig. 4. Representation of the Input/Output Table (IOT).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

26 | P a g e

www.ijacsa.thesai.org

Each cell of the RVM matrix possesses 24 bits (the bit
numbers from 0 to 7 are for register A, from 8 to 15 for B, and
from 16 to 23 for R0). Subsequent the execution of an
instruction, the contents of working registers R0, B, and A are
stored in the RVM matrix. In this way, after the execution of
the genetic program for all inputs of the input/output table, the
RVM matrix is completely full.

The authors adopt the following representations: is

the RVM cell that contains the working-register values
subsequent to the execution of the Ii instruction for input Ej, so

 represents the bit b of the said cell. If in the RVM

matrix, the values of i and b remain fixed, and j is made to vary

in the interval () , then
 is a

combinational function that only depends on the input value of
the input/output table.

In the calculation of the exhaustive fitness (described in
Algorithm 1) for each combinational function of the table in

Fig. 4, the most similar combinational function
 is

searched for. The location of said function is given by the
specific values of i and b. Therefore, K being the number of
bits of the output binary combination, the fitness vector will be
calculated with the formula:

 ()

∑ {

 }
 (1)

 ∑
 (2)

The symbol represents the nor-exclusive logical
operation that returns ―1‖ if the input values are equal, and
returns ―0‖ otherwise. The summation symbol is the arithmetic
sum operation.

The best bit location is specified with the pair (i, b), where i
is the index of the instruction in the sequence, and b is the bit
number in the RVM matrix cell. Subsequent the fitness
evaluation, the bit location matrix (BLM) contains the bit
location for all output bits:

 ,() () ()- (3)

Based on the BLM matrix, the effective program size is
calculated:

 (
) (4)

In order to perform program size optimization, the vector
fop is used:

 (

)

 (5)

 ∑

 (6)

where α is a parameter which the authors refer to as
―instruction penalty‖, which can take any real value greater
than 0 and less than 1/ (maximum expected size of the program

+1). The evolutionary process upon maximizing

 minimizes

NE, which means that the program size is optimized.

The authors informally distinguish between the generated
program and the synthesized program. To the sequence of
instructions obtained as a result of the evolutionary process, the
name ‗synthesized program‘ is given. A generated program is
obtained by adding some instructions to the synthesized
program. For example, at the beginning of the program, it is
necessary to add instructions in order to put in the initial
register values. After the synthesis of a program, completion of
the program must be performed in order to obtain the generated
program. The structure of the generator with exhaustive fitness
evaluation is shown in Fig. 5.

Fig. 5. Block Diagram of the Generator with Exhaustive Fitness.

Algorithm 1. Exhaustive fitness evaluation.

IOT is the input/output table.

 is the maximum value that can have fsum.

 , - is the program to evaluate.

Pbest is the best program found until the moment with size NEbest

and with fitness fbest

RVM is the register value matrix

1. Delete(RVM)

2. for each Ej of IOT do

3. (A, B, R0, R7) ← Initial values;

Ports ← Initial values; PSW ← 00H

4. for i = 0 to N-1 do

5. Execution(Ii) for Ej

6. RVMij ← (R0) (B) (A)

7. end for

8. end for

9. f, fsum, BLM, NE, fop and fopsum are calculated with the

formula (1), (2), (3), (4), (5) y (6) respectively

10. if (fsum > fbest) or ((fsum = fmax) and (NE < NEbest)) then

11. Pbest ← P; NEbest ← NE; fbest ← fsum

12. end if
13. Return BLM, NE, fop, fopsum

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

27 | P a g e

www.ijacsa.thesai.org

a) Program Completion

When the stop condition is met, the evolutionary algorithm
returns the synthesized program and the BLM matrix. The
completion of the program is performed in the following way:

 Removing instructions with indices from NEbest to N-
1.

 Inserting a MOV instruction after each instruction
pointed by the BLM matrix in order to store the register
that contains the result bit in the memory temporarily.

 Adding ―MOV C, bit-address‖, ―MOV bit-address, C‖
instructions in order to put the result bits together in the
accumulator register.

 Adding instructions, before the synthesized sequence, in
order to establish the initial values in registers A, B, R0,
R7, PX, and PSW.

2) Fitness when the program generates timing diagrams

according to input values: In this case, the genetic program

must generate determined timing diagrams in the pins of the

microcontroller‘s port, depending on the accumulator-register

value. For this purpose, it is necessary to evaluate the degree

of similarity between the two timing diagrams. In Fig. 6, the

comparison of the timing diagrams is illustrated, where the

quantity of intervals along the timing diagrams is L=6.

In Fig. 7 the input/output table is represented, which
determines the timing diagrams that must be generated
depending on the input value that is in the accumulator. In this
table, Sj, d represents the timing diagrams in all pins of the port
in interval d when the input is Ej.

Fig. 6. Comparison of Two Timing Diagrams.

Input
Target timing diagrams (decimal or hexadecimal)

0 … d … L-1

E0 S0, 0 … S0, d … S0, L-1

…

Ej Sj, 0 … Sj, d … Sj, L-1

…

EM-1 S M-1, 0 … S M-1, d … S M-1, L-1

Fig. 7. Representation of the Input/Output Table when Timing Diagrams are

Generated Depending on the Input Value.

If the number of pins where the timing diagrams are
generated is K, then each value of the target timing

diagram and each value of the generated timing diagram is

expressed in the binary representation, where each bit
corresponds to a port pin:

[

()

]

;

[

()

]

In order to find the fitness vector of the timing diagrams
generated by the genetic program, first the fitness vector is
calculated for each input and each pin, determining the

degree of similarity of the timing diagrams with the following
formula:

 (

)

 ∑ {()(

)}

 (7)

Where () is the weight of the interval d.

Then the fitness for all inputs is calculated:

 ∑

 (8)

Thus, for the fitness vector () one also
calculates the sum:

 ∑
 (9)

For each input, there is a vector

 [] with the indices of

instructions which produce the changes in the timing diagrams.
For the input , the scalar

 ([]) is calculated, which

is the index of the instruction that produced the last value in the
timing diagram. Also, the effective size of the program is
found:

 () (10)

Based on all the vectors, the authors form the VDIF

vector of size L, in which each element is equal to the
difference between the maximum and minimum values of all
the values in each vector position:

 () () (11)

Using and () the

fitness (

) and its sum are

calculated by the following equations:

 () (12)

 ∑

 (13)

Algorithm 2 shows the fitness evaluation when timing
diagrams are generated according to input values.

The evolutionary process upon maximizing

 minimizes

NE and DIFmax. This means that program size is optimized.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

28 | P a g e

www.ijacsa.thesai.org

At the end of the process, DIFmax must be zero, which ensures
that the vectors of the instruction indices that produce the
changes in the timing diagrams are equal for all inputs.

The structure of a generator with fitness evaluation when
timing diagrams are generated is shown in Fig. 8.

Algorithm 2. Fitness evaluation of the program that generates

timing diagrams according to input values.

S contains the target timing diagrams.

 ()

 is the maximum value that can have fsum.

 , - is the program to evaluate.

Pbest is the best program found until the moment with size NEbest

and with fitness fbest

1. Delete(f)

2. for each input Ej do

3. (A, B, R0, R7) ← Initial values;

Ports ← Initial values; PSW ← 00H

4. Delete(Gj); Delete(VNIj)

5. for i = 0 to N-1 do

6. Execution(Ii)

7. Update(Gj); Update(VNIj);

8. end for
9. For the input Ej, f j is calculated with equation (7)

10. f ← f + f j

11. end for

12. f, fsum,NE, fop, fopsum are calculated with the equations (8),

(9), (10), (11) y (12)

13. if (fsum > fbest) or ((fsum = fmax) and (NE< NEbest)) then

14. Pbest ← P; NEbest ← NE; fbest ← fsum

15. end if
16. Return NE, fop, fopsum

Fig. 8. Block Diagram of the Timing Diagram Generator.

E. Many-Objective Cooperative Co-evolutionary Linear

Genetic Programming (MaOCCLGP)

In the MaOCCLGP algorithm, each program segment
evolves like a species. In each species, there are two
populations, P1t and P2t, which are non-dominated Pareto
fronts and two auxiliary lists Qt and Dt. The algorithm begins
by randomly generating populations P1t and P2t in each
species (see Algorithm 3). Next, a determined quantity of
representatives of each species is selected. The representatives
are the best individuals on the P1t list, starting from the
individual with index 0. Using the representatives, the fitness
of individuals of each species is calculated. Each P1t and P2t
list is sorted using the fopsuma value of each individual.

While the stop condition is not fulfilled, the following
operations are performed: in each species, the representatives
are selected; next, the parent individuals are selected, to which
the variation operator is applied in order to obtain the
descendants in list Qt; then, in each species the fitness of each
individual of P1t, P2t, and Qt is evaluated; subsequently, in
each species the best individuals of Qt in P1t are inserted,
putting individuals cast aside in Dt; the best individuals of Dt
in P2t are inserted; finally, P1t and P2t are sorted.

In the insertion operations, the algorithm described in [27]
is followed, using the fop fitness of each individual in such a
way that P1t and P2t are Pareto fronts. To maintain diversity a
parent is taken from P1t with a probability of 0.75 or from P2t
with a probability of 0.25.

Algorithm 3. Many-Objective cooperative co-evolutionary

linear genetic programming.

1. for each species do

2. Random generation of P1t y P2t;

3. end for

4. Selection of representatives of each species

5. for each species do

6. Fitness_evaluation (P1t)

7. Fitness_evaulation (P2t)

8. Sorting(P1t), Sorting(P2t)

9. end for

10. while the stop condition is not reached do

11. for each species do

12. Selection of representatives

13. Qt ← Parent_selection (Pt1, Pt2)

14. Qt ← Variation(Qt)

15. end for

16. for each species do

17. Fitness_evaluation (P1t),

18. Fitness_evaluation (P2t),

19. Fitness_evaluation (Qt),

20. end for

21. for each species do

22. Insertion of the best from Qt in P1t and those

cast aside in Dt;

23. Insertion of the best from Dt in P2t

24. Sorting(P1t), Sorting(P2t)

25. end for

26. end while

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

29 | P a g e

www.ijacsa.thesai.org

The fitness evaluation is performed in the following
manner: for example, if the quantity of species is 4 and the
quantity of representatives in each species is 2, the
representatives are denoted R00 and R01 of species 0, R10 and
R11 of species 1, R20 and R21 of species 2, and R30 and R31
of species 3. Therefore, in order to evaluate the fitness of
individual Ix of species 2, the fitness of each of the two
programs is calculated, the first consisting of the concatenation
of R00, R10, Ix, and R30, and the second of R01, R11, Ix, and
R31. The fitness of Ix is the fop fitness of the program with
greater fopsuma value. It is necessary to indicate that, in the
given example, a total of eight different programs could be
formed with representatives and the Ix individual.
Nevertheless, due to processing time constraints, only two
programs were formed.

V. RESULTS AND VALIDATION

To evaluate the performance of the methodology each
generator was executed ten times with a limit number of
evaluations (LNE). It is possible that in the evolutionary
process, a program satisfies the input/output table before
reaching the LNE limit. If this is the case, the generator
continues running and optimizing the size of the synthesized
program until reaching the LNE limit.

In order to analyze the results, the following criteria are
used: hit rate (HR), minimum number of instructions (MNI),
minimum code size after the compilation (number of bytes)
(MCS), and minimum number of clock cycles (MNCC).

In [13], the EMOEA algorithm has been applied in the
generation of the following programs: 1) 4x3 matrix keyboard
scanning program, 2) initialization program of the LCD screen,
and 3) character display on LCD module program. In the
present work MaOCCLGP is applied in the generation of the
programs: 1) 4x4 matrix keyboard scanning program, and
2) two-digit decimal number display on LCD module program.

The evaluation of the performance of the methodology
proposed in this article has been carried out in two ways:

1) The EMOEA algorithm that was used in [13] has been

applied to the two cases studied in the present work and has

been compared with the application of MaOCCLGP. The

results are shown in Table 3.

2) The programs generated by MaOCCLGP have been

compared with programs written by human as shown in

Table 4. In this case, the test parameters given in Table 5 were

used. Human-written programs taken as a reference were

elaborated following the algorithms described in

microcontroller assembly language programming courses.

In Table 3, it can be seen that in the generation of the 4x4
matrix keyboard scanning program, the MaOCCLGP algorithm
has a hit rate much higher than that of EMOEA. In the
generation of the program for BCD number display on the
LCD screen, the MaOCCLGP algorithm produced a smaller
program.

In Table 4, it is observed that in the two analyzed cases, the
hit rate is high (80%). Comparing the best generated keyboard-
scan program with the written by human program, it is

observed that regarding minimum length, the generated
program is 13% bigger than the human-written program.
Regarding code size, the generated program is 3% bigger, and
with regard to clock cycles, it is 71% more spread out. The
difference between the minimum-length and code-size
percentages is due to the fact that the human-written program
makes use of conditional jump instructions, which possess 3
bytes. The significant difference between the minimum-length
and clock-cycle-number percentages is due to the fact, that in
the generated program all the instructions are executed. On the
other hand, in the human-written program, due to the jump
instructions, not all instructions are run. Upon comparing the
generated program and the written by human program for
BCD-number-display on LCD screen, it is observed that the
human-written program has slightly-higher percentages in the
three criteria of MNI 22%, MCS 2%, and MNCC 10%, which
demonstrates the advantage of the generated program in the
solution of this problem.

TABLE III. COMPARISON OF THE PERFORMANCE OF THE EMOEA AND

MAOCCLGP ALGORITHMS

Generated Program Algorithm
LNE

x106

HR

(%)
MNI MCS MNCC

4x4 matrix keyboard
scanning in 7-bit ASCII

code

EMOEA 3 10 57 105 828

MaOCCLGP 3 80 61 115 840

Two-digit BCD number

display on LCD module

EMOEA 1 100 25 48 324

MaOCCLGP 2 80 23 46 348

TABLE IV. COMPARISON OF PROGRAMS GENERATED BY MAOCCLGP

AND PROGRAMS WRITTEN BY HUMAN

Program N°
HR

(%)
MNI MCS MNCC

Generated program for 4x4 matrix
keyboard scanning in 7-bit ASCII code

P1 80 61 115 840

Written by human program for 4x4 matrix

keyboard scanning in 7-bit ASCII code
P2 - 54 111 492

Generated program for two-digit BCD

number display on LCD module
P3 80 23 46 348

Written by human program for two-digit

BCD number display on LCD module
P4 - 28 47 384

TABLE V. TEST PARAMETERS FOR MAOCCLGP

Parameter P1 P3

Initial population size of each species 200 200

Number of species 10 10

Number of representatives 2 2

Initial size of the program segment (min – max) 2-4 2-4

LNE – Limit number of evaluations (x106) 3 2

α 0.001 0.01

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

30 | P a g e

www.ijacsa.thesai.org

TABLE VI. PROGRAM EXAMPLES

P1 P2 P3 P4

 mov a,#0

 mov b,a

 mov r0,a
 mov p2,#ffh

 mov psw,#0

 clr 163

 inc p2

 mov a,#15

 xch a,p2

 add a,p2

 mov 38,a

 subb a,b

 add a,#232

 addc a,#81

 mov 35,a

 addc a,#206

 mov 37,a

 orl a,#131

 cpl a

 rl a

 subb a,p2

 mov p2,a

 addc a,p2

 cpl a

 mov 34,a

 setb 165

 addc a,b

 rl a

 orl a,p2

 mov 36,a

 dec a

 anl a,p2

 dec a

 swap a

 add a,p2

 add a,#232

 cpl a

 subb a,p2

 subb a,p2

 mov 32,a

 subb a,p2

 add a,#177

 xch a,p2

 xrl b,a

 addc a,p2

 mov 33,a

 mov a,#0

 mov c,5
 mov 224,c

 mov c,10
 mov 225,c

 mov c,23

 mov 226,c
 mov c,30

 mov 227,c

 mov c,33
 mov 228,c

 mov c,47

 mov 229,c
 mov c,51

 mov 230,c

 mov p2,#0feh
 jb p2.4,n1

 mov a,#'1'

 ret
n1: jb p2.5,n2

 mov a,#'4'

 ret
n2: jb p2.6,n3

 mov a,#'7'

 ret
n3: jb p2.7,n4

 mov a,#'*'

 ret
n4:mov p2,#0fdh

 jb p2.4,n5

 mov a,#'2'
 ret

n5: jb p2.5,n6

 mov a,#'5'
 ret

n6: jb p2.6,n7

 mov a,#'8'
 ret

n7: jb p2.7,n8

 mov a,#'0'
 ret

n8:mov p2,#0fbh

 jb p2.4,n9
 mov a,#'3'

 ret

n9: jb p2.5,n10
 mov a,#'6'

 ret

n10: jb p2.6,n11
 mov a,#'9'

 ret

n11: jb p2.7,n12
 mov a,#'#'

 ret

n12:mov p2,#0f7h
 jb p2.4,n13

 mov a,#'a'

 ret
n13: jb p2.5,n14

 mov a,#'b'

 ret
n14: jb p2.6,n15

 mov a,#'c'
 ret

n15: jb p2.7,n16

 mov a,#'d'
 ret

n16: mov a,#0

 ret

 mov a,#0
 mov b,a

 mov r0,a

 mov r7,a
 mov p1,#0ffh

 mov psw,#0

 mov r0,#60

 mov p1,r0

 clr 146

 anl a,#252

 orl a,#13

 xch a,p1

 clr 146

 mov p1,r0

 clr 146

 mov acc,r7

 clr 229

 swap a

 orl a,#12

 xch a,p1

 mov a,#6

 clr 146

 anl p1,a

 mov r0,a

 anl a,#0fh

 orl a,#30h
 push acc;

 mov a,r0

 swap a
 anl a,#0fh

 orl a,#30h;

 acall send_data
 pop acc

 acall send_data

send_data:
 mov r0,a

 anl a,#0f0h

 add a,#00ch
 mov p1,a

 anl a,#0f0h

 add a,#008h
 mov p1,a

 mov a,r0

 swap a
 anl a,#0f0h

 add a,#00ch

 mov p1,a
 anl a,#0f0h

 add a,#008h

 mov p1,a
 ret

In Table 6, examples of generated (P1, P3) and human-
written programs (P2, P4) are shown. In the generated
programs, the instructions in boldface were obtained as a result
of the evolutionary process, while those in normal font were
put into the program during the completion stage. All programs
have been tested in the Proteus software from Labcenter
Electronics. The programs that manage the LCD screen have
been tested when the clock frequency of the microcontroller is
100 kHz.

VI. CONCLUSIONS AND SUGGESTIONS

In this work, a new method of generating programs in
assembly language for microcontroller-based systems was
described. The method uses many-objective cooperative co-
evolutionary linear genetic programming.

When the objective is to find a binary combination, for the
fitness evaluation exhaustive fitness was proposed, which, for
each bit of the binary combination, searches for an output in
the genetic program at the bit level, permitting a faster
convergence of the evolutionary algorithm. On the other hand,
when the objective is to generate variations in the logical
values in the pins of the microcontroller‘s input/output port, the
fitness evaluation was proposed, which is based on the
comparison of the generated timing diagrams with the target
timing diagrams.

The methodology was tested for the 8051 architecture in
two examples that are frequently found in microcontroller-
based systems: 4x4 matrix-keyboard scanning program and
two-digit BCD-number display program on the text LCD
screen.

The comparison of the generated and human-written
programs for the case of BCD-number display on LCD screen
shows an advantage of the generated program in the three
analyzed criteria. This procedure possesses the following
particularity: when it is human-written, it is developed in two
stages. First, the BCD-code number is converted into ASCII
code, and later the ASCII characters are displayed on the LCD
screen. On the other hand, when the program is generated, the
generator can carry out the task in a direct manner, without
their explicitly being a conversion of the BCD code into ASCII
code.

One disadvantage of the proposed methodology is that for
certain cases the input/output table can be too big. In those
cases, making use of the counterexamples-driven genetic
programming, described in [28], is suggested for future
research.

Based on the results shown in Table 4, it can be concluded
that the microcontroller programs in assembly language,
generated following the proposed methodology, are capable of
competing with programs written by a human programmer in
the solution of the specific tasks. However, it is necessary to
point out that currently limitations exist, meaning that there are
tasks for which the generator did not manage to produce a
program that complies with 100% of the input/output table, for
example, natural binary number display on LCD screen, which
would be interesting area for future research to help improve
the methodology.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

31 | P a g e

www.ijacsa.thesai.org

The proposed perspective can be applied to the automatic
generation of routines of other peripheral devices: graphic
LCD screen, 7-segment indicators, physical-magnitude
sensors, etc. Likewise, the methodology can be extended to
other 8-bit architectures like PIC or AVR.

REFERENCES

[1] Kamal, Raj, Embedded systems: architecture, programming and design.
1st ed. Boston: McGraw-Hill Higher Education, 2008.

[2] Rainer Leupers. Code generation for embedded processors. In
Proceedings of the 13th international symposium on System synthesis
(ISSS '00). IEEE Computer Society, Washington, DC, USA, 173-178.
2000.

[3] S. Gulwani, O. Polozov, and R. Singh. Program Synthesis. Foundations
and Trends® in Programming Languages, vol. 4, no. 1-2, pp. 1–119,
2017.

[4] Alaa Tharwat, Essam H. Houssein, Mohammed M. Ahmed, Aboul Ella
Hassanien, Thomas Gabel. MOGOA algorithm for constrained and
unconstrained multi-objective optimization problems. Applied
Intelligence (2017), Volume 48, Issue 8, p.2268-2283, August 2018.

[5] X. Peng, Y. Jin and H. Wang, "Multimodal Optimization Enhanced
Cooperative Coevolution for Large-Scale Optimization," in IEEE
Transactions on Cybernetics. 2018. doi: 10.1109/TCYB.2018.2846179

[6] Douglas Mota Dias, Marco Aurélio C. Pacheco. Toward a quantum-
inspired linear genetic programming model. In Proceedings of the
Eleventh conference on Congress on Evolutionary Computation
(CEC'09). IEEE Press, Piscataway, NJ, USA, 1691-1698. 2009.

[7] Guilherme C. Strachan, Adriano S. Koshiyama, Douglas M. Dias,
Marley M. B. R. Vellasco, Marco A. C. Pacheco. Quantum-Inspired
Multi-gene Linear Genetic Programming Model for Regression
Problems. In Proceedings of the 2014 Brazilian Conference on
Intelligent Systems (BRACIS '14). IEEE Computer Society,
Washington, DC, USA, 152-157. 2014.

[8] Jens Busch, Jens Ziegler, Christian Aue, Andree Ross, Daniel Sawitzki,
and Wolfgang Banzhaf. 2002. Automatic Generation of Control
Programs for Walking Robots Using Genetic Programming. In
Proceedings of the 5th European Conference on Genetic Programming
(EuroGP '02), James A. Foster, Evelyne Lutton, Julian F. Miller, Conor
Ryan, and Andrea Tettamanzi (Eds.). Springer-Verlag, Berlin,
Heidelberg, 258-267.

[9] Wolff K., Nordin P. (2003) Learning Biped Locomotion from First
Principles on a Simulated Humanoid Robot Using Linear Genetic
Programming. In: Cantú-Paz E. et al. (eds) Genetic and Evolutionary
Computation — GECCO 2003. GECCO 2003. Lecture Notes in
Computer Science, vol 2723. Springer, Berlin, Heidelberg

[10] Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques;
Harambat, Fabien. Drag reduction of a car model by linear genetic
programming control. Experiments in Fluids, Volume 58, Issue 8, article
id.103, 20 pp. (ExFl Homepage). 2017.

[11] Li, Ruiying & Noack, Bernd & Cordier, Laurent & Jacques, Boree &
Kaiser, Eurika & Harambat, Fabien. (2017). Linear genetic
programming control for strongly nonlinear dynamics with frequency
crosstalk.

[12] Douglas Mota Dias, Marco Aurélio C. Pacheco, José F. M. Amaral,
―Automatic synthesis of microcontroller assembly code through linear

genetic programming‖, In Genetic Systems Programming: Theory and
Experiences, Springer Berlin Heidelberg, Berlin, pp 193 – 227, 2006.

[13] Wildor Ferrel Serruto, Luis Alfaro Casas. Automatic Code Generation
for Microcontroller-Based System Using Multi-objective Linear Genetic
Programming. Proceedings of the 2017 International Conference on
Computational Science and Computational Intelligence (CSCI'17: 14-16
December 2017, Las Vegas, Nevada, USA), Publisher: IEEE
Computer Society.

[14] J.R. Koza, Genetic Programming – On the Programming of Computer
Programs by Natural Selection. MIT Press, Cambridge, MA, 1992.

[15] Markus F. Brameier, Wolfgang Banzhaf, Linear genetic programming,
On Genetic and Evolutionary Computation, Publisher Springer, US,
2007.

[16] Eckart Zitzler, Marco Laumanns, Stefan Bleuler, ―A tutorial on
evolutionary multiobjective optimization‖, Swiss Federal Institute of
Technology (ETH) Zurich, Computer Engineering and Networks
Laboratory (TIK), Zurich, Switzerland 2004.

[17] Kalyanmoy Deb, ―Multi-objective optimization using evolutionary
algorithms‖, John Wiley & Sons, LTD, pp. 239-286, New York, USA,
2001.

[18] Shelvin Chand, Markus Wagner, Evolutionary Many-Objective
Optimization: A Quick-Start Guide. Article in Surveys in Operations
Research and Management Science, December 2015

[19] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-Objective
Evolutionary Algorithms: A Survey. ACM Comput. Surv. 48, 1, Article
13 (September 2015), 35 pages. 2015.

[20] Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture
for Evolving Coadapted Subcomponents. Evolutionary Computation 8
(2000) 1–29

[21] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh,
Abdel-rahman Mohamed, Pushmeet Kohli, RobustFill: Neural Program
Learning under Noisy I/O, 2017

[22] Ampire Co., Ltd. Specifications for LCD Module. 2001.

[23] T. Weise, M. Wan, K. Tang and X. Yao, "Evolving exact integer
algorithms with Genetic Programming," 2014 IEEE Congress on
Evolutionary Computation (CEC), Beijing, 2014, pp. 1816-1823. doi:
10.1109/CEC.2014.6900292

[24] ―8-bit Microcontroller with 8K bytes in-system programmable flash
AT89S52‖, Atmel Corporation, 2008.

[25] ―Atmel 8051 microcontrollers hardware manual‖, Atmel Corporation,
2007.

[26] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O'Reilly. 2014.
Multiple regression genetic programming. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation (GECCO
'14). ACM, New York, NY, USA, 879-886. DOI:
https://doi.org/10.1145/2576768.2598291

[27] Rui Liu, Sang-you Zeng, Lixin Ding, Lishan Kang, Hui Li, Yuping
Chen, et al., ―An efficient multi-objective evolutionary algorithm for
combinational circuit design‖, First NASA/ESA Conference on
Adaptive Hardware and Systems (AHS'06), Istanbul, pp. 215-221, 2006.

[28] Iwo Błądek, Krzysztof Krawiec, Jerry Swan. Counterexample-Driven
Genetic Programming: Heuristic Program Synthesis from Formal
Specifications. Evolutionary Computation. Massachusetts Institute of
Technology. Volume 26, Issue 3, p.441-469, Fall 2018

