
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 1, 2019 

21 | P a g e  

www.ijacsa.thesai.org 

Many-Objective Cooperative Co-evolutionary Linear 

Genetic Programming applied to the Automatic 

Microcontroller Program Generation 

Wildor Ferrel Serruto
1
, Luis Alfaro

2 

Departamento Académico de Ingeniería Electrónica
1 

Departamento Académico de Ingeniería de Sistemas
 2 

Universidad Nacional de San Agustín de Arequipa, Perú 

 

 
Abstract—In this article, a methodology for the generation of 

programs in assembly language for microcontroller-based 

systems is proposed, applying a many-objective cooperative co-

evolutionary linear genetic programming based on the 

decomposition of a program into segments, which evolve 

simultaneously, collaborating with each other in the process. The 

starting point for the program generation is a table of 

input/output examples. Two methods of fitness evaluation are 

also proposed. When the objective is to find a binary 

combination, the authors propose fitness evaluation with an 

exhaustive search for the output of each bit of the binary 

combination in the genetic program. On the other hand, when 

the objective is to generate specific variations of the logical values 

in the pins of the microcontroller’s port, the authors propose 

calculating the fitness, comparing the timing diagrams generated 

by the genetic program with the desired timing diagrams. The 

methodology was tested in the generation of drivers for the 4x4 

matrix keyboard and character LCD module devices. The 

experimental results demonstrate that for certain tasks, the use 

of the proposed method allows for the generation of programs 

capable of competing with programs written by human 

programmers. 
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I. INTRODUCTION 

A microcontroller is an integrated circuit with the basic 
characteristics of a computer. Microcontrollers perform 
specific tasks in various types of hardware, from general-
consumption electronic hardware to industrial electronic 
hardware. There are microcontrollers of different architectures 
currently on the market: Intel 8051, Microchip PIC, Atmel 
AVR, ARM Holdings ARM, etc. In the current research 
project, an 8-bit 8051 architecture is employed, which is 
frequently used in embedded systems. For the tests, an 
AT89S52 microcontroller, belonging to this architecture, was 
utilized. 

The electronic circuit within which the microcontroller 
functions is called a ‗microcontroller-based system‘ (MBS) or 
an ‗embedded system‘. Depending on the function that it 
performs, the MBS includes other peripheral devices such as 
matrix keyboard, LCD screen, physical-magnitude sensors, 
switches, etc. During the functioning of a MBS, the 

microcontroller‘s central processing unit (CPU) executes the 
programs stored in machine language in the program memory. 

The development process of a MBS includes the design of 
the hardware (the electronic circuitry of the MBS) and the 
software (the program that will execute the CPU of the 
microcontroller). Very frequently, the time invested in the 
elaboration of the software is an important fraction of the total 
development time of the system [1]. As mentioned in [2], when 
the developed software becomes more and more complex and 
its management becomes more difficult, the necessity arises to 
possess tools, which permit the generation of programs. 

Program synthesis is a topic that has attracted the attention 
of many researchers. According to [3], the most common 
techniques that are currently used in program synthesis are: 
stochastic search, enumerative search, constraint solving, and 
programming based on deduction through examples. In the 
present project, a methodology is developed that permits one to 
generate automatically programs for the microcontroller in 
certain frequent tasks in MBSs, such as the scanning of matrix 
keyboard and the character display on the LCD module. 

For the solution of complex problems, multiobjective 
optimization algorithms or cooperative co-evolutionary 
algorithms can be used. The former seek to minimize or 
maximize several objectives at the same time, such as the 
recent algorithm called Multi-Objective Grasshopper 
Optimization Algorithm (MOGOA), which is described in [4]. 
The latter divide the problem into subcomponents that evolve 
in parallel collaborating with each other, for instance the 
algorithm named Multi-Modal Optimization Enhanced 
Cooperative Coevolution (MMO-CC) explained in [5]. For the 
synthesis of programs for the MBSs we propose to establish 
several objectives, each of which corresponds to a bit of the 
result, and we also divide the program into segments that 
evolve in parallel. The proposed methodology is based on the 
application of the many-objective cooperative co-evolutionary 
linear genetic programming (MaOCCLGP), which is classified 
as a stochastic-synthesis technique. 

Linear genetic programming (LGP) has been widely used 
in computer program generation for the solution of different 
problems, for example, symbolic regression problems [6], [7], 
robotic problems [8], [9], control problems [10], [11], etc. In 
the literature, research projects having to do with the 
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application of LGP in program generation for microcontrollers 
are scant. In [12] LGP is applied in the automatic synthesis of 
programs in assembly language for the Microchip PIC18F452 
microcontroller in optimal-time control problems. In [13] the 
authors describe the generation of the 4x3 matrix keyboard 
scanning program, the initialization program of the LCD screen 
and the character display program on LCD screen using 
classical multiobjective LGP following the EMOEA and 
NSGA II algorithms. It is concluded that the application of the 
NSGA II algorithm in the generation of the LCD screen drivers 
is not satisfactory. 

The novel contribution of the present project is the 
application of the MaOCCLGP in the generation of 
microcontroller programs for specific tasks of peripheral 
device management: 4x4 matrix keyboard scanning and display 
of the two-digit decimal number on the LCD module. These 
problems are considered more complex than those solved in the 
paper [13]. The performance of the proposed methodology has 
been evaluated by comparing the results produced by 
MaOCCLGP with the results of the application of EMOEA in 
the generation of the mentioned programs. Also, the programs 
generated by MaOCCLGP have been compared with those 
written by a human programmer. 

The subsequent sections are organized in the following 
way: In Section II, the theoretical fundamentals necessary to be 
able to understand the proposed methodology are summarized. 
In Section III, the problem is laid out. In Section IV, the 
methodology for the automatic synthesis of programs for 
microcontrollers is formulated. In Section V, the experimental 
results and validation are analyzed. In Section VI conclusions 
regarding the research conducted, as well as recommendations 
for future research are given. 

II. THEORETICAL FUNDAMENTALS 

A. Linear Genetic Programming 

Genetic programming, introduced by John Koza [14], is a 
technique that uses the principles of Charles Darwin‘s theory 
of evolution in order to produce automatically programs that 
perform a defined task. Linear genetic programming is a 
variant of genetic programming, which evolves sequences of 
instructions in an imperative-programming language or 
machine language. 

The control parameters for the synthesis of a program with 
LGP are: register quantity, initial values of the registers, 
program size, and population size. In [15] some important 
conclusions relative to the control parameters are established: a 
small number of working registers can produce lack of fluency 
in the genetic program, while a very large number of working 
registers can unnecessarily increase the search space. It is 
recommended to start the registers with the input values instead 
of putting in constant values. Evolving programs of a fixed 
length is not recommended because this would not permit one 
to optimize the program size. For the population size, there is 
no special recommendation. In the current research project, the 
premise that large populations permit a greater diversity but 
require more processing time has been considered. For this 
reason, the authors tried to take large populations, taking 
precaution that the evolution time was not too great. 

B. Many-Objective Evolutionary Optimization 

In this work, in the generation of programs for 
microcontrollers, many-objective genetic programming is used. 
Toward this end, first, a general proposal of the multi-objective 
optimization problem and its relationship with the program-
generation problem will be explained. 

In multi-objective optimization, two or more objectives, 
which in some cases could be in conflict, are optimized 
simultaneously [16], [17]. In the K-objective optimization 
problem, the vector    (  

    
      

 ) is searched for, which 
satisfies the inequality restrictions   ( )    (         ) 
and the equality restrictions   ( )    (         ) , and 

minimizes or maximizes the objective function  ( )  
(  ( )   ( )     ( ) ) , where   (          )  is the 
decision vector of n variables, and each one of the objective 
functions f performs the mapping       . 

For the problem of the automatic synthesis of programs for 
microcontrollers,   (          )  represents a program in 
machine language (instruction sequence). Given that the 
problem is confronted with the use of genetic programming, 
the objective function  ( )  is the fitness function of the 
genetic program that indicates the degree of similarity between 
the input/output table that is generated after running the genetic 
program and the desired table of input/output examples. The 
multi-objective genetic programming algorithm looks to make 
the table generated equal to the one desired. When this occurs, 
the fitness function will have the highest value. Consequently, 
the multi-objective optimization will look to maximize the 
fitness function. 

For the comparison of objective vectors, Pareto‘s 
dominance concept is used, and in the search for the solution, 
Pareto‘s optimality concept is employed. Given two solutions 
  ,   , it is said that    dominates    in accordance with 

Pareto‘s dominance (     ) if the following conditions are 

met: 

    *         +    (  )    (  ) and 

    *         +    (  )    (  ), 

On the contrary, it is said that    is a non-dominated 

solution with respect to   . A decision vector    is Pareto-
optimal if there is not another vector  , such that   dominates 
  . The set of Pareto‘s optimal vectors is also named Pareto 
front. 

The method of solving multi-objective optimization 
problems using evolutionary algorithms is known by the name 
of ‗multi-objective evolutionary optimization‘. 

Multi-objective evolutionary algorithms are oriented for 
working toward a maximum of three objectives [18]. When the 
quantity of objectives is greater than three, it is recommended 
to apply algorithms that go by the name of ‗many-objective 
evolutionary algorithms‘, better known by the abbreviation 
MaOEA. In the two problems studied in the present work, the 
number of objectives is seven. 

In order to overcome the problems presented by an increase 
in objectives, there are different methods available [19]. One of 
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these methods is based on the use of aggregation functions in 
order to differentiate solutions for many objectives. In the 
present work, the ‗individual information aggregation‘ method 
is used. In the fitness function, the degree of similarity between 
the input/output table generated and the one desired will be 
diminished by a value proportional to the program size. In this 
way, the objective function will permit the differentiation of 
solutions. At the same time, its maximization will help to 
reduce the program size. 

C. Cooperative Coevolution 

Another way to solve complex problems by way of 
evolutionary algorithms is to use ‗cooperative coevolution‘. 
The cooperative coevolution algorithm (CCEA), which was 
formulated by Potter [20], is based on the ―divide and conquer‖ 
strategy, and it consists of decomposing the initial problem into 
subcomponents, also called species, which evolve in parallel 
while collaborating amongst each other in the process. In a 
CCEA in order to calculate the fitness of an individual of a 
species, a complete solution is formed, combining the 
individual with the representatives selected from other species. 

In the present work, the authors apply cooperative 
coevolution in the synthesis of programs for microcontrollers, 
for which several species are formed. Each species corresponds 
to a program segment. In order to form a complete solution, 
individuals taken from each species are concatenated (one 
individual per species, as is shown in Fig. 1). 

D. Microcontroller based Systems (MBS) 

The electronic circuitry of a MBS, depending on its 
application, includes other peripheral devices apart from the 
microcontroller that are connected to it through input/output 
lines. Each device possesses a way of managing and in some 
cases a complex protocol for communication with the 
microcontroller. 

In the present work, in order to put the proposed 
methodology to the test, the MBS is composed of the 
microcontroller, a matrix keyboard connected to port P2 
(Fig. 2), and a text LCD module connected to port P1 (Fig. 3). 
If one desires to connect the matrix keyboard to another port, it 
is necessary to verify that the port lines possess ‗pull-up‘ 
resistors. 

 

Fig. 1. Formation of a Complete Solution. 

 

Fig. 2. 4x4 Matrix Keyboard Connection with the Microcontroller. 

 

Fig. 3. LCD Module Connection with the Microcontroller with a 4-Bit 

Interface. 

III. FORMULATION OF THE PROBLEM 

As the technique used in the proposed methodology is 
inductive programming, the starting point for the synthesis of a 
program is a table of input/output examples. The problem can 
be laid out, modifying the formulation given in [21], in the 
following manner: given a set of M input/output examples: 

(     ) (     )   (         ) 

The objective is to find a program P that correctly 
transforms all the examples: 

 (  )       (  )         (    )       

In this section, the problem is laid out regarding the 
generation of the matrix-keyboard scanning program and also 
that of the text-LCD-module display program. 

A. Problem of Generation of 4x4 Matrix-Keyboard Scanning 

Program 

In the 4x4 matrix keyboard of Fig. 2, the keys, represented 
as switches, have been numbered in hexadecimal code. In this 
system, when the user presses down on a key, the matrix-
keyboard scanning program must identify the key, placing into 
the accumulator register (A) a binary combination which 
corresponds to the key pressed. The correspondence between 
the key number and the identifier is established in an 
input/output table. As an example, in Table 1, the identifiers of 
a 7-bit ASCII telephone keypad are shown. When there is not a 
key pressed, the identifier is 00h. It is assumed that only one 
key is pressed at a time or none. 
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TABLE I. INPUT/OUTPUT TABLE FOR THE 4X4 KEYBOARD 

Key number 

Identifiers of a 7-bit ASCII telephone keypad 

Hex 
Binary 

S 6 S 5 S 4 S 3 S 2 S 1 S 0 

0 31 0 1 1 0 0 0 1 

1 34 0 1 1 0 1 0 0 

2 37 0 1 1 0 1 1 1 

3 2A 0 1 0 1 0 1 0 

4 32 0 1 1 0 0 1 0 

5 35 0 1 1 0 1 0 1 

6 38 0 1 1 1 0 0 0 

7 30 0 1 1 0 0 0 0 

8 33 0 1 1 0 0 1 1 

9 36 0 1 1 0 1 1 0 

A 39 0 1 1 1 0 0 1 

B 23 0 1 0 0 0 1 1 

C 41 1 0 0 0 0 0 1 

D 42 1 0 0 0 0 1 0 

E 43 1 0 0 0 0 1 1 

F 44 1 0 0 0 1 0 0 

No pressed key 00 0 0 0 0 0 0 0 

Therefore, the problem is laid out in the following way: 
using the proposed methodology, a 4x4 matrix-keyboard 
scanning program is generated, which complies with the 
input/output table given in Table 1. 

The generated program is compared to a human-written 
program whose algorithm obeys the following reasoning: the 
pins that control the rows are configured as inputs, while the 
pins that control the columns as outputs. Only one column is 
activated, putting ―0‖ in the corresponding pin, while all the 
other columns are deactivated with ―1‖. The activation of a 
column allows one to verify if some key of this column is 
pressed through the reading of the pin of each row. If the read 
value is ―1‖, this means that the key is not pressed, and if the 
value is ―0‖, the key is pressed. This process is repeated for 
each column. 

B. Problem of Generation of Two-Digit BCD Number 

Display Program in the Text LCD Screen 

The text liquid-crystal screen (LCD) is a device that 
permits the visualization of text messages, where each 
character is shown in a dot matrix with a standard size of 5x7 
dots [22]. Generally, the dots of the matrix darken in order to 
form the symbols. The control of the dot state of all screen 
matrices is carried out by a controller, which receives from the 
microcontroller the ASCII code of a character and displays it 
on the screen in the current position of the cursor. In this work, 
an LM016L text LCD screen is used, which has 2 lines of 16 
characters per line, connected to port P1. 

The LCD screen‘s signals, which are utilized for its 
connection with the microcontroller, are: the D7, D6, … , D0 
data bus; and control signals E, RS, and R/W. Through the RS 

signal, the microcontroller indicates to the LCD screen if an 
instruction (RS=0) or a character (RS=1) is sent. With the R/W 
signal, the microcontroller determines the operation to run: 
reading (R/W=1) or writing (R/W=0). The E signal, called 
‗data enabling‘, initiates the operation with a falling edge. 

The LCD screen‘s connection with the microcontroller can 
be performed by way of an 8-bit or 4-bit data interface. In the 
present work, authors use the 4-bit interface in which only the 
D7, D6, D5, and D4 lines are employed. Through these lines, 
the 8-bit commands and characters are sent. First, the high 
nibble is sent and later the low nibble. For each nibble, a falling 
edge is generated in E signal. 

The problem can be formulated in the following way: using 
the proposed methodology, a program is generated, which 
permits one to visualize in the text LCD screen the two-digit 
decimal number that is found in the accumulator in packed 
BCD code. In this case, the input/output table has 100 rows. 
The input values are the BCD numbers from 00h to 99h. The 
output values are the timing diagrams that must be generated in 
the port pins for the visualization of the two-digit decimal 
number. In the input/output table, the timing diagrams are 
represented as a decimal or hexadecimal number chain. 

One characteristic of the problems laid out is that the 
generated program must precisely comply with 100% of the 
input/output table. This is a difference between the application 
of the LGP to device driver generation and the application of 
the LGP to symbolic regression problems, where the result 
generated by the synthesized program can be approximated. 

IV. PROPOSED METHODOLOGY 

The methodology is based on the application of the many-
objective cooperative co-evolutionary linear genetic 
programming, whose realization will be described in detail in 
this section. 

A. Instruction Subset and Working Registers 

The instruction set of the 8051-architecture-microcontroller 
CPU possesses 256 instructions, explained in the technical 
documentation of the microcontroller [24] [25], of which the 
instructions figuring in Table 2 will be used in the evolutionary 
process. In Table 2, it is observed that the used registers are: A 
(ACC o accumulator), B, R0, R7, and PX. PX is the register of 
input/output port P0, P1, P2, or P3, used in the peripheral 
device‘s connection. The registers A, B, and R0 function as 
working registers. The R7 register in genetic programs serves 
to store the input value with the objective that it can be 
retrieved by the working register. The operand #data is a 
number in a range from 0 to 255 called ‗immediate value‘. The 
operand ‗bit address‘ is the address of a bit. In the evolutionary 
process, through bit addresses, the bits of the register A, B, and 
PX can be accessed. In the program‘s completion stage, the 
state register (PSW) is initialized. 

B. Chromosome and Population Representation 

Chromosome representation is very important in 
evolutionary algorithms. In LGP, the programs are represented 
by a linear sequence of instructions of an imperative 
programming language. For this work, an LGP chromosome 
representation with a dynamic size was adopted. 
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TABLE II. INSTRUCTIONS USED IN GENETIC PROGRAMS 

MNE. OPER. MNE. OPER. MNE. OPER. MNE. OPER. 

ADDC A,PX INC A SETB bit_addr DEC B 

ADD A,PX RR A CLR bit_addr INC B 

ANL A,PX DEC A DEC PX ANL B,A 

ORL A,PX RRC A INC PX ORL B,A 

XRL A,PX RL A ORL PX,A XRL B,A 

SUBB A,PX RLC A ANL PX,A MOV B,A 

XCH A,PX SWAP A XRL PX,A MOV B,R0 

ADD A,R0 CPL A MOV PX,R0 ADD A,#data 

MOV A,PX CLR A MOV PX,A MOV A,#data 

ADDC A,R0 ADD A,B INC R0 ADDC A,#data 

ORL A,R0 ADDC A,B DEC R0 ORL A,#data 

ANL A,R0 ORL A,B MOV R0,A ANL A,#data 

XRL A,R0 ANL A,B MOV R0,B XRL A,#data 

SUBB A,R0 XRL A,B MOV R0,PX SUBB A,#data 

XCH A,R0 SUBB A,B MOV A,R7 MOV R0,#data 

MOV A,R0 XCH A,B MOV B,R7 CLR C 

MUL AB MOV A,B MOV R0,R7 SETB C 

    NOP    

According to [23], program synthesis using genetic 
programming presents two problems: epistasis and 
deceptiveness. Epistasis consists in the effects of the action of 
the instructions in a program being strongly interrelated. The 
deceptiveness pathology consists in the following: if the fitness 
is a scalar value, and there are two solutions with different 
fitness values, the solution with greater fitness is not 
necessarily the one that is closer to the correct solution. 
Selecting solutions only by the scalar fitness value can trap the 
search in a local optimum. In order to avoid the deceptiveness 
pathology, the authors use many-objective optimization, in 
which the fitness of an individual is a vector that will be used 
in the insertion of new individuals into the populations. What is 
more, in each species there will be two Pareto fronts, P1t and 
P2t, of variable size N1t and N2t, respectively. 

C. Variation Operator 

In each generation, each Pareto front will be kept sorted 
according to the sum value of fitness vector elements. In the 
selection of parents, (0.75·N1t + 0.25·N2t)·0.4 parent couples 
are selected. Upon selecting a parent, its index in the list is 
found with the following formula: 

       ((   )(   ) ) 

where N is the length of the list, the function trunc returns 
the integer smaller value of a real number, and a is a real 
random number uniformly distributed in the interval    
 . Therefore, the result i has a greater probability of finding 
itself among the lower indices, where individuals of greater 
fitness are found. 

Once the parent couples are selected, to each couple the 
variation operator is applied, which consists of: crossover (with 

0.3 probability) or mutation (with 0.7 probability). The 
crossover operator consists of the exchange of tails (with 0.3 
probability) or the exchange of instructions (with 0.7 
probability). 

In the crossover operation, the exchange of instructions is 
performed in randomly-selected positions of the parent 
sequences, and for the exchange of tails, the same position in 
the parent sequences is randomly selected. 

In a sequence, the mutation is performed, with the same 
probability, in one of the following ways: 

1) Removing a randomly-selected instruction. 

2) Inserting, in a randomly-selected position, a randomly-

generated instruction. 

3) Exchanging two consecutive instructions. 

4) Adding to the end of the sequence a randomly-

generated instruction. 

5) Changing a randomly-selected instruction with a 

randomly-generated instruction. 

D. Fitness Evaluation 

From now on,   ,                 -  represents a 
genetic program. 

1) Exhaustive fitness: When, in the table of input/output 

examples, the output is a binary combination, the authors 

propose calculating the fitness through a search of the output 

of each bit of the binary combination after the execution of 

each instruction of the genetic program and in each bit of the 

working registers. This way of calculating the fitness has 

called ‗exhaustive fitness‘. 

In order to describe the exhaustive fitness evaluation, the 
authors use the representation of the input/output table of 
Fig. 4, where each column of the target output in binary 
representation is a combinational function, corresponding to a 
bit of the output combination. 

In [26] a way of executing a genetic program in order to 
improve the output quality is proposed. The approach is 
oriented toward the genetic program based on trees. The 
authors apply part of this approach, taking into consideration 
that, in place of trees, there is a sequence of instructions P. The 
approach consists of forming a table in which each row 
corresponds to an instruction of the genetic program, and each 
column corresponds to a row of the input/output table. To this 
table, the name ‗register value matrix‘ (RVM) is given. 

Input 

Target output 

(decimal or 

hexadecimal) 

Target output in the binary representation 

S K-1 … S t … S 0 

E0 S0 S0
 K-1 … S0

 t … S0
 0 

… …      

Ej Sj Sj
 K-1 … Sj

 t … Sj
 0 

… …      

EM-1 SM-1 S M-1
 K-1 … S M-1

 t … S M-1
 0 

Fig. 4. Representation of the Input/Output Table (IOT). 
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Each cell of the RVM matrix possesses 24 bits (the bit 
numbers from 0 to 7 are for register A, from 8 to 15 for B, and 
from 16 to 23 for R0). Subsequent the execution of an 
instruction, the contents of working registers R0, B, and A are 
stored in the RVM matrix. In this way, after the execution of 
the genetic program for all inputs of the input/output table, the 
RVM matrix is completely full. 

The authors adopt the following representations:      is 

the RVM cell that contains the working-register values 
subsequent to the execution of the Ii instruction for input Ej, so 

     
  represents the bit b of the said cell. If in the RVM 

matrix, the values of i and b remain fixed, and j is made to vary 

in the interval (           ) , then      
  is a 

combinational function that only depends on the input value of 
the input/output table. 

In the calculation of the exhaustive fitness (described in 
Algorithm 1) for each combinational function    of the table in 

Fig. 4, the most similar combinational function      
  is 

searched for. The location of said function is given by the 
specific values of i and b. Therefore, K being the number of 
bits of the output binary combination, the fitness vector will be 
calculated with the formula: 

  (            )                

                
           

∑ {     
    

 }   
              (1) 

     ∑      
                 (2) 

The symbol     represents the nor-exclusive logical 
operation that returns ―1‖ if the input values are equal, and 
returns ―0‖ otherwise. The summation symbol is the arithmetic 
sum operation. 

The best bit location is specified with the pair (i, b), where i 
is the index of the instruction in the sequence, and b is the bit 
number in the RVM matrix cell. Subsequent the fitness 
evaluation, the bit location matrix (BLM) contains the bit 
location for all output bits: 

    ,(     )   (     )   (         )-          (3) 

Based on the BLM matrix, the effective program size is 
calculated: 

               ( 
 )            (4) 

In order to perform program size optimization, the vector 
fop is used: 

    (   
     

      
   )                

   
                      (5) 

       ∑    
    

                (6) 

where α is a parameter which the authors refer to as 
―instruction penalty‖, which can take any real value greater 
than 0 and less than 1/ (maximum expected size of the program 

+1). The evolutionary process upon maximizing    
 

 minimizes 

NE, which means that the program size is optimized. 

The authors informally distinguish between the generated 
program and the synthesized program. To the sequence of 
instructions obtained as a result of the evolutionary process, the 
name ‗synthesized program‘ is given. A generated program is 
obtained by adding some instructions to the synthesized 
program. For example, at the beginning of the program, it is 
necessary to add instructions in order to put in the initial 
register values. After the synthesis of a program, completion of 
the program must be performed in order to obtain the generated 
program. The structure of the generator with exhaustive fitness 
evaluation is shown in Fig. 5. 

 

Fig. 5. Block Diagram of the Generator with Exhaustive Fitness. 

Algorithm 1.  Exhaustive fitness evaluation.  

IOT is the input/output table. 

         is the maximum value that can have fsum. 

  ,                 -   is the program to evaluate.  

Pbest is the best program found until the moment with size NEbest 

and with fitness fbest 

RVM is the register value matrix  

1. Delete(RVM) 

2. for each Ej of IOT do 

3.  (A, B, R0, R7) ← Initial values;  

Ports ← Initial values; PSW ← 00H 

4.  for i = 0 to N-1 do 

5.   Execution(Ii) for Ej 

6.    RVMij ← (R0) (B) (A)  

7.   end for 

8.  end for 

9.  f, fsum, BLM, NE, fop and fopsum are calculated with the 

formula (1), (2), (3), (4), (5) y (6) respectively   

10. if (fsum > fbest) or ((fsum = fmax) and (NE < NEbest)) then 

11.   Pbest ← P; NEbest ← NE; fbest ← fsum 

12. end if 
13. Return BLM, NE, fop, fopsum 
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a) Program Completion 

When the stop condition is met, the evolutionary algorithm 
returns the synthesized program and the BLM matrix. The 
completion of the program is performed in the following way: 

 Removing instructions with indices from NEbest to N-
1. 

 Inserting a MOV instruction after each instruction 
pointed by the BLM matrix in order to store the register 
that contains the result bit in the memory temporarily. 

 Adding ―MOV C, bit-address‖, ―MOV bit-address, C‖ 
instructions in order to put the result bits together in the 
accumulator register. 

 Adding instructions, before the synthesized sequence, in 
order to establish the initial values in registers A, B, R0, 
R7, PX, and PSW. 

2) Fitness when the program generates timing diagrams 

according to input values: In this case, the genetic program 

must generate determined timing diagrams in the pins of the 

microcontroller‘s port, depending on the accumulator-register 

value. For this purpose, it is necessary to evaluate the degree 

of similarity between the two timing diagrams. In Fig. 6, the 

comparison of the timing diagrams is illustrated, where the 

quantity of intervals along the timing diagrams is L=6. 

In Fig. 7 the input/output table is represented, which 
determines the timing diagrams that must be generated 
depending on the input value that is in the accumulator. In this 
table, Sj, d represents the timing diagrams in all pins of the port 
in interval d when the input is Ej. 

 

Fig. 6. Comparison of Two Timing Diagrams. 

Input 
Target timing diagrams (decimal or hexadecimal) 

0 … d … L-1 

E0 S0, 0 … S0, d … S0, L-1 

…      

Ej Sj, 0 … Sj, d … Sj, L-1 

…      

EM-1 S M-1, 0 … S M-1, d … S M-1, L-1 

Fig. 7. Representation of the Input/Output Table when Timing Diagrams are 

Generated Depending on the Input Value. 

If the number of pins where the timing diagrams are 
generated is K, then each      value of the target timing 

diagram and each      value of the generated timing diagram is 

expressed in the binary representation, where each bit 
corresponds to a port pin: 
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In order to find the fitness vector of the timing diagrams 
generated by the genetic program, first the fitness vector is 
calculated for each    input and each pin, determining the 

degree of similarity of the timing diagrams with the following 
formula: 

   (  
    

      
   )              

  
 
 ∑ {(   )(    

 
     

 
)}   

               (7) 

Where (   ) is the weight of the interval d. 

Then the fitness for all inputs is calculated: 

  ∑   
   
                 (8) 

Thus, for the fitness vector   (            ) one also 
calculates the sum: 

     ∑      
                 (9) 

For each    input, there is a vector 

     [                         ]  with the indices of 

instructions which produce the changes in the timing diagrams. 
For the input   , the scalar 

         ([                         ]) is calculated, which 

is the index of the instruction that produced the last value in the 
timing diagram. Also, the effective size of the program is 
found: 

               (    )          (10) 

Based on all the      vectors, the authors form the VDIF 

vector of size L, in which each element is equal to the 
difference between the maximum and minimum values of all 
the values in each      vector position: 

                (    )            (    )        (11) 

Using    and                  (     )  the 

fitness     (   
     

      
   )  and its sum        are 

calculated by the following equations: 

   
 
      (         )          (12) 

       ∑    
    

              (13) 

Algorithm 2 shows the fitness evaluation when timing 
diagrams are generated according to input values. 

The evolutionary process upon maximizing    
 

 minimizes 

NE and DIFmax. This means that program size is optimized. 
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At the end of the process, DIFmax must be zero, which ensures 
that the vectors of the instruction indices that produce the 
changes in the timing diagrams are equal for all inputs. 

The structure of a generator with fitness evaluation when 
timing diagrams are generated is shown in Fig. 8. 

Algorithm 2.  Fitness evaluation of the program that generates 

timing diagrams according to input values.  

S contains the target timing diagrams.  

       (   )  
 

 
  is the maximum value that can have fsum. 

  ,                 -   is the program to evaluate.  

Pbest is the best program found until the moment with size NEbest 

and with fitness fbest 

1. Delete(f) 

2. for each input Ej do 

3.  (A, B, R0, R7) ← Initial values;  

Ports ← Initial values; PSW ← 00H 

4.   Delete(Gj); Delete(VNIj) 

5.  for i = 0 to N-1 do 

6.   Execution(Ii)  

7.    Update(Gj); Update(VNIj); 

8.  end for 
9.   For the input Ej,  f j is calculated with equation (7) 

10.   f ← f + f j 

11. end for 

12. f, fsum,NE, fop, fopsum are calculated with the equations (8), 

(9), (10), (11) y (12) 

13. if (fsum > fbest) or ((fsum = fmax) and (NE< NEbest)) then 

14.  Pbest ← P; NEbest ← NE; fbest ← fsum 

15. end if 
16. Return NE, fop, fopsum 

 

Fig. 8. Block Diagram of the Timing Diagram Generator. 

E. Many-Objective Cooperative Co-evolutionary Linear 

Genetic Programming (MaOCCLGP) 

In the MaOCCLGP algorithm, each program segment 
evolves like a species. In each species, there are two 
populations, P1t and P2t, which are non-dominated Pareto 
fronts and two auxiliary lists Qt and Dt. The algorithm begins 
by randomly generating populations P1t and P2t in each 
species (see Algorithm 3). Next, a determined quantity of 
representatives of each species is selected. The representatives 
are the best individuals on the P1t list, starting from the 
individual with index 0.  Using the representatives, the fitness 
of individuals of each species is calculated. Each P1t and P2t 
list is sorted using the fopsuma value of each individual. 

While the stop condition is not fulfilled, the following 
operations are performed: in each species, the representatives 
are selected; next, the parent individuals are selected, to which 
the variation operator is applied in order to obtain the 
descendants in list Qt; then, in each species the fitness of each 
individual of P1t, P2t, and Qt is evaluated; subsequently, in 
each species the best individuals of Qt in P1t are inserted, 
putting individuals cast aside in Dt; the best individuals of Dt 
in P2t are inserted; finally, P1t and P2t are sorted. 

In the insertion operations, the algorithm described in [27] 
is followed, using the fop fitness of each individual in such a 
way that P1t and P2t are Pareto fronts. To maintain diversity a 
parent is taken from P1t with a probability of 0.75 or from P2t 
with a probability of 0.25. 

Algorithm 3.  Many-Objective cooperative co-evolutionary 

linear genetic programming.  

1. for each species do 

2.   Random generation of P1t y P2t; 

3. end for 

4. Selection of representatives of each species  

5. for each species do 

6.   Fitness_evaluation (P1t) 

7.   Fitness_evaulation (P2t) 

8.   Sorting(P1t), Sorting(P2t) 

9. end for 

10. while the stop condition is not reached do 

11.   for each species do 

12.   Selection of representatives  

13.   Qt ← Parent_selection (Pt1, Pt2) 

14.   Qt ← Variation(Qt) 

15.  end for  

16.  for each species do 

17.   Fitness_evaluation (P1t),  

18.    Fitness_evaluation (P2t), 

19.    Fitness_evaluation (Qt),  

20.  end for 

21.  for each species do 

22.    Insertion of the best from Qt in P1t and those  

cast aside in Dt;  

23.    Insertion of the best from Dt in P2t  

24.   Sorting(P1t), Sorting(P2t) 

25.   end for 

26. end while 
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The fitness evaluation is performed in the following 
manner: for example, if the quantity of species is 4 and the 
quantity of representatives in each species is 2, the 
representatives are denoted R00 and R01 of species 0, R10 and 
R11 of species 1, R20 and R21 of species 2, and R30 and R31 
of species 3. Therefore, in order to evaluate the fitness of 
individual Ix of species 2, the fitness of each of the two 
programs is calculated, the first consisting of the concatenation 
of R00, R10, Ix, and R30, and the second of R01, R11, Ix, and 
R31. The fitness of Ix is the fop fitness of the program with 
greater fopsuma value. It is necessary to indicate that, in the 
given example, a total of eight different programs could be 
formed with representatives and the Ix individual. 
Nevertheless, due to processing time constraints, only two 
programs were formed. 

V. RESULTS AND VALIDATION 

To evaluate the performance of the methodology each 
generator was executed ten times with a limit number of 
evaluations (LNE). It is possible that in the evolutionary 
process, a program satisfies the input/output table before 
reaching the LNE limit. If this is the case, the generator 
continues running and optimizing the size of the synthesized 
program until reaching the LNE limit. 

In order to analyze the results, the following criteria are 
used: hit rate (HR), minimum number of instructions (MNI), 
minimum code size after the compilation (number of bytes) 
(MCS), and minimum number of clock cycles (MNCC). 

In [13], the EMOEA algorithm has been applied in the 
generation of the following programs: 1) 4x3 matrix keyboard 
scanning program, 2) initialization program of the LCD screen, 
and 3) character display on LCD module program. In the 
present work MaOCCLGP is applied in the generation of the 
programs: 1) 4x4 matrix keyboard scanning program, and 
2) two-digit decimal number display on LCD module program. 

The evaluation of the performance of the methodology 
proposed in this article has been carried out in two ways: 

1) The EMOEA algorithm that was used in [13] has been 

applied to the two cases studied in the present work and has 

been compared with the application of MaOCCLGP. The 

results are shown in Table 3. 

2) The programs generated by MaOCCLGP have been 

compared with programs written by human as shown in 

Table 4. In this case, the test parameters given in Table 5 were 

used. Human-written programs taken as a reference were 

elaborated following the algorithms described in 

microcontroller assembly language programming courses. 

In Table 3, it can be seen that in the generation of the 4x4 
matrix keyboard scanning program, the MaOCCLGP algorithm 
has a hit rate much higher than that of EMOEA. In the 
generation of the program for BCD number display on the 
LCD screen, the MaOCCLGP algorithm produced a smaller 
program. 

In Table 4, it is observed that in the two analyzed cases, the 
hit rate is high (80%). Comparing the best generated keyboard-
scan program with the written by human program, it is 

observed that regarding minimum length, the generated 
program is 13% bigger than the human-written program. 
Regarding code size, the generated program is 3% bigger, and 
with regard to clock cycles, it is 71% more spread out. The 
difference between the minimum-length and code-size 
percentages is due to the fact that the human-written program 
makes use of conditional jump instructions, which possess 3 
bytes. The significant difference between the minimum-length 
and clock-cycle-number percentages is due to the fact, that in 
the generated program all the instructions are executed. On the 
other hand, in the human-written program, due to the jump 
instructions, not all instructions are run. Upon comparing the 
generated program and the written by human program for 
BCD-number-display on LCD screen, it is observed that the 
human-written program has slightly-higher percentages in the 
three criteria of MNI 22%, MCS 2%, and MNCC 10%, which 
demonstrates the advantage of the generated program in the 
solution of this problem. 

TABLE III. COMPARISON OF THE PERFORMANCE OF THE EMOEA AND 

MAOCCLGP ALGORITHMS 

Generated Program Algorithm 
LNE 

x106 

HR 

(%) 
MNI MCS MNCC 

4x4 matrix keyboard 
scanning in 7-bit ASCII 

code 

EMOEA 3 10 57 105 828 

MaOCCLGP 3 80 61 115 840 

Two-digit BCD number 

display on LCD module 

EMOEA 1 100 25 48 324 

MaOCCLGP 2 80 23 46 348 

TABLE IV. COMPARISON OF PROGRAMS GENERATED BY MAOCCLGP 

AND PROGRAMS WRITTEN BY HUMAN  

Program N° 
HR 

(%) 
MNI MCS MNCC 

Generated program for 4x4 matrix 
keyboard scanning in 7-bit ASCII code  

P1 80 61 115 840 

Written by human program for 4x4 matrix 

keyboard scanning in 7-bit ASCII code 
P2 - 54 111 492 

Generated program for two-digit BCD 

number display on LCD module  
P3 80 23 46 348 

Written by human program for two-digit 

BCD number display on LCD module 
P4 - 28 47 384 

TABLE V. TEST PARAMETERS FOR MAOCCLGP 

Parameter P1 P3 

Initial population size of each species  200 200 

Number of species  10 10 

Number of representatives  2 2 

Initial size of the program segment (min – max)  2-4 2-4 

LNE – Limit number of evaluations (x106) 3 2 

α 0.001 0.01 
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TABLE VI. PROGRAM EXAMPLES 

P1 P2 P3 P4 

  mov a,#0 

  mov b,a 

  mov r0,a 
  mov p2,#ffh 

  mov psw,#0 

  clr 163 

  inc p2 

  mov a,#15 

  xch a,p2 

  add a,p2 

  mov 38,a 

  subb a,b 

  add a,#232 

  addc a,#81 

  mov 35,a 

  addc a,#206 

  mov 37,a 

  orl a,#131 

  cpl a 

  rl a 

  subb a,p2 

  mov p2,a 

  addc a,p2 

  cpl a 

  mov 34,a 

  setb 165 

  addc a,b 

  rl a 

  orl a,p2 

  mov 36,a 

  dec a 

  anl a,p2 

  dec a 

  swap a 

  add a,p2 

  add a,#232 

  cpl a 

  subb a,p2 

  subb a,p2 

  mov 32,a 

  subb a,p2 

  add a,#177 

  xch a,p2 

  xrl b,a 

  addc a,p2 

  mov 33,a 

  mov a,#0 

  mov c,5 
  mov 224,c 

  mov c,10 
  mov 225,c 

  mov c,23 

  mov 226,c 
  mov c,30 

  mov 227,c 

  mov c,33 
  mov 228,c 

  mov c,47 

  mov 229,c 
  mov c,51 

  mov 230,c 

   mov p2,#0feh 
   jb p2.4,n1  

   mov a,#'1' 

   ret  
n1: jb p2.5,n2 

   mov a,#'4' 

   ret 
n2: jb p2.6,n3 

   mov a,#'7' 

   ret 
n3: jb p2.7,n4 

   mov a,#'*' 

   ret 
n4:mov p2,#0fdh 

   jb p2.4,n5 

   mov a,#'2' 
   ret 

n5: jb p2.5,n6 

   mov a,#'5' 
   ret 

n6: jb p2.6,n7 

   mov a,#'8' 
   ret 

n7: jb p2.7,n8 

   mov a,#'0' 
   ret 

n8:mov p2,#0fbh 

   jb p2.4,n9 
   mov a,#'3' 

   ret 

n9: jb p2.5,n10 
   mov a,#'6' 

   ret 

n10: jb p2.6,n11 
   mov a,#'9' 

   ret 

n11: jb p2.7,n12 
   mov a,#'#' 

   ret 

n12:mov p2,#0f7h 
   jb p2.4,n13 

   mov a,#'a' 

   ret 
n13: jb p2.5,n14 

   mov a,#'b' 

   ret 
n14: jb p2.6,n15 

   mov a,#'c' 
   ret 

n15: jb p2.7,n16 

   mov a,#'d' 
   ret 

n16: mov a,#0 

   ret 

  mov a,#0 
  mov b,a 

  mov r0,a 

  mov r7,a 
  mov p1,#0ffh 

  mov psw,#0 

  mov r0,#60 

  mov p1,r0 

  clr 146 

  anl a,#252 

  orl a,#13 

  xch a,p1 

  clr 146 

  mov p1,r0 

  clr 146 

  mov acc,r7 

  clr 229 

  swap a 

  orl a,#12 

  xch a,p1 

  mov a,#6 

  clr 146 

  anl p1,a 

 

  mov r0,a 

  anl a,#0fh 

  orl a,#30h 
  push acc; 

  mov a,r0 

  swap a 
  anl a,#0fh 

  orl a,#30h; 

  acall send_data 
  pop acc 

  acall send_data 

send_data: 
   mov r0,a 

   anl a,#0f0h 

   add a,#00ch 
   mov p1,a 

   anl a,#0f0h 

   add a,#008h 
   mov p1,a 

   mov a,r0 

   swap a 
   anl a,#0f0h 

   add a,#00ch 

   mov p1,a 
   anl a,#0f0h 

   add a,#008h 

   mov p1,a 
   ret 

In Table 6, examples of generated (P1, P3) and human-
written programs (P2, P4) are shown. In the generated 
programs, the instructions in boldface were obtained as a result 
of the evolutionary process, while those in normal font were 
put into the program during the completion stage. All programs 
have been tested in the Proteus software from Labcenter 
Electronics. The programs that manage the LCD screen have 
been tested when the clock frequency of the microcontroller is 
100 kHz. 

VI. CONCLUSIONS AND SUGGESTIONS 

In this work, a new method of generating programs in 
assembly language for microcontroller-based systems was 
described. The method uses many-objective cooperative co-
evolutionary linear genetic programming.  

When the objective is to find a binary combination, for the 
fitness evaluation exhaustive fitness was proposed, which, for 
each bit of the binary combination, searches for an output in 
the genetic program at the bit level, permitting a faster 
convergence of the evolutionary algorithm. On the other hand, 
when the objective is to generate variations in the logical 
values in the pins of the microcontroller‘s input/output port, the 
fitness evaluation was proposed, which is based on the 
comparison of the generated timing diagrams with the target 
timing diagrams. 

The methodology was tested for the 8051 architecture in 
two examples that are frequently found in microcontroller-
based systems: 4x4 matrix-keyboard scanning program and 
two-digit BCD-number display program on the text LCD 
screen. 

The comparison of the generated and human-written 
programs for the case of BCD-number display on LCD screen 
shows an advantage of the generated program in the three 
analyzed criteria. This procedure possesses the following 
particularity: when it is human-written, it is developed in two 
stages. First, the BCD-code number is converted into ASCII 
code, and later the ASCII characters are displayed on the LCD 
screen. On the other hand, when the program is generated, the 
generator can carry out the task in a direct manner, without 
their explicitly being a conversion of the BCD code into ASCII 
code. 

One disadvantage of the proposed methodology is that for 
certain cases the input/output table can be too big. In those 
cases, making use of the counterexamples-driven genetic 
programming, described in [28], is suggested for future 
research. 

Based on the results shown in Table 4, it can be concluded 
that the microcontroller programs in assembly language, 
generated following the proposed methodology, are capable of 
competing with programs written by a human programmer in 
the solution of the specific tasks. However, it is necessary to 
point out that currently limitations exist, meaning that there are 
tasks for which the generator did not manage to produce a 
program that complies with 100% of the input/output table, for 
example, natural binary number display on LCD screen, which 
would be interesting area for future research to help improve 
the methodology. 
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The proposed perspective can be applied to the automatic 
generation of routines of other peripheral devices: graphic 
LCD screen, 7-segment indicators, physical-magnitude 
sensors, etc. Likewise, the methodology can be extended to 
other 8-bit architectures like PIC or AVR. 
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