Skip to main content

Genetic Programming for Modelling of Geotechnical Engineering Systems

  • Chapter

Abstract

Over the last decade or so, artificial intelligence (AI) has proved to provide a high level of competency in solving many geotechnical engineering problems that are beyond the computational capability of classical mathematics and traditional procedures. This chapter presents one of the most interesting AI techniques, i.e. genetic programming (GP), and its applications in geotechnical engineering. In the last few years, GP, which is inspired by natural evolution of the human being, has proved to be successful in modelling several geotechnical engineering problems and has demonstrated superior predictive ability compared to traditional methods. In this chapter, the modelling aspects and formulation of GP are described and explained in some detail and an overview of most successful GP applications in geotechnical engineering are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ADARSH, S., DHANYA, R., KRISHNA, G., MERLIN, R. & TINA, J. 2012. Prediction of ultimate bearing capacity of cohesionless soils using soft computing techniques. ISRN Artificial Intelligence, 2012, 10pp.

    Google Scholar 

  • ADARSH, S. A. & JANGAREDDY, M. 2010. Slope stability modeling using genetic programming. International Journal of Earth Sciences and Engineering, 3, 1–8.

    Google Scholar 

  • ADELI, H. 2001. Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering, 16, 126–142.

    Article  Google Scholar 

  • AHANGAR-ASR, A., FARAMARZI, A. & JAVADI, A. 2010. A new approach for prediction of the stability of soil and rock slopes. Engineering Computations: International Journal of Computer-Aided Engineering and Software, 27, 878–893.

    Article  MATH  Google Scholar 

  • AHANGAR-ASR, A., FARAMARZI, A., MOTTAGHIFARD, N. & JAVADI, A. A. 2011. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Computers and Geosciences, 37, 1860–1869.

    Article  Google Scholar 

  • ALAVI, A. H. & GANDOMI, A. H. 2011. A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations: International Journal of Computer-Aided Engineering and Software, 28, 242–274.

    Article  MATH  Google Scholar 

  • ALAVI, A. H. & GANDOMI, A. H. 2012. Energy-based models for assessment of soil liquefaction. Geoscience Frontiers.

    Google Scholar 

  • ALAVI, A. H., GANDOMI, A. H., NEJAD, H. C., MOLLAHASANI, A. & RASHED, A. 2013. Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Computing and Applications, 23, 1771–1786.

    Article  Google Scholar 

  • ALAVI, A. H., GANDOMI, A. H., SAHAB, M. G. & GANDOMI, M. 2010. Multi expression programming: a new approach to formulation of soil classification. Engineering with Computers, 26, 111–118.

    Article  Google Scholar 

  • ALAVI, A. H., MOLLAHASANI, A., GANDOMI, A. H. & BAZA, J. B. 2012a. Formulation of secant and reloading soil deformation moduli using multi expression programming. Engineering Computations: International Journal of Computer-Aided Engineering and Software, 29, 173–197.

    Article  Google Scholar 

  • ALAVI, A. M., GANDOMI, A. H., BOLURY, J. & MOLLAHASANI, A. 2012b. Linear and tree-based genetic programming for solving geotechnical engineering problems. In: YANG, X.-S., GANDOMI, H., TALATAHARI, S. & ALAVI, A. H. (eds.) Metaheuristics in Water, Geotechnical and Transport Engineering. London: Elsevier

    Google Scholar 

  • ALKROOSH, I. & NIKRAZ, H. 2011. Correlation of pile axial capacity and CPT data using gene expression programming. Geotechnical and Geological Engineering, 29, 725–748.

    Article  Google Scholar 

  • ALKROOSH, I. & NIKRAZ, H. 2012. Predicting axial capacity of driven piles in cohesive soils using intelligent computing. Engineering Applications of Artificial Intelligence, 25, 618–627.

    Article  Google Scholar 

  • ALKROOSH, I. & NIKRAZ, H. 2014. Predicting pile dynamic capacity via application of an evolutionary algorithm. Soils and Foundations, 54, 233–242.

    Article  Google Scholar 

  • ALSAMMAN, O. M. 1995. The use of CPT for calculating axial capacity of drilled shafts. PhD Thesis, University of Illinois-Champaign.

    Google Scholar 

  • BAZIAR, M. H. & GHORBANI, A. 2005. Evaluation of lateral spreading using artificial neural networks. Soil Dynamics and Earthquake Engineering, 25, 1–9.

    Article  Google Scholar 

  • BAZIAR, M. H., JAFARIAN, Y., SHAHNAZARI, H., MOVAHED, V. & TUTUNCHIAN, M. A. 2011. Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: an evolutionary approach. Computers and Geotechnics, 37, 1883–1893.

    Google Scholar 

  • BUSTAMANTE, M. & GIANESELLI, L. 1982 Published. Pile bearing capacity prediction by means of static penetrometer CPT. Proceedings of the 2nd European Symposium on Penetration Testing, 1982 Amsterdam. 493–500.

    Google Scholar 

  • CABALAR, A. F., CEVIK, A. & GUZELBEY, I. H. 2009. Constitutive modeling of Leighton Buzzard sands using genetic programming. Neural Computing and Applications, 19, 657–665.

    Article  Google Scholar 

  • CRAMER, N. L. 1985 Published. A representation for the adaptive generation of simple sequential programs. Proceedings of the international conference on genetic algorithms and their applications, 1985 Carnegie-Mellon University, Pittsburgh, PA. 183–187.

    Google Scholar 

  • CUISINIER, O., JAVADI, A., AHANGAR-ASR, A. & FARIMAH, M. 2013. Identification of coupling parameters between shear strength behaviour of compacted soils and chemical's effects with an evolutionary-based data mining technique. Computers and Geotechnics, 48, 107–116.

    Article  Google Scholar 

  • DE RUITER, J. & BERINGEN, F. L. 1979. Pile foundation for large North Sea structures. Marine Geotechnology, 3, 267–314.

    Article  Google Scholar 

  • ELSHORBAGY, A., CORZO, G., SRINIVASULU, S. & SOLOMATINE, D. P. 2010. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology. Hydrology and Earth System Science 14, 1931–1941.

    Article  Google Scholar 

  • ESLAMI, A. & FELLENIUS, B. H. 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, 34, 886–904.

    Article  Google Scholar 

  • FARAMARZI, A., JAVADI, A. & ALANI, A. M. 2012. EPR-based material modelling of soils considering volume changes. Computers and Geosciences, 48, 73–85.

    Article  Google Scholar 

  • FENG, X. T., CHEN, B., YANG, C., ZHOU, H. & DING, X. 2006. Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. International Journal of Rock Mechanics and Mining Sciences, 43, 789–801.

    Article  Google Scholar 

  • FERREIRA, C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13, 87–129.

    MATH  MathSciNet  Google Scholar 

  • FLOOD, I. 2008. Towards the next generation of artificial neural networks for civil engineering. Advanced Engineering Informatics, 22, 4–14.

    Article  Google Scholar 

  • GANDOMI, A. H. 2014. Soft computing in earthquake engineering: a short review. International Journal of Earthquake Engineering and Hazard Mitigation, 2, 42–48.

    Google Scholar 

  • GANDOMI, A. H. & ALAVI, A. H. 2011. Multi-stage genetic programming: a new strategy to nonlinear system modeling. Information Sciences, 181, 5227–5239.

    Article  Google Scholar 

  • GANDOMI, A. H. & ALAVI, A. H. 2012. A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Computing Applications, 21, 189–201.

    Article  Google Scholar 

  • GANDOMI, A. H. & ALAVI, A. H. 2013. Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction. International Journal of Earthquake Engineering and Hazard Mitigation, 1, 2–8.

    Google Scholar 

  • GANDOMI, A. H., ALAVI, A. H. & GUN, J. Y. 2011. Formulation of uplift capacity of suction caissons using multi expression programming. KSCE Journal of Civil Engineering, 15, 363–373.

    Article  Google Scholar 

  • GARG, A., GARG, A., TAI, K. & SREEDEEP, S. 2014a. Estimation of pore water pressure of soil using genetic programming. Geotechnical and Geological Engineering, 32, 765–772.

    Article  Google Scholar 

  • GARG, A., GARG, A., TAI, K. & SREEDEEP, S. 2014b. An integrated SRP-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Engineering Applications of Artificial Intelligence, 30, 30–40.

    Article  Google Scholar 

  • GIUSTOLISI, O., DOGLIONI, A., SAVIC, D. A. & WEBB, B. W. 2007. A multi-model approach to analysis of environmental phenomena. Environmental Modelling and Software, 22, 674–682.

    Article  Google Scholar 

  • GIUSTOLISI, O. & SAVIC, D. A. 2006. A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8, 207–222.

    Google Scholar 

  • GOLDBERG, D. E. 1989. Genetic Algorithms in Search Optimization and Machine Learning, Mass, Addison - Wesley.

    Google Scholar 

  • HOLLAND JH. 1975 Published. Adaptation in natural and artificial systems. 1975 University of Michigan

    Google Scholar 

  • JAVADI, A., AHANGAR-ASR, A., JOHARI, A., FARAMARZI, A. & TOLL, D. 2012a. Modelling stress-strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, and incremental approach. Engineering Applications of Artificial Intelligence, 25, 926–933.

    Article  Google Scholar 

  • JAVADI, A., FARAMARZI, A. & AHANGAR-ASR, A. 2012b. Analysis of behaviour of soils under cyclic loading using EPR-based finite element method. Finite Elements in Analysis and Design, 58, 53–65.

    Article  Google Scholar 

  • JAVADI, A. & REZANIA, M. 2009. Intelligent finite element method: An evolutionary approach to constitutive modelling. Advanced Engineering Informatics, 23, 442–451.

    Article  Google Scholar 

  • JAVADI, A., REZANIA, M. & MOUSAVI, N. M. 2006. Evaluation of liquefaction induced lateral displacements using genetic programming. Computers and Geotechnics, 33, 222–233.

    Article  Google Scholar 

  • JOHARI, A., HABIBAGAHI, G. & GHAHRAMANI, A. 2006. Prediction of soil-water characteristic curve using genetic programming. Journal of Geotechnical and Geoenvironmental Engineering, 132, 661–665.

    Article  Google Scholar 

  • KAYADELEN, C. 2011. Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Systems with Applications, 38, 4080–4087.

    Article  Google Scholar 

  • KOZA, J. R. 1992. Genetic programming: on the programming of computers by natural selection, Cambridge (MA), MIT Press.

    Google Scholar 

  • MEYERHOF, G. G. 1965. Shallow foundations. Journal of Soil Mechanics & Foundation Engineering Division, 91, 21–31

    Google Scholar 

  • MOLLAHASANI, A., ALAVI, A. H. & GANDOMI, A. H. 2011. Empirical modeling of plate load test moduli of soil via gene expression programming. Computers and Geotechnics, 38, 281–286.

    Article  Google Scholar 

  • MOUSAVI, S. M., ALAVI, A. H., MOLLAHASANI, A., GANDOMI, A. H. & ESMAEILI, M. A. 2013. Formulation of soil angle of resistance using a hybrid GP and OLS method. Engineering with Computers, 29, 37–53.

    Article  Google Scholar 

  • MUDULI, P. K. & DAS, S. K. 2013. SPT-based probabilistic method for evaluation of liquefaction potential of soil using multi-gene genetic programming. International Journal of Geotechnical Earthquake Engineering, 4, 42–60.

    Article  Google Scholar 

  • MUDULI, P. K. & DAS, S. K. 2014. CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach. Indian Geotechnical Journal, 44, 86–93.

    Article  Google Scholar 

  • NADERI, N., ROSHANI, P., SAMANI, M. Z. & TUTUNCHIAN, M. A. 2012. Application of genetic programming for estimation of soil compaction parameters. Applied Mechanics and Materials, 147, 70–74.

    Article  Google Scholar 

  • NARENDARA, B. S., SIVAPULLAIAH, P. V., SURESH, S. & OMKAR, S. N. 2006. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study. Computers and Geotechnics, 33, 196–208.

    Article  Google Scholar 

  • NAYERI, G. D., NAYERI, D. D. & BARKHORDARI, K. 2013. A new statistical correlation between shear wave velocity and penetration resistance of soils using genetic programming. Electronic Journal of Geotechnical Engineering, 18K, 2071–2078.

    Google Scholar 

  • PAN, C.-P., TSAI, H.-C. & LIN, Y.-H. 2013. Improving semi-empirical equations of ultimate bearing capacity of shallow foundations using soft computing polynomials. Engineering Applications of Artificial Intelligence 26, 478–487.

    Article  Google Scholar 

  • RASHED, A., BAZA, J. B. & ALAVI, A. H. 2012. Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results. Engineering Applications of Artificial Intelligence, 25, 1437–1449.

    Article  Google Scholar 

  • REZANIA, M., FARAMARZI, A. & JAVADI, A. 2011. An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement. Engineering Applications of Artificial Intelligence, 24, 142–153.

    Article  Google Scholar 

  • REZANIA, M. & JAVADI, A. 2007. A new genetic programming model for predicting settlement of shallow foundations. Canadian Geotechnical Journal, 44, 1462–1472.

    Article  Google Scholar 

  • REZANIA, M., JAVADI, A. & GIUSTOLISI, O. 2008. An evolutionary-based data mining technique for assessment of civil engineering systems. Engineering Computations: International Journal of Computer-Aided Engineering and Software, 25, 500–517.

    Article  MATH  Google Scholar 

  • REZANIA, M., JAVADI, A. & GIUSTOLISI, O. 2010. Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression. Computers and Geotechnics, 37, 82–92.

    Article  Google Scholar 

  • SAVIC, D. A., GIUTOLISI, O., BERARDI, L., SHEPHERD, W., DJORDJEVIC, S. & SAUL, A. 2006. Modelling sewer failure by evolutionary computing. Proceedings of the Institution of Engineers, Water Management, 159, 111–118.

    Google Scholar 

  • SCHULTZE, E. & SHERIF, G. 1973 Published. Prediction of settlements from evaluated settlement observations for sand. Proceedings of the 8th International Conference on Soil Mechanics & Foundation Engineering, 1973 Moscow. 225–230.

    Google Scholar 

  • SCHMERTMANN, J. H. 1970. Static cone to compute static settlement over sand. Journal of Soil Mechanics & Foundation Engineering Division, 96, 1011–1043.

    Google Scholar 

  • SCHMERTMANN, J. H. 1978. Guidelines for cone penetration test, performance and design. Washington, D. C.: U. S. Department of Transportation.

    Google Scholar 

  • SHAHIN, M. A. 2010. Intelligent computing for modelling axial capacity of pile foundations. Canadian Geotechnical Journal, 47, 230–243.

    Article  Google Scholar 

  • SHAHIN, M. A. 2013. Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions. In: YANG, X., GANDOMI, A. H., TALATAHARI, S. & ALAVI, A. H. (eds.) Metaheuristics in Water, Geotechnical and Transport Engineering. London: Elsevier Inc.

    Google Scholar 

  • SHAHIN, M. A. 2015. Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomechanics and Geoengineering: An International Journal, 10(2), 109–125.

    Google Scholar 

  • SHAHIN, M. A., JAKSA, M. B. & MAIER, H. R. 2001. Artificial neural network applications in geotechnical engineering. Australian Geomechanics, 36, 49–62.

    Google Scholar 

  • SHAHIN, M. A., JAKSA, M. B. & MAIER, H. R. 2002a. Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Australian Geomechanics, 37, 45–52.

    Google Scholar 

  • SHAHIN, M. A., JAKSA, M. B. & MAIER, H. R. 2009. Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. Journal of Advances in Artificial Neural Systems, 2009, doi: 10.1155/2009/308239.

  • SHAHIN, M. A., MAIER, H. R. & JAKSA, M. B. 2002b. Predicting settlement of shallow foundations using neural networks. Journal of Geotechnical & Geoenvironmental Engineering, 128, 785–793.

    Article  Google Scholar 

  • SHAHNAZARI, H., DEHNAVI, Y. & ALAVI, A. H. 2010. Numerical modeling of stress-strain behavior of sand under cyclic loading. Engineering Geology, 116, 53–72.

    Article  Google Scholar 

  • SHAHNAZARI, H., SHAHIN, M. A. & TUTUNCHIAN, M. A. 2014. Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils. International Journal of Civil Engineering, 12, 55–64.

    Google Scholar 

  • SHAHNAZARI, H. & TUTUNCHIAN, M. A. 2012. Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach. KSCE Journal of Civil Engineering, 16, 950–957.

    Article  Google Scholar 

  • SHAHNAZARI, H., TUTUNCHIAN, M. A., REZVANI, R. & VALIZADEH, F. 2013. Evolutionary-based approaches for determining the deviatoric stress of calcareous sands Computers and Geosciences, 50, 84–94.

    Google Scholar 

  • TEODORESCU, L. & SHERWOOD, D. 2008. High energy physics event selection with gene expression programming. Computer Physics Communications, 178, 409–419.

    Article  Google Scholar 

  • TSAI, H.-C., TYAN, Y.-Y., WU, Y.-W. & LIN, Y.-H. 2013. Determining ultimate bearing capacity of shallow foundations using a genetic programming system. Neural Computing and Applications, 23, 2073–2084.

    Google Scholar 

  • YANG, Y. & ROSENBAUM, M. S. 2002. The artificial neural network as a tool for assessing geotechnical properties. Geotechnical Engineering Journal, 20, 149–168.

    Article  Google Scholar 

  • YOUD, T. L., HANSEN, C. M. & BARLETT, S. F. 2002. Revised multilinear regression equations for prediction of lateral spread displacement Journal of Geotechnical and Geoenvironmental Engineering, 128, 1007–1017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Shahin .

Editor information

Editors and Affiliations

1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahin, M.A. (2015). Genetic Programming for Modelling of Geotechnical Engineering Systems. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics