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Abstract: - This paper addresses the design of one dimensional piece-wise maps to generate optimal codes for 
short and long code multi-user CDMA systems. A novel approach, GP-DNA, that uses genetic programming 
to search in the functional space and DNA computation to obtain the optimal initial conditions has been 
proposed as the design methodology. This method automatically designs orthogonal codes for short-code 
CDMA and codes with good aperiodic correlation properties for long code CDMA. Monte-Carlo simulations 
illustrate the improved performance of GP-DNA compared to conventional code designs. 
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1   Introduction 
 
The goal for third generation wireless systems is to 
offer high bit rate multimedia services like high-
speed data, video and multimedia traffic. Code 
Division Multiple Access (CDMA) systems 
equipped with reliable multi-user interference (MUI) 
cancellations, have gained worldwide acceptance 
over competing TDMA and FDMA alternatives 
whose capacity is limited [1]. The multipath 
propagation characteristics of the channel and MUI 
degrade the system performance thereby 
necessitating improved design of spreading codes 
[2]. Hence the design of spreading sequences for 
CDMA communications is still an active field of 
research [3].  
 
Over the past few years the application of chaotic 
sequences generated by nonlinear dynamical 
systems to Direct Sequence Spread Spectrum 
(DS/SS) systems has gained prominence. Among the 
various nonlinear dynamical systems that can be 
used to generate spreading sequences, polynomial 
maps such as the logistic map and chaotic markov 
maps are preferred due to their good pseudo-random 
properties [4,5]. The traditional analytical 
techniques for chaotic maps have used the Ergodic 
properties of chaotic maps to estimate their 
correlation performance [6]. Since exploitable 
sequences generated from sample trajectories are of 
much shorter length than what is required for the 
correlation performance of the map to approach the 
theoretical limit, there is a need to search for maps 

to generate short sequences with good performance.  

The DNA computing paradigm introduced by 
Leonard M. Adleman [7] inspired an efficient 
implementation using chaotic systems [8]. In order 
to model the combinatorial processing engine and 
the associated DNA operations, a nonlinear chaotic 
dynamical system was proposed as the core engine 
of the search process.  

In this paper we propose an algorithm based on 
DNA computation to quickly identify the initial 
conditions that generate optimal codes from any 
given nonlinear map. Further, using Genetic 
Programming, piece-wise nonlinear maps are 
designed that maximize the number of obtainable 
optimal codes from a single map. The combination 
of Genetic Programming (GP) and DNA 
computation leads to an efficient algorithm (GP-
DNA) that can design optimal codes by specifying 
the map and the optimal initial conditions for the 
map. Initial results show that the design procedure is 
able to generate short orthogonal codes as well as 
long aperiodic codes with good correlation 
properties. 

The paper is organized as follows. In Section 2 we 
introduce a general CDMA model signifying the 
importance of code design. Section 3 introduces the 
idea of code generation using nonlinear maps and 
the GP-DNA approach to optimal map design. 
Simulation results are presented in Section 4 with 
concluding remarks in Section 5.   

 
 



2   CDMA System Model 
 
The schematic diagram of a CDMA system is 
depicted in Fig 1 [9].  
 

 
Fig 1: CDMA system model  

 
The continuous time waveform at the transmitter can 
be expressed as,   
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Tb  = N Tc where N is the processing gain and Tb is 
the bit period and Tc is the chip period, PTc is the 
pulse shaping filter. And the up samplers and down 
samplers serve the purpose of spreading and 
dispreading by the factor of N (processing gain). 
 
The complex baseband model of the multipath 
channel can be written as: 
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Where L is the number of resolvable paths in the 
channel and lα is the Rayleigh fading amplitude of 

the l th path and lβ is the channel phase which is 
uniformly distributed between [0, 2π ). 
 
The received signal is then given by: 
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At the receiver, the received signal is correlated with 
the locally generated sequence ˆ( )c t and the resulting 
output is despreaded (down sampling) and the 
decision is made on the estimate. 
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Where, [ (0), (1),......, ( 1)]T
j j j jh h h h L= − . The first 

term is the signal part and the second term is the 
MUI part and the last is AWGN part with 

variance 2σ .   
 
Let the MUI in the equation (4) be modeled as 
gaussian noise. Then different receivers can be used 
at the receiver. One can simply use a matched filter 
or zero forcing detector or MMSE receiver, by 
choosing [10]: 
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Where R is the correlation matrix whose (j,p)th  

element is * ( ) ( )jp j p j pc t c t c cχρ
∞

−∞

= =� , χ stands for 

Hermitian and †stands for pseudo-inverse. 
 
The above equations are equivalent to the RAKE 
receiver if all the delayed waves at the input of the 
receiver are combined coherently. However, the MF 
does not take advantage of the known interfering 
users sequences. Hence the design of ˆ ( )c k becomes 

important in order to minimize MUI.  
 

In the case of long codes, the design would involve 
the minimization of the auto-correlation and cross-
correlation factors: 
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function.  
 
Short codes, however, should satisfy the 
orthogonality condition: 
 

( ) ( ) ( )j pc k c k j pχ δ= −     (7) 



3   Map design using GP-DNA  
 
The design of maps for generation of orthogonal 
codes is not a trivial problem. Both the choice of the 
map as well as the initial conditions used to generate 
the codes needs to be optimized in order to achieve 
good performance. There exist no easy analytical 
methods to solve the dual optimization problem of 
searching in for maps in the functional space while 
searching for good initial conditions in the space of 
real numbers.  
 
3.1 Obtaining Codes from Maps 
 
Different codes are obtained from individual maps 
by choosing different initial conditions and mapping 
the obtained time series to Bernoulli symbols. Thus, 
for a processing gain of N, and the number of users 
equal to M, the codes can be obtained from a given 
map as follows: 
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The sequences generated by the map are then  
converted to spreading codes by: 
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. The initial conditions 

xj(0) need to be chosen efficiently in order to obtain 
optimized codes. 
 
3.2 DNA Computation for  Initial Condition 

Search 
 
In order to search for the optimal initial conditions, 
we propose a novel scheme inspired by DNA 
computation.  
 
DNA computation involves the manipulation of 
sequences of nucleotides. The DNA consists of four 
nucleotides A, T, G and C that are used to form 
strings to encode information [7]. A multiset of such 
strings can be used to represent candidate solutions 
of an optimization problem. The actual or optimal 
solution (or one of the solutions) has to be selected 
among the many candidates. Adleman’s DNA 
computation paradigm uses a set of operations that 
form the restricted DNA model to process a multiset 
of DNA strings stored in a tube.  
 
Instead of using actual DNA in tubes, it is also 
possible to formulate the DNA computation 
paradigm using symbolic dynamics of nonlinear 

dynamical systems [8]. The solutions can be 
represented as strings of binary numbers constrained 
to a certain length. In the case of nonlinear maps, the 
symbolic dynamics of any given initial condition 
can be obtained by using a simple threshold. In other 
words, given a nonlinear map f the sequences can be 
obtained as explained in (8) and (9). Thus, for a 
given map f we can obtain several different 
symbolic sequences associated with different initial 
conditions.  
 
Since chaotic dynamical systems are sensitive to 
initial conditions, small changes in the initial 
condition can lead to different symbolic sequences 
that can each be associated with a possible solution 
to the given optimization problem.  
 
Thus, it is possible to search amongst different 
candidate solutions to the problem by just perturbing 
the initial conditions of the nonlinear map. Thus, 
given a set of multiple criteria that need to be 
satisfied for a symbolic sequence to be acceptable, 
each of the criteria can be associated with some 
feedback, all of which need to be satisfied for no 
perturbation.  
 
Since in our case each of the codes need to be 
optimized with respect to all the other sequences, the 
individual feedbacks output a 1 whenever the new 
code is not orthogonal to the previous codes and a 0 
when they are orthogonal. An OR operation is 
performed on the output from each of the feedback 
blocks. The resulting 1 or 0 is then multiplied by a 
perturbation value δ generated from another chaotic 
system, to obtain the actual perturbation ξ that gets 
added to the initial condition of the nonlinear map. 
The resulting DNA computation based algorithm is 
depicted in Figure 2. 

 
Fig 2: Schematic of DNA Computation 

 



The LOR system is a chaotic system that generates 
the perturbations used to steer the chaotic map T 
towards optimal solutions. Thus the system T 
generates optimized codes. 
 
3.3 Genetic Programming for  Map Design 
 
Now that we can search for optimized codes 
generated by any given map, we need to optimize 
the map in order to maximize the number of codes 
obtainable from it. This is achieved by using GP.  
 
Genetic programming (GP) as a search and 
optimization technique is well known and has been 
applied to many problems [11,12]. Genetic 
programming is particularly useful in the specific 
application of inverse problems such as finding 
optimal mathematical expressions that fit certain 
criteria [11]. We have therefore chosen GP to search 
in the functional domain for optimal maps. 
 
In GP individual maps are represented as trees, 
where the leaf nodes are input variables from the 
terminal set T, and internal nodes are operators from 
the functional set F [4].  We set F={ +, *, -, mod}  

and { ( -1),    constant}T x t random ephemeral= . 
 
Since objective of the GP design is to search for 
maps that can provide maximum number of codes of 
the given length that satisfy the given objective 
function, the fitness of the individuals in any 
population of GP is assigned depending on the 
number of optimal codes that can be obtained from 
them using the DNA computation algorithm. We 
can now summarize the GP-DNA map search 
algorithm as follows: 
i. An initial population of N random functions 

(trees) is initialized with the “ ramped half-and-
half”  method, which we describe now.  An equal 
amount of trees are assigned to depths d={ 2, 3, 
…, Dmax} .  At each depth, half the trees are 
generated with the “ full”  method, and half with 
the “grow” method.  In the “ full”  method, all the 
leaf nodes have the same depth di; internal nodes 
are randomly selected from F, and leaf nodes are 
randomly selected from T.  The probability 
density among the choices for F and for T is 
uniform.  The “grow” method starts by 
randomly choosing a function in F and an input 
in T for the root node (50% probability for 
each).  Then a corresponding symbol is chosen 
from F or T.  For each F that is chosen, the 
“grow” method is recursively applied to that 
node.  Any nodes that attain depth di must 

choose from T. For our search, we chose F = 
{ +,*,-,mod1}  (where mod1(a) = a (mod 1)), and 
T ={ x(t-1), random ephemeral constant in the 
range [-10,10]} . 

ii. Rank each individual proportional to the number 
of orthogonal codes obtained using the DNA 
algorithm. Sort the population according to rank 
and assign fitness to the individuals by linearly 
interpolating from the best to the worst rank. 
Average the fitnesses of individuals with the 
same rank so that all of them are sampled at the 
same rate. 

iii. Create a new population by reproducing or 
combining selected functions in the current 
population. Reproduction of a function is simply 
the copying of a function to the new population. 
The genetic operator of Crossover is used to 
combine functions. Crossover involves crossing 
over two random subtrees of two respective 
parents. The probability of an individual being 
selected for reproduction or crossover is 
proportional to that individual’s fitness rank in 
the population. We set the probability of 
performing reproduction vs. crossover to 0.2 vs. 
0.8. Also, we forced the population to be 100% 
diverse (i.e. no duplicates). 

iv. Repeat steps ii and iii until convergence to an 
optimal solution or the maximum number of 
generations is exceeded. We set the maximum 
number of generations to be 51. 

 
The design performance of GP-DNA is evaluated in 
the following section. 
 

4   Per formance Analysis 
 
4.1 Design for Short Code CDMA 
 
In this section we present performance analysis 
results for low processing gain DS-CDMA. GP-
DNA was used to design maps that generate 
orthogonal codes with N = 16 and M = 16. The 
evolution of the best fitness across generations of 
the GP-DNA is shown in Fig 3.  
 
The map designed by GP-DNA is as follows: 
x(n) = (mod1(((mod1(x(n-1)))+((mod1((mod1((x(n-
1))+(mod1(x(n-1)))))+(mod1(((8.3863).* (x(n-
1))).* ((2).*(x(n-1))))))).*(8.5751))).* (mod1(-
8.2996)))) 
 



 
Fig 3: GP-DNA evolution 

 
The state-space portrait of the above map is shown 
in Fig 4.  

 
Fig 4: State space portrait of GP-DNA designed 

map for NxM =  16x16 
 

The orthogonal property of the designed codes can 
easily be seen from the frequency domain plot in Fig 
5.  

 
Fig 5: Frequency domain plot of GP-DNA codes 

 

The performance of the designed codes were 
evaluated for different channels. We assume the 
receiver has perfect bit and chip synchronization and 
perfect knowledge of the channel status. We 
compared the performance of the GP-DNA codes 
with Walsh codes, Gold code and Markov map 
generated codes for N = 32 and M = 4. The result of 
the Monte-Carlo simulation for L = 5 multipath 
Rayleigh fading channel is shown in Fig 6.  
 

 
Fig 6: BER vs. Eb/No for multipath Rayleigh fading 

channel 
 
We have also evaluated the performance of the 
designed codes in AWGN channel and MUI with M 
= 8 and N = 32. The performance was evaluated 
with both Zero-Forcing detector and MMSE 
receiver. The results of the simulations are shown in 
Fig 7. The performance of GP-DNA code is about 
the same as gold code in MMSE and better in 
decorrelator. 

 
Fig 7: BER vs. Eb/No for AWGN noise MUI 

channel 
 
A significant aspect of the GP-DNA design is that 
the algorithm generates different solutions with 



orthogonal properties, which is not possible in the 
case of either the Walsh or gold sequences.  
 
4.2 Long code design for  CDMA 
 
We also applied our code design algorithm for long 
code CDMA systems. The performance of the codes 
were evaluated for (N = 32, M = 4 and length of 
code equal to 215-1) L=5 multipath Rayleigh fading 
channel. The results of the simulations are shown in 
Fig 8.  

 
Fig 8: Performance of Long code CDMA system in 

multipath Rayleigh fading channel 
As can be seen from Fig 8 the performance of the 
GP-DNA codes is slightly better than gold 
sequences as it has optimized auto- and cross-
correlation properties. 
 

5   Conclusion 
 
In this paper we have proposed a novel technique 
combining genetic programming and DNA 
computation to design maps that produce maximum 
number of optimized codes for both short and long 
code CDMA. Monte-Carlo simulations results 
confirmed that the performance of the GP-DNA 
codes were better than the standard Walsh and gold 
sequences for different channel conditions. Further 
the ability of GP-DNA to design different maps that 
generate codes with similar performance allows 
flexibility in the design. 
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