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Abstract 
This thesis examines the application of two evolutionary computation techniques to two 

different aspects of open channel flow.  The first part of the work is concerned with 

evaluating the ability of an evolutionary algorithm to provide insight and guidance into the 

correct magnitude and trend of the three parameters required in order to successfully apply a 

quasi 2D depth averaged Reynolds Averaged Navier Stokes (RANS) model to the flow in 

prismatic open channels.  The RANS modeled adopted is the Shiono Knight Method (SKM) 

which requires three input parameters in order to provide closure, i.e. the friction factor (f), 

dimensionless eddy viscosity (λ) and a sink term representing the effects of secondary flow 

(Γ).  A non-dominated sorting genetic algorithm II (NSGA-II) is used to construct a multi-

objective evolutionary based calibration framework for the SKM from which conclusions 

relating to the appropriate values of f, λ and Γ are made.  The framework is applied to flows 

in homogenous and heterogeneous trapezoidal channels, homogenous rectangular channels 

and a number of natural rivers.  The variation of f, λ and Γ with the wetted parameter 

ratio ( and panel structure for a variety of situations is investigated in detail.  The 

situation is complex: f is relatively independent of the panel structure but is shown to vary 

with , the values of λ and Γ are highly affected by the panel structure but λ is shown to 

be relatively insensitive to changes in .  Appropriate guidance in the form of empirical 

equations are provided.  Comparing the results to previous calibration attempts highlights the 

effectiveness of the proposed semi-automated framework developed in this thesis. 
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The latter part of the thesis examines the possibility of using genetic programming as an 

effective data mining tool in order to build a model induction methodology.  To this end the 

flow over a free overfall is exampled for a variety of cross section shapes.  In total, 18 

datasets representing 1373 experiments were interrogated.  It was found that an expression of 

form 0BA S
c eh h e= , where hc is the critical depth, he is the depth at the brink, So is the bed 

slope and A and B are two cross section dependant constants, was valid regardless of cross 

sectional shape and Froude number.  In all of the cases examined this expression fitted the 

data to within a coefficient of determination (CoD) larger than 0.975.  The discovery of this 

single expression for all datasets represents a significant step forward and highlights the 

power and potential of genetic programming. 



 

 

 

 

TO MY FAMILY 
 

 i



 

 ii

 

Acknowledgments 
 

First and foremost, I would like to express my profound appreciation and sincere thanks to my 

supervisors, Dr.Mark Sterling and Professor Donald W. Knight for their invaluable instruction 

and inspiration.  I am grateful to them not only for their supervision, but for their major 

contribution in the formation of my character and skills as a young researcher.  I eagerly hope 

to have another chance to work under their supervision. 

 

I must give my special thanks to my dear friend Dr. Alireza Nazemi.  He was indeed a 

“private tutor” providing me with invaluable advice, direction and new viewpoints while I 

was carrying this research.  I would also like to thank my other friends and colleagues in 

particular Budi, Krishna and Hosein for the enjoyable discussions and their encouragement. 

 

I would also like to offer my sincere thanks to all those who assisted me in gathering the 

required data for analysis. In no particular order, thank you to Prof. Donald Knight, Dr. Mark 

Sterling, Dr. Mazen Omran, Dr. Jennifer Chlebek, Dr. Caroline McGahey and Dr. Xiaonan 

Tang. 

 

I am richly blessed to have my parents who are always there for me.  I would like to thank 

them for their love, support, inspiration and advice.  I would also like to express my deep 

gratitude to my parents in-law for their encouragement and support.  Undoubtely, the 

completion of this research would not have been possible without their support. 

 

Finally I want to thank my sweet wife Narges, who has been a constant source of emotional 

support, encouragement and patience.  Thanks for being cheerfully understanding over the 

years that I worked on this thesis. 



Table of Contents 
 
Dedication i
Acknowledgments ii
Table of Contents iii
List of Figures x
List of Tables xiv
List of Symbols xvi
List of Abbreviations xxi
 
 
Chapter 1: Introduction 
1.1 Open channel flow modelling ........................................................................................... 1-1 

1.2 Gaps in knowledge ............................................................................................................ 1-4 

1.3 Evolutionary paradigm ...................................................................................................... 1-7 

1.4 Aims and objectives .......................................................................................................... 1-8 

1.5 Thesis layout ...................................................................................................................... 1-8 

1.6 Publication of research .................................................................................................... 1-10 

 
 
Chapter 2: Open Channel Flow Modelling  
2.1 Introduction ....................................................................................................................... 2-1 

2.2 Flow modelling .................................................................................................................. 2-2 

2.2.1 Definition .................................................................................................................... 2-2 

2.2.2 Flow model classification ........................................................................................... 2-2 

2.2.3 Modelling uncertainty ................................................................................................ 2-3 

2.3 Depth averaged momentum equations .............................................................................. 2-5 

2.3.1 Forces acting on a fluid element ................................................................................. 2-5 

2.3.2 Main Governing Equations ......................................................................................... 2-7 

2.3.3 Turbulence ................................................................................................................ 2-10 

2.3.3.1 From laminar to turbulente flow ........................................................................ 2-10 

2.3.3.2 Energy cascade in turbulent flows ..................................................................... 2-11 

2.3.3.3 Features of turbulence ....................................................................................... 2-12 

2.3.3.4 Turbulence modelling ........................................................................................ 2-13 

2.3.4 Depth averaged RANS equations ............................................................................. 2-15 

2.3.4.1 Reynolds time averaging concept ...................................................................... 2-15 

2.3.4.2 Reynolds stress model ....................................................................................... 2-16 

2.3.4.3 Boussinesq theory of eddy-viscosity ................................................................. 2-17 

 iii



2.3.4.4 Prandtl mixing length theory ............................................................................. 2-17 

2.3.4.5 RANS equations ................................................................................................ 2-19 

2.3.4.6 Depth-averaged RANS ...................................................................................... 2-19 

2.4 Velocity distributions in open channels .......................................................................... 2-22 

2.4.1 Background ............................................................................................................... 2-22 

2.4.2 Logarithmic law ........................................................................................................ 2-23 

2.4.3 Power law ................................................................................................................. 2-25 

2.4.4 Chiu's velocity distribution ....................................................................................... 2-25 

2.5 Boundary shear stress distribution ................................................................................... 2-26 

2.5.1 Background ............................................................................................................... 2-26 

2.5.2 Shear stress prediction .............................................................................................. 2-27 

2.5.3 Simple approximations ............................................................................................. 2-28 

2.5.4 Bed and wall shear stress .......................................................................................... 2-29 

2.6 Shiono and Knight Method (SKM) ................................................................................. 2-32 

2.6.1 Background ............................................................................................................... 2-32 

2.6.2 Governing Equations ................................................................................................ 2-32 

2.6.3 Analytical solutions .................................................................................................. 2-34 

2.6.4 Boundary conditions ................................................................................................. 2-35 

2.6.5 Previous work releating to the SKM ........................................................................ 2-37 

2.6.7 Friction factor ........................................................................................................... 2-39 

2.6.8 Dimensionless eddy viscosity ................................................................................... 2-43 

2.6.9 Depth averaged secondary flow term ....................................................................... 2-46 

2.6.9.1 Introduction ....................................................................................................... 2-46 

2.6.9.2 Rectangular channels ......................................................................................... 2-49 

2.6.9.3 Trapezoidal channels ......................................................................................... 2-52 

2.7 Free overfall ..................................................................................................................... 2-53 

2.7.1 Background ............................................................................................................... 2-53 

2.7.2 The hydraulics of the free overfall ........................................................................... 2-54 

2.7.3 Problem formulation ................................................................................................. 2-55 

2.7.3.1 Boussinesq approach ......................................................................................... 2-56 

2.7.3.2 Energy approach ................................................................................................ 2-56 

2.7.3.3 Momentum approach ......................................................................................... 2-57 

2.7.3.4 Weir approach ................................................................................................... 2-57 

2.7.3.5 Free vortex approach ......................................................................................... 2-58 

 iv



2.7.3.6 Potential flow approach ..................................................................................... 2-58 

2.7.3.7 Empirical approaches ........................................................................................ 2-58 

2.7.3.8 Machine learning approaches ............................................................................ 2-59 

2.7.3.9 Turbulence modelling approaches ..................................................................... 2-59 

2.8 Concluding remarks ......................................................................................................... 2-60 

 
 
Chapter 3: Evolutionary and Genetic Computation  
3.1 Introduction ....................................................................................................................... 3-1 

3.2 Evolutionary computation ................................................................................................. 3-1 

3.2.1 Short history of evolutionary computation ................................................................. 3-2 

3.2.2 Biological Terminology .............................................................................................. 3-3 

3.2.3 Evolutionary computation process ............................................................................. 3-4 

3.2.4 Evolutionary Algorithms (EAs) ................................................................................. 3-4 

3.2.5 Simple Genetic Algorithms (GA) ............................................................................... 3-7 

3.2.5.1 Background .......................................................................................................... 3-7 

3.2.5.2 Representation ..................................................................................................... 3-8 

3.2.5.3 Genetic Algorithm process .................................................................................. 3-9 

3.2.5.4 Initialization ....................................................................................................... 3-10 

3.2.5.5 Evaluation (measuring performance) ................................................................ 3-10 

3.2.5.6 Selection ............................................................................................................ 3-10 

3.2.5.7 Crossover ........................................................................................................... 3-11 

3.2.5.8 Mutation ............................................................................................................ 3-12 

3.2.5.9 Termination ....................................................................................................... 3-12 

3.3 Evolutionary multi-objective model calibration .............................................................. 3-13 

3.3.1 Model parameter estimation (model calibration) ..................................................... 3-13 

3.3.2 Multi-objective optimization problem ...................................................................... 3-14 

3.3.3 The concept of Pareto optimality.............................................................................. 3-16 

3.3.4 Evolutionary multi-objective optimization (EMO) .................................................. 3-17 

3.3.5 Non-dominated Sorting Genetic Algorithm-II (NSGA-II) ....................................... 3-18 

3.4 Evolutionary knowledge discovery ................................................................................. 3-21 

3.4.1 Background ............................................................................................................... 3-21 

3.4.2 Knowledge discovery process .................................................................................. 3-22 

3.4.2.1 Data preprocessing ............................................................................................ 3-22 

3.4.2.2 Data mining ....................................................................................................... 3-23 

 v



3.4.2.3 Post-processing stage ......................................................................................... 3-24 

3.4.3 Evolutionary symbolic regression ............................................................................ 3-24 

3.4.4 Genetic Programming (GP) ...................................................................................... 3-25 

3.4.4.1 Overview ........................................................................................................... 3-26 

3.4.4.2 Principal structures ............................................................................................ 3-28 

3.4.4.3 Initialization ....................................................................................................... 3-29 

3.4.4.4 Measuring performance ..................................................................................... 3-30 

3.4.4.5 GP operators ...................................................................................................... 3-31 

3.5 The incorporation of evolutionary computation in open channel flow modelling .......... 3-33 

 
 
Chapter 4: Multi-Objective Calibration Framework for the SKM 
4.1 Introduction ....................................................................................................................... 4-1 

4.2 Experimental data .............................................................................................................. 4-2 

4.2.1 Experimental arrangements ........................................................................................ 4-2 

4.2.2 Tailgate setting ........................................................................................................... 4-4 

4.2.3 Normal depth measurement ........................................................................................ 4-4 

4.2.4 Depth-averaged velocity measurements ..................................................................... 4-5 

4.2.5 Local boundary shear stress measurements ................................................................ 4-5 

4.2.5.1 Smooth surfaces ................................................................................................... 4-5 

4.2.5.2 Rough surfaces .................................................................................................... 4-7 

4.2.6 Laboratory datasets and test cases .............................................................................. 4-7 

4.2.6.1 Trapezoidal datasets ............................................................................................ 4-8 

4.2.6.2 Rectangular datasets ............................................................................................ 4-8 

4.3 Defining panel structures ................................................................................................... 4-9 

4.4 Multi-objective calibration of the SKM model ............................................................... 4-10 

4.4.1 Deriving the objective functions............................................................................... 4-11 

4.4.2 Selecting a suitable search algorithm ....................................................................... 4-13 

4.4.3 Non-dominated sort genetic algorithms II (NSGA-II) ............................................. 4-14 

4.4.4 Finding a robust parameterization set for NSGA-II ................................................. 4-14 

4.4.4.1 Population size ................................................................................................... 4-17 

4.4.4.2 Number of generations (function evaluations) .................................................. 4-18 

4.4.4.3 Crossover probability and crossover distribution index .................................... 4-18 

4.4.5 Calibration phase ...................................................................................................... 4-19 

4.4.6 Post-validation phase ................................................................................................ 4-19 

 vi



4.4.6.1 Locating the effective portion of the Pareto front ............................................. 4-20 

4.4.6.2 Cluster analysis on the effective portion of the Pareto ...................................... 4-21 

4.4.6.3 Selecting the robust parameter set ..................................................................... 4-23 

4.4.6.4 Anomalous cases ............................................................................................... 4-24 

4.5 Discussion on parameter identiafability .......................................................................... 4-25 

4.6 Summary .......................................................................................................................... 4-27 

 
 
Chapter 5: Calibrating the SKM for Channels and Rivers with Inbank Flow  
5.1 Introduction ....................................................................................................................... 5-1 

5.2 Trapezoidal channels ......................................................................................................... 5-2 

5.2.1 FCF Series 04 ............................................................................................................. 5-3 

5.2.1.1 Introduction to the dataset ................................................................................... 5-3 

5.2.1.2 Considerations and assumptions .......................................................................... 5-5 

5.2.1.3 Calibration results ................................................................................................ 5-5 

5.2.2 Yuen’s (1989) data ..................................................................................................... 5-8 

5.2.2.1 Introduction to the dataset ................................................................................... 5-8 

5.2.2.2 Considerations and assumptions ........................................................................ 5-10 

5.2.2.3 Calibration results .............................................................................................. 5-12 

5.2.3 Al-Hamid’s (1991) data ............................................................................................ 5-15 

5.2.3.1 Introduction to the dataset ................................................................................. 5-15 

5.2.3.2 Considerations and assumptions ........................................................................ 5-18 

5.2.3.3 Calibration results .............................................................................................. 5-19 

5.2.4 Parameter guidelines ................................................................................................ 5-25 

5.3 Rectangular channels ....................................................................................................... 5-27 

5.3.1 Introduction to the datasets ....................................................................................... 5-27 

5.3.2 Modelling the flow with one panel ........................................................................... 5-28 

5.3.3 Modelling the flow with two panels ......................................................................... 5-31 

5.3.3.1 Two identically spaced panels ........................................................................... 5-31 

5.3.3.2 Two differentially spaced panels (80:20 split) .................................................. 5-32 

5.3.4 Modelling the flow with four panels ........................................................................ 5-34 

5.4 Rivers ............................................................................................................................... 5-35 

5.4.1 Introduction to the datasets ....................................................................................... 5-35 

5.4.2 Considerations and assumptions ............................................................................... 5-35 

5.4.3 River Colorado ......................................................................................................... 5-36 

 vii



5.4.4 River La Suela .......................................................................................................... 5-40 

5.4.5 Other rivers ............................................................................................................... 5-41 

5.5 Discussion ........................................................................................................................ 5-41 

5.5.1 Advantages of the calibration approach ................................................................... 5-41 

5.5.2 Friction factor ........................................................................................................... 5-43 

5.5.3 Dimensionless eddy viscosity ................................................................................... 5-44 

5.5.4 Secondary flow term ................................................................................................. 5-45 

5.6 Summary .......................................................................................................................... 5-46 

 
 
Chapter 6: Genetic Computation: An Efficient Tool For Knowledge Discovery  
6.1 Introduction ....................................................................................................................... 6-1 

6.2 Methodology ...................................................................................................................... 6-2 

6.2.1 Data preprocessing ..................................................................................................... 6-2 

6.2.2 Tuning the GP algorithm ............................................................................................ 6-2 

6.2.3 Model selection process.............................................................................................. 6-4 

6.3 Free overfall problem ........................................................................................................ 6-6 

6.3.1 Circular channels with a flat bed ................................................................................ 6-6 

6.3.1.1 Introduction to the dataset ................................................................................... 6-6 

6.3.1.2 Modelling results ................................................................................................. 6-8 

6.3.1.3 Modelling validation ......................................................................................... 6-11 

6.3.2 Rectangular free overfall .......................................................................................... 6-12 

6.3.2.1 Introduction to the datasets ................................................................................ 6-12 

6.3.2.2 Modelling results ............................................................................................... 6-13 

6.3.3 Trapezoidal free overfall .......................................................................................... 6-16 

6.3.3.1 Introduction to the datasets ................................................................................ 6-16 

6.3.3.2 Modelling results ............................................................................................... 6-16 

6.3.4 Channels with other cross sectional shapes .............................................................. 6-18 

6.3.5 Discussion ................................................................................................................. 6-20 

6.3.5.1 Dimensional analysis ......................................................................................... 6-21 

6.3.5.2 Dimensional reduction based on principal component analysis ........................ 6-23 

6.3.5.3 Performance comparison ................................................................................... 6-27 

6.3.5.4 The free overfall as a measuring device ............................................................ 6-28 

6.4 Summary .......................................................................................................................... 6-30 

 viii



 ix

Chapter 7: Conclusions  
7.1 Review of main goals ........................................................................................................ 7-1 

7.2 Multi-objective calibration of the SKM for inbank flow .................................................. 7-2 

7.2.1 General remarks .......................................................................................................... 7-2 

7.2.2 Lateral variation of the friction factor ........................................................................ 7-3 

7.2.3 Lateral variation of the dimensionless eddy viscosity ................................................ 7-4 

7.2.4 Lateral variation of the secondary flow term .............................................................. 7-5 

7.3 The free overfall problem .................................................................................................. 7-6 

 
 
Chapter 8: Recommendations for Future Work  
8.1 Introduction ....................................................................................................................... 8-1 

8.2 The SKM model ................................................................................................................ 8-1 

8.3 The calibration framework ................................................................................................ 8-2 

8.4 The free overfall model ..................................................................................................... 8-4 

 
 
References R-1

Appendix I: Author’s Papers I-1

Appendix II: SKM Matrix Approach II-1

Appendix III: Matlab Implementation of NSGA-II III-1

Appendix IV: SKM Predictions of Depth-Averaged Velocity and 

Boundary Shear Stress 

IV-1

Appendix V: Statistical Procedures V-1

 

 



List of Figures 
 
Figure (1-1): Trends of a) occurrences b) number of victims and c) damages of natural 

disasters between 1988 and 2007 (Scheuren et al., 2008). ...................................................... 1-3 

Figure (1-2): Complex 3D structure of flow in open channels (Shiono and Knight, 1991). ... 1-4 

 

Figure (2-1): Surface forces acting on a fluid particle in the streamwise direction. ............... 2-6 

Figure (2-2): A Schematic representation of energy cascade (Davidson, 2004). .................. 2-12 

Figure (2-3): Concept of mean and fluctuating turbulent velocity components. ................... 2-16 

Figure (2-4): Prandl’s mixing length concept (Davidson, 2004). ......................................... 2-18 

Figure (2-5): Contours of constant velocity in various open channel sections. .................... 2-22 

Figure (2-6): External fluid flow across a flat plate (Massy, 1998). ..................................... 2-23 

Figure (2-7): Schematic influence of the secondary flow cell on the boundary shear 

distribution. ............................................................................................................................ 2-30 

Figure (2-8): Boundary shear stress on an inclined element (Shiono and Knight, 1988) ..... 2-33 

Figure (2-9): Flat bed and sloping sidewall domains. ........................................................... 2-35 

Figure (2-10): Distributions of vertical velocity, shear stress, mixing length and Eddy 

viscosity. ................................................................................................................................ 2-44 

Figure (2-11) Vertical distribution of eddy viscosity for open and closed channel data ....... 2-45 

Figure (2-12): Visualization of the averaged secondary flow term ....................................... 2-48 

Figure (2-13): Secondary currents in half of a symmetric rectangular channel .................... 2-50 

Figure (2-14): Secondary current vectors in smooth rectangular channels ........................... 2-51 

Figure (2-15): Secondary current vectors in rough rectangular channels ............................. 2-51 

Figure (2-16): Secondary current vectors in smooth trapezoidal channels ........................... 2-52 

Figure (2-17): Number of panels and sign of secondary current term for simple trapezoidal 

channels (Knight et al., 2007). .............................................................................................. 2-53 

Figure (2-18): A free overfall in a circular channel (Sterling and Knight, 2001). ................ 2-54 

Figure (2-19): (a) Schematic view of a typical free overfall and the hydraulic aspects; ..............  

(b) Streamline pattern of a free overfall (Dey, 2002b). ......................................................... 2-55 

 

Figure (3-1): The family of evolutionary algorithms (Weise, 2009). ...................................... 3-6 

Figure (3-2): A chromosome with 5 genes. ............................................................................. 3-8 

Figure (3-3): Process of simple Genetic Algorithm. ............................................................... 3-9 

Figure (3-4): Single point binary crossover operator. ........................................................... 3-11 

 x



Figure (3-5): Binary mutation operator. ................................................................................ 3-12 

Figure (3-6): The Pareto front of a two objective optimization problem .............................. 3-17 

Figure (3-7): Procedure of NSGA-II (Deb et al., 2002) ........................................................ 3-19 

Figure (3-8): Distance assignment in NSGA-II (Hirschen & Schafer, 2006). ...................... 3-19 

Figure (3-9): An overview of the Knowledge Discovery process (Freitas, 2002). ............... 3-22 

Figure (3-10): Computational procedure of Genetic Programming ...................................... 3-27 

Figure (3-11): Parse tree representation of {exp(B/H)+2B}in GP. ....................................... 3-28 

Figure (3-12): Creating a parse tree. ...................................................................................... 3-29 

Figure (3-13): Example of a subtree crossover. .................................................................... 3-32 

Figure (3-14): Examples of subtree and point mutation. ....................................................... 3-32 

 

Figure (4-1): Elements of typical flumes (www.flowdata.bham.ac.uk). ................................. 4-3 

Figure (4-2): Depth and velocity measurement devices. ......................................................... 4-3 

Figure (4-3): A schematic tailgate setting procedure. ............................................................. 4-4 

Figure (4-4): A view of a Pitot tube and inclined manometer ................................................. 4-7 

Figure (4-5): Secondary flow cells and the number of panels for simple homogeneous smooth 

trapezoidal channels (Knight et al., 2007). ............................................................................ 4-10 

Figure (4-6): Experimental and Model Predicted distributions (Al-Hamid Exp 05). ........... 4-11 

Figure (4-7): NSGA-II algorithm structure. .......................................................................... 4-14 

Figure (4-8): Effect of different GA internal parameters on the number of Pareto solution 4-16 

Figure (4-9): Effect of different GA internal parameters on the minimum values of the 

objective functions ................................................................................................................. 4-17 

Figure (4-10): Accumulation of all Pareto solutions and the ultimate representative Pareto 4-19 

Figure (4-11): Selecting the acceptable solutions on the Pareto front based on the value of the 

third and fourth objective function (case Al-Hamid Exp05). ................................................ 4-20 

Figure (4-12): The position of regions of attraction on the decision search space (Ω). ........ 4-21 

Figure (4-13): The position of the found clusters on the front of the Pareto front. ............... 4-22 

Figure (4-14): Best mean velocity and boundary shear stress distribution of different patterns 

for Al-Hamid Exp 27 ............................................................................................................. 4-24 

Figure (4-15): Calibration framework. .................................................................................. 4-27 

 

Figure (5-1): EPSRC Flood Channel Facility (www.flowdata.bham.ac.uk.). ......................... 5-4 

Figure (5-2): Stage-discharge curve for FCF series 04 data. ................................................... 5-4 

Figure (5-3): The panel structure and assumed secondary flow cells for FCF channels. ........ 5-5 

 xi



Figure (5-4): Variation of the friction factor, dimensionless eddy viscosity and secondary flow 

term against the panel number and wetted perimeter ratio (Pb/Pw) for FCF data ................... 5-6 

Figure (5-5): Distributions of depth-averaged velocity and boundary shear stress for case 

FCF 0402 (h=0.1662m; 2b/h=9.03) ......................................................................................... 5-7 

Figure (5-6): University of Birmingham 22m long trapezoidal tilting flume (Yuen, 1989). .. 5-9 

Figure (5-7): Stage-discharge curve for Yuen’s data. ............................................................. 5-9 

Figure (5-8): The panel structure and assumed secondary flow cells for Yuen’s channels. . 5-11 

Figure (5-9): Spatially varying friction values in the SKM model........................................ 5-12 

Figure (5-10): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel for Yuen’s data (1.52<2b/h<2). ................................................ 5-13 

Figure (5-11): Distributions of depth-averaged velocity and boundary shear stress for case 

Yuen 406 (h=0.0730 m; 2b/h=2.05) ...................................................................................... 5-13 

Figure (5-12): Trapezoidal channels with differential and uniform boundary roughness. .... 5-15 

Figure (5-13): The roughening gravels used in Al-Hamid’s experiments. ........................... 5-16 

Figure (5-14): Stage-discharge curve for Al-Hamid’s experiments. ..................................... 5-16 

Figure (5-15): Selected panel structure for Al-Hamid’s data series ...................................... 5-18 

Figure (5-16): Friction factor variations in differentially and uniformly 

 roughened channels. ............................................................................................................. 5-19 

Figure (5-17): Friction factor vs. wetted perimeter ratio in differentially 

and uniformly roughened trapezoidal channels. .................................................................... 5-22 

Figure (5-18): Dimensionless eddy viscosity vs. wetted perimeter ratio in 

differentially and uniformly roughened trapezoidal channels. .............................................. 5-23 

Figure (5-19): Secondary flow term vs. wetted perimeter ratio in differentially 

and uniformly roughened trapezoidal channels. .................................................................... 5-24 

Figure (5-20): Distributions of depth-averaged velocity and boundary shear 

stress for a a) differentially roughened  and b) uniformly roughened trapezoidal channel. .. 5-25 

Figure (5-21): Stage-discharge curve for Knight et al. (1984a) dataset. ............................... 5-28 

Figure (5-22): Pareto front of a typical rectangular case. ...................................................... 5-29 

Figure (5-23): Variation of f and Γ vs. wetted parameter ratio in rectangular 

cases modelled with one panel. ............................................................................................. 5-29 

Figure (5-24): Mean velocity and Boundary shear distributions for case DWK01 ............... 5-30 

Figure (5-25): Mean velocity and Boundary shear distributions for case AP1001. .............. 5-30 

Figure (5-26): Variation of f, λ and Γ vs. wetted parameter ratio in rectangular 

cases modelled with two identical panels. ............................................................................. 5-32 

 xii



Figure (5-27): Lateral variation of the back-calculated friction factor for case AP1001. ..... 5-33 

Figure (5-28): Mean velocity and Boundary shear distributions for case AP1001. .............. 5-34 

Figure (5-29): Surveyed cross section of river Colorado and the defined panels. ................ 5-36 

Figure (5-30): River Colorado (McGahey, 2006). ................................................................ 5-37 

Figure (5-31): Measured and simulated depth-averaged velocity distribution for ................ 5-37 

Figure (5-32): Friction factor vs. T/h for River Colorado. .................................................... 5-39 

Figure (5-33): Friction factor vs. panel number for River Colorado. .................................... 5-39 

Figure (5-34): River La Suela (McGahey, 2006). ................................................................. 5-40 

Figure (5-35): Comparing the predictions of the calibrated SKM with two 

examples taken from Knight et al. (2007). ............................................................................ 5-42 

Figure (5-36): Comparing the predictions of the calibrated SKM with the 

calibrated CES (McGahey, 2006) for two river sections....................................................... 5-43 

Figure (5-37): Comparing SKM and CES absolute errors in discharge predictions 

for different depths of River Colorado. ................................................................................. 5-43 

Figure (5-38): Variation of average friction factor with depth in Yuen’s test cases ............. 5-44 

Figure (5-39): Sensitivity of SKM to the values of λ3 and λ4 for Al-Hamid 05. .................. 5-45 

 

Figure (6-1): GPlab algorithm structure. ................................................................................. 6-3 

Figure (6-2): University of Birmingham 22m long tilting flume and the circular 

PVC channel built inside (www.flowdata.bham.ac.uk). ......................................................... 6-7 

Figure (6-3): Geometry of circular channels with flat bed. ..................................................... 6-8 

Figure (6-4): Performance of top 5 expressions on circular training and test data. .............. 6-10 

Figure (6-5): Performance of the selected expression structure on the validation dataset. ... 6-12 

Figure (6-6): Performance of top 5 expressions on rectangular training and test data. ......... 6-14 

Figure (6-7): Performance of top 5 expressions on trapezoidal training and test data. ......... 6-17 

Figure (6-8): Cross-section of other channels. ...................................................................... 6-20 

Figure (6-9): Performance of 0BA S
c eh h e= on other datasets. .............................................. 6-21 

Figure (6-10): The percentage of total variability described by each principal component. . 6-24 

Figure (6-11): Visualization of the principal component coefficient matrix for the first two 

principal components. ............................................................................................................ 6-26 

 

 xiii



List of Tables 
 

Table (2-1): Summary of boundary shear stress prediction methods. ................................... 2-31 

Table (2-2): Constants for the Colebrook-White formula ..................................................... 2-42 

Table (2-3): EDR for rectangular, trapezoidal and circular channels. ................................... 2-61 

 

Table (4-1): A typical test case (Al-Hamid Exp 05). .............................................................. 4-8 

Table (4-2): Summary of trapezoidal data sets. ....................................................................... 4-9 

Table (4-3): Summary of rectangular data sets. ...................................................................... 4-9 

Table (4-4): Different options for NSGA-II parameters considered in this study................. 4-16 

Table (4-5): Real coded NSGA-II internal parameters used in this study. ............................ 4-18 

Table (4-6): The cluster of solutions found for a typical test case. ....................................... 4-22 

Table (4-7): The most frequent observed patterns for the sign of the secondary flow 

term in different trapezoidal data sets.................................................................................... 4-23 

 

Table (5-1): FCF Series 04 test cases. ..................................................................................... 5-4 

Table (5-2): The optimal values of each parameter in different panels of FCF 

experiments. ............................................................................................................................. 5-7 

Table (5-3): Yuen’s test cases. .............................................................................................. 5-10 

Table (5-4): The optimal values of each parameter in different panels of Yuen’s 

experiments. ........................................................................................................................... 5-12 

Table (5-5): Al-Hamid’s test cases. ....................................................................................... 5-17 

Table (5-6): The optimal parameter values in channels with smooth bed and R1 

on the wall. ............................................................................................................................ 5-20 

Table (5-7): The optimal parameter values in channels with smooth bed and R2 

on the wall. ............................................................................................................................ 5-20 

Table (5-8): The optimal parameter values in channels with rough bed and wall. ............... 5-21 

Table (5-9): Equations for finding the friction factor in the form of  f =A(Pb/Pw)B. ............ 5-26 

Table (5-10): Equations for finding the dimensionless eddy viscosity in the form of .......... 5-26 

Table (5-11): Equations for finding the secondary flow term in the form of ........................ 5-26 

Table (5-12): Knight et al. (1984a) test cases. ...................................................................... 5-28 

Table (5-13): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with on panel. ............................................................................ 5-29 

 xiv



Table (5-14): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with two identical panels. .......................................................... 5-31 

Table (5-15): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with two panels (80:20). ............................................................ 5-33 

Table (5-16): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with two panels.......................................................................... 5-34 

Table (5-17): Optimum parameter values for river Colorado dataset. .................................. 5-38 

 

Table (6-1): Modified operators and functions........................................................................ 6-3 

Table (6-2): GP internal parameters and operators. ................................................................ 6-4 

Table (6-3): Range of Sterling’s (1998) experimental data. .................................................... 6-7 

Table (6-4): Selected expressions and the value of MRSS, RMSE and CoD 

for training and test data. ......................................................................................................... 6-9 

Table (6-5):  Normalized values of RMSE and CoD for the remaining expressions. ............. 6-9 

Table (6-6): Rectangular free overfall datasets. .................................................................... 6-13 

Table (6-7): Value of MRSS, RMSE and CoD for rectangular training and test data. ......... 6-13 

Table (6-8): The A and B coefficients in 0BA S
c eh h e= , Cod, RMSE and RMSE for 

rectangular datasets................................................................................................................ 6-15 

Table (6-9): Range of trapezoidal free overfall datasets. ...................................................... 6-16 

Table (6-10): Value of MRSS, RMSE and CoD for training and test data. .......................... 6-17 

Table (6-11): The A and B coefficients in 0BA S
c eh h e= , Cod, RMSE and RMSE for 

trapezoidal datasets. ............................................................................................................... 6-18 

Table (6-12): Free overfall datasets in channels with other cross-sections. .......................... 6-19 

Table (6-13): Performance of 0BA S
c eh h e= on other cross-sections. ................................... 6-20 

Table (6-14): Variables affecting the behaviour of the free overfall ..................................... 6-22 

Table (6-15): Principal component coefficient matrix for rectangular free overfall data. .... 6-26 

Table (6-16): Comparison of the performance of the obtained expression with the equation 

proposed by Davis et al., (1998) for rectangular datasets. .................................................... 6-27 

Table (6-17): Comparison of the performance of the obtained expression with the equation 

proposed by Pagliara, (1995) for trapezoidal datasets. .......................................................... 6-27 

 

 xv



List of Symbols 
 

Latin Alphabet 

A = constant  
A = area  (m2) 
az = acceleration normal to the flow direction  (m.s-2) 
B = constant  
B = total channel width  (m) 
b = half width of main channel  (m) 
b' = half width of flat bed section of a trapezoidal channel (m) 
b'' = width of sloping sidewall section of a trapezoidal channel (m) 
C = Chezy’s resistance coefficient  (m1/2.s-1) 
C1 = dimensionless integration constant   
C2-4 = channel constants in logarithmic velocity profile  
C5 = constant  in Percentage of wall shear force equation  
C6 = constants in Prandl’s equation  
C7-9 = constant in Colebrook-White equation  
Cd = coefficient of discharge  
Csf = shape factor  
c = regression coefficients  
D = diameter  (m) 
d = outside diameter of the Pitot tube (m) 
dn = particle diameter so that n % of the particles of the grain distribution is smaller 
E = specific energy  (m) 
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INTRODUCTION 
 

1.1 OPEN CHANNEL FLOW MODELLING  

Rivers, the arteries of nature, are one of the world’s most valuable natural resources and are 

important to our lives in many ways.  Rivers are critical for our health, as they are one of the 

main supplies of our basic need: drinking water.  They nourish our crops and provide 

substantial transportation benefits.  Furthermore, they sustain natural systems and 

communities, provide critical habitats for wildlife, and are significant sources of enjoyment 

and recreation.  Their natural, cultural and historical legacies are rich, and the quality of our 

life is inseparably linked to them.   

 

The essential benefits of rivers along with the relatively flat area which river valleys offer 

have encouraged the human populations to reside along rivers.  However, living near rivers is 

not without any disadvantages as the flow of water in rivers is never constant.  Unexpected 

precipitation, combined with other causes (e.g. drainage modifications of the catchment, dam 

failures, etc.), may increase the amount of water flowing in a river which often leads to 

flooding.  Floods are of the most common and costly types of natural disasters (see Figure (1-

1)) and due to the global climate changes in recent decades, the number of reported floods has 

increased significantly (7.4 % per year on average (Scheuren et al., 2008)).  Furthermore, with 

limited sources of water, rivers have become one of the main sources of conflicts all over the 

world (Cunge and Erlich, 1999).  These issues have been the main motivation to study and 

understand the meteorological, hydrological and hydrodynamic processes related to rivers.  

Managing the limited water resources of rivers and irrigation water are essential to the 

survival of the ever increasing population of the world. 
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In order to predict, control and make efficient use of rivers and open channels, measurements 

of different properties (e.g. depth, discharge, velocity, boundary shear stress) of the 

hydrodynamic flow are often required.  These measurements are usually accomplished by two 

methods: 

 

1- Directly, using measurement techniques, where the properties of the flow are measured 

with an instrument; 
 

2- Indirectly using numerical models to predict the behaviour and properties of the flow. 

 

Apart from their high cost, the use of measurement instruments in open channels and rivers is 

not always convenient and in some cases, is not even feasible (e.g. during flood events).  This 

has, in turn, focused more attention on the development of stable, accurate and reliable 

models.  These models are “a set of general laws or mathematical principles and a set of 

statements of empirical circumstances” (Hampel, 1963) which describe the properties of the 

flow, and range from simple empirical models (e.g. the Manning and Chezy model) to 

complicated models which are based on the numerical solution of the governing equations of 

the complex motion of the turbulent flow (Figure (1-2)). 

 

Over the last few decades, considerable attention has been focused on the development of 

simple models based on the solution of the Saint Venant (1843) equations for one-

dimensional flow (for more details see McGahey, 2006).  The primary focus of these studies 

has been on simple channel geometries, most typically rectangular and trapezoidal cross-

sections, as these geometries are easy to build and test in the laboratory, and furthermore, 

their results are extendable to natural rivers which are often schematized by such geometries.  

Outcomes from these studies have generally suggested that the performance of these simple 

models is approximately as accurate as complex models. 

 

1-2 



CHAPTER 1 – Introduction 

 
a) Occurrences 

 
b) Number of victims 

 
c) Damages 

Figure (1-1): Trends of a) occurrences b) number of victims and c) damages of natural 

disasters between 1988 and 2007 (Scheuren et al., 2008). 
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Figure (1-2): Complex 3D structure of flow in open channels (Shiono and Knight, 1991). 

 

Among these simple models, Reynolds Averaged Navier Stokes (RANS) based models, such 

as the Shiono & Knight method (SKM) (Shiono and Knight, 1988; 1991), have been among 

the most popular methods used by researchers and have undergone significant developments 

in the last three decades (e.g. Wormleaton, 1988; Samuels, 1988; Lambert and Sellin, 1996; 

Ervine et al., 2000; Bousmar and Zech, 2004).  The SKM provides a tool for water level 

prediction (by estimating or extending stage-discharge curves), for distributing flows within a 

cross section (for damage assessments of buildings, eco-hydraulics & habitats), and for 

predicting the lateral distributions of boundary shear stress (for geomorphological and 

sediment transport studies).  Its promising results both for channels and rivers have led it to 

being adopted by the UK’s Environment Agency for use in its ‘Conveyance and Afflux 

Estimation System’ software (www.river-conveyance.net). 

 

1.2 GAPS IN KNOWLEDGE 

All models, including hydrodynamic models, are simple approximations of the real world 

process and without exception all embrace some degree of deficiency.  The problems with 

environmental modelling can be partitioned into three main components: model structure, 

data and parameter estimation procedures.  Successful development and application of any 

hydrodynamic model requires careful consideration of each component and its relevance to 

the overall modelling problem.  The problems in the model structure stem from the perception 
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and understanding of the flow process and also the simplifications, inadequacies and 

ambiguity in its description.  The data related problems are caused by errors in the 

measurement of input and output data which are used to evaluate the model structure. 

 

Another major problem which can have a significant influence on the model output, is the 

difficulty associated with estimating the model parameters.  Inevitably, there are always some 

“immeasurable” parameters in the model which cannot be directly estimated through 

measurement or by the correlation between the model parameters and the physical 

characteristics of the system.  This “immeasurability” may be down to the lack of an exact 

physical meaning of the parameters and/or measurement techniques.  Therefore, before a 

model can be used to simulate the real-world processes, the values of some of its parameters 

should be adjusted.  This process is best known as parameter estimation or model calibration, 

and will result in finding the “optimal” values of the immeasurable parameters in the model.  

Calibration approaches generally involve two components: (1) evaluation of the “closeness” 

between the model outputs and the corresponding measurement data, and (2) adjustment of 

the values of the parameters to improve the closeness.  The important characteristics of any 

calibration approach are consistency (the results should be repeatable) and performance (the 

approach should find the optimal solution(s) in an efficient manner) (Gupta et al., 2005).  

Detailed analysis of model calibrations has revealed that sometimes, there is a set of model 

parameters that will more or less equally reproduce successful predictions of the system.  It 

has been argued that this is mainly due to the over parameterization of the model and complex 

interactions of model parameters, given that there are almost never sufficient calibration data 

to uniquely identify the parameters.  This problem is generally called “lack of identifiability” 

and in the context of hydrological modelling, it is known as the “equifinality” problem 

(Beven, 2001). 

 

Like other environmental models, hydraulic models of rivers and open channels potentially 

contain several variables that may be adjusted as part of a calibration process (Vidal et al., 

2005).  Hence, the output of the hydraulic model is based on prior knowledge of these 

variables, but ascertaining their values often suffers from lack of definitive measurement 

methods, imperfections in the mathematical description of the process and/or, lack of data.  

Some of the problems involved in the calibration of open channel models are recognized by 
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theoreticians and practitioners (e.g. Romanowicz et al., 1996; Khatibi et al., 1997; Aronica et 

al., 1998).  These studies have mainly applied simple optimization techniques for identifying 

the model parameters and the primary focus has been on obtaining the appropriate values for 

the roughness coefficient. 

 

In order to apply the SKM successfully, in addition to the inputs of cross-sectional shape and 

longitudinal bed slope, detailed knowledge of the lateral variation of the friction factor (f), 

dimensionless eddy viscosity (λ) and a sink term representing the effects of secondary flow 

(Γ), are required.  Initial guidance on choosing suitable values for f, λ and Γ for compound 

channels and simple rectangular channels has been provided by Knight and co-authors 

(Knight and Abril, 1996; Abril and Knight, 2004; Chlebek and Knight, 2006).  However, at 

the time it was recognized that due to the large number of parameters and complex 

relationships, this work was limited and in some respects was provided as a stop-gap while 

further development was undertaken.    

 

Another simple open channel flow problem is the free overfall: a situation where the bottom 

of a channel drops suddenly, causing the flow to separate and form a free nappe (Sterling and 

Knight, 2001).  Based on various experiments in prismatic channels (e.g. Van Leer 1922; 

Rouse, 1936), the depth of water at the section where the overfall occurs (the end depth, he) 

bears a unique relationship with the critical depth (hc).  However, the location of the critical 

depth can vary with respect to discharge, whereas the location of the end depth is always 

fixed.  Hence, since there exists a unique relationship between the hc and the discharge, if a 

relationship between he and hc is provided, then the free overfall can be used as a simple flow 

measuring device (Bauer and Graf, 1971).  During the last century, many researchers (see Dey 

(2002b) for a detailed review) have followed different approaches and attempted to discover a 

relationship between the end depth and the critical depth for many types of channels.  

However, the proposed models lack a suitable, general notation of the free overfall process 

and cannot be applied to all possible geometries and flow regimes. 
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1.3 EVOLUTIONARY PARADIGM 

150 years ago Charles Darwin (1859) published his research “on the origin of the species” and 

made his name synonymous with his theory of natural evolution.  His thoughts evolved and 

his ideas were taken up by other biologists and naturalists such as Lamarck and Wallace to 

form “the primary unifying concept of biology” (Babovic and Zhang, 2002).  The key feature 

of Darwin’s natural evolution is natural selection or “survival of the fittest” i.e. over many 

generations, natural selection and random variation shape the behaviour of individuals and 

species to fit the demands of their surroundings.  The creative aspects of Darwin’s thoughts, 

has initiated a new renaissance in the scientific world.  Various studies in the last century have 

suggested that “there are no living sciences, human attitudes, or institutional powers that 

remain unaffected by the ideas that were catalytically released by Darwin’s work” (Collins, 

1959).   

 

Inspired by Darwin’s theory of natural evolution and motivated by the development of 

computer technologies, Evolutionary Computation (EC) was introduced in the 1960s as a 

robust and adaptive search method.  Imitating the two-step iterative process of natural 

evolution - random variation followed by selection within a computer - these techniques are 

capable of solving complex problems that the traditional algorithms have been unable to 

conquer.  An EC algorithm begins by creating an initial random set of potential solutions for a 

particular problem.  Then, the fittest “parents” are selected and “children” are generated by 

means of sexual reproduction (crossover) or asexual alteration (mutation).  In crossover, two 

parents swap random pieces of information with each other while in mutation, a piece of 

information is replaced by another randomly generated piece.  Finally, the resulting solutions 

(children) are evaluated for their fitness (effectiveness) and selected for reproduction.  This 

process is repeated over successive generations until a stopping criterion is met. 

 

More than 50 years of research in the field of evolutionary computation has proved that the 

imitation of the natural evolution can provide powerful tools for solving the most complex 

problems in various fields of science.  This unique advantage has led EC to be one of the 

fastest growing areas of computer science and engineering.  The effectiveness of these 

techniques in the field of hydroinformatics, has been recognized previously (e.g. Babovic and 

Abbott, 1997a&b; Price and Jemberie 2005; Solomatine and Ostfeld, 2008; Chen et al., 
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2008).  It is believed that EC can solve the problems indicated in the model calibration and 

model induction procedures.  On one hand, it can provide a powerful tool for the multi-

objective calibration of hydraulic models.  On the other hand it can be used to evolve 

conceptual transparent models of the processes within the open channel flow by searching 

among functional structures which are beyond the scope of conventional regression 

techniques. 

 

1.4 AIMS AND OBJECTIVES 

This research can be viewed as a pragmatic attempt towards extracting knowledge from 

hydraulic data.  The ultimate aim is to apply Evolutionary Computation as a powerful 

knowledge induction tool to bridge the gaps indicated in the field of open channel hydraulics.  

Two major contributions are presented in this work.  First, an evolutionary algorithm called 

non-dominated sorting genetic algorithm II (NSGA-II) is used to: 

 

• Build a robust multi-objective evolutionary based calibration framework for an 

existing depth-averaged RANS model (SKM). 
 

• Calibrate the SKM for various simple channels and rivers with inbank flow and 

identify the values of its three “immeasurable” parameters (f, λ, Γ). 
 

• Investigate the lateral variation of f, λ, Γ in the light of the calibration results and to 

provide generalized rules for their identification. 

 

Second, Genetic Programming (GP) is implemented in a model induction framework to derive 

a global, conceptual, transparent model of the physical process of the free overfall.  The 

obtained model is then evaluated on different datasets corresponding to various channel cross-

sections with different flow regimes. 

 

1.5 THESIS LAYOUT 

The thesis has been divided into eight Chapters including the Introduction.  Chapters 2 and 3 

provide an introduction to the two different areas of the literature relevant to the current work, 
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namely Open Channel Flow Modelling and Evolutionary Computation.  Chapters 4 and 5 

address the first application of EC to open channel flow, i.e. SKM modelling, while Chapter 6 

addresses the second application, i.e. the free overfall problem.  Specifically, the chapters 

comprising this thesis are presented as follows: 

 

Chapter 2 reviews the relevant literature on open channel flow hydraulics with the primary 

emphasis on modelling fully developed turbulent inbank flow in prismatic channels with 

simple cross-sections.  The basic equations of motion are derived, the RANS modelling and 

more specifically, the Shiono and Knight Method are reviewed and the scientific knowledge 

gaps are identified.  Finally, a review is presented on the classic problem of the free overfall.   
 

Chapter 3 provides an overview of evolutionary computation of relevance to the work 

contained in this thesis.  A multi-objective genetic algorithm called NSGA-II is outlined. 

Furthermore, information relating to Genetic Programming is described in detail. 

 

Chapter 4 is dedicated to the proposed multi-objective calibration framework for the SKM.  

A brief overview is provided on the experimental data used in this research and a detailed 

step-by-step procedure of the calibration framework is presented. 

 

Chapter 5 illustrates the calibration results of the SKM for various simple channels with 

trapezoidal and rectangular cross sections.  Data relating to natural river cross sections with 

inbank flow are also examined.  The Pareto calibration solutions for each dataset are 

investigated and the lateral variations of the SKM parameters are studied. 

 

Chapter 6 attempts to cover another application of EC to open channel flow.  A model 

induction methodology, which uses Genetic Programming, is presented.  The method is 

applied to various laboratory data to find a conceptual model for the free overfall problem. 

 

Chapter 7 summarizes the key findings and conclusions of this research and examines their 

implications in a broader context. 
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Chapter 8 highlights the limitations of this work and provides recommendations for future 

research, identifying fundamental data requirements, theoretical considerations and practical 

issues. 

 

1.6 PUBLICATION OF RESEARCH 

Some of the work presented in this thesis is published in four refereed journals and conference 

proceedings.  The remaining unpublished sections are being prepared for submission.  The 

following papers can be found in Appendix (I): 

 

Sharifi, S., Knight, D.W., and Sterling, M.  (2008) Modelling flow using SKM and a multi-
objective evolutionary algorithm. RiverFlow 2008.  [Eds.  Altinakar, M.S.; Kokpinar, 
M.A.; Aydin, I.; Cokgar, S.  & Kirkgoz, S.], Cesme, Turkey, 3: 2149-2158.   

 

Sharifi, S., Knight, D.W., and Sterling, M.  (2009) A novel application of a multi-objective 
evolutionary algorithm in open channel flow modelling. Journal of Hydroinformatics, 11 
(1): 31-50. 

 
Sharifi, S., Sterling, M., and Knight, D.W. (2009) End-Depth Ratio Prediction in Rectangular 

and Trapezoidal Channels Using Genetic Programming, Proceedings of 17th UK 
Conference on Computational Mechanics ACME 2009. [Ed. Sansour C.] Nottingham, 
UK, 105-108. 

 

Sharifi, S., Sterling, M., and Knight, D.W. (2009) Prediction of End-Depth Ratio in Open 
Channels Using Genetic Programming.  Journal of Hydroinformatics (in Press). 
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OPEN CHANNEL FLOW MODELLING 
 

2.1 INTRODUCTION 

This chapter presents an overview of open channel flow hydraulics with the primary emphasis 

on modelling fully developed turbulent inbank flow in prismatic channels with simple cross-

sections.  Modelling inbank flow (i.e. flow within the main channel) has always been a 

routine priority since, except for flood events, the flow is contained within the main river 

channel for most of the time.  Furthermore, simple prismatic cross-sections not only represent 

a basic shape, but are also representative of the geometries that are often used in schematizing 

natural rivers in numerical models.  It should be noted that the explanations provided in this 

chapter are deliberately kept as brief as possible since all of the topics discussed can be found 

in a variety of textbooks and review papers (e.g. Chow, 1959; Henderson, 1966; Nezu and 

Nakagawa, 1993; Cunge et al., 1980; Morvan et al., 2008; Knight et al., 2009). 

 

The chapter starts with a general discussion on flow modelling and model uncertainty.  A 

section is devoted to revisiting the main governing equations of fluid flow and the derivation 

of the Reynolds-averaged Navier-Stokes (RANS) equations.  The energy transfer mechanisms 

in turbulent flow and turbulence modelling methodologies are the other topics covered in this 

section.  The chapter continues with two sections, each dedicated to important concepts of the 

flow in open channels: velocity and boundary shear stress distributions.  Having provided the 

essential background, the complete derivation of the system of equations adopted in the 

Shiono and Knight Method (SKM) of modelling is provided in the next section.  This section 

continues with a review of recent developments in the SKM and a brief discussion on its 

internal parameters, namely, the friction factor, dimensionless eddy viscosity and the 

secondary flow term.  The final section of this chapter includes an introduction to the 
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hydraulics of the free overfall problem, and a summary of the methods employed to solve this 

problem. 

 

2.2 FLOW MODELLING 

2.2.1 Definition 

The main aim of science, including environmental sciences, is to find a single correct 

description of reality (Beven, 2006) and models as Kirkby (1996) states are “thought 

experiments which help refine our understanding” of this reality.  In general, environmental 

models are lumped approximations of the heterogeneous world.  These models attempt to 

represent the complex, spatially distributed, interactions of earth, water, vegetation and energy 

by means of mathematical and parametric equations (Wagner and Gupta, 2005).  This is 

achieved by combining the physical laws of conservation and constitutive relations associated 

with kinetic transformations and physical properties (Rodriguez-Fernandez et al., 2007). 

 

Surface water is the main source of fresh water: the necessity for much of the life on Earth.  

Due to this vital importance, the flow in natural rivers and man made channels has been of 

great interest since early civilizations.  Understanding the flow has resulted in better 

fulfillment of many primary needs such as drinking and irrigation water, food and 

transportation.  This has led to the development of models which can predict the behaviour of 

the flow.  River and channel models can be simply defined as “the simulation of flow 

conditions based on the formulation of and solution of mathematical relationships expressing 

known hydraulic principles” (Cunge et al., 1980). 

 

2.2.2 Flow model classification 

Based on their structure, flow models can be classified as mathematical, physical, data-based 

and computational models. 

 

Mathematical modelling is a comprehensive method of representing the flow process in terms 

of mathematical equations.  These models are built on the discovered physical laws and 

known relations associated with the flow system.  Hence, the model is dependent on factors 
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such as model dimensionality, the assumptions in the derivation, the number and nature of 

empirical coefficients, the imposed boundary conditions and its ability to adequately represent 

the true physical processes.  Once the mathematical model is developed, an exact analytical 

solution may be found for the process.  An alternative procedure for more complex models is 

to solve the set of equations using a step-wise approximation. In this process, which is known 

as numerical modelling, solutions are obtained by performing iterations (successively 

improved approximations) at each step until the numerical answer satisfies all the equations. 

The advantage of numerical modelling is that, once the model is set up and established, a 

range of scenarios may be investigated with relatively little effort.  Finite difference and finite 

element methods are currently the most popular numerical modelling techniques. 

 

Physical modelling is in fact recreating similar flow conditions at a smaller scale.  The 

observations and measurements taken in the physical model provide useful information of the 

process.  The main concern about physical modelling is whether these observations and 

measurements at a different scale can be generalized to the natural process.  The results of this 

modelling process can be used to modify other mathematical models and obtain the value of 

some internal empirical parameters. 

 

Data-based modelling is the process of generalizing various observations of the inputs, 

characteristics and outputs of the flow system.  This type of modelling normally results in a 

simple conceptual model for predicting a particular characteristic of the flow (e.g. 

conveyance, mean velocity, shear stress, etc.). 

 

Computational modelling is the final modelling level, where the basic equations of fluid 

motion are coupled with computational techniques to provide a more detailed prediction of 

the flow process and its characteristics. 

 

2.2.3 Modelling uncertainty  

In order to be able to select a suitable model for a specific application and use it for future 

predictions, some elements of the model (i.e. structure, parameters, initial boundary 

conditions) along with the inputs and outputs of the system should be defined, measured or 
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estimated.  It is obvious that the uncertainty in each of these elements can give rise to the error 

between model prediction of a variable and the observational data of the same variable.  

Understanding this uncertainty within the predictions and decisions is essential to 

understanding the risk.  Gupta et al. (2005) classify the different sources of uncertainty into 

the following groups: 

 

Perceptual uncertainty is a major source of uncertainty that stems from our perception and 

understanding of the real-world process.  It is this understanding that is translated into a 

mathematical (numerical) form in the model.   

 

Model structure uncertainty is the simplifications, inadequacies and ambiguity in the 

description of real-world processes.  This uncertainty is the most significant component of the 

overall predictive uncertainty.  While research to date has focused mainly on the treatment of 

parameter and data uncertainty, it has recently become apparent that the impact of model 

structural error has typically been underestimated and can often be more severe than that of 

uncertain parameters (Carrera and Neuman, 1986). 

 

Data uncertainty: is the uncertainty caused by errors in the measurement of input and output 

data or by data processing and also lack of objective approaches to evaluate the model 

structure (Wagner et al., 2003). 

 

Parameter estimation uncertainty: describes the inability to uniquely locate a ‘best’ parameter 

set based on the available information.  In fact, there are always some parameters in the model 

which either cannot be directly estimated through measurement or by the correlation between 

the model parameters and the physical characteristics of the system.  Therefore various 

parameter sets, often widely distributed within the feasible parameter space may yield equally 

good results in terms of a predefined objective function (Freer et al., 1996). 

 

Understanding the origins of uncertainty is a common problem in any modelling application.  

This problem derives from the fact there are a variety of sources for the errors but usually one 

measure of the deviation or residual between prediction and observation exists.  Even if 

multiple performance measures are employed, they can produce conflicting prediction errors 
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(an improvement in one prediction, results in deterioration in another).  In reality, it is often 

not possible to separate the different sources of model uncertainty as the model structure 

might not be correct.  Therefore, identifying the error sources and their contribution to the 

total error is almost impossible, particularly when the model is non-linear and different 

sources of error may interact in a non-linear way to produce the measured deviation (Beven, 

2004). 

 

In the ideal case, the model structure and the data are assumed to be correct and hence the 

uncertainty over model parameters becomes “the dominant source of uncertainty” (Hunter et 

al., 2008).  In this case, there is a significant possibility for calibrated parameter values to 

compensate for different types of errors.  To deal with this problem, assumptions (which are 

sometimes difficult to justify) are made about the nature of the errors (Beven, 2006).  A major 

step forward to deal with the uncertainty problem is the development of methods that quantify 

model uncertainty, which enable the modellers to provide an informed estimate of the 

uncertainty associated with a model simulation (Wheater et al., 2007). 

 

2.3 DEPTH AVERAGED MOMENTUM EQUATIONS 

Understanding the flow structure and its physics in open channels and rivers is a prerequisite 

for the development of appropriate mathematical flow models.  The aim of this section is to 

derive and discuss those laws of fluid mechanics which are particularly important for 

understanding turbulence and developing RANS models like SKM. 

 

2.3.1 Forces acting on a fluid element 

The forces that act on a particle of fluid immersed in water which are important in deriving 

the governing equations of motion can be grouped into two categories (Cohen et al., 2004): 

 

1- Surface forces: i.e. forces exerted on an element area by the surroundings through direct 

contact such as forces due to pressure, shear, etc.  When the fluid velocity is zero, the 

pressure variation is due only to the weight force of the fluid.  Hence, in all directions, the 

force due to the pressure at a point is evaluated from the hydrostatic pressure forces which 

increase with increasing depth.  Relative to the hydrostatic pressure forces, the spatial 
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variations in atmospheric pressure at the water surface are normally negligible.  Shear forces, 

also known as viscous forces, are present when the fluid is in motion.  The resistance caused 

by bed friction makes the water at the channel bed regions move more slowly than the layers 

located vertically above them.  This effect reduces as the distance from the bed increases.  At 

the water surface level and, in the absence of other forces (e.g. wind) the shear stresses are 

approximately zero. 

 

2- Body forces: i.e. forces imposed on the mass of the fluid element without physical contact 

as a result of the element being placed in a certain force field, which can be gravitational, 

centrifugal, magnetic, or electromagnetic in origin.  The main body force that acts on a fluid 

particle is the gravity force which is due to the weight of the fluid particle.  Centrifugal 

accelerations develop when the streamlines are curvilinear; causing a non-hydrostatic 

pressure distribution and the fluid particles accelerate in the direction normal to the 

streamlines. 

 

Figure (2-1) shows the surface forces of pressure and shear acting on a small fluid control 

volume in the streamwise direction (x is the streamwise, y the lateral and z the vertical 

directions, respectively).  In this figure, ijσ and ijτ are the normal and shear stresses 

respectively, where the subscript ‘i’ indicates the direction normal to the surface that the stress 

is acting on and ‘j’ indicates the direction of the force.   It is to be noted that other body forces 

like the Coriolis accelerations and Electromagnetic forces are normally neglected due to their 

weak effect on the fluid particle and its motion (Goncharov, 1964).   
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Figure (2-1): Surface forces acting on a fluid particle in the streamwise direction. 
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2.3.2 Main Governing Equations 

Newton’s second law implies that the mass of the fluid element times its acceleration, is equal 

to the net forces due to pressure acting on the element plus any viscous forces arising from 

viscous stresses (Streeter, 1985; White, 1999; Drazin and Riley, 2006): 

( ) ( ) iDVF P viscous forces
Dt

δ ρ= − ∇ + =∑ V Vδ  (2-1)

where F is the net force, P the pressure, ρ the density of water, . .x y zδ δ δ δV =  the element 

volume and Vi is the velocity components normal to the element sides.  The total surface 

forces that act on a fluid particle in the streamwise direction can be derived from Figure (2-1): 

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

xx xx
x xx xx

yx yxzx zx
zx zx yx yx

xx

P PF P x y z P x y z x y z x y z
x x x x

z y x z y x y z x y z
z z y y

x

σ σ

x

δ δ δ δ δ δ σ δ δ δ σ δ δ δ

τ ττ ττ δ δ δ τ δ δ δ τ δ δ δ τ δ δ δ

σ

∂ ∂∂ ∂ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − − + + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∂ ∂⎡ ⎤ ⎡∂ ∂⎡ ⎤ ⎡ ⎤+ + − − + + − −⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

∂
=

∂

∑
⎤
⎥
⎦

(2-2)yxzxp y x z y x z y x z
x z y

ττδ δ δ δ δ δ δ δ δ
∂∂∂⎡ ⎤− + +⎢ ⎥∂ ∂ ∂⎣ ⎦

 

For a channel in a straight reach and, in the absence of centrifugal forces, the pressure 

distribution is hydrostatic and given by: 

( )a sP P g h zρ= + −  (2-3)

where Pa is the atmospheric pressure which can be considered negligible and hs is the water 

surface level.  The gravitational acceleration, g, acts in the negative z-direction and only has a 

component in the x-direction if the water surface or the channel bed is not horizontal. Thus, 

defining the bedslope, So, as -dz/dx (positive when the channel slopes downstream in the flow 

direction) and substituting the changes in water surface level with the changes of the flow 

depth, h, the change of pressure in the streamwise direction is: 

0
shP z hg g

x x x x
ρ ρ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

S  (2-4)

Substituting Eqs. (2-3 & 2-4) in Eq. (2-1): 

yxxx zx
x o

h DF g uS
x y z x Dt

τσ τ ρ ρ
∂∂ ∂ ∂⎛ ⎞= + + + − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑  (2-5)
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Considering u
dt
dx

= (streamwise velocity), v
dt
dy

= (lateral velocity) and w
dt
dz

= (vertical 

velocity), the total derivative of Du
Dt

can be written as:  
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∂
∂

=  (2-6)

Expanding this through the product rule yields, 

( )

Du u uu uv uw u vu u u
Dt t x y z x y z

u uu uv uw u v wu
t x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

w

 
(2-7)

The conservation of mass implies that the rate of increase of mass in a fluid element is equal 

to the net rate of flow of mass into the fluid element (White, 1999; Drazin and Riley, 2006): 

( ) ( )i i i out i i i inCV
i i

d AV AV
t

0ρ ρ ρ∂
+ −

∂ ∑ ∑∫ V =  (2-8)

where Ai is the area of element sides and Vi is the velocity component normal to the element 

sides.  Considering a small particle size: 

CV
d x

t t
y zρ ρ δ δ δ∂ ∂

∂ ∂∫ ;V  (2-9)

Substituting Eq. (2-9) in (2-8) and simplifying gives: 

( ) ( ) ( )x y z u x y z v x y z w x y z
t x y z

0ρ δ δ δ ρ δ δ δ ρ δ δ δ ρ δ δ δ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
=  (2-10)

Cancelling the element volume ( x y zδ δ δ ) from all terms yields: 

( ) ( ) ( ) 0 or .( )u v w V
t x y z t

0ρ ρρ ρ ρ ρ∂ ∂ ∂ ∂ ∂
+ + + = + ∇

∂ ∂ ∂ ∂ ∂
=   (2-11)

For a steady ( 0
t

∂
=

∂
) and incompressible fluid ( 0

t
ρ∂

=
∂

) it can be concluded that: 

. 0 u v wV
x y z

∂ ∂ ∂
∇ = → + + =

∂ ∂ ∂
0  (2-12)
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Implementing this result into Eq. (2-7) and considering a steady state flow, Eq. (2-5) can be 

rewritten as: 

yxxx zx
o

h uu uvg S uw
x y z x x y z

τσ τ ρ ρ
∂ ⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + − = + +⎜ ⎟

∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

 (2-13)

If uniform flow is assumed, with parallel streamlines and no curvature, Eq. (2-13) can be 

further simplified to: 

yx zx
o

h uvg S uw
y z x y z

τ τ ρ ρ
∂ ⎡ ⎤∂ ∂ ∂⎛ ⎞+ + − = +⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

∂  (2-14)

In a Newtonian fluid, the viscous stresses are proportional to the element deformation rates 

(Stokes’ Law) and the coefficient of viscosity (μ).  These deformations include translation 

(e.g. udt; vdt), extension (e.g. du/dx.dxdt), rotation (e.g. dv/dx-du/dy = vorticity) and angular 

strains.   For incompressible flow, the volumetric deformation is zero, and hence, the relevant 

viscous stresses are only related to the angular strains (Schlichting, 1979): 

⎟⎟
⎠

⎞
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⎝

⎛
∂
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+
∂
∂

=
x
v

y
u

yx μτ ;    ⎟
⎠
⎞
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⎛

∂
∂

+
∂
∂

=
x
w

z
u

zx μτ  (2-15)

Substituting these stresses into Eq. (2-14) gives: 

o
u v u w h uv uwg S

y y x z z x x y z
μ μ ρ ρ

⎛ ⎞⎛ ⎞ ⎡⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + + − = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎤

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎣⎝ ⎠ ⎦
 (2-16)

Again, assuming uniform flow conditions, this can be simplified to, 

o
u u h uvg S uw

y y z z x y z
μ μ ρ ρ

⎛ ⎞ ⎡∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎤

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
 (2-17)

Eq. (2-17) represents a simplified form of the Navier-Stokes equation for flow in the 

streamwise (x) direction.  With analogy, the Navier-Stokes equations for incompressible flow 

in the lateral and vertical directions are: 

2 My
Dv P u v v v w S
Dt y x y x y y z z y

ρ μ μ μ
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + + + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (2-18)
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2 Mz
Dw P u w v w w S
Dt z x z x y z y z z

ρ μ μ μ
⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= − + + + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎣ ⎦

 (2-19)

where SMy and SMz are the y and z momentum source terms respectively which count for the 

Coriolis forces, wind shear, gravity, etc.  The above equations will be used in order to derive 

the SKM model which is employed in later parts of this thesis. However, before such a 

derivation is made, attention will be focused on exploring the concept of turbulence. 

 

2.3.3 Turbulence 

2.3.3.1 From laminar to turbulent flow 

Fluid flow may be classified as either laminar or turbulent, or in transition between these two 

regimes.  A flow is laminar if the viscous forces due to molecular cohesion are strong enough 

to overcome the fluid’s inertial forces.  Flows that are both steady and laminar exhibit 

absolutely no variation in time except for the random motion of fluid molecules.  In this 

regime, the fluid appears to consist of thin layers that flow past one another in smooth 

pathways and the flow can be accurately described by the Navier-Stokes equations 

(Bradshaw, 1971; Nezu and Nakagawa, 1993; Drazin and Riley, 2006). 

 

As the inertial forces are increased, a critical point is reached when the viscous forces are no 

longer able to maintain the laminar structure of the flow.  Lumps of fluid migrate between the 

adjacent fluid layers in a seemingly random manner with velocity component transverse to the 

main direction of flow.  This new regime of fluctuating motion, characterized by chaotic and 

stochastic property changes is referred to as turbulence (Reynolds, 1974; Nezu and 

Nakagawa, 1993).  In this chaotic state of motion, the velocity and pressure change 

continuously with time, within substantial regions of flow and therefore the fluid particles 

continuously interchange energy and momentum (Schlichting, 1979).  In open channel flow, 

turbulence is born near the boundaries where the primary perturbations and eddies form due 

to high velocity gradients.  These eddies swiftly drift into the main flow field and increase in 

size by entraining particles of the surrounding fluid (Goncharov, 1964; Schlichting, 1979). 
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The first person to mathematically formulate turbulence was Osborne Reynolds (1883; 1884).  

Conducting experiments on pipe flow in the late 19th century, Reynolds observed the two 

quite different types of flow that can be formed in a given flow situation.  He discovered that 

at lower velocities, where the flow is laminar, the velocity vector is everywhere parallel to the 

axis of the pipe.  But in contrast, at higher velocities the magnitude and the direction of the 

velocity components fluctuate and a different type of flow forms.  Reynolds also found that 

both pressure drop and heat transfer are higher in turbulent flow than in laminar flow, and 

showed that this difference is due to the lateral component of velocity which exists when the 

motion is turbulent (Leslie, 1973).  To distinguish between laminar and turbulent flow, he 

proposed a dimensionless number (known as the Reynolds number) as a measure of the ratio 

of inertial forces ( .V ρ ) to the viscous forces ( / Lμ ) (V is the velocity and L is the pipe 

length).  Despite dedicating his life to the study of turbulence, Reynolds never realized the 

random characteristics of turbulence and described the motions occurring in turbulent flow as 

a ‘sinuous’ wave.  For a more detailed background on the history of turbulence see Bradshaw 

(1971), Schlichting (1979), Nezu and Nakagawa (1993), Davidson (2004) and Drazin and 

Riley (2006). 

 

2.3.3.2 Energy cascade in turbulent flows 

The major difference between laminar and turbulent flow is the appearance of perturbations 

and formation of a broad spectrum of eddies due to the high velocity gradients.  Observing 

this spectrum led Lewis Fry Richardson (1922 cited in Davidson, 2004) and later Kolmogorov 

(1941) to introduce the concept of the “energy cascade”.  A schematic representation of the 

energy cascade is shown in Figure (2-2).  Based on this idea, the largest eddies, which are 

created by instabilities, interact with the flow domain and rapidly break and pass their energy 

onto smaller eddies.  Smaller eddies are themselves unstable and they, in turn, pass their 

energy onto even smaller structures and so on.  This cascade process of energy transition 

continues until the viscous forces become significant and dissipate the energy in the smallest 

eddies. 

 

2-11 



CHAPTER 2 – Open Channel Flow Modelling 

 
Figure (2-2): A Schematic representation of energy cascade (Davidson, 2004). 

 

2.3.3.3 Features of turbulence 

The main features and characteristics of turbulence can be summarized as follows 

(Goncharov, 1964; White, 1991, Davidson, 2004 and Ahmadi, 2005): 

 

• Turbulence is a manifestation of flow and not of the fluid. 

• Turbulence is a continuum phenomenon.   

• Turbulence is rotational and three-dimensional motion. 

• Turbulence is a chaotic and seemingly random phenomenon.   

• Turbulence causes fluctuations in both velocity and pressure in all directions. 

• Turbulence is associated with high levels of vorticity fluctuation. 

• The transverse velocities in turbulent flows increase the internal resistance of the 

fluid which results in flattening the lateral profile of the streamwise velocity. 

• Eddies form and mix with each other and the mean flow in all directions. 

• Turbulence is highly diffusive.  Rapid mixing significantly increases momentum, 

heat, and mass transfer. 

• Turbulence is highly dissipative.  It needs a source of energy to be maintained. 

• The self-sustaining motion produces new eddies and disturbances that replace those 

lost to viscous dissipation (see Figure (2-2)). 
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2.3.3.4 Turbulence modelling 

In certain types of laminar flow, the flow regime is simple and some non-linear terms in the 

Navier-Stokes equations (Eqs. 2-17 to 2-19) can be ignored, leading to exact solutions to the 

equations.  In other more complex laminar flows, these terms cannot be ignored and no exact 

solutions are possible.  In turbulent flow however, because of the random fluctuations of the 

various flow properties, the Navier-Stokes equations cannot be directly applied.  To overcome 

this problem, many turbulence theories have been developed by a number of researchers, and 

attempts have been made to apply them in mathematical models (Versteeg and Malalasekera, 

1995).  Since the exact nature of the three-dimensional mixing action of turbulence is not yet 

known, all these models, as Rodi (1995) mentions, are assumptions and approximations for 

the dispersive, diffusive and chaotic turbulent processes.  As their main objective, turbulence 

models attempt to model the dissipation and the energy transfer mechanisms of small size 

eddies where kinetic energy is transformed into to internal energy and heat.  This is done by 

finding closure for the turbulence terms within the governing equations.  In other words, the 

effects of turbulence on the mean flow are simulated by solving the closure problem through 

the application of turbulence models (Rodi, 1995).  Methods for estimating this turbulence 

and finding closure can be classified into four major subgroups: 

 

Algebraic Models (Zero equation models) 

Algebraic models are the simplest kind of turbulence closure models which are solely based 

on Prandtl’s mixing length hypothesis (see Section 2.3.4.4).  This approach towards 

approximating turbulence started in 1877 with the introduction of the concept of eddy 

viscosity by Boussinesq (Johnson, 1998).  After that, in 1895, Reynolds (Tennekes and 

Lumley, 1997) suggested that all the random characteristics of turbulent flow could be 

expressed as the summation of mean and fluctuating parts.  In the beginning of twentieth 

century, Prandtl introduced the term “boundary layer,” and after that, in 1925, he introduced 

the “mixing length”, based on dimensional analysis and an analogy to the mean free path in 

gas dynamics.  Following the fundamental work of Boussinesq, Reynolds and Prandtl, many 

researchers, including von Karman, used the mixing-length concept as a basis for turbulence 

models.  In Algebraic closure models, which are generally used in depth-averaged models, the 

horizontal turbulent momentum transport is assumed to be low and a constant eddy viscosity 

is often introduced to relate the shear stresses to the strains. 
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One-Equation Models 

As indicated by its name, one equation models are models where an equation for the transport 

of turbulent quantities is introduced.  These models are an improvement on zero equation 

models in that they account for the convective and diffusive transport of the turbulent velocity 

scale.  In these models, the velocity scale or length scale are found from a differential 

equation which is then incorporated in a length model to determine the turbulent terms 

(Johnson, 1998).  In the mid 20th century, Prandtl introduced the first equation of this kind 

which he named the “K-equation”.  The main problem with the one-equation closures is that 

in these models, the length scale has to be taken from some empirical argument.  This 

shortcoming has empirically been shown to seriously limit the usefulness and generality of 

this type of model (Nezu and Nakagawa, 1993; Johnson, 1998). 

 

Two-Equation Models 

The difficulty in determining the length scale in one-equation models has led to the 

devolvement of two-equation models, which determine the length scale from two transport 

equations.  The k-ε  model is the most famous model of this kind which was initially 

developed by Jones and Launder (1973).  This closure model introduces two transport 

equations for the turbulent kinetic energy (k) and the rate of viscous dissipation (ε).  These are 

then used to approximate length and velocity scales, which are used to determine the eddy 

viscosity.  Because of its simplicity and relatively short computation time, this model has 

been developed and extensively used by researchers in recent years (Rodi, 1995; Johnson, 

1998).  Despite its popularity, this method has some shortcomings.  For instance, the 

assumption of isotropic properties results in poor predictions of normal Reynolds stresses, 

turbulent shear flows and secondary flows (Speziale, 1987).  Furthermore, the model does not 

perform well with flows that have extra large strains e.g. curved boundary layers, swirling 

flows, buoyancy; as well as rotational flows and some unconfined flows. 

 

In an attempt to extend the k-ε  modelling to include nonlinear effects, Speziale (1987) 

proposed an anisotropic eddy viscosity model which included time derivatives of the velocity 

gradients, along with nonlinear terms of the gradients themselves, in an analogy to the kinetic 

theory of gases.  For channel flows, this nonlinear model satisfies the anisotropy requirement 
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that has been observed experimentally (Speziale, 1987) and therefore is able to predict the 

secondary circulations. 

 

Reynolds Stress Models  

The previously discussed models are somehow based on the Boussinesq approximation and 

assume that the turbulent behaviour can be characterized by relating an eddy viscosity to a 

velocity scale or gradient.  An alternative approach is to consider the actual transport of the 

Reynolds stresses.  Reynolds stress models attempt to correct some deficiencies of the 

Boussinesq approximation by including the convection, production, and diffusion of the 

Reynolds shear stresses and the body force terms in their formulation.  These models are best-

suited to flows such as curved streamlines, swirling flow and flows in non-circular pipes 

where turbulent anisotropy should be taken into account. 

 

To overcome the problem of solving the traditional differential equations for the Reynolds 

stresses, Rodi (1976) was the first to derive a two-equation algebraic Reynolds stress model 

(ASM) with the help of the equilibrium hypothesis.  Two assumptions were made in this 

closure: First, the difference between the convection and diffusion terms in the Reynolds 

stress equation was assumed to be proportional to the corresponding difference in the 

turbulent kinetic energy equation, and second, the Reynolds stress anisotropy was thought to 

be constant along a streamline.  Following the same equilibrium hypothesis as Rodi, Pope 

(1975) developed a methodology to procure an explicit relation for the Reynolds stress tensor 

from the implicit algebraic stress model.  Gatski and Speziale (1993) used this method to 

derive an explicit algebraic stress equation for two- and three-dimensional turbulent flows.  

These explicit models extend the ability of the two-equation models to account for non-

equilibrium and anisotropic effects. 

 

2.3.4 Depth averaged RANS equations 

2.3.4.1 Reynolds time averaging concept 

At first glance, because of the fluctuation of velocity and pressure with time and space, 

turbulent flow appears almost too random and complicated for mathematical modelling.  

However, when averaged over time, the random terms show signs of ordered behaviour.  
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Reynolds (1884) was the first to realize this generality and used this concept to propose a time 

averaging approach.  Based on his observations he suggested that all flow quantities can be 

expressed as the summation of mean and fluctuating parts.  For instance, the individual 

fluctuating velocity components can be defined in terms of the average velocity and a 

fluctuating component (see Figure (2-3)): 

uuu ′+= ;   vvv ′+= ;   www ′+=     (2-20)

where by definition, the time-averaged components are: 
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u ;      01
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In this case, the continuity relation (conservation of mass) (Eq. 2-13) would be: 

0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
  (2-22)

u

v

w

t

u, v, w
u′

v′

w′

 
Figure (2-3): Concept of mean and fluctuating turbulent velocity components. 

 

2.3.4.2 Reynolds stress model 

Reynolds (1884) also recognized that in turbulent flow, fluid fluctuations cause shear stress 

by the transfer of momentum and demonstrated that turbulent stresses, Rτ , (also known as 

apparent or Reynolds stresses) were proportional to the time average of the product of 

velocity fluctuations within the flow (Nezu and Nakagawa, 1993; Nezu, 2005). In the 

streamwise direction, these Reynolds stresses are:  
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R
xz u wτ ρ ′ ′= ,    R

xy u vτ ρ ′ ′= ,    2R
xx uτ ρ ′=  (2-23)

It is to be noted that Reynolds stresses are not really a true stress but rather, represent the 

mean momentum fluxes induced by the turbulence.  It is clear that to predict the behaviour of 

the mean turbulent flow, the Reynolds Stresses should be somehow approximated. 

 

2.3.4.3 Boussinesq theory of eddy-viscosity 

As mentioned in Section (2.3.3), if the flow is laminar, the internal tangential shear stresses 

can be related to the linear dynamic viscosity through Stoke’s law (Batchelor, 1967).  In the 

mid-nineteenth century, Saint-Venant (1843) and Boussinesq (1877) suggested a similar 

transformation to approximate the random characteristics of turbulent flow.  In their concepts 

of “eddy viscosity”, a general shear-stress strain-rate relationship was proposed to relate the 

mean rate of deformation to the turbulent stresses (Schlichting, 1979, Davidson, 2004): 

( )R
xz t l t

u w u wu w μ μ
x z x

τ ρ ε ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞′ ′= = + = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠z
 (2-24)

where the eddy viscosity tε  is the sum of the laminar (μl) and turbulent (μt) viscosities.  The 

eddy viscosity can be viewed as a coefficient of momentum transfer expressing the transfer of 

momentum from points where the velocity is low to points where it is higher and vice versa 

(Finnmore and Franzizi, 2002). 

 

2.3.4.4 Prandtl mixing length theory 

Prandtl was the first to propose a distribution law for the eddy viscosity based upon a mixing 

length hypothesis (Schlichting, 1979; White, 1991 and Rodi, 1995).  In this model, the 

concept of eddy-viscosity was conceived by presuming an analogy between molecular motion 

and the turbulent motion (Figure (2-4)).  As Davidson (2004) writes, “The turbulent eddies 

were thought as lumps of fluid which, like molecules, smash together and exchanged 

momentum”.  Prandtl assumed that the molecular viscosity is proportional to the average 

velocity and mean free path of the molecules, and accordingly, considered the eddy viscosity 

to be proportional to a velocity characterizing the fluctuating motion and to a typical length of 

this motion, which he called the mixing length: 
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duu l
dz

′ =  and            w u′ = ′ R
xz

du duu w ρ ²
dz dz

τ ρ ′ ′∴ = − = l  (2-25)

where l is the mixing length and u  is the averaged streamwise velocity.  Comparing Eq. (2-

25) with Eq. (2-24) gives: 

2
t

dul
dz

ε =  (2-26)

In near wall regions, the mixing length can be related to the distance from the boundary by 

(Schlichting, 1979; White, 1991): 

l hκ=  (2-27)

where h is the depth of flow and κ is the von Karman coefficient, which has been determined 

experimentally as ~0.41 in clear water (Schlichting, 1979).  The simple concept of the mixing 

length model, has made it very useful and effective, especially in two-dimensional flows, 

where the only significant Reynolds stress is τxz, and the only significant velocity gradient is 

du/dz.  However, a large drawback of this model is that the definition of the mixing length is 

case specific, which prevents the model to perform well where processes of diffusive and 

convective turbulent transport are important (McGahey, 2006).  Based on Prandtl’s mixing 

length theory, other similar models have also been proposed to estimate the eddy viscosity 

(e.g. Lean and Weare, 1979; Cunge et al., 1980; Wormleaton, 1988). 
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Figure (2-4): Prandl’s mixing length concept (Davidson, 2004). 
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2.3.4.5 RANS equations 

Applying the time averaging to the basic equations of motion (i.e. Navier-Stokes equations 

(Eqs. 2-17 to 2-19)) for incompressible and constant viscosity fluid flow yields the Reynolds 

equations.  Originally proposed by Reynolds in 1895, these equations appear similar to the 

Navier-Stokes equations except that they include both mean and fluctuating quantities and an 

additional shear stress term.  Neglecting the small fluctuations of pressure and substituting Eq. 

(2-20) into Eq. (2-17) yields: 

( ) ( )

( )( ) ( )( )

o
u u u u hg S

y y z z x

u u v v u u w w
y z

μ μ ρ

ρ

⎛ ⎞ ⎛ ⎞′ ′∂ ∂ + ∂ ∂ + ∂⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
⎡ ⎤′ ′ ′ ′∂ + + ∂ + +

= +⎢ ⎥∂ ∂⎣ ⎦

−

 (2-28)

Expanding this equation gives: 

2 2 2 2

2 2 o2 2

u u u u hg S
y y z z x

uv uv u v u v uw uw u w u w
y y y y z z z z

μ μ μ μ ρ

ρ

′ ′∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
⎡ ⎤′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + + + + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

′
 (2-28)

Time averaging this equation and using the expression provided in Eq. (2-21) gives: 

2 2

o2 2

u u u v u w h uv ug S
y z y z x y

w
z

ν ν
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − − + − = +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2-29)

This is the RANS equation for flow in the x-direction (streamwise) which is also known as 

the St. Venant equation (Anderson, 1997).   

 

2.3.4.6 Depth-averaged RANS 

A closer look at the values of the velocity fluctuations reveals that u', v' and w' are largest near 

the channel bed (Schlichting, 1979).  Hence, the one dimensional RANS equation can be 

confidently integrated over the depth, h, to obtain a simplified quasi-2D solution for 

estimating the depth averaged velocity and conveyance across a straight channel section: 
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0 0 0 0 0

h h h h h
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∫ ∫ ∫ ∫ ∫  
(2-30)

(i) (ii) (iii) (iv) (v)  

Using Leibnitz’s rule, term (i) in Eq. (2-30) can be evaluated by: 

0 0

h h

surface bed

uv z zdz uvdz uv uv
y y y

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂∫ ∫ y
 (2-31)

Assuming that the water level does not vary laterally across the channel section and that the 

streamwise velocity u at the bed is zero, the last two terms on the RHS of Eq. (2-31) tend to 

zero and hence: 

( )
0 0

h h

d

uv dz uvdz h uv
y y y

∂ ∂ ∂ ⎡ ⎤= = ⎣ ⎦∂ ∂ ∂∫ ∫ ; (2-32)

where ( )
d

uv is the depth averaged mean velocity products given by, 

( )
0

1 h

d
uv uv dz

h
= ∫ ; (2-33)

Since at the bed u is zero and at the surface w is zero, the second term (ii) also tends to zero: 

0

0
h
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uw dz uw uw
z

∂
= −

∂∫ =  (2-34)

Using Leibnitz’s rule again, term (iii) can be evaluated by: 
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 (2-35)

where yxτ  denotes the depth-averaged shear stress, given by 

0

1 h

yx yxdz
h

τ τ= ∫  (2-36)

The second term on the LHS of Eq. (2-35) is zero as τyx is zero at the water surface.   The 

third term on the RHS, i.e. τyx at the channel bed, is also considered small and hence 
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negligible relative to the first term.  Considering all the assumptions, Eq. (2-35) is reduced to 

the depth-averaged shear stress.   

 

Term (iv) in Eq. (2-30) can also be evaluated using Leibnitz’s rule, 
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2 21 11

h h h
zx zx zx zx
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∂

∫ ∫ ∫ =
 (2-37)

The first term on the RHS reduces to zero as the depth-averaged shear stress zxτ  is constant 

with depth.   The second term on the RHS is also zero since the stress at the free surface is 

zero in the absence of wind or other applied stresses.   Thus, the boundary shear stress term 

remains where,τo is the boundary shear stress, s is the lateral side slope and ψ is a projection 

onto the plane due to the choice of a Cartesian coordinate system (McGahey, 2006).    

 

Term (v) in Eq. (2-30) is the body force, 

0

h

o o o
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h h hg S dz zg S zg S hg S
x x x

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ o
h
x

 (2-38)

where So denotes the reach-averaged longitudinal bed slope.  Substituting Eqs. (2-32), (2-34), 

(2-35), (2-37) and (2-38) in Eq. (2-30) yields: 

( ) ( )1d
yx o o

h uv hh hg
y y x

ψτ τ
ρ ρ

∂ ∂ ∂⎛ ⎞= − + ⎜ ⎟∂ ∂ ∂⎝ ⎠
S−  (2-39)

This is the depth-integrated Reynolds-Averaged Navier-Stokes (RANS) equation for flow in 

the x-direction. 

 

The flow of water in open channels is generally governed by the RANS equations 

(Schlichting, 1979).  Since the early 1980s, depth-averaged RANS models have become 

popular for estimating the lateral distribution of depth-averaged velocity Ud and the total flow 

rate in channels and rivers.  The simplicity of the formulation and relatively good estimations 

have led to their popularity and development in the last three decades (e.g. Vreugdenhil and 

Wijbenga, 1982; Wormleaton, 1988; Samuels, 1988, 1989; Shiono and Knight 
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1988,1990,1991; Lambert and Sellin, 1996; Ervine et al., 2000; Spooner and Shiono, 2003; 

Bousmar and Zech, 2004).  For a comprehensive review on these models see (McGahey, 

2006). 

 

2.4 VELOCITY DISTRIBUTIONS IN OPEN CHANNELS 

2.4.1 Background 

In an open channel cross-section, the main difference between the velocity distribution in 

laminar and turbulent conditions is that in laminar flow, the maximum velocity occurs at the 

water surface while for most turbulent flow situations, it occurs somewhat below the water 

surface.  This is known to be mostly due to the presence of secondary flow cells.  Laboratory 

and field data from many researchers show that the maximum streamwise velocity is found at 

about 5 to 25% of the water depth below the water surface (Chow, 1959).  Typical streamwise 

velocity contour lines (isovels) for flow in various cross sections are shown in Figure (2-5).  

Other factors that are important in the distribution of velocity are the shape of the section, the 

distribution of roughness within the channel and the presence of bends, where due to the 

centrifugal forces, the velocity increases greatly on the convex side.  It is to be noted that in 

most cases the surface wind has very little effect on the velocity distribution. 

0.
51.
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5

2.
02.

5

   

a) Rectangular b) Trapezoidal c) Shallow ditch 

 

 

d) Circular e) Triangular f) Natural river 

Figure (2-5): Contours of constant velocity in various open channel sections (Chow, 1959). 
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2.4.2 Logarithmic law 

The classical “logarithmic law” formulation for the velocity profile in turbulent open channel 

flow is based on Prandtl’s (1926) description of the “law of the wall” and the “boundary 

layer” concept.  Figure (2-6) shows the motion of a fluid past a flat plate and the formed 

boundary layer.  The boundary layer is a thin region of fluid near a solid surface (bed or wall) 

where the boundary resistance and the viscous interactions affect the fluid motion and 

subsequently, the velocity distribution.  In the fully developed turbulent region, this layer 

includes two main sub-layers.  Near the solid boundary, a viscous sub-layer (laminar layer) 

forms where the viscous force is predominant.  In contrast, further away from the boundary, 

the turbulent shear stresses play a major role in the defect layer (turbulent layer). 

 

Turbulent
Transient

z

Boundary Layer

u(z)

x

Viscous sub-layer

Laminar

Defect sub-layer

u(z)

Figure (2-6): External fluid flow across a flat plate (after Massy, 1998). 

 

The “law of the wall” states that the in the streamwise direction, the average fluid velocity in 

the boundary layer varies logarithmically with distance from the wall surface.  This law is 

used to derive an empirical equation for the vertical distribution of the streamwise velocity in 

the sub-layers: 

( )u f z+ +=  (2-40)

where the dimensionless velocity, u+, the shear velocity, u*, and the dimensionless normal 

distance from the wall, z+, are defined as: 
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*

( )u zu
u

+ = ;    *
wu τ

ρ
= ;    *u zz

ν
+ =  (2-41)

where wτ  is the wall shear stress and ν is the kinematic viscosity.  In the viscous sub-layer, 

which has the range of z+
 <5, the shear stress equals the wall shear stress, which is constant for 

steady flow.  Thus, the dimensionless velocity is directly proportional to the dimensionless 

distance from the wall: 

*u zu z
ν

+ += =  (2-42)

In the defect sub-layer (5> z+), the effects of turbulent is more important than viscosity.  In 

this region, the law of the wall (Eq. 2-40) can be written in the following form: 

1
1 lnu z
κ

+ += + C  (2-43)

where is the von Karman’s constant, and C1  is a dimensionless integration constant related 

to the thickness of the viscous sub-layer generally, in the range of 4.9 to 7.0.  For smooth 

surfaces, C1 is 5.0∼5.5 (Kirkgoz, 1989).  Based on Nikuradse’s (1933) data, the integration 

constant in Eq. (2-43) can be approximated as 

κ

*9/ uν  and / 30κ  for smooth and rough 

surfaces, respectively.  This will result in the universal laws for smooth and rough turbulent 

flow as (Chow, 1959; Rouse, 1959; Schlichting, 1979): 

*95.75log u hu
ν

+ ⎛= ⎜
⎝ ⎠

⎞
⎟           (smooth boundary) (2-44)

305.75log hu
κ

+ ⎛= ⎜
⎝ ⎠

⎞
⎟           (rough boundary) (2-45)

In uniform open channel flow, the boundary layer is fully developed and extends from the 

channel boundary throughout the flow depth and Eq. (2-43) can be used to approximate nearly 

the entire velocity profile.  Rouse (1959) proposed a more general approximation of Eqs. (2-

44 & 2-45) for open channels: 

2 3logu C z C+ += +  (2-46)

where C2 and C3 are constants for a given channel.  This classical formulation for the 

mechanics of turbulent open channel flow describes the streamwise velocity distribution as a 
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logarithmic function increasing from a zero velocity at the bottom of the channel and reaching 

a maximum at the water surface.  Since its introduction, several studies have been performed 

either to evaluate the validity of the profile or to suggest an alternative (e.g. Coles, 1956; 

Nezu and Rodi, 1986; Kirkgoz, 1989; Yang, et al. 2004; Guo, et al. 2005).  It has been shown 

that this equation sometimes does not fit with the data measured in the entire flow depth and 

has some shortcomings which stem from its simplifying assumptions.  For example, at large 

depths the flow is less influenced by the boundary, resulting in less shearing and viscosity 

related forces, and so the logarithmic velocity distribution cannot completely describe the 

velocity profile. 

 

2.4.3 Power law 

An alternative function for the velocity distribution is the “power law”.  The general form of 

this law is proposed as (Barenblatt and Prostokishin, 1993; Schlichting, 1979): 

4 ( )mu C z+ +=  (2-47)

where C4 and m are the coefficient and exponent of the power law.  A significant amount of 

research has been undertaken to define these parameters.  Assuming that the velocity gradient 

is dependent on molecular viscosity, Barenblatt and Prostokishin (1993) suggested that both 

C4 and m are functions of the Reynolds number and proposed equations for calculating them.  

In contrast, Balachandar et al. (2002) found that for open-channel flows, the parameters C4 

and m have no significant relationship with the Reynolds number, and are constants at 7.957 

and 0.1551, respectively.  Chen (1991) also suggested the range of 1/12 to 3/12 for the 

exponent.  However, extensively reviewing the power law, Schlichting (1979) showed the 

exponent varies slightly with the Reynolds number and suggested the range of 1/6 to 1/10 for  

4x103 <Reynolds< 3.24 x 106. 

 

2.4.4 Chiu's velocity distribution 

An alternative approach from the stated empirical velocity distribution equations is the 

method developed by Chiu (1987, 1989). Based on the probability concept and entropy-

maximization principle, Chiu derived a new two-dimensional equation for the velocity field.  

This equation is capable of describing the variation of velocity in both vertical and transverse 
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directions with the maximum velocity occurring on or below the water surface.  It can also 

accurately describe the velocity distribution in regions near the water surface and channel bed, 

where most the existing measuring devices face problems.  Although various measurements 

have confirmed the supremacy of Chiu’s approach, this methods still has some weaknesses.  

A major drawback of this method is that knowledge of a value for the velocity (either 

maximum or average) and a constant are required before application. This is in contrast with 

the log law which does not require knowledge of the velocity but requires two empirical 

constants. 

 

2.5 BOUNDARY SHEAR STRESS DISTRIBUTION  

2.5.1 Background 

The fluid motion in a channel is directly related to the boundary shear stress and therefore to 

define the fluid field and the velocity profile, knowledge of the boundary shear stress 

distribution is required. Computation of flow resistance, side-wall correction, sediment 

discharge, channel erosion or deposition, cavitation problems, and designs of channels are 

among the problems which can be solved by knowing the boundary shear stress distribution 

(Yang and Lim, 1997; Guo and Julien, 2005). 

 

The boundary shear stress distribution is non-uniform over the wetted perimeter of a channel 

cross-section.  This is widely proven, even for steady flows in straight prismatic channels with 

a simple cross-sectional geometry.  The non-uniformity is mainly due to the anisotropy of the 

turbulence which produces transverse gradients of Reynolds stresses and secondary 

circulations (Gessner, 1973).  Tominaga et al. (1989) and Knight and Demetriou (1983) 

showed that the boundary shear stress increases where the secondary currents flow towards 

the wall and decreases when they flow away from the wall.  Other factors that govern the 

distribution of shear stress of a straight open channel are the geometry of the cross-section, 

lateral and longitudinal boundary roughness distributions and sediment concentration 

(Chlebek and Knight, 2006; Khodashenas et al., 2008).  Figure (2-7) shows the schematic 

influence of secondary flow cells on the boundary shear stress of rectangular and trapezoidal 

channels. 
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2.5.2 Shear stress prediction 

Several direct and indirect measurement techniques for boundary shear stress are reported in 

the literature (Al-Hamid, 1991).  The most practised indirect measurement technique is 

Preston’s (1954) method which has been employed for the boundary shear stress 

measurements of the data sets used in this research.  A brief description of this technique is 

provided in Section (4.2.5).  Due to the shortcomings and limitations of these measuring 

techniques, determining the actual shear stress distribution along the wetted perimeter is 

extremely difficult (Patel, 1965) and hence, various empirical, analytical and computational 

methods have been developed to predict the boundary shear stress (Khodashenas et al., 2008).  

These methods can be categorized as: 

 

Geometrical methods 

Geometrical methods rely on splitting the channel cross-section into sub-regions.  The shear 

force along each segment of the boundary is found by balancing the forces against the weight 

of fluid in the corresponding sub-region.  Leighly’s (1932) method, Einstein’s (1942) method, 

Vertical depth Method (VDM), Vertical Area Method (VAM), Normal Area Method (NAM), 

Merged Perpendicular Method (MPM) (Khodashenas and Paquier, 1999) and Normal Depth 

Method (NDM) (Lundgren and Johnson, 1964) are among the stated geometrical methods in 

literature. 

 

Empirical methods 

Empirical methods are basically simple regression models developed from fitting curves to 

measured experimental data.  Knight’s (1981) model was the perhaps the first model of this 

kind.  His model was further developed by him and his colleagues (Knight et al., 1984a & b 

and 1994), and other researchers (Flintham and Carling, 1988).   Pizzuto (1991) and Olivero et 

al. (1999) also proposed similar simple models for the boundary shear stress.  Some of these 

empirical equations derived for the mean bed and wall boundary shear and force are discussed 

in Section (2.5.4). 

 

Analytical methods 

Analytical methods are based on the mechanism of energy transportation, continuity and 

momentum equations.  Some of these methods lead to a geometric solution for computing the 
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shear stress in open channels.  Some of the analytical methods include the work of Yang and 

Lim (1997, 2005), Zheng and Jin (1998), Guo and Julien (2005) and Bilgil (2005). 

 

Computational methods  

A possibly more accurate way of finding the boundary shear stress distribution is using a 

turbulence closure model to solve the governing equations of motion.  For instance, 

Christensen and Fredsoe (1998) used the Reynolds stress turbulence model (RSM) and De 

Cacqueray et al. (2009) used the SSG Reynolds stress turbulence model to solve the equations 

of motion in a computational fluid dynamics (CFD) software to predict the boundary shear 

stress in open channels. 

 

Table (2-1) shows a summary of some of the important methods stated in literature.  A good 

review on some of these methods can be found in Ghosh and Roy, (1970) and Yang et al., 

(2006) and Khodashenas et al. (2008).  It is to be noted that all these methods are based on 

assumptions and approximations and as yet, none is generally accepted for open-channel flow 

(Knight and Macdonald, 1979).   

 

2.5.3 Simple approximations 

The average shear stress for an open channel cross-section can be represented by: 

egRSτ ρ=  (2-48)

where R is the hydraulic radius and Se is the energy gradient which can be approximated from 

a head loss equation like Darcy-Weisbach: 

2

4 2
f avr

e

h UfS
L R g

= =  (2-49)

where hf is the head loss, L the channel length, f the Darcy-Weisbach friction factor and Uavr 

is the average velocity of the fluid.  Substituting (2-49) in (2-48) the shear stress can be 

related to the friction: 

2

8 avr
f Uτ ρ=  (2-50)
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In depth-averaged models, Eq. (2-50) is extended to define the local boundary stress at a 

particular point in simple cross-section (Knight and Shiono, 1996): 

2

8i d
f Uτ ρ=  (2-51)

where τi is the local boundary stress,  f is the local friction factor and Ud is the streamwise 

depth-averaged velocity.  It is shown (e.g. McGahey et al., 2006, Chlebek and Knight, 2006; 

Sharifi et al., 2008; 2009a) that the lateral distribution of the local boundary stress is sensitive 

to changes in f and h, and a sudden change in either of these variables will result in a 

corresponding change in the magnitude and distribution of τi. 

 

2.5.4 Bed and wall shear stress 

Using the concept of shear force, Knight (1981) proposed a simple method for separating the 

mean bed and wall shear stress for rectangular channels.  He defined the shear force acting on 

the walls and bed as: 

wwSF 2hτ=  (2-52)

bbSF 2bτ=  (2-53)

where τ  is the mean shear stress, b is the channel semi bed width, h is the flow depth, and the 

subscripts w and b denote walls and bed respectively.  The shear force carried by the walls 

and the bed can be expressed as a percentage of the total shear force, SFT: 

w
w

T

SF%SF .100
SF

=  (2-54)

b
b

T

SF%SF .100
SF

=  (2-55)

where TSF . eP gRSτ ρ= = P  (2-56)

where P is the wetted perimeter.  Examining various measurements, Knight (1981) found that 

the percentage shear force carried by the walls has an exponential relation with the aspect 

ratio, 2b/h in the form of: 

w%SF eα=  (2-57)
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where α is a function of the aspect ratio.  Fitting Eq. (2-57) to the measurements in 

rectangular open channel and rectangular closed conduit channels, Knight et al. (1984a) 

found: 

10
23.230log ( 3) 6.146b
h

α = − + +
 

(2-58)

Since Eq. (2-57) involves an exponential function and Eq. (2-58) involves a log function, it is 

concluded that the relation between %SFw and aspect ratio is actually a power law and not 

exponential.  Using the same functional form as Eq. (2-57), Flintham and Carling (1988) 

found a more general equation for calculating %SFw in rectangular and trapezoidal channels 

with homogeneous boundary roughness: 

w 10
5

%SF ; 3.230log ( 1.0) 4.6052b

w

Pe
C P

α α= = − + +
 

(2-59)

where C5 is 1.5.  Further study by Knight et al. (1994), suggested implementing a shape 

factor sfC  in Eq. (2-57) to calculate the shear stress more accurately for larger  values in 

subcritical and supercritical conditions: 

/b wP P

% w sfSF C eα=  (2-60)

where for subcritical flow: 

0.28471
51 6.546 0.5875( ) , 1.50b b

sf sf
w w

P PC if else C C
P P

= < = =
 

(2-61)

and for supercritical flow: 

0.28125
51 4.374 0.6603( ) , 1.38b b

sf sf
w w

P PC if else C C
P P

= < = =
 

(2-62)

 
 

a) Rectangular cross-section (Knight et al., 1983) b) Trapezoidal cross-section (Knight et al., 1994) 
Figure (2-7): Schematic influence of the secondary flow cell on the boundary shear 

distribution.
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 Method Cross -section Roughness 
distribution 

Local shear 
stress

G
eo

m
et

ri
ca

l m
et

ho
ds

 

Leighly (1932) General Homogeneous Y 

Keulegan (1938) Rectangular Homogeneous N 

Einstein (1942) Rectangular Homogeneous N 

Johnson (1942) Rectangular Homogeneous N 

Meyer-Peter and Muller (1948) Rectangular Homogeneous N 

Preston (1954) General Heterogeneous Y 

Vanoni and Brooks (1957) Rectangular Homogeneous N 

VDM (Khodashenas and Paquier, 1999) General Homogeneous Y 

NDM (Khodashenas and Paquier, 1999) General Homogeneous Y 

VAM (Khodashenas and Paquier, 1999) General Homogeneous Y 

NAM (Khodashenas and Paquier, 1999) General Homogeneous Y 

Rajaratnam and Muralidhar (1969)  Rectangular Homogeneous N 

Ciray (1970) Rectangular Homogeneous Y 

MPM (Khodashenas and Paquier, 1999) General Homogeneous Y 

E
m

pi
ri

ca
l m

et
ho

ds
 

Knight et al. (1983) Rectangular,  Homogeneous N 

Knight et al. (1994) Rectangular, Trapezoidal, 
Circular 

Homogeneous N 

Flintham and Carling (1988) Rectangular Homogeneous Y 

Pizzuto (1991) General  Heterogeneous N 

Olivero et al. (1992a) General Heterogeneous N 

Olivero et al. (1992b) General Heterogeneous Y 

A
na

ly
tic

al
 

m
et

ho
ds

 

Yang and Lim (1997; 2005) Rectangular, trapezoidal 
Circular and Compound

Heterogeneous Y 

Zheng and Jin (1998) Rectangular Homogeneous Y 

Guo and Julien (2005) Rectangular Homogeneous N 

Bilgil (2005) Rectangular Homogeneous Y 

C
FD

 Christensen and Fredsoe (1997) General Homogeneous Y 

De Cacueray et al. (2009) Rectangular Homogeneous Y 

Table (2-1): Summary of boundary shear stress prediction methods. 
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2.6 SHIONO AND KNIGHT METHOD (SKM) 

2.6.1 Background 

The Shiono and Knight Method (1988; 1990; 1991) (SKM) is a lateral distribution method 

based on the depth averaged RANS equations.  This quasi 2-D model includes some of the 

key 3D flow structures that occur in rivers and compound channels and is able to predict the 

transverse variation of depth-averaged velocity and boundary shear stress distributions within 

river channels of any cross section shape.  SKM provides a tool for water level prediction (by 

estimating or extending stage-discharge curves), for distributing flows within a cross section 

(for damage assessments of buildings, eco-hydraulics and habitats), and for predicting the 

lateral distributions of boundary shear stress (for geomorphological and sediment transport 

studies).  Its promising results both for channels and rivers have led it to being adopted by the 

UK’s Environment Agency for use in its ‘Conveyance and Afflux Estimation System’ 

software (www.river-conveyance.net) (see also McGahey, 2006; McGahey et al., 2006; 2008)   

 

2.6.2 Governing Equations 

In this method, the streamwise depth-averaged momentum equation is solved for steady 

uniform turbulent flow in a prismatic cross-section.  The streamwise RANS equation (Eq. 2-

29) for steady uniform flow is given by: 

( ) ( )0
uv uw gS u v u w
y z y z

ρ ρ ρ
⎡ ⎤∂ ∂ ∂ ∂ ρ′ ′ ′+ = + − + −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

′
 

(2-63)

(i) (ii) (iii) (iv)   
where ρ is the density of water, g the gravitational acceleration, and So the bed slope gradient.  

u , v  and w  are the mean velocity components andu′ , v′ and w′are the velocity fluctuations 

in the x (streamwise), y (lateral) and z (vertical) directions respectively.  The overbar here 

indicates a time-averaged parameter.  In this equation, term (i) which includes the lateral and 

vertical components of velocity is called the secondary flow term and term (ii) is the weight 

component term.  Furthermore, the terms (iii) and (iv) account for the Reynolds stresses 

acting on the vertical and horizontal planes respectively. 
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Integrating Eq. (2-63) over the depth of water and considering the proper shear force balance 

as shown in Figure (2-8), the depth-averaged momentum equation becomes: 

1/ 2

0 2

( ) 11yxd
o

h uv hghS
y y

ρ τρ τ∂ ∂ ⎛ ⎞= + − +⎜ ⎟∂ ∂ ⎝ ⎠s
 (2-64)

where h is the water depth, τo is the boundary shear stress and s the side slope (1:s = vertical: 

horizontal).  The depth-averaged terms are defined by Eqs. (2-33 & 2-36). 

 

dy

dx

dz oτ
yxτ

zxτ

 

2 2
yx zx odxdz dxdy dx dy dzτ τ τ+ = +  

21 ( )yx zx o
dz dz
dy dy

τ τ τ+ = +  

21yx zx os sτ τ τ+ = +  

Figure (2-8): Boundary shear stress on an inclined element (Shiono and Knight, 1988). 

 

SKM uses the Boussinesq eddy viscosity model (described in Section 2.3.4.3) as the closure 

model to relate the Reynolds shear stress, yxτ , to the mean flow rate: 

d
yx yx

U
y

τ ρε ∂
=

∂
 (2-65)

where  is the depth averaged streamwise velocity and dU yxε  is the depth-averaged eddy 

viscosity.  Based on the Cunge et al. (1980) assumption, this parameter is assumed to be 

proportional to the water depth, h, and to the shear velocity, : *u

*yx u hε λ=  (2-66)

where λ is the dimensionless eddy viscosity.  Incorporating the simple approximation for the 

boundary shear stress outlined in Eq. (2-51), the shear velocity can be reformulated as: 
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1/ 2
0

*
1
8 du fτ

ρ
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

U  (2-67)

Substituting Eqs. (2-65, 2-66 & 2-67) in Eq. (2-64) yields: 

( )
1/ 2 1/ 2

2 2
2

1 11
8 8

d
o d d d

UfghS fU h U h uv
s y y y

ρ ρ ρλ ρ
⎧ ⎫∂∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎡ ⎤− + + =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (2-68)

Based on experimental evidence, Shiono and Knight (1991) suggest that the lateral gradient of 

the depth averaged secondary flow, ( )
d

uvρ , in prismatic channels can be approximated by 

constant values for a given element of the cross section.  Using this concept, the lateral 

gradient of this term per unit length of the channel may then be written as: 

d( )h uv
y

ρ∂ ⎡ ⎤ = Γ⎣ ⎦∂
 (2-69)

where Γ is a dimensionless secondary flow parameter.  Thus Eq. (2-68) may be expressed in a 

simpler form as: 

1/ 2 1/ 2
2 2

2

1 11
8 8

d
o d d

UfghS fU h U
s y y

ρ ρ ρλ
⎧ ⎫∂∂ ⎪ ⎪⎛ ⎞ ⎛ ⎞− + + ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

= Γ  (2-70)

This substitution enables Eq. (2-70) to become a second order linear differential equation that 

can be solved analytically. 

 

2.6.3 Analytical solutions 

SKM’s main equation (Eq. 2-70), can be solved analytically (Shiono and Knight, 1988; 1991) 

or numerically (Knight and Abril, 1996; Abril and Knight, 2004).  In the analytic procedure, 

which is used throughout this research, the cross section is divided into sub-areas (panels) 

with constant depth domains, or sloping side slope domains (Figure (2-9)).  The analytical 

solution to Eq. (2-70) may then be expressed for a constant depth, h, domain as: 

1 2

1 2
y y

dU A e A e kγ γ−⎡ ⎤= + +⎣ ⎦  (2-71)

where ( )08 1gS hk
f

β= − ; 
1/ 42 1

8
f

h
γ

λ
⎡ ⎤= ⎢ ⎥⎣ ⎦

 and 
0gS h

β
ρ

Γ
=  
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and for a linear-side-slope (1:s vertical : horizontal) domain as: 

1 21
3 4dU A Aα αξ ξ ωξ η− −⎡ ⎤= + + +⎣ ⎦  (2-72)

where 
( ) ( )

1 22
1 211 1 1 8

2 2

s s
fα

λ

+
= − + + ; 

( )1 221
8

s f
s

η

ρ

Γ
= −

+ ⎛ ⎞
⎜ ⎟
⎝ ⎠

;  

( )1 22 1 2

2

1
8 8

ogS

s f f
s s

ω
λ

=
+ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 and ( )y bh
s

ξ −
= ±  

here, ξ  is the depth function on the side-slope domain, b is the semi width of main channel 

bed and A1 to A4 are constants which are defined through applying the boundary conditions 

(Section 2.6.4).  Given sufficient data, the friction factor, f can be back calculated otherwise 

its value should be obtained along with the values of dimensionless eddy viscosity, λ, and 

secondary flow term, Γ, through calibration. 

 

ξ

 
Figure (2-9): Flat bed and sloping sidewall domains. 

 

2.6.4 Boundary conditions 

As mentioned in the previous section, different boundary conditions are used to determine the 

unknown A constants.  At the interface between two adjacent panels, three different boundary 

conditions can be considered (Shiono and Knight, 1988): 
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Continuity of depth-averaged velocity: 

1( ) ( )d i d iU U +=  (2-73)

Continuity of the lateral gradient of the depth-averaged velocity: 

1

d d

i i

U U
y y +

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (2-74)

Continuity of the unit force: 

1( ) ( )yx yxi ih hτ τ +=  (2-75)

Omran (2005) suggested a modification to Eq. (2-74) to get realistic mean velocity 

distributions by smoothing the spikes caused by the abrupt changes in the local friction and 

dimensionless eddy viscosity: 

1

d d

i i

U U
y y

μ μ
+

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (2-76)

where, 

8
fμ λ=  (2-77)

At a rigid side wall, where the no-slip condition holds, the velocity should be equal to zero 

and hence the boundary condition may be written as: 

( ) 0d iU =  (2-77)

Assuming ideal flow conditions, an additional boundary condition may also be applied at the 

centreline of a symmetric channel: 

( )d
i

U
y

∂
=

∂
0  (2-78)

Once a cross-section is divided into different panels, as shown in Figure (2-9), and the 

appropriate boundary conditions are applied, a set of linear equations can be obtained in 

which the A coefficients in Eqs. (2-71 & 2-72) are the unknowns.  This set of equations can be 

solved either by a matrix approach or by a direct approach (Rezaei, 2006), where an 
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elimination procedure is followed to obtain analytical expressions for the A coefficients.  

Once the A coefficients are defined, the lateral variation of depth-mean velocity across the 

channel can be obtained from Eqs. (2-71 & 2-72).  Furthermore it is then possible to calculate 

the boundary shear stress distribution and the channel conveyance.  Examples of the matrix 

approach, which is used throughout this research, is shown in Appendix (II). 

 

2.6.5 Previous work relating to the SKM 

Since its introduction by Shiono and Knight (1988), a number of studies have been carried out 

to develop the SKM and to show its accuracy in predicting the depth-averaged velocity 

profile, the boundary shear stress distribution and conveyance in different channels and rivers.  

In this section, only a small amount of the fundamental work will be examined, and only that 

which is relevant to the scope of this research. 

 

Shiono and Knight (1988; 1990, 1991) and Knight and Shiono (1990) showed the efficiency 

of this method for compound channels and overbank flow.  Knight and Shiono (1996) also 

compared three different calibration methods for a given dataset. In the first method, all 

parameters were found through calibration.  Then the same data were also calibrated with 

constant λ values (λ = 0.13) and variable Γ values.  In the final attempt, λ was again held 

constant at 0.13, but different f values were used, with Γ values set to zero.  It was 

demonstrated that all three methods result in a reasonable mean velocity distribution but in 

order to obtain accurate boundary shear stress results, Γ should be taken into account in the 

model.   

 

Revisiting the boundary conditions, Knight and Abril (1996) and Abril and Knight (2004) 

calibrated the SKM based on compound channel data and provided the following guidelines 

for determining the secondary flow term: 

00.05h gSρΓ =   for inbank flow (2-78)

00.15 mch gSρΓ =   for the main channel during overbank flow (2-79)
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00.25 fch gSρΓ = −  for the floodplain during overbank flow (2-80)

where subscripts mc and fc denote the main channel and floodplain, respectively.  They also 

found that the model is not sensitive to the value of λ and adopting a constant value 

of  λ=0.13 for the “whole channel” (i.e. main channel and floodplains) with a uniform 

roughness distribution gives good results.  Although giving satisfactory results for channels 

with overbank flow, this calibration philosophy cannot be extended to inbank flow.  In the 

original work, the main channel and the floodplains were each considered as one panel and 

hence no information was derived regarding the lateral variation of the calibration parameters.  

Furthermore, knowing that λ is a function of channel geometry and friction (Knight and Abril, 

1996), assuming a constant value for this parameter for the whole channel is not rational.  

 

Omran (2005) applied the SKM to a number of channels and rivers, with both inbank and 

overbank flows.  In his work, the boundary conditions of the model, particularly for simple 

trapezoidal channels were re-examined and a two-layer version of the model was developed 

for modelling flows in compound channels. 

 

Based on the number and position of secondary flow cells in trapezoidal channels, Knight et 

al. (2007) proposed a philosophy for defining the appropriate panel structure.  It was 

demonstrated that by using the methodology, back calculating the friction values from 

measured data, keeping λ constant as 0.07 and calibrating Γ, the depth-averaged velocity and 

boundary shear stress could be accurately computed for simple trapezoidal channels. 

 

McGahey (2006) and McGahey et al. (2006) developed a 2-D model based on the main 

principles of SKM which they called the Conveyance Estimation System (CES).  The CES 

was thoroughly tested against twenty-four data sets ranging from small scale laboratory 

experiments to measurements from large natural rivers.  The results showed promising 

improvements when compared to existing one-dimensional hydrodynamic models (McGahey 

et al., 2008).  The sensitivity of the method to its parameters was also investigated in this 

research.  The model was later incorporated in UK’s Environment Agency ‘Conveyance and 

Afflux Estimation System’ software (www.river-conveyance.net). 
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Chlebek and Knight (2006) showed that a simple one panel structure for half of a symmetric 

rectangular channel is sufficient for accurately predicting the percentage of shear force acting 

on the wall and the total discharge.  It was concluded that for the distributions of mean 

velocity and boundary shear, additional panels should be considered.  Continuing this work, 

Chlebek (2009) illustrated the capability of SKM for modelling simple homogeneous and 

heterogeneous channels with inbank flows.  Simple calibration rules were also derived for 

selecting the values of f, λ, Γ. In addition, SKM was used to model the flow in compound 

channels with skewed floodplains.  As a result, expressions for shear force and apparent shear 

stress acting on certain boundary elements were proposed. 

 

2.6.7 Friction factor 

As mentioned in the previous sections, the SKM uses the simple Darcy-Weisbach 

approximation (Eq. 2-51) for the boundary shear stress.  This assumption is used in both 

defining the shear velocity and consequently the depth-averaged eddy viscosity (Eqs. 2-66 & 

2-67) and also obtaining the boundary shear stress distribution from the velocity distribution.  

As a result, the friction factor, f, is one the important parameters, if not the most important 

internal parameter of SKM (and many other conveyance models) which should be understood 

and quantified.  It is to be stressed that the Darcy-Weisbach friction factor is a resistance 

coefficient and not a roughness factor.  In fact, f is a measure reflecting the dynamic 

behaviour of the boundary in resisting the fluid flow (Yang and Lim, 1997).  This 

dimensionless coefficient is the representative of surface (skin) friction, drag resistance, wave 

resistance (from free surface distortion) and resistance associated with local acceleration or 

flow unsteadiness (Rouse, 1965). 

 

Darcy (1857) and Weisbach (1845) developed an equation for calculating the head loss in 

pipe flow: 

2

2
avr

f
ULh f

D g
=  (2-81)

where f is a dimensionless friction factor, L is the pipe length and D is the pipe diameter.  As 

recommended by the Task Force on Friction Factors in Open Channels (TFFF) (1963), this 

equation can be used for steady, uniform and fully developed open channel flow.  Assuming a 
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uniform distribution for the boundary shear stress, D can be substituted by 4R (Chow, 1959) 

and hence f can be calculated by: 

2

8 e

avr

gRSf
U

=  (2-82)

f can be simply related to Chezy’s, C , and Manning’s , n resistance coefficients: 

8gC
f

=  (2-83)

1/ 6

8
fn R
g

=  (2-84)

The friction factor, f, in pipes is known to be dependent on the Reynolds number, Re /UD υ= , 

and a relative roughness factor, i.e. the ratio of a roughness factor that represents the 

unevenness of the boundary (e.g. the average sediment diameter or Nikuradse’s (1933) 

equivalent sand roughness, ks) to a shape factor (e.g. pipe diameter, hydraulic radius).  

Extensive experiments in pipe flow revealed that for smooth surfaces the relative roughness 

effect vanishes and the friction factor depends only on the Reynolds number (Prandtl, 1932).  

In contrast, for rough surfaces, the Reynolds number is less effective and the friction factor 

becomes wholly dependent on the relative roughness at high Reynolds numbers (Nikuradse, 

1933). 

 

Based on the boundary layer theory and the semi-empirical velocity laws, Prandtl (1933) 

derived an equation for friction factor in smooth pipes by integrating the logarithmic velocity 

equations over the pipe diameter and assuming no viscous sub-layer for the flow: 

6 10
1 log (Re )C f
f

= + 7C  (2-85)

He also derived a similar equation for rough pipes: 

8 10
1 2log ( )

s

RC C
kf

= + 9  (2-86)

where C6, C7, C8, and C9 are constants which depend on the velocity distribution constants (C1 

and in Eq. 2-43).  Based on experiments on uniform sand grains, Nikuradse (1933) found κ
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that values of 2.0, 8.0, 2.0 and 1.74 were appropriate for the constants C6, C7, C8, and C9, 

respectively.  These equations do not stand for rough boundaries at relatively low Reynolds 

numbers, as f varies both with Reynolds number and relative roughness.  Conducting similar 

experiments in pipes with non-uniform roughness, Colebrook and White (1937) proposed an 

alternative equation in the form of: 

11
12 10

10

1 log ( )
Re

sk CC
C Rf f

= − +  (2-87)

where C10, C11 and C12, are integration constants which depend on the shape of the conduit or 

channel.  Many researchers have tested this equation on the data of various cross sections with 

different roughness conditions and have proposed different integration coefficients for it 

(Table (2-2)).  Incorporating von Karman’s universal constant as 0.41 in the velocity 

distribution, the coefficient ‘C12’ is found to be aprroximately 2.00 for flows in open channels.  

A drawback in application of the Colebrook-White equation is that it is implicit in f.  To 

overcome this problem, Moody (1947) developed a diagram by relating the friction factor f, 

the relative roughness ks/4R and the Reynolds Number for laminar, transitional and fully 

turbulent flow through a family of curves.   In addition, other researchers have tried to derive 

alternative explicit equations for the friction factor.  One such equation is Barr’s (1979) 

equation for pipe flow, which has been provisionally adapted for wide open channels with Re 

> 30,000 and R/ks > 20, (Yen, 1991): 

2

0.9

1 1.log
4 12 Re

skf
R

−
⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

95  (2-88)

River engineers, including Henderson (1966), realized that in open channels, in addition to the 

Reynolds number and the relative roughness, the free surface, secondary currents and the non 

uniformity of boundary shear stress distribution along the wetted perimeter may also 

influence the friction factor.  Hence, they concluded that evaluating the friction factors by 

substituting the pipe diameter to 4R in the pipe equations is not necessarily correct, since the 

hydraulic radius is an arbitrary linear parameter and an unlimited number of cross sections 

may be characterized by the same value. 
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Researcher C10 C11 C12 Description 

Colebrook (1937) 14.83 2.52 2.00 Full circular pipe 

Zegzhda (1938) 11.55 0.00 2.00 Rectangular with dense sand 

Keulegan (1938) 12.27 3.41 2.03 Wide & smooth flow channel 

Keulegan (1938) 12.62 2.98 2.00 Wide & fully rough channel 

Keulegan (1938) 12.27 3.09 2.03 Smooth trapezoidal channel 

Keulegan (1938) 13.99 2.27 2.00 Rough trapezoidal channel 

Rouse (1946) 10.95 1.70 2.03 Wide channels 

Thijsse (1949) 12.20 3.03 2.03 Wide channels 

Sayre & Albertson (1961) 8.89 7.17 2.14 Wide channels 

Reinius (1961) 12.40 3.40 2.00 Wide channels 

Reinius (1961) 14.40 2.90 2.00 Rectangular – width/depth = 4 

Reinius (1961) 14.80 2.80 2.00 Rectangular – width/depth = 2 

Henderson (1966) 12.00 2.50 2.00 Wide channels 

Graf (1971) 12.90 2.77 2.00 Wide channels 

Table (2-2): Constants for the Colebrook-White formula (after Yen, 1991) 

 

Undertaking experiments in smooth rectangular channels, Tracy and Lester (1961) confirmed 

that the friction factor is a function of the Reynolds number.  Myers (1982) also realized that f 

varies in a complex way with the aspect ratio (2b/h).  He found that for the same Reynolds 

number, the friction factor in an open channel is around 8% higher than the equivalent pipe 

flow.  Studying the effect of non uniform distribution of boundary shear stress on resistance, 

Engelund (1964) suggested replacing the hydraulic radius, R, by another shape factor which 

he called the resistance hydraulic radius, R : 

23(1 ( 0.5))
4

eR R
h

= + −  (2-89)

where h  is the mean flow depth and e is the distance between the water surface and the centre 

of area of the cross-section.  Using dimensional analysis in conjunction with physical 

experiments, Kazemipour and Apelt (1979) established a simple correlation between open 

channel and pipe flow and developed a shape factor for dealing with the shape effect in open 

channel flow.   This method has been found to be appropriate for smooth, rough and 
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transitional turbulent flows in rectangular channels, enabling the calculation of friction factors 

and mean velocities by the universal resistance formulae for pipe flow.  For a detailed review 

on open channel flow resistance and guidance on selecting the friction factor see Yen (2002), 

McGahey et al. (2009) and UK’s Department for Environment, Food and Rural Affairs 

(DEFRA, 2003) roughness advisor. 

 

2.6.8 Dimensionless eddy viscosity 

It was shown that SKM employs the Boussinesq’s hypothesis and the Cunge et al. (1980) 

approximation for the Reynolds stresses (Eq. 2-66).  Therefore the value of another 

parameter, namely, the dimensionless eddy viscosity (λ), should be known to ensure accurate 

model results. 

 

In many flows, including those in open channels, it is realistic to assume a linear shear stress 

distribution with a maximum at the bed and zero at the water surface together with a 

logarithmic velocity law and a parabolic mixing length function (Figure (2-10)): 

(1 )b
zτ τ
δ

= −  (2-90)

* 0

1 ln( )u z
u zκ

=  (2-91)

1 zl zκ
δ

= −  (2-92)

where δ  is the boundary layer thickness.  In an infinitely wide uniform open channel, δ can 

be replaced with the flow depth, h, to give: 

1 zl z
h

κ= −  (2-93)

Inserting this function in Eq. (2-26), the vertical distribution of the eddy viscosity will be a 

parabolic function (Figure (2-10d)) in the form of: 

* 1xz
zu z
h

ε κ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2-94)
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This distribution has been proved by many sets of measurements (Figure (2-11)).  The depth 

averaged vertical eddy viscosity, zxε , can be obtained by integrating Eq. (2-94) over the entire 

depth to get (Ikeda, 1981): 

2 3
* *

*
0 0 0

1 1 1
2 3 6

hh h

xz t
u uz z zdz u z dz

h h h h h
κ κε ε κ

⎡ ⎤⎛ ⎞= = − = − =⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

∫ ∫
h  (2-95)

Based on the strong correlation between the vertical and transverse turbulent velocity 

fluctuations, some researchers (e.g. Ikeda, 1981) have considered the same formulation for the 

average lateral eddy viscosity, xyε .  Thus, comparing Eq. (2-95) with Eq. (2-66) and assuming 

 for clear water, they have suggested a “standard” value in the order of 0.07 for the 

dimensionless eddy viscosity, λ.  This value is debatable on a number of grounds, most 

noticeably that relating to the assumed distribution of transverse shear stress.  In fact, in the 

lateral direction, the transverse shear stress cannot be approximated by a simple equation as in 

the vertical direction (Eq. 2-90) and hence no theoretical relation can be derived for

0.4κ �

xyε  and λ.  

Further work (e.g. Elder, 1959; Glover, 1964; Shiono and Knight, 1991) has been undertaken 

to evaluate the dimensionless eddy viscosity.  This has led to finding λ in the range of 0.25 to 

0.72 for variety of flow conditions. 

 

τ

bτ ε
r

ε

a) Velocity b) Shear stress c) Mixing length d) Eddy viscosity 

Figure (2-10): Distributions of vertical velocity, shear stress, mixing length and eddy 

viscosity. 
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Figure (2-11): Vertical distribution of eddy viscosity for open and closed channel data 

( t xzν ε≡ ) (Nezu and Nakagawa, 1993). 

 

A widely practised method of evaluating the eddy viscosity coefficient is related to the 

principles of dispersion in flumes and rivers.  Elder (1959) used dye in a wide laboratory 

flume with 10 mm depth of flow and found λ as 0.23.  Using polyethylene in a sand bed 

flume, Sayre and Chamberlain (1964) found λ=0.24.  The same value was found by Fischer 

and Calif (1967) from their study on a channel approximately 60cm deep and 18.0m wide.  

Conducting laboratory experiments on rectangular channels, Holley and Abraham (1972) 

found λ as 0.16 for.  Glover (1964) also reported a value of λ=0.36 for rectangular channels 

with bar roughness on the bottom.  Rhodes and Knight (1995) measured λ value as 0.13 in 

rectangular ducts. 

 

Shiono and Knight (1991) have shown theoretically, that λ is influenced by the physical 

effects of bed generated turbulence, lateral shear and secondary flows.  Based on the 

measurements performed in the Flood Channel Facility (FCF) compound trapezoidal channel, 

they quantified the influence of both Reynolds stresses and secondary flows on eddy viscosity 

values.  It was discovered that the λ value based on turbulence alone is around the standard 

value of 0.07, but its value based on both secondary flows and turbulence is much higher (e.g. 

0.5 for the main channel and 3.0 for the floodplains). 

2-45 



CHAPTER 2 – Open Channel Flow Modelling 

In natural channels, the values of λ are generally larger as the rougher banks and longitudinal 

irregularities result in more boundary generated turbulence and strong lateral shearing.  For 

example, Yotsukura et al. (1970) reported values as high as 0.7 from their experiments on the 

Missouri River and Glover (1964) measured λ=0.72 for the Columbia River in Washington. 

 

Assuming that the correlation of transverse eddy viscosity with shear velocity and flow depth 

(Eq. 2-66) is not accurate enough, some researchers (e.g. Lau and Krishnappan, 1977; Nokes 

and Wood, 1988; Webel and Schatzmann, 1984) investigated the dependence of the 

transverse eddy viscosity coefficient on other factors like the friction factor and the aspect 

ratio.  Lau and Krishnappan (1977) conducted experiments in rectangular flumes with smooth 

and rough beds.  They analyzed their results together with the results from many previous 

studies to investigate the dependence of the transverse eddy viscosity coefficient on the 

friction factor and the aspect ratio.  They realized that non-dimensionalizing the values of λ 

by the channel width gives a better picture on how this parameter changes with the change of 

friction and aspect ratio.  Furthermore, they concluded that the transverse mixing mechanism 

in straight open channels is attributable to the secondary flows.  Nokes and Wood (1988) 

showed that λ is constant and that the flow depth is the important length scale rather than the 

channel width.  In their experiments in straight rectangular open channels with both smooth 

and rough beds, Weble and Schatzmann (1984) found that λ is approximately equal to 0.13 

for friction factors greater than 0.09, but below this λ increases to 0.177 for smooth bed flows 

with friction factors about 0.03. 

 

2.6.9 Depth averaged secondary flow term 

2.6.9.1 Introduction 

The three dimensional fully developed turbulent flow in open channels is characterized by the 

three fluctuating components of velocity and three dimensional distributions of Reynolds 

shear stresses.  The streamwise velocity is relatively easy to measure in most cases, while the 

transverse components are difficult to measure accurately as they are only a few percent of the 

primary component values (Nezu and Nakagawa, 1993).  These transverse velocity 

components combine together to form secondary (or transverse) currents which are 

superimposed on the primary flow.  Examining the distributions of the primary velocity, 
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Nikuradse (1926) was the first to discover the presence of the secondary flows.  However, it 

was Prandtl (1926) who suggested that turbulent velocity fluctuations cause secondary flow 

structures (Gessner, 1973; Tominaga et al., 1989). 

 

Prandtl (1925) distinguished between the secondary flows driven by the centrifugal forces in 

curved or meandering channels, which he called the first kind, and the secondary flows of the 

second kind which are caused by the inhomogeneity of anisotropic turbulence.  The secondary 

flows of the first type are driven by the channel geometry, which may affect non-uniform 

flow in the streamwise direction and hence the generation of streamwise vorticity through 

vortex stretching.  In curved or meandering channels, the centrifugal driving force results in 

secondary currents in both laminar and turbulent flows with magnitudes typically 20-30% of 

the mainstream velocity (Nezu and Nakagawa, 1993). 

 

Flows of the second type are generally smaller in magnitude and arise in straight channels due 

to the transverse gradients of the Reynolds stresses, (e.g. v w′ ′ , 2v′ , 2w′ ), and anisotropy 

between the fluctuating velcocity components v′  and w′ (Gessener, 1973; Perkins, 1970).  

This anisotropy is caused by the boundary roughness conditions, the free surface and the 

channel geometry (Nezu and Nakagawa, 1993; Tominaga et al., 1989).  The presence of 

secondary currents of the second kind influences the spanwise distributions of streamwise 

velocity and boundary shear stress, resulting in the maximum shear stress and velocity no-

longer occurring at the channel centre line and free surface respectively (Knight et al., 1994).  

Tominaga et al. (1989) and Knight and Demetriou (1983) also stated that boundary shear 

stress increases where the secondary currents flow towards the wall and decrease when they 

flow away from the wall. 

 

The SKM incorporates the average effects of Prandtl’s second kind of secondary flows 

through an advection term called Γ (Eq. 2-69).  Figure (2-12) illustrates typical streamwise 

and transverse velocity profiles, with a secondary flow cell rotating in a counter clockwise 

direction.  Assuming a logarithmic profile for the streamwise velocity, u is always positive, 

with larger values near the free surface.  The lateral velocity, v, is only a small fraction of u 

and its vertical distribution satisfies three constraints (Wormleaton, 1996): i) zero velocity at 

the bed, ii) zero shear at the water surface ( /v z 0∂ ∂ = ) and iii) continuity for steady flow 
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( ).  Since the lateral velocity at the side edge of the secondary current cell is zero, 
0

0
h
vdz =∫

( )duv would be zero at this position.  Thus, it is not unreasonable to assume that ( )duv varies 

from zero at the edge of the secondary cell to a maximum at the centreline of the cell and then 

back to zero at the other edge of the cell.  Based on the assumed coordinates, v  and 

consequently ( )duv will be positive when the rotation is counter clockwise and negative when 

the rotation is clockwise.   

τ zx

u
v

τ yx

d( )h uv
y

ρ∂ ⎡ ⎤Γ = ⎣ ⎦∂

d( )uv

xy

z

Figure (2-12): Visualization of the averaged secondary flow term 

 (Chlebek and Knight, 2006). 

 

According to Eq. (2-69), the secondary current term, Γ, is equal to the lateral derivative of 

( )dh uvρ , which, based on experimental evidence of Shiono and Knight, (1991) may be 

regarded as constant in certain regions.  Hence, depending on the number, position, and 

strength of secondary flow cells, Γ can have either negative or positive values throughout the 

channel.  It should be further noted that Γ was initially included in the SKM system of 

equations as a sink term to count for the planform vorticity in compound channels.  

Furthermore, it was also concluded that including this term for reflecting the effect of 

streamwise vorticities in inbank flow, would result in more satisfactory model outcomes.  

This assumption is debatable since the lateral variation of the apparent shear stress due to the 

secondary flow term ( ( )duvρ ) seems to be linear only in certain regions (mostly flood plains) 
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of the overbank flow and there is not enough evidence to confidently extend this to inbank 

flow. 

 

2.6.9.2 Rectangular channels 

ctangular conduits have been measured by Brundrett and 

sing a low power LDA, Muller and Studerus (1979) were the first to measure the secondary 

he most remarkable secondary flow measurement in rectangular channels has been carried 

ezu and Rodi (1985) also related the cause of the velocity dip at the channel centre to the 

narrow (h/2b <6) and wide (h/2b >6) channels.  In narrow channels, the velocity dip at the 

The secondary currents in closed re

Bains (1963), Gessner (1973) and Perkins (1970) using a Hot Wire Anemometer (HWA) and 

also by Melling and Whitelaw (1965) using a Laser Doppler Anemometer (LDA).  They all 

observed that the two symmetric contra-rotating secondary cells flow along the bisector 

toward the corner and then from the corner toward the centre of the channel near the bed, 

finally rising toward the core of channel to complete the cycle. 

 

U

currents of the second kind in a rectangular flume.  Based on their measurements, Odgaard 

(1984) observed that the secondary currents in rectangular open channels are similar to those 

in air conduits, with the difference that in ducts, due to the absence of the free surface, the 

intensity of the secondary flow is somewhat depressed near the symmetry plane. 

 

T

out by Nezu and Rodi (1985).  In their work, they accurately measured the streamwise (u) and 

vertical velocities (w) using a two colour LDA system.  They then calculated the transverse 

velocity (v) from the equation of continuity on the condition of fully developed flow.  Plotting 

the velocity vectors of the secondary currents (Figure (2-13)), they observed two main cells of 

secondary currents separated by the horizontal plane near the sidewalls.  Near the surface, a 

strong vortex called the “free-surface vortex” is generated which transports momentum and 

energy from the side wall toward the channel centre near the surface.  At the channel bed, a 

smaller “bottom vortex” is formed which rotates in the opposite direction to the upper vortex. 

 

N

transportation of momentum from the free surface to the mid-depth by the free-surface vortex.  

Furthermore, they realized that the pattern of the secondary currents depends on the ratio 

between water depth and channel width (h/2b) and hence classified rectangular channels to 
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channel centre is caused by the free surface effect, which dampens the vertical velocity 

fluctuations ( w′ ).  In wide channels, the side-wall effects are not “felt” in the channel centre, 

and a series of secondary circulations occurs across the channel width.    

 
rrents in half of a symme

 (Nezu and Rodi, 1985). 

y/b

z/
h 

Figure (2-13): Secondary cu tric rectangular channel 

 

Evaluating the boundary shear str th rectangular open channels and 

losed rectangular ducts, Knight and Patel (1985) and Knight et al. (1983) observed a strong 

tangular channels where made by 

ominaga et al. (1989).  Using a Hot Film Anemometer, they studied the effects of geometry 

ess distributions in smoo

c

link between the perturbations in the boundary shear stress distribution and the location of 

secondary flow cells.  They concluded that the number and position of the contra rotating 

secondary flow cells depends on the channel aspect ratio. 

 

Further investigations on the secondary currents in rec

T

and wall roughness on the pattern of secondary currents (Figures (2-14) & (2-15)) and 

compared the results with measurements in closed conduits.  They found that pattern of 

vortices in channels are different from closed conduits and the free surface affects the pattern 

of the secondary currents as it causes the secondary currents to flow toward the side wall 

along a horizontal plane at around 0.6 of the flow depth.  It was also observed that while the 

spanwise scale of bottom vortex is confined to less than about the flow depth, at larger aspect 

ratios, the free surface vortex stretches and reaches about two times the depth.  They also 

realized that lateral variation of boundary roughness does not change the basic structure of the 
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secondary currents.  However, the scale of the transverse vortex was found to increase as the 

wall becomes rougher than the bed.   

 

 
a) case S1 (b=0.20m, 2b/h=8.00) 

  
b) case S2 (b=0.20m, 2b/h=3.94) c) case S3 (b=0.20m, 2b/h=2.01) 

Figure (2-14): Secondary current vector ooth rectangular channels  

aga et al., 1989

s in sm

 (Tomin ). 

 

  
a) case R11 (b=0.158m, 2b/h=7.9) 

Rough bed and wall (ks=1.2 cm) 

b) Case R21 (b=0.200m, 2b/h=8.0) 

Rough bed (ks=1.2 cm) and smooth wall 

 
c) case R31 (b=0.158m, 2b/h=7.9, ks=1.2 cm); Smooth bed and rough wall (ks=1.2 cm) 

Figure (2-15): Secondary current vectors in rough rectangular channels 

 (Tominaga et al., 1989). 
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2.6.9.3 Tra

In addition to rectangular channe 9) also studied the 3D turbulent 

idal channels with different wall inclinations (Figure (2-

 flow cells in trapezoidal channels is quite 

et al. (2007) observed that when the aspect ratio is larger 

), an additional cell appears in the flat bed domain.  They also found 

modelling the flow with the SKM (Figure (2-17)). 

pezoidal channels 

ls, Tominaga et al. (198

structure of flow in smooth trapezo

16)).  They observed that, the pattern of secondary

different from that of rectangular channel flows as an additional “longitudinal” vortex is 

generated between the side wall and the “free surface” vortex.  It was concluded that as the 

side slope angle reduces, the free surface vortex gets weaker and the bottom surface expands.  

It was also realized that maximum value of the secondary current is of the same magnitude as 

that in rectangular channels. 

 

Examining the peaks and troughs in the lateral shear stress and mean velocity profiles of 

several trapezoidal data sets, Knight 

than 2.2, ( 2 / 2.2b h >

that the sign of the secondary current term, Γ, could be determined from the location and 

rotation of the secondary current cells.  Based on the sign of Γ and the number of secondary 

current cells, they defined a panel structure (i.e. number and location of the panels) for 

a) case T13 (b=0.124m, 2b/h=2.2) b) case T03 (b=0.100m, 2b/h=2.2) 

 
c) case T23 (b=0.076m, 2b/h=2.1) 

Figure (2-16): Secondary current vectors in smooth trapezoidal channels 

 (Tominaga et al., 1989). 
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Figure (2-17): Number of panels and sign of secondary current term for simple trapezoidal 

channels (Knight et al., 2007). 

 

In this section, a brief review of literature relating to the SKM was presented.  Its governing 

equations were derived, its analytical solutions were introduced and appropriate comments 

relating to the underlying assumptions were presented.  Furthermore, discussion sections were 

provided on the three immeasurable parameters of f, λ and Γ.  In the following section, a 

review will be presented on the free overfall: a classic problem in the field of open channel 

flow which is i solved using Evolutionary Computa

 

2.7 FREE OVERFALL 

 flows and hence has a 

istinct importance in hydraulic engineering (Chaudhry, 1993).  In addition, based on various 

experiments on prismatic channels, the end depth (he) bears a unique relationship with the 

critical depth (hc).  As there exists a unique stage-discharge relationship at the critical depth, 

ntended to be tion. 

2.7.1 Background 

A free overfall is a situation where the bottom of a channel drops suddenly, causing the flow 

to separate and form a free nappe (Sterling and Knight, 2001).  The depth of water at the 

section where the overfall occurs is known as the end depth (he) or brink depth (Figure (2-

18)).  Aside from its close relation to the broad crested weir, the free overfall forms the 

starting point in computations of the surface profile in gradually varied

d
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this relationship enables the free overfall to be used as a simple flow measuring device 

(Sterling and Knight, 2001; Gupta et al., 1993). 

e briefly explained.   

 

2.7.2 The hy

Figure (2-19a) shows a schem velocity distributions along a 

sure above and below the falling 

ction differs from the 

hydrostatic pressure distribution. ean pressure considerably 

less tha

e gravity 

ffects the curvature of the free nappe in the vicinity of the brink section.  Since the free 

 

Van Leer (1922, 1924 cited in USBR, 2001) was probably the first who used the free overfall 

principle to measure flow in pipes flowing partially full.  Ledoux (1924) and Rouse (1936) 

also realized that the end depth of flow in a rectangular channel could be used as a simple 

flow measuring device that requires no calibration.  Since then, because of its importance and 

also relatively simple laboratory setup, a large number of theoretical and experimental studies 

have been carried out to understand the hydraulics of the end-depth problem and to determine 

the end-depth ratio (EDR=he/hc) in a wide range of channels. 

 
Figure (2-18): A free overfall in a circular channel (Sterling and Knight, 2001). 

 

In the following sub-sections, the hydraulics of the free overfall will be initially described.  

The theoretical approaches for solving this problem will then b

e 

draulics of the free overfall 

atic view of the pressure and 

channel with a free overfall.  At the brink section, the pres

nappe is atmospheric and therefore the pressure distribution at this se

 This pressure distribution has a m

n the corresponding hydrostatic value. 

 

Figure (2-19b) shows the variation of streamline curvature, being finite at the free surface and 

zero at the channel bed.  The strong vertical component of acceleration due to th

a
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surface profile is continuous, this effect is extended to a short distance upstream the brink 

section, causing an acceleration of the flow.  This guarantees that the depth of flow at the 

brink section is less than critical depth.  As a result, at sections upstream from the brink, the 

water surface curvature gradually decreases until a control section where the vertical 

component of acceleration is weak and the pressure is hydrostatic (Sterling and Knight, 2001; 

Dey, 2002b). 

 

In channels with a mild slope, the flow upstream of the brink is subcritical, becoming 

supercritical just before the brink section.  Therefore at a short distance upstream of the brink, 

there is section where the pressure distribution is hydrostatic, the specific energy attains a 

minimum value and the depth of flow is critical. When the slope is steep and the approaching 

flow is supercritical, a critical section does not exist upstream of the brink (Sterling and 

Knight, 2001; Dey, 2002b).  Furthermore, in supercritical conditions, every single disturbance 

creates cross-waves leading to difficulties in determining the depth of flow which makes the 

measurements difficult. 

 

(a) (b) 

Figure (2-19): (a) Schematic view of a typical free overfall and the hydraulic aspects; 

 (b) Streamline pattern of a free overfall (Dey, 2002b). 

 

2.7.3 Problem formulation 

Despite the relatively simple experimental setup, the theoretical investigation of the free 

overfall phenomena is a complicated task.  Parallel to the experimental investigations, many 

researchers have tried to explain the physics of the free overfall and establish an expression 

for the EDR for different channels by applying the governing equations and making some 

assumptions relating to the velocity and pressure distributions.  Although providing some 

prom g ising solutions, inadequacies in these studies have lead researchers to continue workin
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on this topic (Oztur e briefly explained 

 the following sections.  Table (2-3) also shows some of the equations derived for EDR in 

rectangular, trapezoidal and circular channels.  For a complete state of the art review on the 

k, 2005).  The most common theoretical approaches ar

in

free overfall, see Dey, (2002b). 

 

2.7.3.1 Boussinesq approach 

In curvilinear flow, assuming a constant acceleration normal to the direction of flow (az), the 

intensity of pressure, P, at any depth z is determined from the integration of the Euler’s 

equation, that is: 

( ) zP gz a
z

ρ ρ∂
− + =

∂
 (2-96)

As illustrated in Figure (2-19b), the streamline curvature of a free overfall varies from a finite 

value at the free surface to zero at the channel bed.  According to the Boussinesq 

pproximation (Jaeger, 1957) the variation of the streamline curvature with height above the 

 linear. Integrating Eq. (2-96) with this assumption, an 

a

channel bed (z) is assumed to be

equation for the effective mean hydrostatic pressure head (hep) is found (Dey, 2002a & b): 

22 2

;
3

avr
ep

Ukh d hh h k
g

= + =  (2-97)2h dx

where h is the flow depth, Uavr the mean flow velocity and g is the gravity.  This equation is a 

suitable starting point roblems with small curvature at the free surface such as the 

e

change of free surface curvature by the critical depth (hc), using  and equating 

the obtained equations, it can be shown that the generalized equation of end-depth ratio (EDR) 

(2-98)

 for solving p

free overfall (Dey, 2002b). 

 

2.7.3.2 Energy approach 

This method was first introduced by Anderson (1967) and later extended by others (e.g. Hager 

1983).  Normalizing the specific energy at the end section of the free overfall (E ) and the 
2 3/ /c cQ g A T=

is: 

ˆ6 4 3 ( ) 0e e eE h f h− − =% %  
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e ˆ /e e cE E h= , /e eh EDR h h= =%
c , 3 2( ) /( )e c e c cf h A A T h=%wher , T is the top width of flow and the 

 section.  It is to be further noted that in Eq. (2-98) the energy 

blem as it has been extensively applied to different channels by many researchers (e.g. 

Delleur et al.,1956; Diskin, 1961; Rajaratnam and Muralidhar, 1964a & b; 1970, Keller and 

Fong, 1989; Bhallamudi, 1994; Dey, 1998; 2001b, 2002b; 2003; Dey and Kumar, 2002). 

9a)).  In this approach, a control volume is considered 

etween a section upstream which has hydrostatic pressure, and another at the brink.  

Furthermore for analytical simplicity, pseudo-uniform flow (Hager and Hutter, 1984; Dey, 

trol volume, where the boundary frictional resistance is 

0

subscript ‘e’ refers to the end

coefficient, α, is assumed to be unity. 

 

2.7.3.3 Momentum approach 

This approach is the perhaps the most popular theoretical approach towards the free overfall 

pro

 

Because of the accelerated flow and the inclined streamline pattern, the pressure at the end 

section is non-hydrostatic (Figure (2-1

b

1998) is assumed within the con

compensated for by the streamwise component of the gravity force of fluid.  Hence, 

considering one-dimensional momentum equations between the mentioned sections, the 

difference of force due to pressure will be equal to the rate of change of momentum: 

0 0( )PF F Q V Vρ β β− = −  (2-99)

where FP is the total force due to pressure, ρ  the mass density of the fluid, β the Boussinesq 

coefficient.  Subscript ‘0’ refers to the section with hydrostatic pressure.  Assuming a pressure 

distribution at the end section, Eq. (2-99) is solved for the EDR. 

 

2.7.3.4 Weir approach 

Assuming a zero pressure distribution and parallel streamlines at the end section and 

neglecting the narrowing of the nappe, the flow of a free overfall in a channel can be assumed 

to be similar to the flow over a sharp-crested weir having the same section with crest height 

equaling zero.  The discharge Q of a weir is computed from: 
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0

0

2 2 ( )
h

d nQ C g b H z dy= −∫  (2-100)

where Cd is the coefficient of discharge, b is the channel semi width at an elevation zn and H 

is the total head.  Considering the flow at the upstream section to be critical, and substituting 
2

0
0the total head (

2g

Dey, 2001a & c, 2002b). 

 

2.7.3.5 Free vortex approach 

VH h= + ), Eq. (2-63) is solved for the EDR (Rouse, 1936; Ferro, 1999; 

In the free vortex approach, firstly introduced by Ali and Sykes (1972), the flow at the end of 

a horizontal channel is simulated by the velocity distribution and curvature of a free-vortex.  

for channels with different cross sections can be derived (Dey, 2002b). 

pproach 

Using an iterative process, the finite difference approximations in the Laplace and Bernoulli 

 free overfall are solved together with boundary conditions 

entioned approaches, numerous researchers (e.g. Gupta et al., 1993; 

terling and Knight, 1991; Dey, 2002b) have obtained 

Expressing the discharge as the integration of the product of velocity and curvature of the free 

vortex, and assuming there is no loss of energy in the surface and bed streamlines, the EDR 

 

2.7.3.6 Potential flow a

equations for the potential flow in a

and the consistency of the total head and zero pressure at the free streamlines.  The relaxation 

method (Marchi, 1993; Markland, 1965; cited in Dey, 2002b) is normally applied to solve the 

finite difference approximations (Southwell and Vaisey, 1943; Dey, 2002b). 

 

2.7.3.7 Empirical approaches 

In addition to the m

Pagliara, 1995; Davis et al.; 1998, S

relationships for the EDR and/or the Q by applying regression analysis on the experimental 

data.   
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2.7.3.8 Machine learning approaches 

Recently, the existence of a relatively large database on the free overfall in various channels 

as led some researchers to apply machine learning and data modelling techniques for 

ple Raikar et al. (2004) used a four-layer 

Artificial Neural Network (ANN) model to analyze the experimental data to determine the 

odelling technique to determine the EDR and discharge of a free overfall occurring 

ooth semi-circular channels, circular channels with flat base and also 

s.   

uler equations of motion, for ideal flow past 

ular channels. 

ensional steady 

h

investigating the end-depth relationship.  For exam

EDR for a smooth inverted semicircular channel in all flow regimes.  Ozturk (2005) used the 

same technique and investigated the EDR in rectangular channels with different roughnesses.  

Most recently, Pal and Guel (2006, 2007) applied a support vector machine (Bishop, 2006) 

based m

over inverted sm

trapezoidal channels with different bed slope

 

2.7.3.9 Turbulence modelling approaches 

A complete solution of the free overfall requires an integration of the turbulent Navier-Stokes 

equations, using an adequate turbulence model to represent the turbulent shear stresses.  Many 

researchers have followed this approach and tried to find exact solutions for this problem.  

Finnie and Jeppson (1991) were perhaps among the first who stepped in this path and 

attempted this type of calculation for the related problem of flow under a sluice gate using the 

k-ε method.  Mohapatra et al. (2001) also provided a numerical solution method based on the 

generalized simplified marker and cell (GENSMAC) flow solver and Young’s volume of 

nique to the Efluid (Y-VOF) surface-tracking tech

a free overfall of rectang
 

Guo (2005) treated the free overfall in a rectangular channel by using two-dim

potential flow theory.  Based on the theory of the boundary value problem of analytical 

function and the substitution of variables, he derived the boundary integral equations in the 

physical plane for the free overfall in a rectangular channel.  In continuation of the previous 

work, Guo et al. (2006) applied the volume of fluid (VOF) technique to solve the 2D 

incompressible RANS and continuity equations for rough rectangular channels.  Ramamurthy 

et al. (2006) also applied the three-dimensional two-equation k-ε turbulence model together 

with the volume of fluid (VOF) turbulence model to obtain the pressure head distributions, 
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velocity distributions, and water surface profiles for the free overfall in a trapezoidal open 

channel. 
 

Even though the mentioned approaches yield a number of promising solutions, various 

inadequacies, mainly relating to the assumed distributions of velocity and/or pressure, have 

foreclosed the arising of a firm, suitable and general notation of the free overfall process.  As 

it will be shown latter, an attempt will be made to use Evolutionary Computation to derive 

knowledge from various sources of data and to induce a global conceptual model for the free 

overfall which can be applied to all possible geometries and flow regimes. 
 

2.8 CONCLUDING REMARKS 

It was shown that the SKM is a simple depth-averaged flow model, based on the RANS 

equations which can be used to estimate the lateral distributions of depth-averaged velocity 

 inputs.  Although 

there are some initial guidelines for the selecti n of the named parameters (Knight and Abril, 

 and Knight, 2006), their lateral variation is still 

unknown largely. 

del calibration and symbolic regression.  

and boundary shear stress for flows in straight prismatic channels with the minimum of 

computational effort.  However, in order to apply the SKM successfully, the channel cross 

section should first be divided into a number domains (panels) based on an adopted panelling 

philosophy.  Then, in addition to the inputs of cross-sectional shape and longitudinal bed 

slope, the correct lumped values of the friction factor (f), dimensionless eddy viscosity (λ) and 

a secondary flow term (Γ), for each panel should be fed to the model as

o

1996; Abril and Knight, 2004; Chlebek

 
The final section of the chapter introduced the free overfall as an effective and simple 

discharge measuring device.  The amount of published work in the literature indicates the 

high attention of hydraulic engineers to this problem.  However, all the applied approaches for 

determining the EDR or the discharge are accompanied with faults, uncertainties and lack of 

generality.   

 

Having introduced the above, the tools used in this research for bridging the identified 

knowledge gaps will be presented in the following Chapter.  In Chapter 3 an attempt is made 

to provide a conceptual view on Evolutionary Computation and describe its application in 

multi-objective mo
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Channel EDR = he/hc Channel status Approach Researcher 

0.715 Horizontal, Smooth Weir Rouse (1936) 

0.731 Horizontal, Smooth Momentum Diskin (1961) 

0.649 Sloping, Smooth Energy Anderson (1967) 

0.781 Mild slope, Roughness Empirical Bauer and Graf (1971) 

0.678 Horizontal, Smooth Free-vortex Ali and Skyes (1972) 

0.667 Horizontal, Smooth Momentum Ali and Skyes (1972) 

2 2
0 09 /(9 4)F F +  Sloping, Smooth Energy Hager (1983) 

0.696 Sloping, Smooth Momentum Hager (1983) 

R
ec

ta
ng

ul
ar

 

0.760 Horizontal, Smooth Momentum Ferro (1992) 

0.706 Sloping, Smooth Free-vortex Marchi (1993) 

2
0 0134.84 12.66 0.778S S− +  Sloping, Rough Empirical 98) Davis et al. (19

( 0.225 )0.848 Fe −  Sloping, Rough Empirical Davis et al. (1998) 

 0.5
00.846 0.219( / )S n−  Sloping, Rough Empirical Davis et al. (1998) 

0.5
00.77 2.05S−  Sloping, Smooth Empirical Firat (2004) 

0.5
00.76 1.29S−  Sloping, Rough Empirical Firat (2004) 

0.5
00.76 0.02 /S n−  Sloping, Smooth-rough Empirical Firat (2004) 

0.6701 /n ch h−  Sloping, Smooth-rough  Empirical Firat (2004) 

0.7016 Sloping , Smooth Free-vortex Beirami et al. (2006) 

T
ra

pe
z

0.745 Horizontal Empirical Gupta et al. (1993) 

oi
da

l 

05.50.7267 Se−  Sloping , Smooth Empirical Gupta . (1993) et al

0.705 0.029( / )cmh B+  Horizontal Empirical Pagliara (1995) 

0.715 Horizontal, Smooth Momentum Smith (1962) 

C
ir

cu
la

r 

0.75, (hc/d) < 0.82 Sloping , Smooth Momentum Dey (1998) 

2 2 2 / 3
0 02 /(1 2 ))F F+  Sloping , Smooth Momentum Clausnitzer & Hager (1997) 

0.743 Sloping , Smooth Empirical Sterling & Knight (2001) 

 

Table (2 ): EDR for rectangular, trapezoidal la

 

-3  and circu r channels. 
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CHAPTER 3 

 
EVOLUTIONARY AND GENETIC COMPUTATION 
 

 

3.1 INTRODUCTION 

The aim of this chapter is to review the essential knowledge required for the implementation 

of the genetic algorithm and genetic programming used in subsequent chapters.  The chapter 

starts with presenting a short history and conceptual view of Evolutionary Computation (EC) 

and describes the main operations used in this paradigm.  Then, a simple genetic algorithm 

(GA) and its operators are described as a subset of EC techniques.  This opening section is 

followed by two separate sections each dedicated to the EC approaches employed in this 

research.  The first approach is evolutionary multi-objective (EMO) optimization for model 

calibration.  In this section, the concepts of model parameter estimation, multi-objective 

optimization and Pareto optimality are explained.  Then, an EMO method named non-

dominated sort genetic algorithm II (NSGA-II) which is the primary element of the proposed 

calibration framework for the SKM will be examined in detail.  The second approach is 

related to evolutionary knowledge discovery.  After providing a brief background on 

knowledge discovery and explaining its processes, symbolic regression is introduced as an 

effective data mining tool for knowledge discovery and model induction.  This section ends 

with a brief explanation of another EC method: Genetic Programming (GP).  This technique 

will be used to derive a novel formulation of the physical laws of the free overfall. 

 

3.2 EVOLUTIONARY COMPUTATION 

Inspired by Darwin’s theory of natural evolution and motivated by the development of 

computer technologies, EC was introduced in the 1960s as a robust and an adaptive search 

method.  Simulating the natural evolutionary process, these techniques are able to look for the 
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best (fittest) solution(s) among an enormous number of possible candidates.  In the following 

sections, a short history of EC, the related biological terminology and the EC process are 

discussed. 

 

3.2.1 Short history of evolutionary computation 

Although some ideas underlying research in EC can be traced to the first half of the 20th 

century, the effective beginning of the field should be placed in the 1960s, concordant with 

the computer technology revolution (De Jong, 2006; Back et al., 1997b).  Rechenberg (1965; 

after Bach and Shcwefel, 1993) is acknowledged as one of the pioneers in this field.  In his 

early work, he developed an evolutionary based method for solving real-valued parameter 

optimization problems.  The main genetic operator in the original version of this method was 

high level mutation (asexual alteration) and no crossover (sexual recombination) was used 

(see Section 3.2.2 for terminology).  His work was the building block of a method which is 

today called Evolution Strategy (ES).  Two other main streams which emerged from the basic 

idea of EC can be identified as Evolutionary Programming (EP), originally developed by 

Fogel, Owens and Walsh (1966) and Genetic Algorithms (GAs) by Holland (1962, 1975).  

Compared to ES, EP used a more flexible representation and was applied to evolve finite state 

machines to solve various problems.  In the milestone book of “Adaptation in natural and 

artificial systems” Holland (1975) introduced ECs (particularly genetic algorithms) as a robust 

method of nonlinear optimization.  This approach introduced the crossover operator and used 

binary strings as representation.   

 

Overcoming the methodological shortcomings and the advent of powerful computational 

platforms during the 1980s enabled EC to solve difficult real-world problems (Back et al., 

1997b).  This attracted the research community and resulted in the combination, refinement 

and modification of the main stream.  As a result, by the early 1990s, the word “Evolutionary 

Computation” started to appear in the scientific terminology.  More than thirty years of 

practical application of EC in different fields has demonstrated that this paradigm is capable 

of dealing with a large variety of problems (Back and Shcwefel, 1993).  Nevertheless, the 

current state of knowledge is still far behind the real concept of evolution in the natural life 
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which makes the field of EC an exciting one for further scientific applications (Nazemi, 

2008). 

  

3.2.2 Biological Terminology 

Since natural biological evolution is the basis of EC, it is essential to understand its basic 

terminologies and discovered rules.  The main principle of Darwinian evolution is “survival 

of the fittest”, i.e. only highly fit organisms will be able to survive and reproduce in their 

environments (Mitchell, 1999).  To be more concise, evolution can be defined as a long time 

scale process that changes a population of organism by generating better offsprings through 

reproduction.  The basic terminologies of biological evolution, which are commonly used in 

the context of EC, can be summarized as follows: 

 

Chromosomes: 

 

are strings of coiled DNA that contain the coded characterization 
information of an organism.  A chromosome can be conceptually divided 
into genes. 

 
Genes: 

 
are elementary blocks of information in the DNA structure which encode a 
particular protein (e.g. eye colour). 

 
Traits: 

 
are the physical characteristic encoded by a gene (e.g. eye colour, hair 
colour…). 

 
Alleles: 

 
are the different possible settings for a trait (e.g. brown, blue .  .  .). 

 
Locus: 

 
is the location of a gene on the chromosome. 

 
Genome: 

 
is the complete collection of all chromosomes in an organism's cell. 

 
Genotype: 

 
is a particular set of genes contained in a genome. 

 
Phenotype: 

 
Is the physical and mental realization of a genotype (e.g. height, brain size, 
and intelligence). 

 
Fitness: 

 
is the probability that the organism will live to reproduce (viability) or the 
number of offspring the organism has (fertility). 

 
Crossover: 

 
is a genetic operator where chromosomes from the parents exchange genetic 
materials to generate a new offspring. 

 
Mutation: 

 
is the error occurring during DNA replication from parents. 
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3.2.3 Evolutionary computation process 

Conceptually, all EC methods are based on initializing a population of potential candidates 

(Chromosomes) using a coding scheme, evaluating each individual within the population and 

giving fitter solutions more chance to evolve and pass through next generations.  In the search 

for the best solution, evolution tries to gradually improve the quality of individuals by 

selecting, recombining (crossover) and altering (mutation) the fittest individuals.  This general 

procedure can be algorithmically shown in the form of a “pseudo-code” (Michalewicz, 1996):  
 

t := 0; 

code [problem representation] 

initialize [Pt] 

evaluate [Pt] 

while not terminate do 

 Qt := variation [Pt] 

evaluate [Qt] 

Pt+1 := select [Pt ∪ Qt] 

t := t + 1 

End while 
 

In this algorithm, Pt denotes a population of individuals at generation t and Qt is the offspring 

population created from the evolution of selected population individuals by means of 

variation operators such as recombination and mutation.  Any algorithm that adopts this 

general structure is called an Evolutionary Algorithm (EA).  

 

3.2.4 Evolutionary Algorithms (EAs) 

Recalling the general EC procedure, an EA must have the following four basic components 

(Michalewicz, 1992): 

1- an evolutionary representation of the solutions to the problem, 

2- a way to create an initial random pool of candidate solutions, 

3- an evaluation function for rating solutions in terms of their “fitness” and 

4- genetic operators that evolve the population towards fitter solutions during 

reproduction. 
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Obviously, the distinction between different types of EAs lies in variations in the named key 

elements. Figure (3-1) shows the common classification of EAs based on their semantic. This 

family encompasses five members: 

 

Evolution Strategies (ES): 

Developed by Rechenberg (1965), this method adopts vectors of real numbers as 

representations, and typically uses self-adaptive mutation rates to solve optimization 

problems. 

 

Evolutionary Programming (EP): 

This technique was pioneered by Fogel, Owens and Walsh (1966) to develop artificial 

intelligence. In contrast to other more adopted EAs, in EP no exchange of material between 

individuals in the population is made.  The developed versions of this method are used for 

solving general tasks including prediction problems, optimization, and machine learning. 

 

Genetic Algorithm (GA):  

Introduced by Holland (1975), GA is perhaps the most popular type of EA. GA seeks the 

solution of a problem in the form of strings of numbers (traditionally binary) by applying 

recombination operators in addition to selection and mutation.  This type of EA is often used 

in optimization problems (see Section 3.2.5 for more details). 

 

Learning Classifier Systems (LCS):  

LCS are rule-based systems that are able to automatically build the ruleset they manipulate.  

They were invented by Holland (1975) in order to “model the emergence of cognition based 

on adaptive mechanisms” (Sigaud and Wilson, 2007). 

 

Genetic Programming (GP):  

GP was introduced by Koza (1990; 1992) with the aim of allowing computers to solve 

problems automatically by evolving computer programs.  The representations which evolve 

through the generation are structures of programs or expressions. GP is used in solving many 

types of problems in the field of artificial intelligence (see Section 3.4.4 for more details).  
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Figure (3-1): The family of evolutionary algorithms (Weise, 2009). 

 

The recombination and mutation operators used in most EAs have made them successful in 

solving a wide variety of problems.  Furthermore, due to the stochastic nature of these 

methods, no gradient or special knowledge is usually required about the problem.  This 

flexibility has allowed EAs to be successfully applied to multimodal, complex problems 

where most traditional methods are largely unsuccessful (Deb, 1997). However, like other 

traditional search and optimization methods, there are some drawbacks in using EAs.  One 

major limitation emerges from the improper choice of EA parameters such as population size, 

crossover and mutation probability.  In order to successfully apply an EA to a problem, the 

user must be aware of the proper choices for the parameters as these methods may not work 

efficiently with an arbitrary parameter setting.  Another problem in using EAs is that since 

most of the operators are based on random generated numbers, the overall performance 

largely depends on the chosen random number generator. Hence, an unbiased random number 

generator must be used to preserve the stochasticity in the operators and ensure the 

correctness of the results.  The total computational effort is another drawback of EAs.  Since 

generally no gradient information, or problem knowledge is used, compared to classical 

search methods, EAs may require more function evaluations for simple, differentiable, 

unimodal functions (Deb, 1997). 

 

In addition to main categories of EAs, there are also many hybrid approaches which 

incorporate various features of the evolutionary paradigm, and consequently are hard to 

classify (Michalewicz, 1996).  The detailed description of different EAs is far beyond the 
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scope of this thesis.  However, GA and GP which are incorporated in this research will be 

described in more detail in what follows. 

 

3.2.5 Simple Genetic Algorithms (GA) 

A simple Genetic Algorithm (GA) has been adopted as the representative of EA for two 

reasons.  Firstly, it is relatively easy to understand and can be briefly explained and secondly, 

it contains all the genetic-based processes which are incorporated in the more sophisticated 

EA approaches.  In the following sections, a brief background of simple GA and its elements 

are provided.  For detailed explanation and history the reader is referred to Holland (1975), 

Goldberg (1989), Koza (1992), Coley (1999) and Osyczka (2002). 

 

3.2.5.1 Background 

Inspired by evolutionary biology, John Holland invented GAs in the 1960s with the goal of 

developing search methods for importing the mechanisms of natural adaptation into computer 

systems.  His ingenious idea was further developed by him and his co-workers at the 

University of Michigan in the 1960s and the 1970s.  Their findings were published in 1975 

under the title of “Adaptation in Natural and Artificial Systems”.  The book presented the 

genetic algorithm as an abstraction of biological evolution and provided a theoretical 

framework for EC. 

 

Genetic algorithms have undergone several modifications since their introduction, which have 

made them capable of solving many large complex problems.  The main characteristics of 

these techniques that have made them popular for scientists and engineers are (Coley, 1999): 

 

1- their ability to tackle search spaces with many local optima. 

2- their ability to estimate many parameters that interact in highly non-linear ways. 

3- their ability to deal with non-continues search spaces. 

4- they are generally insensitive to initial conditions. 

5- they are more efficient at locating a global peak than traditional techniques. 
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These abilities have resulted in an excellent reputation that has led GA to be successfully 

applied to problems where other methods have experienced difficulties.  Acoustics and signal 

processing (Sato et al., 2002), Aerospace engineering (Obayashi et al., 2000), Astronomy 

(Charbonneau, 1995), Chemistry (Gillet et al., 2002), Financial marketing (Andreou et al., 

2002) Game playing (Chellapilla and Fogel, 2001), Geophysics (Sambridge and Gallagher, 

1993), Material engineering (Giro et al., 2002), Medicine (Yardimci, 2007) and Water 

engineering (Bekele, 2007) are among the many fields which GAs have been successfully 

applied to. 

 

3.2.5.2 Representation 

In GA, the search starts with an initial set of random candidate solutions represented as 

chromosomes.  Each chromosome consists of genes which stand for a particular element (e.g. 

a parameter in a multi-variable optimization problem) of the candidate solution.  Simple GA 

uses binary coding where the genes are formed of bit strings of 0’s and 1’s.  Figure (3-2) 

shows a chromosome with 5 genes, each representing a parameter of a potential solution.  

This chromosome is equivalent to the parameter set of {5,7,5,3,11}.  The main drawback with 

this coding is that it requires long chromosomes to represent all the potential solutions in large 

search domains. This will result in the requirement of more memory and processing power.  

 

 
Figure (3-2): A chromosome with 5 genes. 

 

The main alternatives to binary-coding are Gray coding (Caruana and Schaffer, 1988), fuzzy 

coding (Sharma and Irwin, 2003) and real number coding (Deb and Kumar, 1995). In real 

number coding, which is incorporated in this thesis, real numbers are used to form a 

chromosome-like structure for the decision variable. This enables the assignment of large 

domains (even unknown domains) for variables (Deb and Kumar, 1998). For an in-depth 

review on different EA representations see Rothlauf (2006). 
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3.2.5.3 Genetic Algorithm process 

The general GA process can be summarized as continuously moving from one population of 

candidate solutions (chromosomes) to a new population of fitter solutions by using a kind of 

natural selection together with the genetic operators of crossover and mutation.  This cycle of 

evaluation – selection – reproduction is continued until an optimal or a near-optimal solution 

is found (Goldberg, 1989; Michaelwicz, 1992).  Figure (3-3) illustrates the flow chart of a 

simple GA process. 

 

Once the initial population is generated, each chromosome is evaluated and its “goodness” 

(fitness) is measured using some measure of fitness function.  Then, based on the value of this 

fitness function, a set of chromosomes is selected for breeding.  In order to simulate a new 

generation, genetic operators such as crossover and mutation are applied to the selected 

parents.  The offsprings are evaluated and the members of the next generation population are 

selected from the set of parents and offsprings.  This cycle continues until the termination 

criterion is met. 

START

Encoding

Initial population 
generation

Crossover Mutation

Evaluation DecodingSelection

Termination ?

STOP

YES

NO

New
Population

Selection

Generate new offsprings

Evaluation

 
Figure (3-3): Process of simple Genetic Algorithm. 
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3.2.5.4 Initialization 

In simple GA, the process of initialization involves the random production of a set of binary 

strings.  The only internal parameter in this process is the population size (number of 

chromosomes).  It has been shown (Lobo, 2000) that the population size can have an 

important role in the evolutionary search and therefore has to be considered carefully.  If the 

population size is too small, the diversity in the population is too low and the population will 

soon suffer from premature convergence.  On the other hand, if the size is too large the 

convergence towards the global optimum is slow and requires large computation resources. 

 

3.2.5.5 Evaluation (measuring performance) 

Fitness is the driving force of Darwinian natural selection (Koza, 1990) and the performance 

measure is the main feedback to an evolutionary algorithm.  Selection of a performance 

measure clearly depends on the kind of task and desired characteristics of the discovered 

solution.  A good performance measure should be able to give a fine-grained differentiation 

between competing solutions, focus on the eventual use of the program and avoid giving false 

information (Keijzer, 2002). One common fitness function is the sum of the squared distances 

between the value returned by the individual chromosome and the corresponding observed 

value.  Using this fitness function for measuring the fitness increases the influence of more 

distant points.  Obviously, the closer this sum of distances is to zero, the better the individual. 

 

3.2.5.6 Selection 

The selection operator chooses those chromosomes in the population that will be allowed to 

reproduce and also the individuals that will be passed to the next generation.  As a result of 

this natural selection, better performing (fitter) individuals would have a greater than average 

chance of reproducing and promoting the information they contain to the next generation.  

The three most commonly used selection schemes are proportionate selection, rank selection, 

and tournament selection (Goldberg and Deb, 1991).  In proportionate selection, also known 

as “roulette wheel” selection, the likelihood of selecting a chromosome is equal to the ratio of 

the fitness of the chromosome to the sum of the fitness of all chromosomes.  One serious 

limitation of this method is that one comparatively very fit chromosome can very quickly 

overcome a population.  Rank and tournament selection are designed to overcome this 
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problem.  In rank selection, the population is sorted from best to worst fitness, and the 

probability of selection is some (linear or nonlinear) function of rank.  In tournament 

selection, some small number of chromosomes (frequently two) are chosen at random, 

compared, and the fittest chromosome is selected; this process is repeated until sufficient 

chromosomes have been selected.  For an authorative study on selection methods, see 

Goldberg and Deb (1991). 

 

3.2.5.7 Crossover 

Crossover has been cited as the main genetic operator of GA and other EC techniques (e.g. 

Colley 1999; Osyczka, 2002).  This operator allows solutions to exchange information in a 

way similar to that used by a natural organism undergoing reproduction.  There are many 

ways to perform crossover (Michalewicz, 1992).  The simplest method is single point 

crossover, where the chromosomes are split at a randomly selected point, and genes to the left 

of the split from one chromosome are exchanged with genes to the right of the split from the 

other chromosome, and vice versa (Figure (3-4)).  The effect of crossover is controlled by 

crossover rate (probability) which defines the ratio of the number of offspring produced in 

each generation based on crossover.  It has been shown (Lobo, 2000) that the crossover rate 

can have a major effect on the quality of evolutionary search.  A higher crossover rate allows 

exploration of more of the solution space and reduces the chances of getting trapped in local 

optima.  On the other hand, a very high crossover rate can result in unnecessary searches in 

unpromising regions. 

 

 
Figure (3-4): Single point binary crossover operator. 
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3.2.5.8 Mutation 

Mutation is another genetic operator which introduces extra diversity in the population by 

making “accidental” changes in randomly chosen chromosomes.  This will ensure the search 

of the entire solution space over the course of the entire evolution (Michalewicz, 1992).  In its 

simplest version, this operator randomly changes the value of single bits within individual 

strings to keep the diversity of a population and to help a genetic algorithm get out of a local 

optimum (Figure (3-5)).  Like crossover, the contribution of mutation in evolutionary search 

is controlled by the so-called mutation rate (probability) which has certain influence on the 

evolutionary search.  If the mutation rate is too high, then the offspring will lose their 

relationship with their parents (Back et al., 1997a).  That means the resulting generation 

forgets the history of evolution. 

 
Figure (3-5): Binary mutation operator. 

 

3.2.5.9 Termination 

The evolutionary cycle of evaluation-selection-reproduction continues until a stopping 

criterion is met.  The easiest and most common termination criterion is the maximum number 

of generations, which is the one that has been incorporated in this thesis.  Other stopping 

criteria which have been used in literature include: 

 

• Stopping after a maximum number of function evaluations. 

• Stopping after a predefined fitness has been achieved. 

• Stopping when the rate of fitness improvement slows to a predefined level. 

• Stopping when the population has converged to a single solution. 
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3.3 EVOLUTIONARY MULTI-OBJECTIVE MODEL CALIBRATION  

3.3.1 Model parameter estimation (model calibration) 

Environmental models are “lumped approximations of the heterogeneous world” (Wagner and 

Gupta, 2005).  These models attempt to represent the complex, spatially distributed, 

interactions of earth, water, vegetation and energy by means of combining the physical laws 

of conservation and the physical properties of the system (Wagner and Gupta, 2005).  

Inevitably, there are always a number of parameters in the system whose values, mainly due 

to “immeasurability”, are not known precisely.  This immeasurability is down to the lack of 

an exact physical interpretation of the parameters (e.g. friction factor (see Section 2.6.7)) 

and/or measurement techniques (e.g. eddy viscosity (Section 2.6.8) and secondary flow term 

(Section 2.6.9)).  Therefore, before a model can be used to simulate the real-world processes, 

the values of some of its parameters should be adjusted.  This process is best known as 

parameter estimation or model calibration, and will result in finding the “optimal” values of 

the immeasurable parameters in the model. 

 

The objective of parameter estimation is to calibrate the model so that the observed and 

calculated system responses show a significantly high degree of similarity (Wagner et al., 

2003).  Gupta et al. (2005) define three necessary conditions for an environmental model to 

be “well-calibrated”: 

 

1- The input–state–output behaviour of the model is consistent with the measurements of 

the system behaviour. 

2- The model predictions are accurate (i.e. they have negligible bias) and precise (i.e. the 

prediction uncertainty is relatively small). 

3- The model structure and behaviour are consistent with a current environmental 

understanding of reality.   

 

The process of model calibration is normally performed either manually or by using 

computer-based automatic procedures.  Manual calibration is a trial-and-error procedure, 

which the modeller uses a number of different measures of performance and visual inspection 

of the model output to define the optimum parameter values (Gupta et al., 1998).  This 
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procedure might yield good results in simpler models but is generally very labour-intensive, 

time consuming, and requires considerable experience with a specific model structure.  

Furthermore, it is less successful in complex models where a high number of non-linearly 

interacting parameters are present in the model and also an objective analysis of parameter 

uncertainty is not possible in this procedure (Wagener et al., 2003; Cheng et al., 2006). 

 

As a result, a significant amount of research has been directed towards the development of 

automatic calibration procedures.  An automatic approach uses a computer algorithm to 

search the parameter space, performing multiple trials of the model.  The performance of the 

model in each trial is specified by one or many objective functions.  The failure of traditional 

automatic procedures like gradient-based methods and linear and dynamic programming 

techniques in solving problems with large number of variables and non-linear objective 

functions has contributed to the development of alternative solutions.  Evolutionary based 

optimization algorithms such as genetic algorithms (e.g. Wang, 1991; Yapo et al., 1998), 

shuffled complex evolution (SCE) algorithm (Duan et al., 1992; Madsen, 2000) and simulated 

annealing (Sumner et al., 1997) have been extensively used as powerful global optimization 

tools. 

 

3.3.2 Multi-objective optimization problem 

Many practical problems involve multiple measures of performance, or objectives, which are 

competing or conflicting and need to be optimized simultaneously.  Simple examples are 

maximizing profit and minimizing the cost of a product and maximizing performance and 

minimizing fuel consumption of a vehicle.  The concept of optimizing multiple, but equally 

important, objectives was originally introduced by two economists, Edgeworth (1881) and 

Pareto (1897).   

 

The general form of a multi-objective optimization problem can be defined as the 

minimization or maximization of a vector of objectives, F( , according to certain criteria: )X

{ }1 2min max F( ) ( ), ( ),..., ( )Mor X f X f X f X=  
(3-1)

 : ( ) 0 ( ) 0subject to g X and h X≤ =  
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where 1 2( , ,..., )NX x x x=

1 2), ( ),..., ( )M

is the decision variables vector in the domain search space, Ω, and 

(f X f X f X

( ) 0g X

are M objective functions that are to be minimized or maximized.  

Furthermore, and ( ) 0h X≤ =  are inequality and equality constraints representing 

the majority of practical and physical constraints arising in engineering problems (Farina, 

2001).  Accordingly, two subspaces known as the feasible design domain search space, Ω, 

and the objective domain search space, 0Ω , are defined as: 

{ }: . . ( ) 0 ( )NX s t g X and h XΩ ∈ ≤ =R 0  (3-2)

{ }0 : F( ) . .MX s t XΩ ∈ ∈R Ω  (3-3)

Where R  is the set of real numbers and 0Ω  is the image of Ω  through function F.  It should 

be noted that based on the nature of the problem, the design variables may not always belong 

to NR . 

 

In contrast to single objective optimization problems, multi-objective optimization problems 

may not have a single solution which simultaneously satisfies all objectives to the same 

extent.  In fact there exists a set of equally good optimum solutions (trade-offs) none of which 

without any further preference information, can be said to be better than the others.  A variety 

of methods exist to solve multi-objective problems.  The traditional methods convert multi-

objective optimization problems into a series of equivalent single-objective problems and try 

to find the optimum solutions with conventional techniques (e.g. linear programming, 

gradient methods).  The most frequently adopted methods and their limitations are listed 

below: 

 

1- In certain cases, objective functions may be optimized separately from each other and 

an insight gained concerning the “best” that can be achieved in each performance 

dimension.  Applying this method, suitable solutions to the overall problem can seldom be 

found.  The optimal performance according to one objective, if such an optimum exists, 

often implies unacceptably low performance in one or more of the other objective 

dimensions (Fonseca and Fleming, 1995).  
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2- Aggregating approaches are methods which assign weights to each objective and then 

re-formulate a single-objective by adding the weighted objectives and find the optimum of 

the new objective.  These methods tend not to lead to a suitable solution as the decision 

regarding the “best” solution relies on the so called human decision-maker (Ghosh and 

Dehuri, 2004). 

 

3- In the ε-constrained method (Hirschen and Schafer, 2006) one of the objectives is 

selected as the main objective and the other objectives are imposed as constraints to the 

problem. 

 

3.3.3 The concept of Pareto optimality 

Generally, when multiple solutions of a given multi-objective problem are available, in order 

to distinguish between different solutions, it is necessary to rank them according to an order 

criterion.  Based on the Pareto optima theory (Goldberg, 1989), the solutions are ranked 

according to the Pareto dominance concept which is defined as: 

 

For any two solutions 1 2X and X ∈Ω , and assuming a minimization problem, 1X dominates 

solution 2X  if: 

[ ]1 2( ) ( )  1, 2,...i if X f X for all i M≤ ∈  (3-4)

[ ]1 2( ) ( )     1, 2,...j jf X f X for at least one j M< ∈  (3-5)

In other words, if solution 1X  is not worse than 2X in all objectives, but is strictly better in at 

least one objective, then it is said that 1X  dominates 2X .  Figure (3-6) illustrates a set of 

solutions for a typical two-objective problem where the goal is to minimize both objectives.  

The horizontal and vertical axes represent the value of the first and second objective 

respectively and each circle represents a decision vector (Xi) in the objective space ( 0Ω ).  

Based on the Pareto dominance concept, all empty circles are dominated by the filled ones.  

The union of all non-dominated solutions (filled circles) is called the Pareto set and its image 

in the Ωο, is known as the Pareto-optimal front.  In fact the Pareto front represents best 

compromise solutions for which none has any precedence over any other.  Once the Pareto 
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front of a problem is found, the engineer is able to choose the best compromise solution 

according to the user’s preferences.   

2(X) f

f1(X) 
 

Figure (3-6): The Pareto front of a two objective optimization problem. 

 

Although being relatively simple, at their best, traditional optimization techniques are only 

able to find one solution on the Pareto front at each run, i.e. for each equivalent single 

objective problem being solved. Hence, they are not convenient for solving a multi-objective 

problem.   

 

3.3.4 Evolutionary multi-objective optimization (EMO) 

Since EC methods deal with a population of solutions, it can be expected that these search 

algorithms can have a great potential in the discovery of Pareto optimal solutions.  In addition, 

because of their nature, evolutionary algorithms are less susceptible to the shape and 

continuity of the Pareto front; the weakness of most search methods.  Therefore, EMOs have 

the ability to handle complex problems, involving features such as discontinuities, 

multimodality and disjoint feasible spaces (Fonseca and Fleming, 1995).  These are the 

features that make them suitable for solving complex multi-objective problems.   

 

The first design of a multi-objective evolutionary algorithm (MOEA) was undertaken in the 

mid-1980s by Schaffer (1984).  Schaffer’s approach, called Vector Evaluated Genetic 

Algorithm (VEGA) consisted of a simple genetic algorithm with a modified selection 

mechanism.  After VEGA, several researchers have proposed other MOEAs which over the 

years have been used in many applications and their performances have been tested in several 

comparative studies.  There are two common goals in all MOEA implementations.  First, to 
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move the population toward the Pareto optimal front and second, to maintain diversity in the 

population so that multiple solutions can be developed (Deb, 1999).  A detailed description of 

these algorithms is beyond the scope of this thesis.  For an excellent comprehensive survey on 

EMO the reader is directed towards Coello (2006).  Among these algorithms only the Non-

dominated Sorting Genetic Algorithm-II (NSGA-II), the primary element of the proposed 

calibration framework of the SKM, will be considered in more detail. 

 

3.3.5 Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a fast and elitist, second 

generation MOEA proposed by Deb et al. (2000; 2002).  The main features of this method 

are: 

 

1- at each generation, the best solutions found are preserved and included in the 

following generation using an elite-preserving operator; 
 

2- a fast algorithm is used to sort the non-dominated fronts; 
 

3- a two level ranking method is used to assign the effective fitness of solutions during 

the selection process.   

 

Figure (3-7) illustrates the general procedure of this method.  In this figure, Pt is the parent 

population, Qt is the offspring population, Rt is the combined population ( t t tR P Q= U ) and Fi 

are the non-dominated sorted fronts of Rt.  The algorithm starts with a random population and 

generates the children using the genetic operators.  Then, a fast non-domination sorting 

algorithm is used to rank the solutions according to their dominance rank and organize fronts 

of equal rank.  In this ranking method, an individual, k, is randomly chosen from the 

population Rt and inserted in an intermediate set named F1.  Then, another solution k΄ is 

drawn from Rt and compared to all individuals from F1.  If k΄ dominates k, k΄ enters F1 and k 

is deleted, but if k dominates k΄, then k΄ is deleted and k stays in F1.  Continuing this 

comparison for all individuals, F1 will consist of all non-dominated individuals of Rt, the 

Pareto front by definition.  Now the first Pareto front is removed from the original population 
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and the same procedure is iteratively continued to identify other layers of Pareto 

fronts{ }, 1,...iF i = . 

Rt

F1

F2

F3

Pt + 1

Rejected

Non-dominated
sorting

Crowding
distance sorting

Pt

Qt

 
Figure (3-7): Procedure of NSGA-II (Deb et al., 2002)  

 

Subsequently, individual solutions within each front are ranked according to a density 

measure using the crowding operator.  This operator, as pictured in Figure (3-8), measures the 

diversity of each individual by measuring half of the perimeter of the rectangle that encloses a 

solution in the objective function space and assigning infinite distance to the extreme points 

of the Pareto-front.  This operator is designed in a way to ensure the selection of those 

individuals which reside in less crowded regions of the objective space.  This will guarantee a 

spread along the Pareto and prevent the algorithm focusing solely on a certain part of the 

front. 

k+1

k

k-1

f1(X)

f2(X)

 
Figure (3-8): Distance assignment in NSGA-II (Hirschen & Schafer, 2006). 
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The next generation, Pt+1, which has the same size as the first generation is filled with 

consecutive Pareto fronts { }, 1,...iF i = , until no full Pareto front can be fully accommodated 

anymore.  Then, the solutions in the next Pareto layer are sorted in descending order 

according to their distance assignment and the empty spaces in the proceeding generation are 

filled with higher ranked solutions. 

 

The next offspring population, Qt+1, is created by using the crowded tournament selection 

operator.  Two attributes can be considered for each individual solution: First, a non-

domination rank (equal to the Pareto layer rank) and second, a crowding distance (as 

explained beforehand).  In the tournament selection, competitions are set up between 

individuals.  The tournament is “won” by that individual which has the better non-dominated 

rank (lies on an outer Pareto front).  If both individuals are on the same Pareto front, ties are 

broken by the crowded distance and the tournament is “won” by the one which is least 

crowded (Hirschen & Schafer, 2006).  The procedure outlined in Figure (3-7) is repeated until 

the termination criterion is met and the best-known Pareto front is saved in an archive.  The 

solutions in this archive are the Pareto optimal solutions of the problem under consideration.  

For an in-depth explanation of this method the reader is referred to Deb et al. (2000; 2002). 

 

Studying a variety of test cases (e.g. Deb et al. 2002; Khare et al., 2003), it has been shown 

that compared to other elitist multi-objective evolutionary algorithms, NSGA-II has a better 

diversity preservation and therefore is able to compete with them regarding to its convergence 

to the true Pareto-optimal front in both constraint and non-constraint problems (Nazemi et al., 

2006).  This superiority has lead to the successful application of NSGA-II in several real 

world problems such as long-term groundwater monitoring design (Reed et al, 2007), water 

distribution network design (Babayan et al., 2005), calibrating hydrological models (Bekele, 

and Nicklow, 2007; Liu et al., 2005), traffic signal timing optimization (Sun et al., 2003) and 

medicine (Lahanas et al., 2003). 
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3.4 EVOLUTIONARY KNOWLEDGE DISCOVERY  

3.4.1 Background 

Early observations of the world through quantitative and numerical data by mankind can be 

dated as far back as 3500 B.C. (Powell, 1995).  Although these observations and 

measurements were apparently taken for purposes other than for scientific laws, they formed 

the initial foundation for the development of classical science.  Generally, when a set of 

observations of the physical system is collected, classical science attempts to describe the 

behaviour of the system by generating a hypothesis that represents a generalization of the data 

(Keijzer, 2002), whereas modern science gives a more refined and coherent representation of 

the physical and conceptual processes in the form of equations in a physical symbol structure 

(Babovic and Abbott, 1997a).  Once the formulation of a scientific law or theory is obtained, 

additional justification is provided by finding a proper conceptualization of the problem. 

 

Modern experimental and observational methods generate enormous datasets and the amount 

of data stored in databases continues to grow rapidly.  These large databases can contain 

valuable hidden knowledge, which, if extracted, can be used to improve the understanding of 

real-world processes.  The amount of stored data grows at a much larger rate than the number 

of human data analysts.  Hence, there is a need for (semi-)automatic methods to assist the 

human analyst in extracting knowledge from data.  This need has led to the emergence of a 

field known as Knowledge Discovery (Freitas, 2002).  This is an interdisciplinary field where 

methods of several research areas such as Machine Learning and Statistics are used to extract 

high level knowledge from real-world datasets.  Knowledge Discovery has Data Mining as its 

heart and also consists of several pre-processing methods aimed at facilitating the application 

of the data mining algorithm, and post-processing methods to refine and improve the 

discovered knowledge (Freitas, 2002).  The discovered knowledge, as stated by Freitas 

(2002), should satisfy three general properties: it should be accurate, comprehensible and 

interesting.   
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3.4.2 Knowledge discovery process 

As stated above, the Knowledge Discovery process consists of three main distinctive stages: 

data preprocessing, data mining and discovered-knowledge post-processing (Freitas, 2002).  

All the tools used in this process, facilitate the conversion of data into a number of forms that 

convey a better understanding of the process that generated or produced these data (Keijzer, 

2002).  Figure (3-9) illustrates an overview of the entire Knowledge Discovery process.  The 

directions of the arrows in the Figure indicate that this process is inherently iterative, i.e. the 

output of a step can either be sent to the next step in the process, or be sent back to a previous 

step as a feedback (Freitas, 2002). 

 

 
Figure (3-9): An overview of the Knowledge Discovery process (Freitas, 2002). 

 

3.4.2.1 Data preprocessing 

Data preprocessing (or data preparation) is the first stage of Knowledge Discovery where the 

data are cleaned and transformed to ensure accurate and efficient results.  The following 

procedures may be performed in this procedure (Pyle, 1999): 

 

a) Data Integration: If the data come from different sources, such as several departments of 

an organization or various research papers, it becomes necessary to integrate all the data in 

one suitable format.  This involves tasks such as removing inconsistencies in attribute names 

or values between data sets of different sources. 
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b) Data Cleaning: It is important to make sure that the data are as accurate as possible.  This 

step may involve detecting and correcting errors in the data, filling in missing values, etc.  

Some data cleaning methods for data mining are discussed in Guyon et al. (1996) and 

Simoudis et al. (1996). 

 

c) Discretization: This step is particularly required when the data mining algorithm cannot 

handle continuous attributes.  For this purpose, continuous attributes are transformed into a 

categorical (or nominal) attribute which only take a few discrete values.  For instance the real-

valued attribute “uncertainty” can be discretized to undertake only three values: low, medium 

and high.   

 

d) Attribute Selection: As indicated by its name, this step comprises selecting a subset of 

attributes among all original attributes, which are relevant for the Knowledge Discovery 

process.   

 

3.4.2.2 Data mining 

Data Mining is defined as the (semi-)automatic extraction of interesting knowledge from data 

and is considered as the core step of the Knowledge Discovery process.  Some problems 

which can be solved by data mining algorithms are: classification, dependence modelling, 

clustering, discovery of association rules and model induction problems.  In the context of this 

research, the favourable application of data mining is model induction where the main 

objective is to deduce a closed-form explanation of the system based solely on observations.  

In this approach, the modeller uses the data mining techniques in an attempt to drive a 

complete model from the limited information of the physical system that can account for both 

the entire range of observed and unobserved phenomena within the physical system.  The 

important point about this type of modelling is, as Keijzer (2002) states, “the confidence in 

model performance cannot be based on data alone, but might be achieved by grounding 

models in the domain so that appropriate semantic content is obtainable”.  As a result, the 

obtained models can be used to reinforce, inspire or abandon the scientists’ view of the 

problem (Keijzer, 2002). 
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3.4.2.3 Post-processing stage 

After applying the data mining algorithm to the processed data, the discovered knowledge 

normally needs to undergo some post-processing treatment to improve its comprehensibility 

and/or interestingness.  Using his interpretation, analysis and available understanding of the 

physical processes, the modeller plays a pivotal role at this stage by extracting a subset of 

“interesting” patterns of knowledge (models) (Keijzer, 2002).  It is argued (Silberschatz and 

Tuzhilin, 1996) that in many applications, a different notation of “interestingness” is required, 

however, novelty, simplicity, implicity, validity on test data and potential usefulness are the 

general attributes of an interesting pattern (Ghosh and Jain, 2005). 

 

Methods for the selection of interesting models can be divided into subjective and objective 

methods (Freitas, 1998; 1999; Ghosh and Jain, 2005).  Subjective methods are user-driven 

and domain-dependent whereas objective methods are data-driven and domain-independent.  

The most common subjective approach is specifying model templates, i.e. the modeller can 

set rules to indicate which combination of attributes must occur in the model for it to be 

considered interesting (Klemettinen et al., 1994).  By contrast, in objective approaches the 

discovered models are compared with each other with respect to their performance and not the 

modeller’s beliefs.  Some objective measures of model interestingness are discussed in Freitas 

(1998; 1999).  It is generally believed that in order to find interesting knowledge, an ideal 

combination of subjective and objective approaches should be used in the post-processing 

stage. 

 

3.4.3 Evolutionary symbolic regression 

The most practised method of empirical model induction is deriving the relation between the 

variables of a system in a symbolic form (equation) by regression analysis.  In the process of 

traditional regression (e.g. simple linear, polynomial, Fourier, etc.), the functional structure 

between dependent variables is predefined, and the goal is to discover a set of numerical 

coefficients which minimize a measure of performance between the observed and computed 

values of the dependent variable(s). If 1 2( , ,..., )nX x x x=  is the set of independent input 

variables and Y is the desired dependent output variables of a system, the regression task is to 

search the potential search space and approximate Y using X and coefficients c such that: 
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( , ) nY f X c ε= +  (3-6)

where nε  represents a noise term.  With standard regression techniques the functional form f 

is pre-specified.  Using linear regression for example, f would be: 

0 1 1( , ) ... n nf X c c c x c x= + + +  (3-7)

where the coefficients c are found using an optimization method e.g. least square regression.  

For complex and unknown systems, a predefined structure may not give a fit that appeals to 

the eye and even if it does, the model might not necessarily make much sense from the 

physical point of view.  In contrast to the traditional methods, symbolic regression methods 

(Keijzer, 2002) discover both the correct functional form that fits the data and the appropriate 

related numeric coefficients (Koza, 1990). This has made them a popular tool for data mining 

and solving model induction and empirical discovery problems (Langley and Zytkow, 1989).  

Symbolic regression methods include any method of inducing a symbolic description from the 

observed data of a system, by searching a space of potential solutions.  Genetic Programming 

(GP) (Koza, 1990; Koza, 1992), Grammar Evolution (GE) (Ryan et al., 1998) and Analytic 

Programming (AP) (Zelinka et al., 2005) are the most famous symbolic regression techniques. 

In the following section, Genetic Programming will be introduced as an effective evolutionary 

data mining tool for symbolic regression and model induction. 

 

3.4.4 Genetic Programming (GP) 

Genetic programming (Koza, 1990; Koza, 1992) is a collection of EC techniques based on the 

principles of Darwin’s theory of evolution, that allow computers to solve problems 

automatically by evolving computer programs (Poli et al., 2008).  GP was first introduced by 

Koza (1990) as a powerful tool for solving problems in various fields of artificial intelligence.  

Starting with a number of random solutions, this technique is able to tackle any problem 

which can be viewed as a problem of discovering a computer program by improving the 

quality of the solutions by means of some natural variation operators.  These problems can be 

categorized as symbolic function identification, symbolic regression, empirical discovery, 

symbolic “data to function” integration and symbolic “data to function” differentiation, 

solving functional equations, machine learning of a function, planning in artificial intelligence 

and robotics, automatic programming, pattern recognition and game playing (Koza, 1990). 
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In the context of Knowledge Discovery and model induction, a distinct advantage of GP over 

other modelling techniques such as artificial neural networks is that the provided answer in 

the form of a symbolic expression is in a language the user understands and can be interpreted 

by scientists (Keijzer and Babovic, 1999).  This mathematical representation provides a great 

benefit in empirical modelling of unknown phenomena where an underlying theoretical model 

does not exist (Keijzer, 2002).  This has resulted in the successful application of GP to a wide 

range of practical problems over the last two decades.  Image and signal processing (Marko 

and Hampo, 1992), industrial process control (Castillo et al., 2006), medicine and 

bioinformatics (Koza and Andre, 1996) and economic modelling (Chen and Liao, 2005) are 

just a small number of problems which have been tackled by GP.   

 

3.4.4.1 Overview 

Being from the family of genetic-evolutionary techniques, GP follows a similar procedure as 

genetic algorithms (GAs).  The standard GP starts with an initial population of randomly 

generated symbolic expressions (also known as parse trees) composed of functions and 

terminals appropriate to the problem domain.  These functions may be standard arithmetic 

operations (such as addition, subtraction, multiplication, and division), standard mathematical 

functions (such as SIN, EXP, etc.), standard programming operations (such as If-Then-Else, 

Do-Until, etc.), Boolean functions (such as, AND, OR, XOR, NOT, etc.) and various domain-

specific functions (Koza, 1990).  The terminals may be variable arguments, such as the 

attributes of the system, constant arguments, such as 0 and 1 or a random generated number. 

 

A fitness function is then used to measure the performance of each individual symbolic 

expression in the particular problem environment.  Predictably, the majority of the initial 

random symbolic expressions have exceedingly poor fitnesses but nonetheless, some 

individuals are more fit than others.  Then, a sexual genetic reproduction process is performed 

on pairs of expressions, which are selected in proportion to their fitness, and offsprings are 

created.  The resulting offsprings are composed of sub-expressions (also known as building 

blocks) from their parents and form the new generation which replaces the old population of 

parents.  The fitness function is again used to measure the fitness of each individual in the 

new population.  Repeating this algorithm will gradually produce populations which, over a 

period of generations, reach a high average fitness in dealing with their environment.  Figure 
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(3-10) shows the flowchart of the computational procedure of GP.  As in this research, the GP 

algorithm is going to be used for symbolic regression and model induction purposes, its 

components related to this type of environment will be briefly described in the following 

sections. 

 

 
 Gen = 0 

Create Initial 
Random Population 

Evaluate Fitness of Each 
Individual in population 

Exit Criteria 
 Met? 

i = 0 

End 

i = M?

Select Two Individuals 
Based on Fitness 

i = i + 1

Perform Crossover 

i = i + 1 

Gen = Gen +1 Yes

Yes

No

No

Select Genetic Operation 
Probabilistically 

Pc 

Select One Individual 
Based on Fitness 

Pm

Perform Mutation 

Insert Two Offspring into 
New Population 

Insert Mutant into New 
Population 

 
Figure (3-10): Computational procedure of Genetic Programming 

 (adapted from Koza, 1992) 
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3.4.4.2 Principal structures 

The search space for the genetic programming paradigm is the hyperspace of all valid 

symbolic expressions that can be recursively created by compositions of the available 

functions and terminals for the problem (Koza, 1990).  When the problem is in a form of 

symbolic regression, the functions can be standard arithmetic operations (such as addition, 

subtraction, multiplication, and division) or standard mathematical functions (such as SIN, 

EXP, etc.) and the terminals usually consist of independent variables of a problem, constants, 

and random generated numbers.  Each candidate symbolic expression (chromosome) is 

usually represented by a parse tree (see Figure (3-11)).  In tree representations, the internal 

nodes of a tree (shown with circles) are composed of elements from the set of defined 

functions and the leaf nodes (squares) consist of elements from the set of terminals (Koza, 

1990; Keijzer, 2002).  Figure (3-11) illustrates a parse tree with three internal nodes and four 

leafs. This tree represents an expression in the form of {exp (B/H) + 2B}. 

 

+

exp 

x

2 B

/

HB  
Figure (3-11): Parse tree representation of {exp(B/H)+2B}in GP. 

 

Choosing appropriate functions and terminals by the modeller is one of the key factors 

influencing the GP performance (Sastry, 2007).  There are only vague guidelines for choosing 

a particular function and terminal set.  But generally, the user must try to select a suitable set 

of functions accompanied by a set of terminals that are most descriptive for the problem and, 

when combined, form relatively small parse trees which can implement diverse and powerful 

solutions (Keijzer, 2002). 
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3.4.4.3 Initialization 

To generate a random individual expression for the initial population, first, one of the 

functions from the function set is randomly selected as the root of the parse tree.  Then 

depending on the number of arguments it takes, branches are radiated out from the root.  Next, 

for each created branch, an element is selected at random from the entire combined set of 

functions and terminals to be the node for the endpoint of that branch.  If the selected element 

is a terminal, that node becomes a leaf (node) and the process is complete for that portion of 

the tree.  If a function is chosen, that node becomes an internal node and the process of 

selecting random elements from the combined set of functions and terminals continues for 

that function.  Figure (3-12) shows the process of creating a tree. 

 
 

 

i) ii) iii) iv) 

Figure (3-12): Creating a parse tree.  (Empty spots are denoted by #) 

 

The average size for the trees generated by this initial random generation process is 

determined by the number of arguments taken by each function and the probability 

distribution over the terminals and functions in the combined set of functions and terminals 

(Koza, 1990).  Except for the root of the tree which must be a function, a uniform random 

probability distribution is usually considered for the function and terminal selection.  In 

solving some problems, specific individuals might be seeded into the initial population or a 

non-uniform distribution might be assumed to in order to bias the initial random generation 

towards particular structures (Koza, 1990).  Three most common methods of generating parse 

trees are:  
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Grow method: 

A node is selected uniformly at random from the combined set of functions and terminals, and 

as long as there are unresolved subtrees, the process is repeated.  After a pre-specified depth 

or size limit is reached, only terminals are chosen (Keijzer, 2002).   

 

Full method: 

A function from the entire function set is selected randomly for each node until the pre-

specified depth or size limit is reached.  Beyond this point only terminal nodes are chosen 

(Koza, 1990). 

 

Ramped-half-and-half method: 

Using the grow and full method each for 50% of the population is known as the ramped-half-

and-half initialization method (Koza, 1992). 

 

For an overview of alternative tree initialization routines and the comparison between all 

methods, the reader is referred to Luke and Panait, (2001).  It is to be noted that like GAs, the 

population size is one of the most important parameters that should be set in the GP process.  

In general, the larger the population size, the better (Goldberg, 1989), however not much is 

known on the optimal or even minimal population size in genetic programming (Keijzer, 

2002).  The complexity of the problem and the available computational resources are the 

variables which must be considered when selecting the population size (Koza, 1990).   

 

3.4.4.4 Measuring performance 

Once the initial population of potential solutions is formed, each individual tree in a 

population is assigned a fitness value as a result of its interaction with the environment.  

Selection of a suitable performance measure obviously depends on the type of the problem 

and desired characteristics of the discovered solution.  This performance measure is essential 

in evolving “fitter” generations since it is the fitness value that denotes the probability of a 

tree to be selected for reproduction.  In symbolic regression problems, the sum of the squared 

distances between the dependent variable values calculated by the symbolic expression and 

the original observed values is typically adopted as the fitness function.  It is believed 

3-30 



CHAPTER 3 – Evolutionary and Genetic Computation 

(Keijzer, 2004) that this performance measure can give a fine differentiation between 

competing solutions.   

 

3.4.4.5 GP operators 

In this section, the common genetic operators which try to mimic biological evolution in the 

GP process are briefly described. 

 

Fitness proportionate selection operator 

Reproduction and survival of the fittest is the basic engine of Darwinian evolution and 

expectedly, the fitness proportionate reproduction operator is the heart of GP.  Each time this 

operator is performed, a parental symbolic expression is selected with a probability 

proportionate to its fitness, to be directly copied to the next generation or to undergo other 

different operators (i.e. mutation and crossover) and produce offspring expressions.  It is to be 

noted that the selected parent may still remain in the population and therefore can potentially 

be selected again during the current generation (Koza, 1990). 

 

Subtree crossover 

As mentioned previously, in GP, symbolic expressions are presented by parse trees where the 

internal nodes represent the functions and leafs the terminals.  In subtree crossover, a 

crossover point for each solution is randomly chosen and subtrees below the crossover points 

are swapped to create two new solutions (Koza, 1992).  Figure (3-13) gives an example of 

subtree crossover.  Depending on the environment of the problem and the shape and size of 

the parse trees, selecting crossover points between internal nodes (functions) and leaves 

(terminals) should be made based on a proper distribution (e.g. selecting a function 90% of 

the time and a terminal 10% of the time) so that enough amount of information is exchanged 

between trees by performing this operator (Koza, 1992). 

 

Subtree and point mutation 

Two mutation techniques are widely used in GP.  Subtree mutation replaces a randomly 

chosen subtree in a tree with another randomly generated subtree, whereas in point mutation, 

a node is randomly modified.  Figure (3-14) shows both types of mutation. 
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Figure (3-13): Example of a subtree crossover. 

 

 

   
 subtree mutation Point mutation 

Figure (3-14): Examples of subtree and point mutation. 
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3.5 THE INCORPORATION OF EVOLUTIONARY COMPUTATION IN 
OPEN CHANNEL FLOW MODELLING 

Recalling the conclusions made in the previous Chapters, this thesis intends to find a closure 

for two gaps in the field of open channel flow modelling: 

 

• In order to use the SKM to predict the flow, knowledge of the lateral variation of the 

lumped values of the friction factor (f), dimensionless eddy viscosity (λ) and a secondary 

flow term (Γ), is required. Due to the “immeasurability” of the named variables, there are 

currently no complete guidelines for selecting their values. 

 

• In a free overfall, the end depth bears a relationship with the critical depth. Over the 

years, many approaches have been developed to approximate the end depth ratio. 

However, all the approaches are accompanied with faults and uncertainties and there is no 

global method which can be applied to any channel section and flow regime. 

 

The review presented in this chapter outlines the potentials of Evolutionary Computation in 

bridging these gaps. The EMO can be used in building a multi-objective calibration 

framework for the SKM. In the light of the model calibration results, general rules can be 

derived for the variation of the immeasurable parameters within the model. Furthermore GP 

can be used as a platform for discovering the hidden relationship between the critical depth, 

end depth and other attributes of the channel and flow. The following Chapters will focus on 

the implementation of EC techniques in open channel modelling with respect to the afore-

mentioned purposes. 
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CHAPTER 4 

 
MULTI-OBJECTIVE CALIBRATION FRAMEWORK 
FOR THE SKM 
 

 

4.1 INTRODUCTION 

The process of modifying the input parameters to a numerical model until the output from the 

model matches an observed set of data, to within an acceptable level of accuracy, is best 

known as parameter estimation or model calibration.  This procedure will result in finding the 

optimal values of the “immeasurable” parameters in the model.  This Chapter deals mainly 

with one of the key research objectives and illustrates the application of an evolutionary 

computation technique in developing a multi-objective calibration framework for the SKM. 

 

The Chapter begins with a brief overview of the general experimental data used in this 

research, with a focus on the measurement techniques.  Then, the key issue of defining the 

appropriate number, size and distribution of panels to be used in the SKM is discussed.  The 

Chapter then continues with a descriptive section on the multi-objective calibration of the 

SKM model.  With respect to calibration the following issues are addressed: 

 

• Defining the appropriate objective functions. 

• Selecting a suitable search method. 

• Describing the search method elements and its colligation with the SKM. 

• Finding the robust internal parameterization set for the search method. 

 

This is then followed by a detailed explanation of the quintessence of this research: the 

calibration framework.  The framework is introduced as a two phase process, namely, the 
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calibration phase (where the search method is applied) and the post-validation phase (where 

the suitable parameter set is selected).  The section ends with a detailed step-by-step 

explanation of the calibration and post-validation phases. 

 

4.2 EXPERIMENTAL DATA 

The majority of the experimental data used in this research comes from various laboratory 

channels at the University of Birmingham and from the Flood Channel Facility (FCF) at HR 

Wallingford.  The main motivation behind these experiments was to study the distribution of 

mean streamwise velocity and boundary shear stress for a wide range of channels under sub 

and super-critical flow conditions.  The following sections provide a brief overview of the 

experimental arrangements and measurement techniques used in the process of data collection 

in University of Birmingham’s hydraulics laboratory.  Full details can be found in Knight 

(1992), Yuen (1989), Al-Hamid (1991), Sterling (1998), Rezaie (2006) and Chlebek, (2009). 

 

4.2.1 Experimental arrangements 

All the experiments were conducted in channels built either in a long tilting flume or a fixed 

bed flume.  The bed and walls were normally constructed from PVC panels glued together.  

The water was conveyed to the flume by different supply pipelines, each connected to a 

suitable discharge measurement apparatus.  The total channel discharge was calculated by 

summing the individual discharges measured by a Dall tube, Venturi meter, Electro Magnetic 

Flow meter (EMF) or an Orifice plate.   

 

To reduce large disturbances in the outgoing flow from the pumps, water was first conducted 

into a stilling tank.  A honeycomb screen was used to separate the region around the inlet 

pipes from the rest of the inlet tank and a smooth bell mouth transition section was made to 

improve the inflow conditions from the inlet tank to a specific channel.  To reduce the 

remaining water surface fluctuations, a polystyrene panel was placed on the water surface at 

the entrance.  At the downstream end of the fixed bed flume a series of adjustable tailgates 

were used to achieve uniform flow for a specific flow depth.  Figure (4-1) shows the two 

flumes and their control elements. 
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(a) A 18 m fixed bed flume (b) PVC channel in 22 m tilting flume 

(c) Stilling tank and transition section (d) Adjustable tailgates 
Figure (4-1): Elements of typical flumes (www.flowdata.bham.ac.uk). 

 

A pointer gauge, located on a mobile instrument carriage (Figure (4-2a)), was used to measure 

the water level at different locations along the flume to an accuracy of 0.1 mm.  The depth 

averaged velocity and the velocity distribution were measured using a miniature propeller 

current meter (Figure (4-2b)).  Boundary shear stresses were measured using a Preston tube, 

with the related pressure heads being measured using inclined manometers. Some further 

details can be found in Chapter 5.   

 

(a) Pointer gauge on a mobile carriage (b) Miniature propeller current meter 
Figure (4-2): Depth and velocity measurement devices. 
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4.2.2 Tailgate setting 

In uniform flow, the energy slope (Se), the water surface slope (Sw) and the bed slope (So) are 

all equal to each other, i.e. Se=Sw=So.   Since it is only under this condition that the depth and 

velocity can be assumed to be constant at all cross sections, before any measurement could be 

taken in the channel, uniform flow conditions had to be achieved.  The adjustable tailgates at 

the downstream end of the flume were used for this purpose.  For sub-critical flow and a 

particular discharge Q, the tailgates were adjusted in such a way to give several (normally 3 to 

5) M1 and M2 water surface profiles (Knight and Demitriou, 1983).  The mean water surface 

slopes and related depths were then plotted against tailgate level, and the tailgate setting 

which gave a mean water surface slope equal to the flume bed slope was interpolated from the 

graphs.  Typically, errors of ± 2% were tolerated, and the depth related to this tailgate setting 

was then accepted as the normal depth.  This procedure was repeated for every single 

experiment in order to obtain accurate stage-discharge relationships for channels with 

different widths.  Figure (4-3) illustrates a schematic tailgate setting procedure. 

 

4.2.3 Normal depth measurement 

A pointer gauge located on the instrument carriage was used to measure the water surface 

profile.  The readings of water surface, which were taken at 1.0 m intervals down the length 

of the flume, were used to calculate the water surface slope and the related flow depth in the 

channel for a given discharge. 
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Figure (4-3): A schematic tailgate setting procedure. 
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4.2.4 Depth-averaged velocity measurements 

Once normal depth conditions were established for a given discharge, point velocity 

measurements were made across one section of the channel at z = 0.4h from the bed using a 

propeller current meter.  At each lateral position, a number of readings were taken at constant 

intervals and then averaged to reduce error.  Using a linear calibration equation provided by 

the manufacturer, the initial readings in terms of number of times the propeller turns/sec were 

converted from frequency (in Hertz) to local velocity (in m.s-1).  The average value of these 

readings was taken to obtain the depth-averaged velocity at each lateral position.  In a number 

of experiments where the aim was to measure the entire velocity field, at each lateral position, 

the streamwise velocity was measured at 10mm vertical intervals.  Then, the measured 

velocities where averaged over the depth to give the depth averaged streamwise velocity. 

 

At low depths (typically less than 16.25mm) where the use of propeller current meter was 

impossible, the water surface velocity was measured.  In this case, a piece of paper was 

dropped in the shallow zone and its travel time between two defined sections was measured.  

The local depth-mean velocity, Ud, was then calculated using the seventh power law equation: 

  
1
7 1/ 7( ) , 0.4 (0.4)d s

s

u z z h U
U h

⎛ ⎞= = → =⎜ ⎟
⎝ ⎠

U  (4-1)

where Us is the surface velocity, h is the local water depth and u is the point streamwise 

velocity at a distance z above the bed.   

Subsequently, the individual depth averaged velocities were numerically integrated and 

compared with the value from discharge measurement apparatus.  The error was calculated 

and errors of ± 3% were tolerated.  The individual depth-averaged velocities were then 

adjusted over the cross section to give the same overall discharge rate. 

 

4.2.5 Local boundary shear stress measurements 

4.2.5.1 Smooth surfaces 

Local boundary shear stress measurements were made around the wetted perimeter of smooth 

surfaces using Preston’s (1954) technique together with the calibration equations of Patel 

(1965).  Preston developed a simple shear stress measurement technique for smooth 
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boundaries in a turbulent boundary layer using a Pitot tube.  Based on the law of the wall 

assumption (Bradshaw and Huang, 1995), i.e. the velocity distribution near the wall can be 

empirically inferred from the differential pressure between the dynamic and static pressures, 

Preston presented a non-dimensional relationship between the differential pressures, ΔP, and 

the boundary shear stress, το: 

2

2 2( )
4 4

od PFτ
ρν ρ

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠ν
 (4-2)

where d is the outside diameter of the tube, ρ is the density of the flow, ν  is the kinematic 

viscosity of the fluid and F is an empirical function.  Following this work, Patel (1965) 

produced definitive calibration curves for the Preston tube presented in terms of two non-

dimensional parameters: 

2
*

10 24
PdX Log
ρν

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
 (4-3)

2
* 0

10 24
dY Log τ

ρν
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4-4)

The calibration of X* and Y* for different regions of the velocity distribution (i.e. viscous 

sublayer, buffer layer and logarithmic layer) is expressed by three different formulae: 

* 1.5Y <  * *0.037 0.5Y X= +  (4-5)

*1.5 3.5Y< <  * * *20.8287 0.1381 0.1437 0.006Y X X= − + − *3X  (4-6)

*3.5 5.3Y< <  * * *
102 log (1.95 4.10)X Y Y= + +  (4-7)

In practice, boundary shear stresses were measured at the same sections where the depth-

averaged velocity measurements were taken.  The static pressure tube was fixed in the middle 

of the flow depth to measure the pressure due to the static head of the flow.  To measure the 

dynamic pressure head, the dynamic pressure tube was placed within the boundary shear 

layer, facing the flow.  The differential pressure was then calculated from the readings on the 

inclined manometer: 

sinθP g hρΔ = Δ  (4-8)
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where Δh is the difference between the two readings from the dynamic and static and θ is the 

angle of inclined manometer.  Patel’s equations (Eqs. 4-3 to 4-7) were then used to calculate 

the shear stress.  Figure (4-4) illustrates a Pitot tube and an inclined manometer. 

 

(a) Pitot tube (b) Inclined manometer 
Figure (4-4): A view of a Pitot tube and inclined manometer 

 (www.flowdata.bham.ac.uk). 

 

Similar to the velocity measurements, the individual readings were subsequently numerically 

integrated and compared with the energy slope.  Typically, errors of ± 6% were tolerated and 

individual shear stresses were adjusted to give the same energy slope. 

 

4.2.5.2 Rough surfaces 

Over rough surfaces, local shear stresses were evaluated from point velocities measured close 

to the surface with a Pitot-static tube, as shown in Figure (4-4a).  At the points where the local 

shear stresses were to be evaluated, 3 to 5 point velocities where measured at 5mm spacings 

normal to the boundary surface.  The local boundary shear stresses were then evaluated at 

5mm to 20mm spacing intervals on the walls, using the corresponding logarithmic velocity 

law for turbulent rough flow, as indicated by Al-Hamid (1991). 

 

4.2.6 Laboratory datasets and test cases 

In the context of this thesis, a dataset is referred to a number of test cases conducted by a 

researcher.  The datasets are named after the researcher (e.g. Yuen, Al-Hamid) while the 

original numbering used by the researcher is preserved for the test cases.  Table (4-1) shows a 
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typical test case of the experimental data.  In this table %SFw is the percentage of shear force 

on the walls of the trapezoidal channel and y is the lateral distance from the centreline of the 

channel. 

 

4.2.6.1 Trapezoidal datasets 

Three sets of experimental data relating to uniform flow in trapezoidal channels were used in 

this research: the Flood Channel Facility (FCF) Series 04 (Knight, 1992), Yuen’s (1989) data 

and Al-Hamid’s (1991) data.  Table (4-2) shows a summary of these datasets and their test 

cases.  Most of these data, along with other data, are available on the website 

www.flowdata.bham.ac.uk.  More detailed information about each dataset will be provided in 

the next Chapter. 

 

4.2.6.2 Rectangular datasets 

Two datasets were used for inbank flow in simple rectangular channels: Knight et al. (1984) 

and Tominaga et al. (1989).  The detailed information regarding these datasets were obtained 

through private communication.  Table (4-3) shows a summary of the rectangular datasets and 

their test cases. 

 

Test case Al-Hamid 
Exp 05 y (m) Ud (m.s-1) y (m) τ (N.m-2) 

2b (m) 0.107 0.000 0.367 0.000 0.385 

h (m) 0.0430 0.020 0.372 0.010 0.393 

2b/h 2.49 0.040 0.346 0.020 0.407 

Pb/Pw 1.76 0.070 0.212 0.030 0.384 

S0 (x10-3 ) 3.920 0.080 0.159 0.040 0.308 

Re (x104 ) 3.489 0.097 0.000 0.050 0.253 

Fr 0.544   0.054 3.238 

Q  (l.s-1) 2.01   0.056 3.392 

 SFw (%) 84.69   0.059 3.557 

    0.064 3.085 

    0.069 3.699 

    0.073 2.021 

    0.078 1.808 

    0.083 0.898 

    0.097 0.000 

Table (4-1): A typical test case (Al-Hamid Exp 05). 
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Channel 
type 

Dataset 
  /  

Test case 

S0 2b h (m) 2b/h Pb/Pw Re ( x104 ) Fr Q (l.s-1) 

(x10 -3 ) (m) min max min max min max min max min max min max 

Smooth Bed 
and Smooth 

Walls 

FCF 1.027 1.500 0.049 0.301 4.980 30.850 0.352 2.181 6.317 99.151 0.584 0.762 29.900 656.30

Yuen 000 1.027 0.150 0.050 0.150 1.000 3.000 0.354 1.061 4.101 15.638 0.559 0.590 3.500 26.300

Yuen 200 8.706 0.150 0.029 0.099 1.515 5.263 0.536 1.861 7.145 35.804 1.882 2.000 4.700 41.100

Yuen 400 23.37 0.150 0.029 0.099 1.515 5.263 0.536 1.861 12.44361.831 3.243 3.227 8.100 66.300

Smooth Bed 
and Rough 
Walls (R1) 

Al-Hamid 
01-05 3.920 0.107 0.043 0.126 0.850 2.491 0.601 1.761 3.489 11.870 0.520 0.544 2.009 13.688

Al-Hamid 
23-25 3.920 0.256 0.051 0.085 3.011 5.004 2.129 3.538 6.745 12.600 0.654 0.659 6.713 15.532

Al-Hamid 
26-30 3.920 0.399 0.040 0.067 5.989 9.987 4.235 7.062 7.130 13.302 0.853 0.884 9.300 20.053

Smooth Bed 
and Rough 
Walls (R2) 

Al-Hamid 
09-13 3.920 0.121 0.048 0.142 0.849 2.513 0.601 1.777 4.257 14.730 0.607 0.638 3.113 21.947

Al-Hamid 
17-19 3.920 0.272 0.055 0.091 2.994 4.990 2.117 3.528 11.21086.550 0.798 0.830 9.996 22.246

Al-Hamid 
31-35 1.935 0.416 0.042 0.070 5.986 10.005 4.233 7.074 5.623 11.610 0.690 0.708 8.030 18.470

Rough Bed 
and Rough 
Walls (R1) 

Al-Hamid 
06-08 3.920 0.140 0.056 0.095 1.492 2.495 1.055 1.764 3.649 7.852 0.390 0.511 2.816 9.497

Rough Bed 
and Rough 
Walls (R2) 

Al-Hamid 
14-16 3.920 0.143 0.057 0.095 1.505 2.516 1.064 1.779 3.714 7.852 0.440 0.511 3.313 9.497

Al-Hamid 
20-22 3.920 0.297 0.050 0.074 3.997 6.056 2.827 4.282 4.835 8.802 0.499 0.550 5.581 11.783

Al-Hamid 
36-38 4.030 0.441 0.044 0.059 7.491 9.982 5.297 7.058 4.453 7.029 0.493 0.540 6.660 11.430

Table (4-2): Summary of trapezoidal datasets. 

 

Channel 
type Datasets    

S0 2b h (m) 2b/h Pb/Pw Re ( x104 ) Fr Q (l.s-1) 

(x10 -3 ) (m) min max min max min max min max min max min max 

Smooth Bed 
and Smooth 

Walls 

Knight 0.966 0.152 0.086 0.153 0.993 1.772 0.497 0.886 6.484 9.402 0.346 0.401 4.800 9.850

Tominaga 
 0.641 

~ 
 1.160 

0.400 0.050 0.066 6.033 8.065 3.017 4.032 5.079 8.118 0.416 0.471 5.806 9.853

Table (4-3): Summary of rectangular datasets. 

 

4.3 DEFINING PANEL STRUCTURES 

As mentioned in Chapter 2, one of the main issues in applying methods such as the SKM is 

defining the number, position and width of the panels within the cross-section of the channel 

or river which is to be modelled.  This matter is especially important as one of the main goals 

of this research is to find the lateral variation of lumped model parameters, i.e. parameters 

averaged in time and space (channel depth and panel width).  Therefore any decisions on the 

number, position and width of the panels would directly affect the results and might lead to 

misinterpretation of the final obtained values. 
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In this research, the philosophy of Knight and co-workers (2007) for panel selection was 

adopted for homogeneous trapezoidal channels.  As stated in Section 2.6.9.3, continuing the 

work of Tominaga et al. (1989), Knight et al. (2007) proposed a panel structure for smooth 

trapezoidal channels based on the number and size of the observed contra-rotating secondary 

flow cells and interpreting the secondary flow term (Γ) (Figure 4-5).   

 

P1 P3P2 P4

1
s=1

b'/2 b'/2 b''/2 b''/2

CL

a) 2b/  b) 2b/h >2.2 
Figure (4-5): Secondary flow cells and the number of panels for eneous smooth 

 

 keeping with the above work on homogeneous channels, a similar panel structure was 

4.4 MULTI-OBJECTIVE CALIBRATION OF THE SKM MODEL 

ped 

h <2.2
simple homog

trapezoidal channels (Knight et al., 2007). (b' is half width of the flat bed region and b'' is the 

width of the sloping sidewall section) 

In

found for heterogeneous trapezoidal channels.  For smooth rectangular channels, four 

different panel structures were investigated and the results were compared to select a suitable 

structure.  On the other hand, the rivers cases were modelled with 8 equally spaced panels.  

More detailed information on the panel structure is provided in the following Chapter. 

 

In this section, the methodology of investigating the lateral variation of three lum

parameters inside a channel through the process of calibrating a hydraulic model (i.e the 

SKM) via a multi-objective evolutionary algorithm (i.e. NSGA-II) is described.  First, the 

essential stages for the preparation of the calibration platform are explained.  Then a detailed 

step-by-step elucidation of the main calibration framework is proposed. 
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4.4.1 Deriving the objective functions  

f different parameters through the process of 

model calibration, the available observed experimental data were reviewed to identify the 

arge (Q) and the percentage of shear force on 

 the channel (%SF ) could also be obtained.  Based on these predictions, two 

To fulfill the aim of finding the lateral variation o

proper objective functions.  Figure (4-6) illustrates the experimental and model predicted 

lateral distributions of depth-averaged velocity and bed shear stress distribution for a typical 

test case (Al-Hamid Exp 05).  The two primary objective functions (Eqs. 4-9 & 4-10) were 

defined as a measure of difference between observed and model generated data (dotted lines 

in the Figure).  As the mean streamwise velocity and local boundary shear stress distributions 

for each case consisted of many experimental points, the sum of squared errors (SSE) was 

selected as the most appropriate goodness-of-fit measure, since it inherits the feature of 

increasing the influence of more distant points. 

 

By integrating the model results, the total disch

the walls of w

additional objective functions (Eqs. 4-11 & 4-12) were defined as measures of difference 

between the single calculated and measured values of Q and %SFw.  In contrast to the first 

two objective functions, the absolute percentage error (APE) was selected as the appropriate 

performance measure.  The selected objective functions are as follows: 
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a) Depth-averaged velocity distribution 

Model Prediction
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Figure (4-6): Experimental and Model Predicted distributions (Al-Hamid Exp 05). 
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( ) ( )( )2

2 SKM exp
( ) b b

i
f X τ τ= −∑  (4-10)

SKM
3( ) 100g
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Q Q
f X

Q
−

= ×  (4-11)
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SKM
4

% %
( ) 100

%
w wg

w g

SF SF
f X

SF

−
= ×  (4-12)

1 1 1( , , ,..., , , )N N NX f fλ λ= Γ Γwhere is the variable vector in the parameter search space, Ω , 

and N is the number of panels.  The subscripts SKM and exp refer to the predictions obtained 

e SKM model and experime g

eters and consequently change the quality of modelling (Legates and McCabe, 1999; 

e,

using th ntal data respectively.  In f3(X) and f4(X) the subscript “ ” 

is used to denote the global value of either Q or %SFw and indicates that for these two 

functions the channel is considered as a whole, i.e. with the panels ‘removed’.  Depending on 

the available data, any combination of the above objectives can be minimized simultaneously. 

 

It is known that the choice of the objective functions can influence the optimum model 

param

Wagener et al., 2004).  It has also been stated that the choice of objective function can change 

the amount of correlation between the parameters (Wagener et al., 2004).  It is acknowledged 

that additional objective functions could have been used.  However, it is felt that those listed 

above made use of the best available data and enabled a good comparison with previously 

published experimental results (Sharifi et al., 2009).   

 

It is to be further noted that the parameter search spac  Ω , was defined by adding sufficient 

argins to the stated range of the calibration parameters in literature (see Sections 2.6.7 to m

2.6.9): 

0.005 0.100if≤ ≤    smooth boundary;       0.005 1.000if≤ ≤    rough boundary (4-13)

0.005 2.50iλ≤ ≤  (4-14)

3.50 3.50i− ≤ Γ ≤  (4-15)
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4.4.2 Selecting a suitable search algorithm 

The next step in building an evolutionary-based model calibration framework is to select a 

ations in selecting a suitable search 

 functions to be optimized simultaneously. 

2- There are a large number of decision variables in each of the objective functions (3 

fficient stochastic search algorithm is essential. 

n 

xtensively reviewed by various researchers (e.g. Fonseca and Fleming, 1998; Coello, 1999; 

; Khare et al., 2003), it has been shown 

at compared to other multi-objective evolutionary algorithms, NSGA-II has a better 

suitable search algorithm.  Some important consider

algorithm for the proposed problem are: 

 

1- There are more than one objective

parameters for each panel) which result in a high dimension search space. 

3- The experimental data has some irregular noise (especially in boundary shear stress 

measurements over rough surfaces). 

4- Due to the relatively long computation time in evaluating a decision variable set with 

the available processor capacity, an e

 

As stated in Chapter 3, multi-objective evolutionary algorithms (MOEA’s) have bee

e

Zitzler et al., 1999; Tan et al., 2002; Ghosh and Dehuri, 2004; Raghuwanshi and Kakde, 

2006).  Although these proposed algorithms have been successfully applied in practice, there 

is no single algorithm which can consistently outperform the others in every problem class.  

In fact, the performance of a search algorithm depends on whether its search strategy fits the 

features and requirements of the underlying problem. 

 

Studying a variety of test cases (e.g. Deb et al., 2002

th

diversity preservation and therefore is able to compete with them regarding its convergence to 

the true Pareto-optimal front in both constraint and non-constraint problems (Nazemi et al., 

2006).  This superiority has lead to the successful application of NSGA-II in several real 

world problems (see Section 3.3.5).  Based on problem requirements and successful 

application in similar problems the NSGA-II algorithm was adopted and will be shown to be 

an efficient tool for the proposed calibration framework. 
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4.4.3 Non-dominated sort genetic algorithms II (NSGA-II) 

The MATLAB implementation of NSGA-II, based on the description provided by Deb et al. 

(2002), has been adopted for the current work.  Tournament selection, Simulated Binary 

Crossover (SBX) (Deb and Agarwal, 1995) and Polynomial Mutation Operators (Deb and 

Agarwal, 1995) were selected as the genetic operators of the real-coded NSGA-II algorithm.  

Figure (4-7) shows the main algorithm structure.  These functions are presented in Appendix 

(III). 

 

 
Figure (4-7): NSGA-II algorithm structure. 

 

4.4.4 Finding a robust parameterization set for NSGA-II  

Many researchers (e.g. De Jong, 1975; Harik et al., 1997; Deb and Agrawal, 1998) have 

investigated the interdependencies of GA parameters in order to determine their optimal 

settings.  However, due to the complex interactions among these parameters, the task of 

tuning the GA internal parameters has been proven to be difficult and as Michalewicz, (1992) 

reports, it is more of “an art than a science”.  De Jong, (1975) was one of the pioneers who 
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attempted to study the complex interactions of GA parameters and introduced a good set of 

parameter settings based on his findings, which have been widely adopted and are sometimes 

referred to as “standard” settings (Tran, 2005).  However, later theoretical studies (e.g. 

Goldberg et al., 1992; Harik et al., 1997) have illustrated the shortcomings of these 

“standard” settings and have shown that the optimal parameter set varies from problem to 

problem (Davis, 1991). 

 

A number of studies have been conducted to find the optimal GA operators for water related 

models.  Comparing several GAs for the calibration of conceptual rainfall run-off models, 

Franchini and Galeati (1997) found that the optimum parameter set was not influenced by the 

GA operators, and concluded that a robust GA operator range was adequate to provide 

efficient solutions.  Wardlaw and Sharif (1999) and Ng and Perera (2003) also studied the GA 

operators in calibrating a reservoir system operation and a river water quality model, 

respectively and found different optimum GA operators.  Most recently Perera and 

Siriwardene (2006) analyzed the sensitivities of GA operators through repetitive simulations 

for an urban drainage model and realized that, generally, the operator sensitivity increases 

with the increase in the number of decision variables.  All these studies indicate that there are 

no clear conclusions regarding optimum GA operators and no general guidelines are available 

to be used in specific model parameter optimization.  Therefore, a detailed study was 

conducted to investigate the significance of GA operators on the SKM parameter 

optimization, and to find the optimum GA parameter set. 

 

As mentioned in the previous section, the selected genetic operators, (i.e. maximum number 

of generations (gen), population size (pop), crossover probability (Pc), crossover distribution 

index (ηc), mutation probability (Pm), mutation distribution index (ηm) and tournament pool 

size (tps)) should be assigned prior to the algorithm implementation.  To find the suitable 

parameter set, first, a preliminary sensitivity analysis was performed on a test case.  The 

initial results revealed the low sensitivity of the algorithm to the tournament pool size (tps), 

mutation probability (Pm) and mutation distribution index (ηm).  Accordingly, and in keeping 

with previous studies (e.g. Nazemi et al., 2006; Sarkar and Modak, 2006) their values were 

set as 2, 0.05 and 20, respectively.  In the next step, a comprehensive sensitivity analysis was 

performed to address the effect of the other internal settings of the algorithm on the quality of 
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convergence and to obtain a robust algorithm parameter set.  Table (4-4) shows different 

possibilities for these internal parameters.  In total 81 settings were considered and used for a 

two-objective (Eqs. 4-9 & 4-10) calibration of a test case based on the outlined procedure. 
 

Operator Candidates Considered options 
population size (pop) 3 pop ={100, 200, 300} 
number of generations (gen) 3 gen ={250, 500, 750} 
crossover probability (Pc) 3 Pc ={0.5, 0.7, 0.9} 
crossover distribution index (ηc) 3 ηc ={10, 20, 30} 

 
Table (4-4): Different options for NSGA-II parameters considered in this study. 

 

Two measures of convergence: the number of solutions on the Pareto front and minimum 

values of objective functions, along with the measured computation time were defined as the 

main criteria for selecting the suitable internal parameter.  Figures (4-8 & 4-9) show the effect 

of different GA internal parameters on the number of Pareto solutions and minimum values of 

the objective functions respectively. 
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Figure (4-8): Effect of different GA internal parameters on the number of Pareto solutions. 

(Solid horizontal lines represent the average values). 
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Figure (4-9): Effect of different GA internal parameters on the minimum values of the 

objective functions (solid horizontal lines represent the average values). 
 

4.4.4.1 Population size 

One of the most important settings in a GA-based algorithm is the population size which has 

to be considered carefully.  If the population size is too small, the diversity in the population 

will be too low and the population will soon suffer from premature convergence.  However, if 

the size is too large the convergence towards the global optimum is slow, demanding high 

processor power and memory requirements.   
 

Figure (4-8a) shows that the number of population for each generation has a direct effect on 

the number of Pareto solutions.  In contrast, Figure (4-9a) implies that the lower bounds of the 

objectives are not affected much by the number of population.  A similar trend can be 

observed for individual model parameters.  Hence, since there is insignificant change in the 

level of optimality when the number of population is increased from 200 to 300, a population 

size of 200 is selected as the suitable value for the problem. 
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4.4.4.2 Number of generations (function evaluations) 

Another important setting is the number of generations or number of function evaluations.  

Usually, this setting is set based on a tradeoff between the quality of convergence and 

computation time.  Figures (4-8b & 4-9b) show that by increasing the number of total 

function evaluations, the quality of convergence, in terms of both the number of Pareto 

solutions and robustness in the lower-bounds of the objective convergences, will improve.  

Therefore, it can be judged that a total number of 500 generations achieves a more favourable 

tradeoff between computation and level of optimality. 

 

4.4.4.3 Crossover probability and crossover distribution index 

Like other GA internal parameters, the setting of the crossover probability is the subject of 

debate (Mitchell, 1999).  However, Lobo (2000) states that the performance of a GA is not so 

much influenced by this parameter, as it is by population size and number of generation.   

 

Figure (4-8c) implies that unlike other internal parameters investigated, the increment of 

crossover probability does not always result in finding more Pareto solutions.  Figure (4-9c) 

shows that the averages of lower-bound values regarding the objectives functions remain 

constant when the crossover probability is changed.  Based on the observations the optimal 

value for the crossover probability is found as 0.7.  Figure (4-8d) also shows that the average 

number of Pareto solutions is at the highest level when crossover distribution is set as 10.  

Table (4-5) shows the obtained robust algorithm parameter set. 

 

Operator value 
Maximum number of generations (gen) 500 
population size (pop) 200 

crossover probability (Pc) 0.7 

crossover distribution index (ηc) 10 

mutation probability (Pm) 0.05 

mutation distribution index (ηm) 20 

Table (4-5): Real coded NSGA-II internal parameters used in this study. 
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4.4.5 Calibration phase  

Having derived the objective functions, selected the suitable search method and set its internal 

parameters, the platform was now ready for applying the algorithm to each individual dataset.  

Since, like all other GA algorithms, NSGA-II starts with a random generated population, to 

limit the effect of randomness on the results, the algorithm needed to be run a number of 

times with different seedings.  Analyzing the results of various simulations on a number of 

test cases revealed that after running the algorithm for about 15 times, no significant 

improvement could be obtained for the Pareto solutions. Thus, the algorithm was run 15 times 

for each individual test case, changing the seeding in each run.  This resulted in a set of fronts 

of non-dominated solutions (Figure 4-10).  Subsequently, the non-domination sort algorithm 

was applied on this set (i.e. accumulated Pareto solutions) and an ultimate “representative” 

Pareto front was found for each test case (i.e. circles in Figure (4-10)). 
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Figure (4-10): Accumulation of all Pareto solutions and the ultimate representative Pareto. 

 

4.4.6 Post-validation phase 

After finding a representative Pareto for each test case, a series of operations were performed 

on the remaining multi-objective calibration solutions to select an optimum variable set for 

each data case.  The aim was to find the “best” set of variables which resulted in the following 

conditions (Sharifi et al., 2009a): 
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1- Gives results with smooth predictions for the mean streamwise velocity and local 

boundary shear stress distribution. 
 

2- Has the ability to predict the total discharge (Q) and percentage of shear force on the 

walls (%SFw) with high accuracy (errors less than 5%). 
 

3- Inherits an appropriate Γ sign pattern in adjacent panels, in accordance with the nature 

of the secondary flow cells which come in pairs (Perkins, 1970; Knight et al., 2007). 

 

4.4.6.1 Locating the effective portion of the Pareto front 

As mentioned in sections 4.2.4 and 4.2.5, errors in the experimental data in the range of ± 3% 

and ± 6% were tolerated for discharge and bed shear stress measurements respectively.  To 

keep within this range of accuracy, the third and fourth objective functions (Eqs. (4-11) and 

(4-12)) were evaluated for all the non-dominated solutions on the representative Pareto front.  

The solutions which estimated Q and %SFw to within less than 5% error were preserved and 

the remaining were discarded.  After this filtering, the “effective” portion of the Pareto front 

was found (Figure (4-11)).  
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Figure (4-11): Selecting the acceptable solutions on the Pareto front based on the value of the 

third and fourth objective function (case Al-Hamid Exp05). 
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4.4.6.2 Cluster analysis on the effective portion of the Pareto 

Due to the significant effect that the friction factor has on the bed shear stress distribution 

calculations and consequently on the second objective function, among all model variables, 

the friction factor value of each panel quickly converges to a specific range.  Mapping the 

effective Pareto solutions to a sub-space of the decision search space, Ω, defined only by the 

three parameters of f2, f3 and f4, a number of regions (typically ranging between 3 to 7) were 

identifiable (Figure (4-12)). 

 

In the second stage of the post-validation phase, the solutions lying on the effective portion of 

the representative Pareto front were mapped to the mentioned parametric sub-space and the 

number of regions of attraction were defined.  Then a non-hierarchical clustering analysis 

adopting the k-means method (Gnanadesikan, 1977) (see Appendix (V) for detailed 

explanation) was undertaken on the solutions and the clusters representing each region were 

found for each test case.  Figure (4-13) shows the position of the clusters on the Pareto front 

of case Al-Hamid Exp 05 and Table (4-6) shows the specifications of the found clusters for 

another typical test case. 

 

 

f3 

f4 

f2 

Figure (4-12): The position of regions of attraction on the decision search space (Ω). 

(f is the friction factor and the index represents the panel). 
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Figure (4-13): The position of the found clusters on the front of the Pareto front. 

(case Al-Hamid Exp05). 

 

Table (4-6): The cluster of solutions found for a typical test case. 

 

 

Panel 1 Panel 2 Panel 3 Panel 4 

f λ Γ f λ Γ f λ Γ f λ Γ 

C
lu

st
er

 1
 

min 0.01500 1.93 -1.34 0.01604 0.83 1.57 0.328 1.63 1.81 0.562 0.04 -2.82 

max 0.01531 1.97 -1.30 0.01627 0.84 1.63 0.339 1.72 2.04 0.589 0.04 -2.79 

mode 0.01515 1.95 -1.32 0.01613 0.84 1.60 0.334 1.68 1.91 0.576 0.04 -2.80 
average 0.01518 1.94 -1.34 0.01618 0.83 1.61 0.328 1.63 1.81 0.562 0.04 -2.79 

Standard 
deviation 1.5E-08 2.3E-04 2.6E-04 8.8E-09 1.8E-05 3.6E-04 2.2E-05 1.7E-03 9.1E-03 1.3E-04 6.5E-07 1.8E-04

C
lu

st
er

 2
 

min 0.01493 2.43 0.78 0.01327 0.36 -0.32 0.434 1.69 0.63 0.745 0.04 -2.89 

max 0.01580 2.50 0.86 0.01559 0.37 -0.24 0.476 1.82 0.98 0.801 0.05 -2.73 

mode 0.01540 2.46 0.82 0.01459 0.37 -0.29 0.453 1.76 0.80 0.778 0.04 -2.83 
average 0.01498 2.46 0.79 0.01541 0.37 -0.29 0.434 1.78 0.95 0.745 0.04 -2.82 

Standard 
deviation 1.3E-07 3.0E-04 6.5E-04 6.5E-07 3.8E-06 2.0E-04 2.0E-04 2.3E-03 1.9E-02 6.0E-04 3.2E-06 1.9E-03

C
lu

st
er

 3
 

min 0.01621 0.30 0.68 0.01445 0.40 -0.58 0.353 0.53 0.32 0.771 0.04 -1.41 

max 0.01664 0.35 0.77 0.01590 0.46 -0.15 0.542 0.83 0.66 1.014 0.05 -1.81 

mode 0.01652 0.31 0.69 0.01570 0.41 -0.21 0.433 0.57 0.54 0.832 0.04 -1.60 
average 0.01635 0.32 0.71 0.01569 0.41 -0.25 0.455 0.59 0.50 0.893 0.05 -1.66 

Standard 
deviation 2.3E-08 4.5E-12 6.0E-04 7.3E-08 1.7E-04 6.0E-04 2.5E-05 7.5E-03 1.4E-04 1.5E-04 2.4E-06 1.2E-03

C
lu

st
er

 4
 

min 0.01671 2.26 -0.50 0.01578 0.88 0.29 0.379 0.16 -1.92 0.908 3.19 0.11 

max 0.01728 2.27 -0.46 0.01672 0.90 0.29 0.382 0.16 -1.91 0.911 3.48 0.19 

mode 0.01706 2.27 -0.48 0.01625 0.89 0.29 0.381 0.16 -1.92 0.909 3.35 0.15 
average 0.01680 2.27 -0.50 0.01648 0.88 0.29 0.382 0.16 -1.92 0.908 3.45 0.14 

Standard 
deviation 5.1E-08 1.6E-05 2.5E-04 1.1E-07 6.2E-05 2.7E-06 1.5E-06 1.5E-06 4.2E-06 1.1E-06 1.3E-02 5.3E-04

(case Al-Hamid Exp27). 
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4.4.6.3 Selecting the robust p

sulting in the highest solubility (see 

Section 3.3.1) were finally tested for their generic attributes.  This stage consisted of the 

g. see Table (4-7)) and the clusters which had the 

 

Γ sign pattern were compared, and representatives resulting in similar 

 Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 

arameter set 

In the final stage of post-validation, the solutions re

following steps: 

• First, the major patterns for the sign of the secondary flow term (Γ) were 

recognized for each channel type (e.

major patterns were preserved for each test case. 

• Next, the mode value of each variable in each of the remaining clusters was 

selected as the representative of that cluster, and used in conjunction with the SKM to 

predict the depth average streamwise velocity and boundary shear stress distributions.  

The obtained distributions were then plotted along with the experimental data for all 

cases.  A typical set of results is illustrated in Figure (4-14). 

• A cross-case analysis was then undertaken along with visual inspection of the 

obtained distributions of all cases in each dataset.  Based on the frequency of

appearance of patterns in Pareto sets across cases and also the general look of the 

distributions, the dominant sign pattern of the secondary flow term (Γ) was selected for 

each dataset. 

• For each test case, the predictions of the representatives (mode values) of clusters 

with the selected 

distribution shapes (with the other test cases in the dataset) were chosen as the “best” 

answer of each case. 
 

Sign of  Γ

FCF data 
(2b/h >

Pattern 1 - + + - + 
2.2) Pattern 2 

Y  

- + - - + 
uen’s data

(2b/h <3.0) 
Pattern 1 - + - +  

Pattern 2 + + - +  
Al-Hamid’s 
S  mooth Bed
and Rough 

Walls 

Pattern 1 + - + -  
Pattern 2 - + + -  
Pattern 3 - + - +  

Al-Hamid’s 
Rough Bed 

d Rougan h 
Walls 

Pattern 1 - + - +  
Pattern 2 - + + -  
Pattern 3 + - + -  

Table (4-7): re erve patter econdary flow term in 

eren apezo al data s. 

The most f quent obs d ns for the sign of the s

diff t tr id set
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Figure (4-14): Best mean velocity and boundary shear stress distribution of different patterns 

for Al-Hamid Exp 27 (Aspect ratio = 7.032 Smooth bed and R1 on the wall). 

.4.6.4 Anomalous cases 

In a small number (less than 15%) of the total test cases, due to the non-uniqueness of the 

 result of over-fitting  the experimental data (Bishop, 2006), the 

 

4

optimum parameter set, or as a

obtained optimum variable values from the first Pareto front were not concordant with the 

optimum variables found for other cases of the dataset.  More specifically, the representative 

of all the clusters found on the effective portion of the Pareto would either have a secondary 
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flow term (Γ) sign pattern other than the dominant one, a set of optimum variables which 

were not close to the obtained range from other test case results or both dissimilarities.  At 

this point, in order to be able to generalize the calibration results, an algorithm was developed 

to carefully search the succeeding ranked non-dominated Pareto fronts and find optimum 

solutions that not only had the selected Γ sign pattern (for the dataset), but also had variable 

values concordant with the other test cases. 

 

4.5 DISCUSSION ON PARAMETER IDENTIAFABILITY  

Finding various clusters of solutions on the Pareto front which, if mapped on the parametric 

l suffers from lack 

: the limitations and errors in the measurements of input 

xperimental data might have caused the available data not to be informative enough to 

: the assumptions made in building the model, 

especially regarding the dimensionless eddy viscosity (Section 2.6.1), secondary flow term 

space, would each represent a specific region, indicates that the SKM mode

of identifiability or equifinality (Beven and Binley, 1992; Beven and Freer, 2001; Beven, 

2006) in its parameterization.  This is the problem of which different optimum parameter sets 

are better than each other in terms of one or more performance measures but can all 

acceptably represent the observed behaviour of the system and thus none can be easily 

rejected.  This non uniqueness of solutions, gives no guarantee of convergence to the true 

value of parameters and therefore usually gives rise to confusing results.  The insensitivity of 

the model to the value of λ in different panels and finding various optimum patterns for the 

sign of Γ, are all results of this problem.  The probable sources of this problem can be defined 

as: 

 

1- Experimental data uncertainty

e

identify the model parameters and find a unique and accurate value for them.  Even if they 

can be fitted, there is the possibility that data limitations will ensure lack of identifiability in 

the model parameters and that a change in one parameter can be compensated almost 

completely by a proportional shift in another, while still producing a satisfying fit between the 

model predictions and the data.   
 

2- Model structure uncertainty and complexity

(Section 2.6.1) and boundary shear stress calculations (Section 2.5.4) along with the 

mathematical properties of the model might have caused complex interactions between model 
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parameters which results in lack of identifiability in the model parameters.  Furthermore, the 

selected number of panels directly affects the model complexity as each panel imposes 3 

parameters to the problem.  The greater the number of panels, and hence greater complexity 

of the model, the better it can reflect the changing response of the system to different 

conditions, but more parameters are to be defined by calibration.  In fact, increasing the 

number of parameters in a model is equivalent to increasing the degrees of freedom in 

specifying input data and adding additional dimensions in the search space (Beven, 2006).  

Since usually the quality and quantity of the data collected are not sufficient for determining 

the parameters, a robust calibration is unlikely to be achieved. 
 

3- Parameter estimation uncertainty: the inability to uniquely locate a ‘best’ parameter set 

based on the available information is the result of the first two uncertainty sources.  In fact, 

on of attraction. 

• Each region of attraction contains many local optima. 

th significantly 

not reached. 

 
hapter are intended to overcome 

the identifiability problem and make robust estimation of model parameters possible.  The use 

of multiple objective functions (Section 4.4.1), selecting a powerful search algorithm (Section 

there are always some parameters in the model which either cannot be directly estimated 

through measurement or by the correlation between the model parameters and the physical 

characteristics of the system.  Therefore, various parameter sets, often widely distributed 

within the feasible parameter space may yield equally good results in terms of predefined 

objective functions.  This perplexity is reflected in the shape of the response surface.  

Studying the specific characteristics of the response surface, the following major problems 

might be diagnosed (Duan et al., 1992; Wheater et al., 2007): 
 

• The response surface contains more than one main regi

• It is flat in many regions, particularly in the vicinity of the optimum, wi

different parameter sensitivities. 

• Its shape includes long and curved ridges caused by the interdependence of 

parameters. 

• It contains a number of saddle points, where first derivatives vanish but minima (or 

maxima) are 

• Insensitive directions exist in the parameter space. 

The procedures set out in the calibration framework in this C
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4.4.2), refining the search by locating the effective portion of the Pareto front (Section 

4.4.6.1), distinguishing clusters of solutions (Section 4.4.6.2) and finally a post-calibration 

process through visual inspection of the model output (4.4.6.3) are all in line with this goal.   

 

4.6 SUMMARY 

4-27 

his Chapter started with a brief overview of the experimental data.  The experimental setup, 

uniform flow settings, measurement apparatus and techniques were concisely presented.  This 

ntroduction to all “datasets” and their “test cases” used in this research.  

• the post-validation phase. 

 the different steps of the calibration framework.  With 

 for calibrating other hydrodynamic models.  In 

the next Chapter, the calibration framework is applied to the datasets introduced in Section 

T

was followed by an i

Then a section was devoted to the discussion of defining panel structures in SKM.  The core 

section of this Chapter was dedicated to the detailed description of the three stages of the 

proposed evolutionary multi-objective calibration framework:  
 

• the calibration platform preparation, 

• the calibration phase, 

 
Figure (4-15) is a chart indicating

minor alterations, this framework can be used

(4.2.6).  The results will give us an insight on the lateral variation of the immeasurable 

parameters of SKM for channels and rivers with inbank flow. 

 

 
Figure (4-15): Calibration framework. 
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CHAPTER 5 

 
CALIBRATING THE SKM FOR CHANNELS AND 
RIVERS WITH INBANK FLOW 
 

 

5.1 INTRODUCTION 

Having developed an effective calibration framework (Chapter 4), the platform was applied to 

channels and rivers with inbank flow.  In this Chapter, the variation of the SKM parameters in 

trapezoidal channels, rectangular channels and natural river sections are investigated through 

the proposed calibration procedure.  Although the majority of the work presented in this 

Chapter deals with idealized small-scale laboratory trapezoidal and rectangular channels, 

natural rivers are often schematized by such geometries in numerical models, and therefore it 

is envisaged that the results are generally applicable to natural rivers.  

 

As discussed in the previous Chapters, the panelling philosophy of Knight et al. (2007) is 

adopted for modelling trapezoidal channels (Section 2.6.9.3).  But, for rectangular channels, 

since there is little knowledge on the exact size and position of the secondary flow cells 

(Section 2.6.9.2), this methodology cannot be directly applied.  Furthermore, the quantity and 

quality of the available rectangular datasets are not sufficient enough for generalization 

purposes, and therefore in this Chapter, the rectangular cases are investigated with a focus on 

selecting a suitable panel structure for depth-averaged modelling. 

 

Being aware of the fact that the SKM, in its standard format used in this research, was 

developed initially from laboratory data, the calibration framework is also applied to a 

number of river cross-sections in order to show the capability of the SKM for modelling flows 

in rivers and also to show the effectiveness of the calibration framework for more complicated 
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channel sections.  The river datasets used in this research are based on seven sites in two 

continents and three countries: the River Severn at Montford Bridge (Knight, 1989b), the 

River Main at Bridge End Bridge (Myers and Lyness, 1989) and the River Trent, North 

Muskham (Knight, 1989b)) in UK, the River Colorado and the River La Suela (McGahey, 

2006) in Argentina and the River Cuenca and the River Tomebamba (McGahey, 2006) in 

Ecuador.  All the natural river datasets are available in McGahey (2006). 

 

In this Chapter, the calibration of smooth trapezoidal channels (FCF and Yuen’s (1989) data), 

uniformly and partially roughened trapezoidal channels (Al-Hamid’s (1991) data), rectangular 

channels (Knight et al. (1984) and Tominaga et al. (1989)) and some natural rivers are 

covered in individual sections.  In each section, a brief description of the dataset is given first 

together with a summary of all the test cases.  ‘The experimental data’, ‘panel structure 

selection’, ‘objective functions’ and ‘shear stress calculations’ are covered in the 

‘Considerations and assumptions’ sub-section.  Finally, a sub-section is devoted to the 

calibration results and their interpretation.  The final part of this Chapter shows the advantage 

of this calibration approach over other previous attempts.   Furthermore, a cross-referencing 

analysis is proposed in order to verify the optimum values of individual SKM parameters. It is 

to be mentioned that the main figures of this Chapter are provided in Appendix (IV), while 

key Figures are shown in the text to help the reader. 

 

5.2 TRAPEZOIDAL CHANNELS 

Three sets of experimental data relating to uniform flow in trapezoidal channels were used in 

this research: the Flood Channel Facility (FCF) Series 04 (Knight, 1992), Yuen’s (1989) data 

and Al-Hamid’s (1991) data.  This represented a combined total of 51 experimental test cases.  

The first two datasets included measurements in uniformly roughened channels, i.e. the bed 

and wall of the channels where made of the same material.  Al-Hamid’s data consisted of both 

uniformly and partially roughened test cases.  The main motivation behind each dataset was to 

study the distributions of mean streamwise depth-averaged velocity and boundary shear stress 

for a wide range of inbank flows under sub and super-critical flow conditions. 
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5.2.1 FCF Series 04 

5.2.1.1 Introduction to the dataset 

The EPSRC Flood Channel Facility (FCF) was constructed in 1986 at HR Wallingford to 

enable engineers to understand the hydraulic processes involved in the flood flows of rivers 

and flood alleviation channels.  The FCF flume was 60m long, 10m wide and 0.4m deep with 

an average bed slope of 1.027x10-3.  The Facility could be configured to conduct studies in a 

wide range of channels with floodplains (e.g. straight, meandering and free formed) with 

either rigid or mobile boundaries.  Water was fed into the flume by six pumps.  At the inlet, 

the water flowed over a sharp-crested weir into a stilling pool, before spilling onto the 

floodplains and into the main channel.  Five separate tailgates at the downstream end were 

used to control the water surface slope and the depth of water in the model.  The main 

research program, carried out in 3 phases, covered a wide range of flow conditions and 

provided valuable datasets for many researchers.  Figure (5-1) shows a view of the FCF flume 

along with the sketch of its layout.  For more information about the facility and an in-depth 

analysis of all FCF datasets, the reader is referred to Knight and Sellin (1987), Knight (1992) 

and the website www.flowdata.bham.ac.uk. 

 

Measurements of inbank flow in simple trapezoidal channels were conducted in the fourth 

series of phase A (straight prismatic channels).  This dataset consisted of detailed mean 

velocity and boundary shear stress distributions for 12 simple trapezoidal channels having a 

fixed bed width of 1.50m, bed slope of 1.027x10-3, side slope of 1:1 and varying depths, 

changing between 0.296m to 0.049m, giving aspect ratios (i.e. channel width/depth ratio = 

2b/h) between 5 and 30 (Table ((5-1)).  The stage-discharge curve for this dataset is shown in 

Figure (5-2).  Comparing the distribution of mean velocity and boundary shear stress for all 

cases, it was observed that the distributions of three test cases with the lowest aspect ratios 

included abnormal data points which made the general trend of the distributions different 

from other cases. For this reason, these test cases were removed from the entire dataset. 
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(a) General view (b) Layout of Facility 
Figure (5-1): EPSRC Flood Channel Facility (www.flowdata.bham.ac.uk.). 

 

 

Test case 
2b h 

2b/h Pb/Pw 
S0 Q  R Uavr τavr Re 

Fr 
(m) (m) (x10-3 ) (l.s-1) (m) (m.s-1) (N.m-2) ( x104 ) 

FCF 0501 1.500 0.0486 30.85 10.91 1.027 29.90 0.0460 0.3970 0.4628 6.317 0.584 

FCF 7501 1.500 0.0755 19.86 7.02 1.027 64.00 0.0694 0.5378 0.6988 12.921 0.640 

FCF 1002 1.500 0.1009 14.87 5.26 1.027 103.50 0.0905 0.6408 0.9104 20.056 0.664 

FCF 1502 1.500 0.1488 10.08 3.57 1.027 202.30 0.1277 0.8249 1.2849 36.924 0.713 

FCF 0401 1.500 0.1580 9.49 3.36 1.027 223.70 0.1346 0.8538 1.3542 40.279 0.718 

FCF 0402 1.500 0.1662 9.03 3.19 1.027 241.40 0.1406 0.8718 1.4144 42.957 0.716 

FCF 0403 1.500 0.1753 8.56 3.02 1.027 262.30 0.1472 0.8930 1.4808 46.680 0.716 

FCF 0404 1.500 0.1869 8.03 2.84 1.027 290.90 0.1554 0.9228 1.5635 51.204 0.718 

FCF 0405 1.500 0.1992 7.53 2.66 1.027 324.00 0.1641 0.9570 1.6507 56.209 0.724 

FCF 0406 1.500 0.2130 7.04 2.49 1.027 363.10 0.1735 0.9952 1.7494 61.306 0.728 

FCF 040703 1.500 0.2474 6.06 2.14 1.027 479.10 0.1965 1.1083 1.9774 76.859 0.760 

FCF 040802 1.500 0.3009 4.98 1.76 1.027 656.30 0.2305 1.2110 2.3193 99.151 0.762 

Table (5-1): FCF Series 04 test cases. 

 

 

 

Figure (5-2): Stage-discharge curve for FCF series 04 data. 
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5.2.1.2 Considerations and assumptions 

Panel Structure Selection 

Since all the channels had an aspect ratio larger than 2.2, based on Knight and co-workers’ 

(2007) hypothesis (Sections 2.6.9.3 and 4.3), a five panel structure for half of the symmetric 

channel was selected for modelling this dataset.  Figure (5-3) shows this panel structure. 

 

b=0.75 m

P1 P4P2 P5

1
s=1

b'/4 b'/2 b''/2 b''/2
P3
b'/4

 
Figure (5-3): The panel structure and assumed secondary flow cells for FCF channels. 

 

Objective functions 

Since distributions of depth-averaged velocity and boundary shear stress were available for all 

test cases, Eqs. (4-9 & 4-10) were set as the optimization objective functions, i.e. the sum of 

squared difference between observed and model generated mean streamwise velocity and 

local boundary shear stress. 

 

5.2.1.3 Calibration results 

After applying the calibration framework to all test cases, the best set of solutions (as defined 

in Chapter 4) for each case was obtained (i.e. a combination of individual panel values of fi, λi 

and Γi) and sorted based on the aspect ratio of the channel (Table (5-2)).  Based on these 

results, the variation of each parameter was plotted against the panel number and wetted 

perimeter ratio ( / )b wP P (Figures (5-4)).  Here, the subscript i represents the panel number, 

starting from 1 for the panel adjacent to the centre line, and then increases progressively 

towards the edge of the channel.  The experimental and simulated distributions of depth-
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averaged velocity and boundary shear stress for a typical test case (FCF 0402) are shown in 

Figure (5-5).  The distributions for the remaining cases are provided in Appendix (IV.1). 
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Figure (5-4): Variation of the friction factor, dimensionless eddy viscosity and secondary flow 

term against the panel number and wetted perimeter ratio (Pb/Pw) for FCF data 

(7.5<2b/h<30 and S0=1.027x10-3). 

 



CHAPTER 5 – Calibrating the SKM for Channels and Rivers with Inbank Flow  
 

5-7 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Lateral distance across section,  y (m)

D
ep

th
-a

ve
ra

ge
d 

ve
lo

ci
ty

,  U
d  (

m
/s

)

Experimental Data
SKM Prediction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Lateral distance across section,  y (m)

B
ou

nd
ar

y 
sh

ea
r s

tre
ss

,  τ
 (N

/m
2 )

Experimental Data
SKM Prediction

a) Depth-averaged streamwise velocity b) Boundary shear stress 
Figure (5-5): Distributions of depth-averaged velocity and boundary shear stress for case  

FCF 0402 (h=0.1662m; 2b/h=9.03) 

 

FCF Test case 0501 7501 1002 1502 0401 0402 0403 0404 0405

2b/h 30.85 19.86 14.87 10.08 9.49 9.03 8.56 8.03 7.53 

Pb/Pw 10.91 7.02 5.26 3.57 3.36 3.19 3.02 2.84 2.66 

Panel 1 
f 0.0202 0.0183 0.0160 0.0153 0.0152 0.0149 0.0146 0.0146 0.0146

λ 0.89 0.73 0.68 0.57 0.54 0.72 0.74 0.50 0.54 

Γ -0.04 -0.15 -0.26 -0.39 -0.41 -0.51 -0.59 -0.63 -0.66 

Panel 2 
f 0.0221 0.0196 0.0175 0.0166 0.0158 0.0156 0.0157 0.0156 0.0153

λ 0.83 0.70 0.74 0.56 0.47 0.44 0.45 0.54 0.62 

Γ 0.00 0.03 0.02 0.01 0.01 0.03 0.02 0.01 0.00 

Panel 3 
f 0.0244 0.0205 0.0197 0.0184 0.0169 0.0173 0.0166 0.0165 0.0160

λ 0.35 0.44 0.39 0.41 0.53 0.53 0.54 0.45 0.56 

Γ 0.05 0.06 0.07 0.07 0.07 0.09 0.11 0.14 0.19 

Panel 4 
f 0.0235 0.0199 0.0192 0.0177 0.0168 0.0164 0.0162 0.0151 0.0145

λ 0.45 0.45 0.44 0.35 0.30 0.25 0.24 0.23 0.22 

Γ -0.35 -0.59 -0.58 -0.58 -0.75 -0.76 -0.77 -0.79 -0.87 

Panel 5 
f 0.0285 0.0242 0.0237 0.0214 0.0201 0.0205 0.0206 0.0200 0.0195

λ 0.92 0.91 0.85 0.69 0.60 0.53 0.40 0.23 0.22 

Γ 0.19 0.38 0.51 0.72 0.90 1.04 1.40 1.71 1.90 

Table (5-2): The optimal values of each Parameter in different panels of FCF experiments. 

 

Based on the results shown in Table (5-2), Figure (5-4) and Appendix (IV.1) the following 

conclusions can be drawn (Sharifi et al., 2008; 2009a): 

 

1- For all cases, visual observations indicate that the velocity and boundary shear stress 

magnitudes are reasonably well simulated. 
 

2- For the lowest depth (FCF 0501; h=0.0486m) the boundary shear stress is under predicted 

by approximately 8 %. 
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3- The “dip” in the velocity profile near the channel centerline is not captured by the model. 
 

4- Significant increases are observed in the simulated shear stress profile at the location of 

panel boundaries.  This is due to the assumption of constant friction throughout each panel. 
 

5- For trapezoidal channels with aspect ratios between 7.5 and 30, the friction factor linearly 

increases from the first to the third panel, then appears to remain constant or reduce before 

increasing to its highest value in the fifth panel.   
 

6- The value of the zonal friction factor in each panel is shown to increase with increase in the 

wetted perimeter ratio, Pb/Pw. 
 

7- The value of the dimensionless eddy viscosity does not appear to follow any specific 

pattern in the panels positioned in the constant depth region.   
 

8- In the panels on the sidewall region, the value of λ increases significantly as the wall is 

approached. 
 

9- For trapezoidal channels with aspect ratios higher than 7.5, the secondary flow term, Γ, is 

initially negative in the first panel and then rises towards zero in all cases.  The value of this 

parameter then increases slightly in the third panel to a value near 0.10 before decreasing to a 

negative value in the fourth panel.  Finally, a maximum positive value is obtained in the fifth 

panel.   
 

10- The absolute value of Γ in all the panels decreases by the increase in the wetted perimeter 

ratio. 
 

11- For this range of aspect ratios, the values of λ and Γ are linearly related to changes in 

wetted perimeter ratio. 

 

5.2.2 Yuen’s (1989) data 

5.2.2.1 Introduction to the dataset  

Experiments were conducted in a 22m long tilting flume at the University of Birmingham 

(Figure (5-6)).  The channel was constructed from PVC providing a smooth surface for both 
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the bed and the wall.  The main trapezoidal channel had a base width of 0.150m and the side 

slopes were fixed at 1:1.  Five series of tests were undertaken at 5 different bed slopes: 1.000, 

3.969, 8.706, 14.52 & 23.37 (x10-3), with the aim of obtaining detailed velocity and boundary 

shear stress data in both sub-critical and super-critical flows (0.39 < Fr < 3.59).  Detailed 

measurements of boundary shear stress distributions were available for the first (S0=1.000 

x10-3), third (S0=8.706 x10-3) and last (S0=23.37 x10-3) series, but the corresponding mean 

velocity distributions were only measured for 7 test cases within these series.  The stage-

discharge curve for this dataset is illustrated in Figure (5-7).  Table (5-3) shows a summary of 

the test cases in this study.  The measurements regarding all test series can be found in 

www.flowdata.bham.ac.uk.  For more information relating to Yuen’s data, the reader is 

referred to Yuen (1989) and Yuen and Knight (1990). 

 

Figure (5-6): University of Birmingham 22m long trapezoidal tilting flume (Yuen, 1989). 

 

 

 

Figure (5-7): Stage-discharge curve for Yuen’s data. 
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Test case 
2b h 

2b/h Pb/Pw 
S0 Q  R Uavr τavr Re 

Fr 
(m) (m) (x10-3 ) (ls-1) (m) (m.s-1) (N.m2) ( x104 ) 

Yuen 004 0.150 0.0500 3.00 1.06 1.000 3.50 0.0343 0.3500 0.3365 4.101 0.559 

Yuen 006 0.150 0.0600 2.50 0.88 1.000 4.65 0.0394 0.3690 0.3865 5.019 0.546 

Yuen 008 0.150 0.0750 2.00 0.71 1.000 7.00 0.0466 0.4148 0.4570 6.565 0.559 

Yuen 010 0.150 0.0833 1.80 0.64 1.000 8.55 0.0504 0.4400 0.4944 7.569 0.567 

Yuen 013 0.150 0.1000 1.50 0.53 1.000 12.00 0.0578 0.4800 0.5664 9.466 0.574 

Yuen 014 0.150 0.1071 1.40 0.50 1.000 13.70 0.0608 0.4975 0.5964 10.216 0.577 

Yuen 016 0.150 0.1500 1.00 0.35 1.000 26.30 0.0784 0.5844 0.7685 15.638 0.590 

Yuen 201 0.150 0.0285 5.26 1.86 8.706 4.70 0.0221 0.9239 1.8834 7.145 1.882 

Yuen 203 0.150 0.0409 3.67 1.30 8.706 8.68 0.0294 1.1117 2.5071 11.488 1.937 

Yuen 205 0.150 0.0575 2.61 0.92 8.706 15.60 0.0382 1.3075 3.2582 17.539 1.968 

Yuen 206 0.150 0.0730 2.05 0.73 8.706 23.90 0.0457 1.4681 3.8988 24.305 1.999 

Yuen 207 0.150 0.0990 1.52 0.54 8.706 41.10 0.0573 1.6673 4.8942 35.804 2.000 

Yuen 401 0.150 0.0285 5.26 1.86 23.370 8.10 0.0221 1.5922 5.0558 12.443 3.243 

Yuen 403 0.150 0.0420 3.57 1.26 23.370 15.33 0.0300 1.9010 6.8757 20.255 3.270 

Yuen 405 0.150 0.0565 2.65 0.94 23.370 25.55 0.0377 2.1899 8.6310 28.988 3.320 

Yuen 406 0.150 0.0730 2.05 0.73 23.370 39.00 0.0457 2.3957 10.4660 44.714 3.262 

Yuen 407 0.150 0.0990 1.52 0.54 23.370 66.30 0.0573 2.6895 13.1382 61.831 3.227 

Table (5-3): Yuen’s test cases. 

 

5.2.2.2 Considerations and assumptions 

As mentioned in the previous section, among all test cases, the depth averaged velocity 

distributions were measured for only 7 test cases: Yuen 008, 013, 016,  206, 207, 406, and 

407.  For the remaining test cases only measurements of bed shear stress were available. 

 

Panel Structure Selection 

Following the work of Knight et al., (2007),  a four panel structure for half of the symmetric 

channel was selected for modelling these experiments, since all the 7 mentioned cases had an 

aspect ratio smaller than 2.2.  Figure (5-8) illustrates this panel structure.  The remaining 

cases were modelled with both four panel (Figure (5-8)) and five panel (Figure (5-3)) 

structures, regardless of their aspect ratio.  Initial analysis revealed that introducing an 

additional panel for aspect ratios higher than 2.2 did not increase the level of optimality, 

significantly.  Hence, the calculations were continued with a four panel structure for all test 

cases. 
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Figure (5-8): The panel structure and assumed secondary flow cells for Yuen’s channels. 

 

Objective Functions 

Similar to the analysis of the FCF dataset, Eqs. (4-9 & 4-10) were set as two of the multi-

objective optimization functions for the cases where distributions of mean velocity and 

boundary shear stress were available.  For the remaining cases, only Eqs. (4-10 & 4-11) were 

selected as the objective functions (i.e. the difference between observed and model generated 

mean local boundary shear stress and single calculated and measured values of Q). 

 

Shear Stress Calculations 

Reviewing model predictions of FCF data (Appendix (IV.1)), significant increases were 

observed in the simulated shear stress profile at the location of panel boundaries.  This was 

thought to be a result of imposing constant friction values throughout the entire panel.  In this 

dataset the measured mean velocity profile was available for all cases which lead to a fast 

convergence of most model parameters.  In contrast, for most of Yuen’s test cases the mean 

velocity profile is absent and the optimal parameter values are more dependent on the 

calculated values of boundary shear stress.  To overcome this problem and increase the 

accuracy of the SKM, the friction factor was varied linearly through the panels and the 

interpolated values of friction factor were used for calculating the local shear stresses.  Figure 

(5-9) illustrates the concept of using spatially varying friction factor values. 
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Figure (5-9): Spatially varying friction values in the SKM model. 

 

5.2.2.3 Calibration results 

Table (5-4) shows the obtained optimal values of the SKM parameters after applying the 

calibration methodology for the 7 cases where both mean velocity and boundary shear stress 

data were available.  The variation of these parameters is illustrated in Figure (5-10). Figure 

(5-11) also shows the distributions of depth-averaged velocity and boundary shear stress for a 

typical test case (FCF 0402). The complete set of results regarding test series 1, 3 and 5 along 

with the experimental and simulated distributions of depth-averaged velocity and boundary 

shear stress for all cases are provided in Appendix (IV.2). 

 

Yuen test case 008 013 016 206 207 406 407 

2b/h 2.00 1.50 1.00 2.05 1.52 2.05 1.52 

Pb/Pw 0.71 0.53 0.35 0.73 0.54 0.73 0.54 

Panel 1 
f 0.0187 0.0170 0.0159 0.0150 0.0144 0.0144 0.0136 

λ 1.29 0.79 1.07 0.55 0.78 0.64 0.64 

Γ -0.54 -0.57 -0.72 -0.79 -0.96 -0.97 -1.10 

Panel 2 
f 0.0207 0.0182 0.0171 0.0162 0.0157 0.0157 0.0149 

λ 0.38 0.28 0.16 0.11 0.11 0.12 0.12 

Γ 0.13 0.15 0.12 0.22 0.20 0.18 0.18 

Panel 3 
f 0.0221 0.0200 0.0185 0.0179 0.0167 0.0167 0.0159 

λ 0.84 0.82 0.71 0.29 0.24 0.22 0.20 

Γ -0.36 -0.55 -0.64 -0.89 -1.14 -1.30 -1.41 

Panel 4 
f 0.0250 0.0228 0.0210 0.0194 0.0185 0.0185 0.0176 

λ 1.50 1.47 1.36 0.49 0.40 0.31 0.30 

Γ 0.79 0.89 0.96 1.70 1.80 1.91 1.98 

Table (5-4): The optimal values of each Parameter in different panels of Yuen’s experiments. 
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Figure (5-10): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel for Yuen’s data (1.52<2b/h<2). 
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Figure (5-11): Distributions of depth-averaged velocity and boundary shear stress for case 

Yuen 406 (h=0.0730 m; 2b/h=2.05) 
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Based on the results shown in Table (5-4), Figure (5-10) and Appendix (IV.2) the following 

conclusions can be derived (Sharifi et al., 2008; 2009a): 

 

1- For all test cases, visual observations indicate that the velocity and boundary shear stress 

magnitudes are reasonably well simulated.  For cases where the experimental velocity 

distribution is available, the predicted distributions are smoother and more accurate than the 

other cases. 
 

2- Using spatially varied friction factor values, the predicted shear stress distributions are 

smooth and without any sudden increases at the location of panel boundaries. 
 

3- The lateral variation of the three model parameters follows a similar trend to FCF cases 

(modelled with five panels).   
 

4- For trapezoidal channels with aspect ratios between 1.0 and 5.26, the friction factor 

increases almost linearly from the centerline of the channel towards the wall. 
 

5- The value of the zonal friction factor in each panel is shown to increase with increase in the 

wetted perimeter ratio, Pb/Pw. 
 

6- The value of the dimensionless eddy viscosity does not appear to follow any specific 

pattern in the panel adjacent to the channel centerline.  As the bed slope increases, the model 

becomes more sensitive to the value of this parameter in this region.  In the panels on the 

sidewall region, the value of λ increases as the wall is approached. 
 

7- For trapezoidal channels with aspect ratios between 1.0 and 5.26, the secondary flow term, 

Γ, is initially negative in the first panel and then rises towards 0.15 in all cases.  The value of 

this parameter then decreases to a negative value in the third panel.  Finally, a maximum 

positive value is obtained in the fourth panel.  This pattern of negative and positive values 

found for Γ in adjacent panels agrees with the findings of Knight et al., (2007). 
 

8- For this range of aspect ratios, the values of λ and Γ are linearly related to changes in 

wetted perimeter ratio. 
 

9- With the increase in the wetted perimeter, the value of λ in all the panels increases and the 

absolute value of Γ in all the panels decreases. 
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5.2.3 Al-Hamid’s (1991) data 

5.2.3.1 Introduction to the dataset  

Al-Hamid’s (1991) datasets included experiments undertaken in simple trapezoidal channels 

with both differentially and uniformly roughened boundaries for uniform, steady and fully 

developed turbulent flow (Figure (5-12)).  Two types of gravel distributions (d84 values of 

18.0 and 9.3 mm referred to as R1 and R2 respectively) were used for roughening the channel 

boundaries (i.e. walls only or walls and bed together).  Figure (5-13) shows close up pictures 

of the roughening gravels and their arrangements.  The channels where built from thick PVC 

in a 22 m long, 0.615 m wide and 0.365 m deep rectangular tilting flume at the University of 

Birmingham.  The experiments were conducted within the ranges of aspect ratio, 

0.85<2b/h<10.0, Reynolds number, 3.4xl04< Re<8.6x105, and Froude number, 0.39<Fr<0.89, 

for channel bed slopes 3.92x10-3, 4.03x10-3 and 1.935x10-3 with 1:1 wall side slopes.  The aim 

was to study velocity distributions, boundary shear stress distributions, shear forces, mean and 

maximum shear stresses, resistance coefficients and eddy viscosity for differentially and 

uniformly roughened trapezoidal channels.  Table (5-5) shows a summary of Al-Hamid’s test 

cases.  The stage-discharge curve for this dataset is illustrated in Figure (5-14).  For more 

information about Al-Hamid’s datasets, the reader is referred to Al-Hamid (1991) and Knight 

et al., (1994). 

 

 

(a) Differentially roughened  (b) Uniformly roughened 
Figure (5-12): Trapezoidal channels with differential and uniform boundary roughness. 

(Al-Hamid, 1991) 
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(a) R1;  d84 =18.0 mm (b) R2;  d84 =9.3 mm 
Figure (5-13): The roughening gravels used in Al-Hamid’s experiments (Al-Hamid, 1991). 
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Figure (5-14): Stage-discharge curve for Al-Hamid’s experiments. 
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Test case 

2b h 
2b/h Pb/Pw 

S0 Q  R Uavr τavr Re 
Fr 

Bed Wall (m) (m) (x10-3 ) (ls-1) (m) (m.s-1) (N.m-2) ( x104 ) 

S
m

oo
th

  

R
ou

gh
  (

R
1)

 

AH 01 0.107 0.1260 0.85 0.30 3.920 13.69 0.0634 0.4660 0.8965 11.870 0.520 
AH 02 0.107 0.1070 1.00 0.35 3.920 9.99 0.0559 0.4362 0.8805 9.920 0.522 
AH 03 0.107 0.0750 1.43 0.50 3.920 5.15 0.0428 0.3772 0.8121 6.182 0.523 
AH 04 0.107 0.0540 1.98 0.70 3.920 2.91 0.0335 0.3339 0.7465 4.389 0.530 
AH 05 0.107 0.0430 2.49 0.88 3.920 2.01 0.0282 0.3113 0.6975 3.489 0.544 
AH 23 0.256 0.0849 3.01 1.06 3.920 15.53 0.0583 0.5374 0.9005 12.600 0.658 
AH 24 0.256 0.0638 4.01 1.42 3.920 9.68 0.0467 0.4755 0.8288 8.928 0.659 
AH 25 0.256 0.0511 5.00 1.77 3.920 6.71 0.0392 0.4285 0.7572 6.745 0.654 
AH 26 0.399 0.0667 5.99 2.12 3.920 20.05 0.0529 0.6449 0.9667 13.302 0.853 
AH 27 0.399 0.0568 7.03 2.49 3.920 15.76 0.0463 0.6080 0.9294 11.040 0.864 
AH 28 0.399 0.0500 8.00 2.83 3.920 12.99 0.0415 0.5787 0.8574 9.485 0.872 
AH 29 0.399 0.0443 9.03 3.19 3.920 10.83 0.0374 0.5515 0.8454 8.102 0.878 

AH 30 0.399 0.0400 9.99 3.53 3.920 9.30 0.0343 0.5291 0.7880 7.130 0.884 

S
m

oo
th

 

R
ou

gh
  (

R
2)

 

AH 09 0.121 0.1420 0.85 0.30 3.920 21.95 0.0714 0.5886 0.9633 14.730 0.619 

AH 10 0.121 0.1210 1.00 0.35 3.920 15.91 0.0632 0.5442 0.9497 12.210 0.612 

AH 11 0.121 0.0805 1.50 0.53 3.920 7.38 0.0465 0.4559 0.8802 7.429 0.607 

AH 12 0.121 0.0603 2.00 0.71 3.920 4.48 0.0375 0.4109 0.8264 5.396 0.617 

AH 13 0.121 0.0480 2.51 0.89 3.920 3.11 0.0316 0.3847 0.7784 4.257 0.638 

AH 17 0.272 0.0908 2.99 1.06 3.920 22.25 0.0623 0.6749 1.0406 15.880 0.798 

AH 18 0.272 0.0679 4.01 1.42 3.920 14.09 0.0497 0.6105 1.0240 11.210 0.820 

AH 19 0.272 0.0545 4.99 1.76 3.920 10.00 0.0418 0.5616 0.9292 8.655 0.830 

AH 31 0.416 0.0695 5.99 2.12 1.935 18.47 0.0551 0.5469 0.7338 11.610 0.708 

AH 32 0.416 0.0594 7.01 2.48 1.935 14.30 0.0483 0.5065 0.6979 9.605 0.704 

AH 33 0.416 0.0520 8.00 2.83 1.935 11.53 0.0432 0.4736 0.6461 7.691 0.699 

AH 34 0.416 0.0465 8.96 3.17 1.935 9.61 0.0393 0.4470 0.6147 6.598 0.695 

AH 35 0.416 0.0416 10.00 3.54 1.935 8.03 0.0357 0.4216 0.5720 5.623 0.690 

R
ou

gh
  

(R
1)

 
R

ou
gh

  
(R

1)
 AH 06 0.140 0.0940 1.49 0.53 3.920 8.02 0.0542 0.3643 1.4230 7.658 0.449 

AH 07 0.140 0.0700 2.00 0.71 3.920 4.43 0.0435 0.3013 1.4109 5.084 0.420 

AH 08 0.140 0.0562 2.50 0.88 3.920 2.82 0.0369 0.2551 1.2976 3.649 0.390 

R
ou

gh
  (

R
2)

 

R
ou

gh
  (

R
2)

 

AH 14 0.143 0.0953 1.50 0.53 3.920 9.50 0.0551 0.4175 1.4410 7.852 0.511 

AH 15 0.143 0.0717 2.00 0.71 3.920 5.33 0.0445 0.3453 1.3852 5.252 0.475 

AH 16 0.143 0.0570 2.52 0.89 3.920 3.31 0.0375 0.2900 1.2740 3.714 0.440 

AH 20 0.297 0.0742 4.00 1.41 3.920 11.78 0.0543 0.4283 1.6741 8.802 0.550 

AH 21 0.297 0.0596 4.98 1.76 3.920 7.86 0.0456 0.3700 1.5158 6.357 0.523 

AH 22 0.300 0.0495 6.06 2.14 3.920 5.58 0.0393 0.3223 1.3831 4.835 0.499 

AH 36 0.441 0.0589 7.49 2.65 4.030 11.43 0.0484 0.3884 1.6824 7.029 0.540 

AH 37 0.441 0.0519 8.50 3.01 4.030 9.01 0.0435 0.3524 1.5612 5.765 0.520 

AH 38 0.441 0.0442 9.98 3.53 4.030 6.66 0.0379 0.3107 1.4161 4.453 0.493 

 

Table (5-5): Al-Hamid’s test cases. 
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5.2.3.2 Considerations and assumptions 

Extracting Experimental Data 

As the digitized data of the mean velocity and bed shear stress distributions were not available 

for this data series, a code was generated in Visual Basic to digitize the plots of Al-Hamid’s 

(1991) thesis and extract the measured values.  For this purpose the related plots were scanned 

and loaded in AutoCad’s interface.  Then the code was run and the experimental data points 

were saved in an Excel ® spreadsheet.  It is appreciated that the procedure of scanning graphs 

and extracting the data, results in more uncertainty in measurements which might affect the 

final results. Although unavoidable, it is felt that these additional uncertainties are within the 

level of experimental error and hence their inclusion in the thesis is warranted. 

 

Panel Structure Selection 

Based on the considered hypothesis, the number and position of the panels for modelling a 

channel should be directly related to the number and size of secondary flow cells.  Since no 

accurate measurements of the transverse velocity component in differentially and uniformly 

roughened channels were available, a preliminary analysis was performed on all 38 cases and 

the sensitivity of the model to the number and position of panels was assessed.  The analysis 

revealed that regardless of the channel aspect ratio, a total number of four panels (two in the 

constant depth domain and two in the sloping sidewall domain) would result in the same level 

of optimality as a five panel structure for most cases.  Further thorough inspection of the 

model velocity and boundary shear stress distributions coupled by a trial and error procedure 

in the optimization algorithm unveiled that a slight shift in the position of panel boundaries 

would result in smoother and more accurate distributions especially in the rough wall region.  

The final selected panel structures are illustrated in Figure (5-15). 

a) Smooth bed and rough walls. b) Rough bed and rough walls. 
Figure (5-15): Selected panel structure for Al-Hamid’s data series. 
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Objective Functions 

Based on the availability of the mean velocity distributions, boundary shear stress 

distributions, total discharge and percentage of the shear force that act on the walls, the first 

two objective functions (Eqs. 4-9 & 4-10) were selected as the main optimization objective 

functions.  The latter two (Eqs. 4-11 & 4-12) were used for filtering the non-dominated Pareto 

solutions (Section 4.4.1). 

 

Shear Stress Calculation 

Abrupt changes in the values of local shear stress in physically roughened regions made the 

use of varied friction factor for calculating shear stress inevitable.  Furthermore, in the 

mentioned preliminary analysis for selecting the panel structure, when the channels were 

modelled with three panels in the bed area, the obtained optimum value for the third panel 

friction factor, f2, was found to be almost the average of f1 and f3.  This also confirmed the 

linear variation of friction in adjacent panels.  As a result, the friction was assumed to vary 

linearly in bed and wall regions (Figure (5-16)). 

 

 
Figure (5-16): Friction factor variations in differentially and uniformly roughened channels. 

 

5.2.3.3 Calibration results 

Tables (5-6 to 5-8) show the obtained optimal values of SKM parameters for Al-Hamid’s test 

cases after applying the calibration methodology.  The variation of these parameters against 

wetted perimeter ratio is illustrated in Figures (5-17 to 5-19).  Figure (5-20) also shows the 

simulated distributions of depth-averaged velocity and boundary shear stress for a 

differentially (Al-Hamid 27) and a uniformly (Al-Hamid 16) roughened test case. The lateral 

variation of these parameters in adjacent panels along with the experimental and simulated 
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distributions of depth-averaged velocity and boundary shear stress for all cases are provided 

in Appendix (IV.3).   

 

Al-Hamid  01 02 03 04 05 23 24 25 26 27 28 29 30 

2b/h 0.85 1.00 1.43 1.98 2.49 3.01 4.01 5.00 5.99 7.03 8.00 9.03 9.99 

Pb/Pw 0.60 0.71 1.01 1.40 1.76 2.13 2.83 3.54 4.23 4.97 5.65 6.38 7.06 

Panel 1 
f 0.0164 0.0192 0.0206 0.0220 0.0231 0.0197 0.0233 0.0229 0.0158 0.0165 0.0174 0.0183 0.0202

λ 0.23 0.28 0.39 0.51 0.53 0.65 0.88 0.65 0.69 0.31 0.55 0.32 0.37 

Γ 1.11 1.01 0.98 0.94 0.18 0.83 0.77 0.74 0.74 0.69 0.51 0.42 0.30 

Panel 2 
f 0.0151 0.0179 0.0199 0.0219 0.0221 0.0170 0.0199 0.0214 0.0142 0.0157 0.0141 0.0190 0.0174

λ 0.19 0.24 0.25 0.26 0.29 0.30 0.33 0.43 0.38 0.41 0.66 0.71 0.85 

Γ -0.21 -0.28 -0.41 -0.55 -0.43 -0.24 -0.28 -0.28 -0.23 -0.21 -0.16 -0.19 -0.10 

Panel 3 
f 0.1216 0.1081 0.1885 0.2689 0.4324 0.2432 0.3645 0.5270 0.2989 0.4334 0.3108 0.4459 0.4320

λ 0.24 0.38 0.56 0.73 0.85 0.57 0.80 0.99 0.76 0.57 0.80 0.73 1.7000

Γ 0.20 0.23 0.24 0.25 0.27 0.30 0.33 0.38 0.47 0.54 0.61 0.66 0.85 

Panel 4 
f 0.2432 0.2323 0.2777 0.3231 0.5231 0.4585 0.4864 0.7500 0.6104 0.8323 0.5674 0.7743 0.6081

λ 0.093 0.063 0.045 0.026 0.009 0.024 0.006 0.006 0.054 0.044 0.010 0.005 0.006 

Γ -0.54 -0.60 -0.63 -0.65 -0.73 -0.85 -1.28 -1.33 -1.48 -1.60 -1.84 -2.10 -2.52 

Table (5-6): The optimal parameter values in channels with smooth bed and R1 on the wall. 

 

 

Al-Hamid 09 10 11 12 13 17 18 19 31 32 33 34 35 

2b/h 0.85 1.00 1.50 2.00 2.51 2.99 4.01 4.99 5.99 7.01 8.00 8.96 10.00 

Pb/Pw 0.60 0.70 1.06 1.41 1.78 2.12 2.83 3.53 4.23 4.96 5.66 6.33 7.07 

Panel 1 
f 0.0149 0.0183 0.0218 0.0220 0.0249 0.0180 0.0201 0.0199 0.0153 0.0170 0.0164 0.0175 0.0188

λ 0.47 0.51 0.50 0.51 0.57 0.65 0.55 0.70 0.13 0.14 0.22 0.32 0.37 

Γ 1.25 1.18 1.07 0.84 0.78 0.74 0.68 0.56 0.52 0.36 0.26 0.18 0.15 

Panel 2 
f 0.0152 0.0174 0.0200 0.0216 0.0223 0.0166 0.0182 0.0191 0.0140 0.0151 0.0167 0.0174 0.0184

λ 0.11 0.19 0.20 0.24 0.24 0.25 0.30 0.37 0.36 0.62 0.66 0.74 0.78 

Γ -0.25 -0.22 -0.20 -0.24 -0.23 -0.26 -0.24 -0.24 -0.24 -0.22 -0.21 -0.25 -0.16 

Panel 3 
f 0.0709 0.0664 0.0733 0.1092 0.1081 0.1211 0.1621 0.1976 0.1150 0.1312 0.1778 0.2297 0.1867

λ 0.21 0.24 0.26 0.29 0.29 0.30 0.33 0.50 0.57 0.76 0.68 0.80 0.8990

Γ 0.14 0.16 0.18 0.22 0.24 0.24 0.30 0.40 0.61 0.70 0.93 1.14 1.31 

Panel 4 
f 0.1788 0.1891 0.2432 0.3054 0.2972 0.2702 0.2972 0.3513 0.2092 0.1942 0.2590 0.4039 0.4378

λ 0.102 0.068 0.036 0.034 0.036 0.032 0.010 0.020 0.018 0.018 0.006 0.017 0.016 

Γ -0.40 -0.48 -0.52 -0.59 -0.63 -1.22 -1.34 -1.40 -1.44 -1.41 -1.04 -0.85 -0.73 

Table (5-7): The optimal parameter values in channels with smooth bed and R2 on the wall. 
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Al-Hamid 06 07 08 14 15 16 20 21 22 36 37 38 

Roughness R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 

2b/h 1.49 2.00 2.50 1.50 2.00 2.52 4.00 4.98 6.06 7.49 8.50 9.98 

Pb/Pw 1.05 1.42 1.76 1.06 1.41 1.78 2.83 3.52 4.28 5.30 6.01 7.06 

Panel 1 
f 0.0904 0.1328 0.1453 0.0941 0.1152 0.1306 0.0803 0.0976 0.0989 0.0873 0.0963 0.1002

λ 0.32 0.38 0.45 0.46 0.51 0.59 0.60 0.63 0.69 1.37 1.45 1.63 

Γ -1.61 -1.54 -1.45 -1.41 -1.38 -1.27 -1.20 -0.83 -0.71 -0.67 -0.62 -0.42 

Panel 2 
f 0.1407 0.1845 0.2014 0.0852 0.1113 0.1464 0.1142 0.1012 0.1194 0.1214 0.1349 0.1452

λ 0.28 0.34 0.40 0.12 0.19 0.27 0.33 0.37 0.50 0.98 1.17 1.47 

Γ 0.22 0.18 0.24 0.18 0.19 0.24 0.19 0.22 0.20 0.24 0.20 0.22 

Panel 3 
f 0.1919 0.2443 0.2765 0.1133 0.1901 0.2543 0.2023 0.2636 0.2837 0.1539 0.1927 0.2147

λ 0.12 0.31 0.75 0.80 0.90 0.97 1.05 1.14 1.23 1.03 1.26 1.56 

Γ -0.27 -0.35 -0.42 -0.47 -0.76 -0.95 -1.13 -1.26 -1.65 -1.62 -1.90 -2.17 

Panel 4 
f 0.2192 0.1933 0.2264 0.1441 0.1988 0.2640 0.1345 0.1621 0.2229 0.2088 0.2031 0.2357

λ 0.543 0.650 0.730 0.852 0.331 0.730 0.899 0.930 0.966 0.919 1.265 1.354 

Γ 0.65 0.74 0.80 0.85 0.95 1.04 1.19 1.40 1.51 1.69 2.01 2.38 

Table (5-8): The optimal parameter values in channels with rough bed and wall. 

 

The following conclusions can be drawn based on Figures (5-17 to 5-20), Appendix (IV.3) 

and the individual panel values (Sharifi et al., 2009a): 

 

1- For all differentially roughened cases, visual observations indicate that the velocity and 

boundary shear stress magnitudes are reasonably well simulated.  In cases where the aspect 

ratio is less than 5, the calculated boundary shear in the rough wall region deviates from the 

measured data by up to 50% in certain regions.  This difference is mainly due to the shear 

stress measurement technique (Section 4.2.5) and other sources of uncertainty (e.g. averaging 

errors and digitizing errors). 
 

2- For uniformly roughened cases, the mean velocity is predicted well but the calculated shear 

stress distribution seems to be a reasonable fit to the measured values. 
 

3- For differentially roughened trapezoidal channels, Figures (5-17a and 5-17b) show that the 

value of the friction factor in the second bed panel, f2, is slightly lower than in the first panel, 

f1.  In the rough wall region the value of f increases significantly from the bed-wall 

intersection, f3, to its maximum at the channel edge, f4. 
 

4- Figures (5-17a and 5-17b) also show that the values of the friction factors in the sloping 

sidewall region panels, f3 and f4, of differentially roughened channels increase with an 

increase in the wetted perimeter ratio. 
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5- Generally, in the flat bed region, for the same aspect ratios, larger values of 1f  and 2f  are 

found for channels with rougher walls (R1).  As the aspect ratio increases, the difference 

between the values of 1f  and 2f in both channels decreases. 
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a) Smooth Bed and R1 on the wall ( 0.6 / 7.06b wP P≤ ≤ and So =3.920x10-3). 
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 (1.05 / 1.76b wP P≤ ≤ and So =3.920x10-3). 

d) R2 on bed and walls 
 (1.06 / 7.06b wP P≤ ≤ ). 

 

Figure (5-17): Friction factor vs. wetted perimeter ratio in differentially and uniformly 

roughened trapezoidal channels. 
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Figure (5-18): Dimensionless eddy viscosity vs. wetted perimeter ratio in differentially and 
uniformly roughened trapezoidal channels. 

 

6- Figure (5-17c) indicates that for uniformly roughened channels with R1 on the bed and 

walls and bed slope of 3.92x10-3, the friction factor in all panels increases almost linearly with 

the increase in the wetted perimeter ratio, with an exception in the last panel where the 

friction factor remains more or less constant.  Figure (5-17d) also shows a somewhat similar 

pattern for channels with R2 on the bed and walls and bed slope of 4.03x10-3.  In contrast, 

when the bed slope is reduced to 3.92x10-3 a general trend for the lateral variation of the 

friction factor cannot be recognized. 

7- The optimum values found for λ in the smooth bed region of partially roughened channels 

are again scattered.  This again implies that the model is not sensitive to λ in these smooth 

regions.  On the other hand, the model is very sensitive to the value of λ in the third and 

fourth panels.   

8- Figures (5-18c and 5-18d) indicate that in homogeneously roughened channels, the zonal 

dimensionless eddy viscosity, λ, increases with the increase in the wetted perimeter ratio, 

Pb/Pw. 
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Figure (5-19): Secondary flow term vs. wetted perimeter ratio in differentially and uniformly 
roughened trapezoidal channels. 

 

 

9- The best pattern for the sign of Γ in differentially roughened channels is found to be + - + - 

which is exactly the opposite pattern found for uniformly smooth and uniformly roughened 

channels.  This change in the sign of Γ can be interpreted as a change in the rotating direction 

of all the secondary flow cells. 
 

10- The lateral variation of the absolute optimum values of Γ is similar to that of uniformly 

roughened channels.  The absolute value of Γ in the second panel of all cases again converges 

to a value near 0.25 which is slightly different from the smooth cases.  The important 

difference is that the maximum value of Γ for differentially roughened channels does not 

appear in the final panel. 
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a) Al-Hamid 27 (smooth bed and R1 on the walls; h=0.057 m; 2b/h=7.03). 
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b) Al-Hamid 16 (R2 on the bed and walls; h=0.057 m; 2b/h=2.52). 

Figure (5-20): Distributions of depth-averaged velocity and boundary shear stress for a 

 a) differentially roughened  and b) uniformly roughened trapezoidal channel. 

 

5.2.4 Parameter guidelines 

The results of calibrating the model according to various trapezoidal datasets revealed how 

each of these parameters change with respect to aspect ratio and panel number.  Furthermore 

in order to add to the degree of applicability of the results, an attempt was made to provide 

general rules and guidance on choosing the appropriate values of f, λ and Γ in smooth 

homogeneous trapezoidal channels.  Based on this exploratory work, a set of equations is 

proposed which relate the values of f, λ and Γ in each panel to the channel’s wetted perimeter 

ratio (Tables (5-9 to11)).  It should be noted that for panels in which the model is not sensitive 

to the value of the zonal dimensionless eddy viscosity, a constant value of 0.6 is selected for 

this parameter.  These preliminary guidelines provide some practical rules in choosing the 

appropriate parameters for use in the SKM model. 
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Aspect ratio 
(2b/h) Panel A B 

0< Asp <3 

1 0.0196 0.2122 
2 0.0226 0.2976 
3 0.0240 0.2719 
4 0.0277 0.2846 

7.5< Asp <30 

1 0.0113 0.2369 
2 0.0117 0.2594 
3 0.0123 0.2799 
4 0.0114 0.3049 
5 0.0153 0.2545 

Table (5-9): Equations for finding the friction factor in the form of  f =A(Pb/Pw)B. 

  

Aspect ratio 
(2b/h) Panel A B 

0< Asp <3 

1 0 0.60 
2 0.4832 0.0054 
3 0.1773 0.6933 
4 0.2773 1.2965 

7.5< Asp <10 

1 0 0.60 
2 0 0.60 
3 0 0.60 
4 0.1442 -0.1822 
5 0.5754 -1.3427 

10< Asp <30 

1 0 0.60 
2 0 0.60 
3 0 0.60 
4 0.0107 0.3513 
5 0.0274 0.6583 

Table (5-10): Equations for finding the dimensionless eddy viscosity in the form of  

 λ = A (Pb/Pw) + B.  

Aspect ratio 
(2b/h) Panel A B 

0< Asp <3 

1 0.2739 -0.7593 
2 0 0.15 
3 0.7548 -0.9331 
4 -0.3911 1.0928 

7.5< Asp <10 

1 0.3459 -1.6026 
2 0 0.01 
3 -0.1712 0.6371 
4 0.1581 -1.2626 
5 -1.5306 6.0043 

10< Asp <30 

1 0.0465 -0.5221 
2 0 0.01 
3 -0.0024 0.0785 
4 0.0320 -0.7419 
5 -0.0689 0.9101 

Table (5-11): Equations for finding the secondary flow term in the form of 

  Γ = A (Pb/Pw) + B.  
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5.3 RECTANGULAR CHANNELS 

As discussed in Section 2.6.9.2, due to the formation of a different structure of secondary flow 

cells in rectangular channels (i.e. free-surface and bottom vortex), accurate modelling of the 

flow with a depth-averaged model is a difficult task.  In fact, the existence of two contra 

rotating cells at two depth levels results in a completely different transverse velocity 

distribution.  This phenomenon, along with the effects of a near vertical side-wall, directly 

affects the interpretation of all depth-averaged parameters in the model, especially the 

dimensionless eddy viscosity and secondary flow term.   

 

After building a calibration framework on the basis of flow in trapezoidal channels and 

calibrating homogeneous and heterogeneous trapezoidal channels, an attempt was made to 

assess the applicability of the developed methodology to rectangular channels.  Due to the low 

number of available test cases and different uncertainties, the focus was directed more to 

finding a suitable panel structure rather than studying the variation of SKM parameters. 

 

5.3.1 Introduction to the datasets 

Two simple rectangular datasets based on the experimental work of Knight et al. (1984a) and 

Tominaga et al. (1989) were analyzed in this research.  The first dataset included six test 

cases performed in a smooth rectangular channel in one of the University of Birmingham’s 

main flumes.  The channel width and bed slope were fixed at 2b=0.152m and S0=0.966x10-3 

respectively, and the depth was varied from 0.0858m to 0.1530m to get aspect ratios in the 

range of 0.99< 2b/h <1.77.  Tominaga’s dataset was limited to detailed measurements of 

depth-averaged velocity and boundary shear stress in a 0.4m wide simple channel for four 

different depths and bed slopes.  Since the measured discharge was not available for this set, 

the mean velocity profile was integrated to find the approximate values.  Table (5-12) shows a 

summary of the test cases in both datasets.  Figure (5-21) also shows the stage-discharge 

curve for the first dataset. 
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Test case 
2b h 

2b/h Pb/Pw 
S0 Q  R Uavr τavr Re 

Fr 
(m) (m) (x10-3 ) (ls-1) (m) (m.s-1) (N.m-2) ( x104 ) 

DWK 01 0.152 0.0858 1.77 0.89 0.966 4.80 0.0403 0.3681 0.3908 6.484 0.401 
DWK 02 0.152 0.0970 1.57 0.78 0.966 5.60 0.0426 0.3798 0.4124 7.075 0.389 
DWK 03 0.152 0.1026 1.48 0.74 0.966 6.07 0.0437 0.3892 0.4370 7.429 0.388 
DWK 04 0.152 0.1136 1.34 0.67 0.966 7.00 0.0455 0.4054 0.4644 8.070 0.384 
DWK 05 0.152 0.1259 1.21 0.60 0.966 8.00 0.0474 0.4180 0.4745 8.661 0.376 
DWK 06 0.152 0.1530 0.99 0.50 0.966 9.85 0.0508 0.4235 0.4744 9.402 0.346 

AP1001 0.400 0.0653 6.13 3.06 0.802 9.85 0.0492 0.3772 0.3969 8.118 0.471 
AP1002 0.400 0.0499 8.02 4.01 0.641 5.81 0.0399 0.2909 0.2638 5.079 0.416 
AP1601 0.400 0.0663 6.03 3.02 1.160 9.25 0.0498 0.3490 0.5824 7.596 0.433 
AP1602 0.400 0.0496 8.06 4.03 1.130 5.87 0.0397 0.2958 0.4570 5.139 0.424 

Table (5-12): Knight et al. (1984a) test cases. 
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Figure (5-21): Stage-discharge curve for Knight et al. (1984a) dataset. 

 

5.3.2 Modelling the flow with one panel 

The first attempt was made to investigate the possibility of modelling flow accurately by 

considering half of the symmetrical channel as one panel.  The first two objective functions 

were minimized simultaneously in order to find the best fits for the lateral mean velocity and 

boundary shear stress.  Figure (5-22) illustrates the Pareto front found for a typical case.  The 

shape of the Pareto indicates that there are two main clusters of solutions: a) solutions which 

result in almost the same value for the first objective function and consequently the best mean 

velocity distribution (shown with circles) and b) solutions which result in almost the same 

value for the second objective function (shown with crosses).  Accordingly all the solutions in 

this cluster result in good boundary shear stress distributions.  Under these conditions, the 

solution that had the least Euclidian distance from the origin and resulted in the overall best 

distributions of mean velocity and boundary shear stress was selected as the “best solution”.  
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Table (5-13) shows the obtained optimum values of f, λ and Γ for each case and the relative 

objective function values.  The variation of optimum friction and secondary flow term with 

wetted perimeter ratio is illustrated in Figure (5-23).  Figures (5-24 & 5-25) show the SKM 

predicted and measured mean velocity distribution for DWK01 and AP1001 respectively. 
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Figure (5-22): Pareto front of a typical rectangular case. 

 

Test case h 2b/h Pb/Pw Q f λ Γ f1(X) f2(X) Err Q Err %SFw 

(m)   (l.s-1)      % % 
DWK01 0.0858 1.77 0.89 4.80 0.0238 0.001 0.38 0.0066 0.0483 4.27 2.13 
DWK02 0.0970 1.57 0.78 5.60 0.0235 0.001 0.46 0.0086 0.0567 4.84 2.48 
DWK03 0.1026 1.48 0.74 6.07 0.0239 0.001 0.49 0.0121 0.0805 5.37 3.38 
DWK04 0.1136 1.34 0.67 7.00 0.0233 0.001 0.55 0.0118 0.0727 5.07 2.37 
DWK05 0.1259 1.21 0.60 8.00 0.0213 0.001 0.65 0.0222 0.0999 3.78 3.16 
DWK06 0.1530 0.99 0.50 9.85 0.0205 0.001 0.89 0.0213 0.0794 3.75 2.47 

AP1001 0.0653 6.13 3.06 9.25 0.0192 0.003 0.10 0.0075 0.0158 5.36 5.46 

AP1002 0.0499 8.02 4.01 5.87 0.0208 0.018 0.02 0.0045 0.0109 7.46 19.68 

AP1601 0.0663 6.03 3.02 9.85 0.0321 0.008 0.13 0.0061 0.0451 6.39 6.24 

AP1602 0.0496 8.06 4.03 5.81 0.0350 0.024 0.05 0.0022 0.0170 6.50 12.47 

Table (5-13): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with on panel. 
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Figure (5-23): Variation of f and Γ vs. wetted parameter ratio in rectangular cases modelled 

with one panel. 
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Figure (5-24): Mean velocity and Boundary shear distributions for case DWK01. 
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Figure (5-25): Mean velocity and Boundary shear distributions for case AP1001. 

 

The following main observations can be made from the presented results:  
 

1- The optimum dimensionless eddy viscosity for all Knight’s cases is found as 0.001.  This is 

the defined lower bound for this parameter. 
 

2- The optimum secondary flow term is positive in all cases. 
 

3- With increase in the wetted perimeter ratio (Pb/Pw), the friction factor increases and the 

secondary flow term decreases. 
 

4- The simulated depth-averaged velocity magnitudes are reasonable but the boundary shear 

stress simulations have poor quality, particularly at greater depths. 
 

5- The predicted discharge and %SFw for Knight’s cases are within almost 5 percent of the 

measured values.  For Tominga’s cases the predicted discharge is acceptable but %SFw 

predictions are not acceptable.  This is due to not capturing the sudden dip in the boundary 

shear stress distribution near the side-walls. 
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In conclusion, one panel seems to be insufficient for accurate modelling and more panels 

should be considered. 

 

5.3.3 Modelling the flow with two panels 

5.3.3.1 Two identically spaced panels 

The calibration procedure was continued by considering two identical panels for half of the 

symmetrical channel.  The same shape was found for the Pareto front of all cases and again 

the solution with the minimum Euclidian distance was selected as the best solution.  Table (5-

14) shows the calibration results and the variation of SKM parameters are illustrated in Figure 

(5-26). 
 

Test 
case 2b/h Pb/Pw 

Panel 1 Panel 2 
f1(X) f2(X) 

Err Q Err %SFw 

f λ Γ f λ Γ % % 

DWK01 1.77 0.89 0.0215 1.37 0.52 0.0215 0.005 0.01 0.0113 0.0605 1.12 4.93 
DWK02 1.57 0.78 0.0212 1.29 0.67 0.0220 0.005 -0.12 0.0128 0.0636 0.90 2.87 
DWK03 1.48 0.74 0.0215 2.19 0.72 0.0223 0.005 -0.19 0.0151 0.0842 1.30 3.76 
DWK04 1.34 0.67 0.0226 1.58 0.91 0.0214 0.005 -0.45 0.0220 0.0634 1.73 1.73 
DWK05 1.21 0.60 0.0209 1.09 1.12 0.0200 0.005 -0.64 0.0282 0.0843 0.85 2.27 
DWK06 0.99 0.50 0.0204 0.25 1.45 0.0202 0.005 -0.83 0.0247 0.0568 1.67 1.26 

AP1001 6.13 3.06 0.0199 2.25 0.07 0.0198 0.005 0.11 0.0044 0.0195 3.97 8.43 

AP1002 8.02 4.01 0.0199 1.73 0.00 0.0214 0.006 0.07 0.0016 0.0028 8.27 20.09 

AP1601 6.03 3.02 0.0318 2.18 0.08 0.0353 0.005 0.20 0.0024 0.0131 4.78 8.67 

AP1602 8.06 4.03 0.0336 0.33 0.02 0.0366 0.012 0.11 0.0012 0.0079 6.98 13.77 

Table (5-14): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with two identical panels. 

 

Comparing Tables (5-13) and (5-14), it is observed that for Knight’s cases, considering two 

identical panels results in higher values of the first objective function (worse predictions of 

mean velocity distribution), but lower errors in estimating the discharge.  For Tominaga’s 

cases, the objective functions have lower values but the errors in estimating %SFw increase.  It 

is also observed that the values of λ in the second panel tend to the lower bound of the defined 

range (0.005) and its values in the first panel seem to be scattered.  This indicates that the 

model is not sensitive to the value of this parameter in the first panel and any 1 0.1λ ≥  would 

result in same distributions.  The secondary flow term is found to be positive and negative for 
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the first and second panels respectively.  The variation of f does not seem to follow a certain 

pattern but the absolute value of  Γ decreases linearly with the increase in the aspect ratio. 
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(c) Secondary flow term. 

Figure (5-26): Variation of f, λ and Γ vs. wetted parameter ratio in rectangular cases modelled 

with two identical panels. 

 

5.3.3.2 Two differentially spaced panels (80:20 split) 

If the local value of the friction factor, f, is back calculated from the boundary shear stress 

profile using the Darcy-Weisbach equation ( 2( / 8) df Uτ ρ= ) and its lateral variation is 

plotted (Figure (5-27)), it can be observed that f slightly increases from its lowest value at the 

channel centerline until nearly 80% of the channel width.  Afterwards, f increases 

dramatically with a steep gradient, to its maximum value at the channel side-wall.  Further 

investigation of the secondary flow cell structures in rectangular channels (Figures 2-12 & 2-

13), also indicates that the velocity mixture of free-surface and bottom vortices in the last 

20% of the channel width is different from the rest of the channel.  Based on these 
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observations, the panel division line was moved to 80% of the channels width and the model 

calibration was performed.  Table (5-15) shows the calibration results. 
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Figure (5-27): Lateral variation of the back-calculated friction factor for case AP1001. 

 

Test 
case 2b/h Pb/Pw 

Panel 1 Panel 2 
f1(X) f2(X) 

Err Q Err %SFw 

f λ Γ f λ Γ % % 

DWK01 1.77 0.89 0.0210 0.01 0.40 0.0500 0.005 -1.44 0.0026 0.0008 0.50 8.51 
DWK02 1.57 0.78 0.0208 0.01 0.48 0.0500 0.005 -1.97 0.0024 0.0011 0.55 7.93 
DWK03 1.48 0.74 0.0215 0.89 0.47 0.0500 0.005 -2.43 0.0066 0.0005 0.65 9.41 
DWK04 1.34 0.67 0.0209 0.05 0.42 0.0500 0.005 -2.13 0.0053 0.0032 0.90 7.45 
DWK05 1.21 0.60 0.0196 1.51 0.42 0.0477 0.005 -2.46 0.0124 0.0023 0.66 6.01 
DWK06 0.99 0.50 0.0197 0.06 0.45 0.0482 0.005 -2.50 0.0111 0.0028 1.25 4.99 

AP1001 6.13 3.06 0.0185 3.27 -1.08 0.0234 0.182 2.13 0.0022 0.0021 6.85 5.73 

AP1002 8.02 4.01 0.0203 1.47 -0.31 0.0246 0.240 -1.84 0.0009 0.0008 7.98 16.60 

AP1601 6.03 3.02 0.0315 2.65 0.08 0.0359 0.005 0.21 0.0024 0.0129 4.85 9.41 

AP1602 8.06 4.03 0.0343 0.13 0.00 0.0059 0.124 -2.90 0.0023 0.0044 8.46 13.47 

Table (5-15): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with two panels (80:20). 

 

The results show remarkable improvements in the values of f1(X), f2(X) for both datasets.  

However, the discharge estimation error has been reduced only for Knight’s experiments and 

higher levels of accuracy have been reached for %SFw predictions in Tominaga’s dataset. 

 

Reaching higher levels of optimality by changing the panel boundary position to 80% of the 

width was encouraging.  By modifying the calibration code, the location of panel division line 

was added to the variable set.  The calibration code was then run for all cases to find optimum 

SKM parameters and panel size.  The calibration results revealed that for most cases, the 

panel position line lies between 83% and 96% of the channel width.  This causes the values of 
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all objectives to decrease greatly.  Figure (5-28) shows the mean velocity and boundary shear 

stress distribution for a selected case.  This figure shows that both the simulated depth-

averaged velocity and boundary shear stress magnitudes are reasonable, however, the 

measured lateral inflections related to the secondary currents are still not perfectly captured. 
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Figure (5-28): Mean velocity and Boundary shear distributions for case AP1001. 
 

5.3.4 Modelling the flow with four panels 

A final attempt was made to investigate the effects of using four equally spaced panels on the 

optimality level.  The results (Table (5-16)) revealed that this assumption not only does not 

improve the minimization of f1(X), f2(X) and discharge estimation error, but also increases the 

errors of %SFw estimations for all cases.  Furthermore as the degrees of freedom increase by 

adding additional panels, the model becomes insensitive to many of its parameters.   
 

Test 
case 2b/h Pb/Pw f1(X) f2(X) Err Q Err %SFw 

% % 
DWK01 1.77 0.89 0.0054 0.0005 0.66 15.74 
DWK02 1.57 0.78 0.0029 0.0009 0.53 12.42 
DWK03 1.48 0.74 0.0042 0.0013 0.84 14.75 
DWK04 1.34 0.67 0.0047 0.0025 0.84 12.21 
DWK05 1.21 0.60 0.0130 0.0031 0.61 10.47 
DWK06 0.99 0.50 0.0147 0.0017 1.24 7.55 

AP1001 6.13 3.06 0.0029 0.0018 6.59 9.30 

AP1002 8.02 4.01 0.0005 0.0006 8.42 16.72 

AP1601 6.03 3.02 0.0024 0.0043 6.91 12.76 

AP1602 8.06 4.03 0.0010 0.0011 7.63 15.11 

Table (5-16): Optimum parameters values and the relative objective function values for 

rectangular cases modelled with two panels. 

 

Comparing the results of modelling rectangular channels with different panel settings, a two 

panel structure which divides half of the symmetric channel to 80% and 20% of its width was 
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found to reach the highest level of optimality and be the most suitable structure for modelling 

all rectangular cases.  The predicted mean velocity and boundary shear stress distributions of 

all cases modelled with this panel structure are provided in Appendix (IV.4) 

 

5.4 RIVERS 

Continuing the calibration of the SKM for channels with simple cross sections, the calibration 

framework was applied to a number of natural rivers with inbank flow.  This was an attempt 

to show the capability of SKM for modelling flows in rivers and also the effectiveness of the 

calibration framework for more complicated channel sections.  In addition, the variations of 

the SKM parameters were investigated in a section where the mean velocity distribution was 

available for different depths. 

 

5.4.1 Introduction to the datasets 

Measurements relating to three rivers in the UK, (i.e. River Severn at Montford Bridge 

(Knight, 1989b); River Main at Bridge End Bridge (Myers and Lyness, 1989); River Trent, 

North Muskham (Knight, 1989b)), two rivers in Argentina (i.e. River Colorado and River La 

Suela (McGahey, 2006)) and two rivers in Ecuador (i.e. River Cuenca and River Tomebamba 

(McGahey, 2006)) were used in this research.  All river cross sections were located at straight 

reaches and the mean velocity distribution and discharge measurements were available for 

inbank flow conditions.  The detailed velocity measurements were normally made using an 

Acoustic Doppler Velocity (ADV) meter or a cable supported directional current meter.  

Among all the named rivers, measurements for different depths were only available for two 

rivers: River Colorado and River La Suela.  For more information relating to the river 

locations, specifications, previous studies and measurement techniques the reader is referred 

to McGahey, (2006). 

 

5.4.2 Considerations and assumptions 

Panel structure selection 

Since there were no data regarding the size and position of the secondary flow cells and also 

the shear stress measurements, it was felt that an 8 panel structure was sufficient for 
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simulating flow in all river sections.  For each section, the position and size of the panels were 

selected in a way that mostly all panels could have a constant side slope and cover nearly the 

same proportion of the channel.  In the case of channels with different depths, the two panels 

located at the channel sides were modified to satisfy the conditions and the remaining panels 

were kept the same.  Figure (5-29) shows a typical river section and the defined boundary 

division lines.  It is acknowledged that extra panels could have been used to reach higher 

levels of optimality.  However, since each panel imposes three unknown parameters (i.e. three 

extra degrees of freedom or three extra dimensions in the search space), based on the quantity 

and quality of the available measurements, it is unlikely that the additional panels would give 

any extra information regarding the flow or the SKM parameters. 

 

 
 Figure (5-29): Surveyed cross section of river Colorado and the defined panels. 

 

Objective functions 

Since only the measurements of mean velocity distribution and discharge were available, the 

first and third objectives (Eqs. 4-9 & 4-11) were selected as the objective functions. 

 

5.4.3 River Colorado 

For the current purposes, the most reliable and useful dataset were the measurements made in 

River Colorado in Argentina (Figure (5-30)).  The main channel of this section of the river is 

around 60m wide, 3.6m deep with an average longitudinal bed slope of 0.0013.  The surveyed 

cross section is shown in Figure (5-29).  The mean velocity profile and discharge 

measurements were available for 10 different depths between 1.9m and 3.7m.   
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(a) Downstream view (b) Cross river view  

Figure (5-30): River Colorado (McGahey, 2006). 

 

The calibration results for different depths of this cross section is shown in Table (5-17).  In 

this table, the channel top width, T, and the ratio of T/h are used rather than cross-section 

width and aspect ratio (2b/h), respectively.  The simulated and measured depth-averaged 

velocity profiles for the lowest and highest depths are shown in Figure (5-31). The remaining 

profiles regarding other depths are provided in Appendix (IV.5.1). 
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Figure (5-31): Measured and simulated depth-averaged velocity distribution for  

River Colorado 04 (h=2.190m) 
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Colorado 01 02 03 04 05 06 07 08 09 10 

T 62.56 62.74 62.85 63.17 63.21 63.35 63.80 64.64 65.26 66.29 

h 1.90 1.98 2.04 2.19 2.21 2.28 2.49 2.90 3.20 3.69 

T/h 32.93 31.62 30.81 28.84 28.60 27.79 25.58 22.30 20.41 17.97 

Q (m3.s-1) 90.15 100.62 108.56 128.90 132.27 144.58 181.98 267.15 331.03 449.57 

Panel 1 
f 0.1230 0.1278 0.1212 0.1228 0.0984 0.1233 0.1351 0.1622 0.1843 0.2127 

λ 3.20 2.73 3.24 1.77 3.38 2.43 2.38 1.75 1.50 1.64 

Γ 3.27 3.08 3.06 2.56 3.16 3.15 3.17 3.15 3.12 2.65 

Panel 2 
f 0.4351 0.4000 0.3741 0.3517 0.3304 0.2777 0.2226 0.1315 0.1322 0.1182 

λ 1.01 2.14 2.68 1.86 1.69 1.58 2.47 1.14 2.81 1.62 

Γ -3.15 -1.57 -3.36 -2.77 -2.25 -4.26 -4.23 -0.60 -2.98 -0.73 

Panel 3 
f 0.2029 0.1891 0.1623 0.1584 0.1425 0.1232 0.0991 0.0318 0.0175 0.0379 

λ 1.54 2.35 2.11 0.71 2.02 1.30 1.53 1.03 3.37 1.73 

Γ 1.20 1.40 2.93 0.62 3.73 4.29 1.63 4.32 0.51 2.03 

Panel 4 
f 0.0906 0.0855 0.0805 0.0844 0.0697 0.0566 0.0559 0.0585 0.0513 0.0337 

λ 4.39 4.05 4.30 4.17 4.20 3.13 3.54 1.91 2.08 1.68 

Γ -2.87 -2.23 -2.46 -2.67 -3.54 -3.96 -2.46 -4.50 -2.77 -2.72 

Panel 5 
f 0.0518 0.0456 0.0355 0.0290 0.0373 0.0333 0.0294 0.0280 0.0324 0.0250 

λ 2.17 3.26 3.47 3.75 3.10 2.91 2.95 1.88 2.33 1.91 

Γ 3.14 1.80 3.41 1.96 1.18 3.70 0.62 1.39 2.50 1.94 

Panel 6 
f 0.0593 0.0633 0.0546 0.0545 0.0466 0.0420 0.0324 0.0259 0.0107 0.0098 

λ 2.72 3.64 2.96 2.24 3.41 2.68 3.75 3.32 2.43 3.66 

Γ -3.46 -3.95 -3.28 -4.00 -2.48 -2.26 -3.52 -3.84 -1.78 -2.32 

Panel 7 
f 0.0761 0.0752 0.0746 0.0957 0.0631 0.0644 0.0794 0.0803 0.0770 0.0819 

λ 1.31 1.43 1.01 1.01 2.09 2.63 1.96 2.09 2.44 1.76 

Γ 1.32 2.40 1.49 1.09 4.00 1.78 1.23 2.23 2.32 3.38 

Panel 8 
f 0.2350 0.2613 0.2041 0.2695 0.2972 0.3288 0.3177 0.2484 0.2850 0.2345 

λ 2.90 3.78 3.80 3.12 3.48 1.86 1.37 2.25 3.49 2.41 

Γ -1.45 -0.73 -0.31 -2.27 -2.04 -2.96 -2.58 -2.78 -1.89 -2.28 

Table (5-17): Optimum parameter values for river Colorado dataset. 

 

The Figures reveal that the mean velocity and discharge is well predicted throughout the 

whole range of flow depths.  From the optimum values of SKM parameters in Table (5-17) it 

can be deduced that the lateral variation of friction follows a similar trend for all depths but 

the dimensionless eddy viscosity and secondary flow values are scattered and no explicit 

relationship can be found for their variation.  This might be an indication of the independency 

of friction to panel structure, and dependency of interpretable lumped dimensionless eddy 

viscosity and secondary flow term values. Figures (5-32 & 5-33) show the lateral variation of 

friction against T/h and panel number, respectively.  The following conclusions can be 

derived from these Figures:  
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Figure (5-32): Friction factor vs. T/h for River Colorado. 
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Figure (5-33): Friction factor vs. panel number for River Colorado. 

 
1- The friction factor in the left side-wall panel decreases with the decrease of depth.  

Moreover, the variation of this parameter in the right side-wall panel seems to have no 

particular relation with depth.  These observations might be a result of altering the dimensions 

of these two panels with depth changes.    
 

2- Except for the first (utmost left) and last (utmost right) side-wall panels, the value of zonal 

friction in all panels increases with the increase in T/h (decrease of depth).  This is similar to 

the observations of trapezoidal and rectangular channels. 
 

3- As the right side-wall is approached the gradient of the variation of friction decreases.  This 

might be related to the geometry of the cross-section. 
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4- For depths below 2.90m (C01-C07), the value of the friction factor increases suddenly 

from the first panel to its highest value at the second panel.  The friction then drops to a value 

almost equal to f1 in the third panel and then continues decreasing to the fifth panel where it 

obtains its lowest value.  Again, it starts to increase gradually to its value in the seventh panel 

and finally increases suddenly to a value between 0.20 and 0.33 in the right side-wall panel. 
 

5- For higher depths (h>2.90), the lateral variation of f follows a similar trend except for that 

in the second panel, the friction has a lower value than the first panel.  As mentioned, this 

might be the effect of changing the first panel size with changes in depth. 

 

5.4.4 River La Suela 

Another river section where mean velocity measurements were available for various inbank 

depths was the River La Suela in Argentina (Figure (5-34)).  This section of the river was 

approximately 25m wide, 2m deep with a reach-averaged longitudinal bed slope of 0.001355.  

It is noticeable that the measurements in this dataset were not as reliable as for the River 

Colorado: for many depths, the measured discharge was up to 25% different from its value 

calculated from integrating the measured velocity profile.  Furthermore, the number and 

location of collected data points for different depths varied significantly.  This might be due to 

the geometry or different seasonal vegetation at the time of performing the measurements. 

 

 
Figure (5-34): River La Suela (McGahey, 2006). 

 

The predictions of the calibrated SKM along with the measured velocity profile are provided 

in Appendix (IV.5.2).  The Figures show good predictions of mean velocity and discharge 

throughout the whole range of flow depths.  However, analyzing the optimum parameter 
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values, no specific trend could be observed for the variation of SKM parameters.  Existence of 

various sources of uncertainty and also the assumed panel structure might be the reason 

behind this. 

 

5.4.5 Other rivers  

In addition to the River Colorado and the River La Suela, the calibration framework was 

applied to five other river sections: River Main at Bridge End Bridge (Myers & Lyness, 

1989), River Severn at Montford Bridge (Knight, 1989b), River Trent, North Muskham 

(Knight, 1989b)), River Cuenca and River Tomebamba (McGahey, 2006).  The first three 

rivers are inland rivers located in UK and the latter two are mountain rivers in Ecuador 

characterized by large boulders (approximately between 1 to1.3m in diameter) (McGahey, 

2006).  Other than the River Main, where measurements regarding two inbank flows were 

available, the remaining sections had only measurements for one inbank depth, making any 

generalized conclusions about the parameter variations impossible.  The calibration results are 

provided in Appendix (IV.5.3).  Again, the SKM simulates the measured data fairly well for 

all rivers.  These promising results show the ability of SKM for simulating the flow over 

different sources of roughness (i.e. vegetation and boulders). 

 

5.5 DISCUSSION 

Accomplishing the multi-objective calibration of SKM for all available inbank channel and 

river datasets, an attempt was made to investigate the advantages of the proposed approach 

over previous calibration attempts.  Furthermore, a cross-referencing analysis was performed 

to verify the obtained values of individual SKM parameters.   

 

5.5.1 Advantages of the calibration approach 

As mentioned in Section 2.6.5 a number of attempts had been previously made to calibrate 

SKM for inbank and overbank conditions using simple optimization techniques (e.g. 

exhausting search method, simple stochastic search method and visualization).  In order to 

demonstrate the advantages of the multi-objective approach over previous calibration 

attempts, a comparison was made with two examples taken from Knight et al. (2007).  Figure 
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(5-35) shows the depth averaged velocity and boundary shear stress distributions for two 

smooth homogeneous test cases along with the calculated values of the four objective 

functions (Eqs. 4-19 to 4-12). 

 

Furthermore, the calibration results were compared with those of the CES model (McGahey,  

2006) (which shares the same internal parameters with SKM) for two river test cases.  Figure 

(5-36) shows this comparison.  Figure (5-37) also compares the absolute errors in discharge 

prediction between SKM and CES results.  It is observed that the predictions of the SKM 

calibrated with the NSGA-II algorithm, not only gives slightly better results in terms of both 

the general shape of the distributions and values of the objective functions, but is also an 

semi-automated process and does not rely on ‘fitting by eye’.  This ability makes it suitable for 

applying it to many datasets with ease. 
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Figure (5-35): Comparing the predictions of the calibrated SKM with two examples taken 

from Knight et al. (2007). 
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Figure (5-36): Comparing the predictions of the calibrated SKM with the calibrated CES 

(McGahey, 2006) for two river sections. 
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Figure (5-37): Comparing SKM and CES absolute errors in discharge predictions for different 

depths of River Colorado. 

 

5.5.2 Friction factor 

The lateral variation of the obtained optimum friction factors for both channels and rivers 

showed that the value of friction always increases in shallower regions.  Assuming a constant 

value of ks for the channel, this can be explained by using the Colebrook-White (1937) 

equation (Eq. 2.87). 

 

Selecting the integration coefficients as C10=12.27, C11=3.09 and C12=-2.03 (see Section 2.6.7 

and Table (2-2)), and using an equivalent sand roughness of 0.05 mm, the averaged friction 
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values were calculated for all test cases of Yuen’s data (Figure (5-38)).  It is observed that for 

a constant bed slope, as the depth increases, R and Re increase and hence the value of f 

decreases.  This conclusion can be extended to the value of zonal friction at shallow regions.  

Generally, as one moves towards the channel sidewall the velocity decreases and thus Re 

decreases and, as implied by Figure (5-38), the friction increases. 
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Figure (5-38): Variation of average friction factor with depth in Yuen’s test cases 

 

5.5.3 Dimensionless eddy viscosity 

As shown for all investigated channels, the value of the dimensionless eddy viscosity did not 

appear to follow any specific pattern in the panels positioned in the constant depth region.  

This implies that the model is not sensitive to the value of this parameter in this region.  In 

contrast, the model is sensitive to λ values in the side wall regions, and as a result the value of 

this parameter rapidly converges close to its final value during the optimization procedure. 

 

Figure (5-39) shows the response surface of the first two objective functions in the parameter 

sub-space for a typical trapezoidal case.  Here, only the value of λ in the side-wall regions 

(third and fourth panel) is changed and for the remaining parameters, their obtained optimum 

values are used.  The analysis of these surfaces confirms previous findings by showing that 

the first objective function (predictions of mean velocity distribution) is not sensitive to either 

of the parameters, but for the second objective function (prediction of boundary shear stress) 

λ4 converges to its optimum value (between 0.006 and 0.015 for different test cases) while λ3 

becomes more influential. 
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a) First objective function, f1(X) b) Second objective function, f2(X) 

Figure (5-39): Sensitivity of SKM to the values of λ3 and λ4 for Al-Hamid 05. 

 

5.5.4 Secondary flow term 

The following main conclusions were drawn from analyzing the variation of the secondary 

flow term in different datasets: 

 

• Analyzing the clusters of solutions on the obtained Pareto front and cross-referencing 

the distributions of mean velocity and boundary shear of test cases in each dataset, the 

pattern of negative and positive values for Γ in adjacent panels was found as the optimum 

pattern for uniformly roughened trapezoidal channels.  This agrees well with the findings 

of Knight et al. (2007) and justifies the optimum values found for Γ in the defined panels. 

• For partially roughened channels (smooth bed and rough wall), the optimum sign 

pattern is completely reversed.  This might be an indication of a change in the direction of 

the contra rotating secondary flow cells.   

• Generally, higher values of Γ are found for the panels in the sidewall region.  This 

implies high levels of circulation in these regions, which is consistent with the findings 

obtained from physical modelling (see Section 2.6.9). 

• Boundary shear stress and velocity distributions were found to be more affected by the 

secondary currents and boundary roughness in differentially roughened channels than in 

uniformly roughened ones. 
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5.6 SUMMARY 

Applying the calibration framework, the SKM was calibrated for a range of simple 

trapezoidal channels (Sections 5.2), rectangular channels (Section 5.3) and a few natural 

rivers (Section 5.4).  Plotting the individual optimum model parameters against the panel 

number enabled the assessment of the lateral variation of each parameter.  Furthermore, the 

effect of depth change on each parameter was studied by plotting the optimum model 

parameters versus Pb/Pw and versus T/h in channels and rivers, respectively.  The major 

general findings can be summarized as follows: 

 

• The value of the friction factor in shallower regions of channels and rivers is higher 

than its value in deeper regions. 

• For the same channel geometry and bed slope, the increase in the mean depth causes 

the values of the local friction to decrease. 

• The SKM is not sensitive to the dimensionless eddy viscosity, especially in flat bed 

regions. 

• In trapezoidal channels, the optimum sign pattern of the secondary flow term is 

negative and positive in adjacent panels, which is in line with the assumptions made for 

choosing the panel structure. 

• Generally, higher values of the secondary flow term are found for the panels in the 

sidewall region which implies high levels of circulation in these regions. 

• A two panel structure (allocating 80% of half the symmetric channel width to the first 

panel and the remaining 20% to the second panel) seems to be the most suitable panel 

structure for modelling flows in rectangular channels.  

• The SKM is capable of modelling flows in rivers with different roughnesses if an 8 

panel structure is adopted. 

• The calibration framework is applicable to complicated channel sections such as 

natural rivers. 

• The values of the friction factor seem to be less dependent on the panel structure, 

while the depth-averaged lumped values of λ and Γ are highly affected by the panel 

structure.  This emphasizes the importance of panel structure selection. 
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In Section 5.2.4 an attempt was made to generalize the calibrated parameter values of similar 

smooth trapezoidal channels by deriving relationships between the “immeasurable” 

parameters and the individual characteristics of channels (Pb/Pw).  This enhances the 

capability of the model to be applied to any other similar channel.  Once the calibration 

procedure is applied to a complete set of experiments, more accurate and useful rules can be 

generated. 

 

After the calibration, a physical explanation was discovered for the friction factor.  But it 

seems that due to the ill-posed conditions of the model, other parameters which are the result 

of time or space averaging might have lost some degree of interpretation.  As the scope of this 

part of the research was limited to developing a calibration framework, a number of solutions 

and guidelines will be provided in Chapter 8 for overcoming this problem of lack of 

identifiability. 

  



CHAPTER 6 – Genetic Computation: An Efficient Tool for Knowledge Discovery 

 

CHAPTER 6 

 
GENETIC COMPUTATION: AN EFFICIENT TOOL 
FOR KNOWLEDGE DISCOVERY 
 

6.1 INTRODUCTION 

In Chapter 4, a multi-objective genetic algorithm (NSGA-II) was used to develop an effective 

calibration framework for the SKM model and its application to different channels and river 

sections with inbank flow was presented in Chapter 5.  In this Chapter, a completely different 

application of evolutionary computation (EC) to a classic open channel flow problem is 

proposed: Genetic Programming (GP) (Section 3.4.4) is employed as an effective data mining 

tool in the procedure of developing a conceptual transparent model of the physical process of 

the free overfall (Section 2.7).   

 

This chapter is composed of three main sections.  The first section is devoted to the proposed 

methodology of the knowledge discovery process; data preprocessing, tuning the GP 

algorithm and model selection methodology are the subjects covered.  The second section 

shows the results of applying the knowledge discovery process to experimental data extracted 

from earlier studies reported in the literature.  This section introduces the free overfall 

problem and applies the knowledge discovery process to experimental data relating to three 

different cross-sectional shapes (i.e. flat bed circular channels, rectangular channels and 

trapezoidal channels).  The section ends with investigating the applicability of the “best” fit 

model to channels with other cross-sections (i.e. inverted semi-circular, Δ-shaped, U-shaped 

and triangular).  In the final section of the chapter, a critical discussion on this “best” model is 

developed further by performing a dimensional analysis on the free overfall problem and a 

dimensional reduction process on the experimental data. 
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6.2 METHODOLOGY 

As mentioned in Chapter 3, the process of knowledge discovery consists of three main stages: 

data preprocessing, data mining and knowledge post-processing.  In the following sections, 

detailed description of the actions undertaken in each of these stages will be provided. 

 

6.2.1 Data preprocessing 

The main action in this stage was integrating the data gathered from different sources into a 

suitable format.  Initially, the variable units were all converted into SI units without applying 

any change to their scale (e.g. standardizing, normalizing or non-dimensionalizing).  Then the 

entire data set was subjected to a cleaning process where errors (e.g. decimal displacement, 

rounding errors, and units) in the data were detected and corrected.  Furthermore, inconsistent 

attributes such as friction were removed from the dataset and missing values (e.g. critical 

slope) were estimated and inserted where appropriate.  Finally, among all original attributes, a 

set of suitable attributes were selected and the total dataset was then split into three disjointed 

subsets: training (66%), testing (23%) and validation data (11%), by means of uniform 

random sampling.  The training data was used as inputs for the GP modelling process, the 

testing data for model selection and the validation data for evaluating the final selected model.   

 

6.2.2 Tuning the GP algorithm 

As stated in Chapter 3, GP is an efficient Data Mining tool based on the Darwinian theory of 

evolution.  Starting with a number of random solutions, this technique tackles problems by 

improving the quality of the solutions by means of some natural variation operators.  In its 

application to symbolic regression problems, this approach is able to develop a conceptual 

transparent (so-called white box) model of the physical process by searching through large 

amounts of data and detecting hidden or low-level patterns. 

 

In this research, the Genetic programming lab (GPLAB) v.3 toolbox for Matlab (available 

from http://gplab.sourceforge.net) was used to evolve a relationship between the dependent 

(critical depth) and independent variables (end depth and other characteristics of the channel 

e.g. width, bed slope, end depth, etc.).  Figure (6-1) shows the GPLAB algorithm structure.  
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For an in-depth description of this toolbox and its functions the reader is referred to GPLAB 

ver. 3 manual (http://gplab.sourceforge.net), and William and Northern (2008). 
 

 
Figure (6-1): GPlab algorithm structure. 

 

A number of standard arithmetic operators (i.e. plus, minus, times, divide, power, square root) 

and mathematical functions (i.e. exp, ln) were selected as the function set.  In order to prevent 

the formation of any mathematical “indeterminate forms” and hence the termination of the 

algorithm, some of the original operators were substituted with their modified versions (Table 

(6-1)).  The terminal set was selected based on the problem’s characteristic.  A preliminary 

analysis revealed that adding a random generated number to the terminal set would result in 

faster convergence.  The sum of squared distances between the data points and their 

corresponding model predicted values was set as the fitness function.   

 

Modified 
function 

MATLAB 
function 

Input 
arguments 

Output 
Arguments 

Division mydivide a, b if b = 0, a 
else, a/b  

 
Square root 
 

mysqrt a if a <= 0, 0 
else, sqrt(a) 

Natural logarithm mylog a If a = 0, 0 
else, log (⏐a⏐) 

Table (6-1): Modified operators and functions. 
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Based on similar applications of GP to symbolic regression problems in the literature (e.g. 

Keijzer, 2002; Keijzer et al., 2005; Aytek and Kisi, 2008) Ramped-half-and-half tree 

initialization method (Section 3.4.4.3), subtree crossover and mutation with variable 

probabilities (Section 3.4.4.5) were selected as the genetic operators.  In addition, a modified 

tournament selection operator called Lexical tournament (Luke and Panait, 2002) was 

employed to control the tree size and consequently the complexity of the evolved symbolic 

expressions.  This operator treats fitness as the primary objective and tree size as the 

secondary objective and has shown to be very effective in problems where many different 

individuals have the same fitness (Luke and Panait, 2001; 2002; Silva, 2005). 

 

Similar to the method described in Section (4.4.4) a sensitivity analysis was performed in 

order to obtain a robust algorithm parameter set (Table (6-2)).  In order to limit the effect of 

randomness on the results, by changing the seeding in each run, 50 independent runs of the 

GP algorithm were performed on the training data.  Finally, the archive of solutions was 

searched and solely based on the value of the fitness function the top 100 potentially good 

models were selected. 
 

Parameter Value 
Population size 75 
Number of generations 100 
Tree size restriction 10 nodes 
Fitness function Sum of squared distance 
Tree Initialization method Ramped-half-and-half 
Genetic operators Subtree Cross-over and Mutation 
Operator probabilities Variable (minimum equal to 0.20) 
Selection method  Lexical tournament 

Table (6-2): GP internal parameters and operators. 
 

6.2.3 Model selection process 

In the GP process, reaching optimum coefficient values for a symbolic expression requires the 

initial population to evolve through many generations and as such increases the computation 

time and memory requirements.  To overcome this problem and to save computation time, a 

least square calculation was first performed on the training data to find the optimum 

coefficients for each of the models. 
 

Evaluating what is meant by the concept of “best” can be both subjective and controversial.  

In the present context, the “best” model was evaluated by analyzing the complexity of the 
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model and its goodness of fit.  To find this “best” model among the set of selected 

expressions, a combination of a subjective and an objective selection methodology was 

applied.  In the subjective selection, the best 100 generated models were examined and the top 

20 expressions were selected based on two criteria (Sharifi et al., 2009b&c): 
 

1- Complexity level. The number and composition of functions and terminals along with 

the dimensions of the models were investigated to select simpler and dimensionally 

more correct models.   
 

2- Performance level. The mean root of sum of squared error (MRSS) values were 

compared to select models with higher performance. 
 

In order to gain a more complete picture of model performance, in the objective selection 

stage, two other fitness measures that are commonly reported in the literature, namely the root 

mean square of errors (RMSE) and coefficient of determination (CoD), were calculated for 

each expression on the training and testing data sets.  The RMSE describes the average 

difference between experimental data and model predictions, while CoD is a measure of how 

much of the original uncertainty in the data is explained by the regression model (Weisberg, 

1980).  It was believed that a simultaneous assessment of these performance measures can 

provide a better insight on how thoroughly the model represents the system and hence a three 

step elimination strategy was followed to find the “best” model (Sharifi et al., 2009b): 
 

1- Firstly, the expressions were sorted on the RMSE of the testing data and the 10 worst 

were detected.  The expressions were then ranked on the CoD of testing data and the 

10 worst were found.  Any expression placed in any worst set was eliminated. 
 

2- Secondly, for each of the remaining expressions, the RMSE related to training and 

testing data were summed and the total RMSE values were normalized between 0.0 

and 1.0.  The same procedure was then repeated with the CoD values.  Afterwards, the 

normalized total RMSE was subtracted from the normalized total CoD and the 

expressions were sorted on this value.  The normalization was done to ensure that both 

performance measures have the same range. 
 

3- Finally, the computed values of the dependent variable from the top 5 remaining 

expressions were plotted against the measured values for both training and test data 
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and the deviation from the 45 degree line was inspected.  The residual distribution of 

each expression was also plotted to investigate the degree of biasness.  With the help 

of visual inspection and also judgment on the expression structure, a final elimination 

process was preformed to select the “best” expression. 

 

6.3 FREE OVERFALL PROBLEM 

In open channel flow, a free overfall is where the bottom of a channel drops suddenly, causing 

the flow to separate and form a free nappe.  Based on various experiments in prismatic 

channels (Dey, 2002b), the end depth bears a unique relationship with the critical depth (hc).  

The critical depth is an important concept in open channel flow since there exists a unique 

relationship between the depth of flow and the discharge.  However, the location of the 

critical depth can vary with respect to discharge, whereas the location of the end depth is 

always fixed.  Hence, if a relationship between he and hc is provided, then the free overfall can 

be used as a simple flow measuring device (Sterling and Knight, 2001; Gupta et al., 1993).  A 

review on the hydraulic aspects of the free overfall problem and previous attempts of solving 

this problem is provided in Section (2.7). 

 

In this research, earlier work is extended, and Genetic Programming (GP) is applied as a data 

mining tool to solve this particular open channel flow problem.  Various experimental data 

relating to several cases with different cross sections (i.e. rectangular, trapezoidal, circular, 

inverted semi-circular, Δ-shaped, U-shaped and triangular) were extracted from earlier studies 

reported in the literature and the methodology was applied to develop a conceptual transparent 

model of the physical process of the free overfall. 

 

6.3.1 Circular channels with a flat bed 

6.3.1.1 Introduction to the dataset 

The first dataset used for the knowledge discovery process was the laboratory data from 

Sterling (1998).  These experiments were undertaken in a 21.26 m long tilting channel with a 

working cross section of 610 mm wide by 365mm deep supported on hydraulic jacks that 

enabled the bed slope (S0) to be varied.  The experimental channel consisted of eight, 2 m 
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long plastic PVC pipe sections with an internal diameter (D) of 244 mm with a wall thickness 

of 3 mm.  A 110 mm wide slot was cut in the crown of the pipe sections to provide access 

inside the pipe and make the measurements possible.  A flat horizontal bed constructed from 9 

mm thick PVC was added to the base of the circular pipe.  Five series of experiments were 

carried out with five different bed thicknesses (t).  For each test the brink depth (he) at the 

centerline was measured by means of a pointer gauge to an accuracy of ±0.1 mm and the 

discharge (Q) was measured via a calibrated orifice plate.  The critical depth (hc) was 

determined from 2 3/Q g A T= / and the critical slope (Sc) was calculated using the average 

value of Manning’s n.  Figures (6-2 & 6-3) show the experimental setup and the geometry of 

the channels, respectively and Table (6-3) shows a summary of the experimental data.  For 

further detailed information relating to the experiments, see Sterling (1998). 

 

Series 
Diameter 

(D)  Bed thickness (t)  Bed slope (S0) Discharge (Q) Brink depth (he) 

(m) (m) (%) (l.s-1) (m) 

1 0.244 0.000 0.0 1.5 ~ 61.6 0.0197 ~ 0.1426 
2 0.244 0.061 0.1 4.8 ~ 38.8 0.0217 ~ 0.0927 
3 0.244 0.081 0.4 1.0 ~ 26.8 0.0080 ~ 0.0689 
4 0.244 0.123 0.9 1.1 ~ 21.7 0.0074 ~ 0.0657 
5 0.244 0.162 1.6 1.0 ~ 7.7 0.0091 ~ 0.0310 

Table (6-3): Range of Sterling’s (1998) experimental data. 

 

Figure (6-2): University of Birmingham 22m long tilting flume and the circular PVC channel 

built inside (www.flowdata.bham.ac.uk). 
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no flow

hc h he

  
Figure (6-3): Geometry of circular channels with flat bed. 

 

6.3.1.2 Modelling results 

In the preprocessing stage (described in Section 6.2.1) a dataset was formed by integrating the 

322 individual experiments within the 5 test series.  Consequently, the total dataset was split 

into three separate subsets: training (66%), testing (23%) and validation data (11%), by means 

of uniform random sampling.  The terminal set was chosen as {he, t, D, S0, Sc, random 

number} and the GP algorithm was applied to the training data.  An initial evaluation of the 

models considered to be “best”, revealed that 0S  was repeated in a large number of 

expressions and hence was one of the principal factors.  In order to increase the efficiency of 

the algorithm, the terminal set was expanded to include the square root of the bed slope and 

critical slope.  Fifty individual runs were performed and the results were evaluated to find the 

top 100 expressions.  The subjective selection was then applied to find the least complex and 

best fit models (Table (6-4)).  Finally, the best models were selected through the objective 

selection (Table (6-5)).  Figure (6-4) shows the computed and measured values of the 

dependent variable (hc) and the residual distribution of each expression for both training and 

test data. 
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No. Expression 
Training data Test data 

MRSS 
 (x10-4) RMSE CoD MRSS 

 (x10-4) RMSE CoD 

1 0 00.2471 1.5338( S S
c eh h e + += )  3.494 0.0749 0.9883 5.406 0.0726 0.9960 

2 00.24 1.6706( )cS S
c eh h e + +=  3.564 0.0758 0.9878 5.508 0.0737 0.9958 

3 0(0.1468 ) / 0.6008S
c eh h e +=  3.566 0.0758 0.9878 5.511 0.0735 0.9958 

4 01.66431.2769 S
c eh h e=  3.566 0.0758 0.9878 5.511 0.0735 0.9958 

5 0(1 )c
SS

c e ch h S
−−=  3.613 0.0992 0.9875 5.608 0.1003 0.9955 

6 0
0( )D S

c eh h e S+= +  3.634 0.0767 0.9873 5.588 0.0743 0.9956 

7 
2( )

0/( 0.23602)bh
c eh h e S= − − 3.670 0.0754 0.9873 5.940 0.0745 0.9953 

8 02 SD
c eh e h e=  3.706 0.0803 0.9890 5.293 0.0765 0.9963 

9 0/( 0.23332)eh S
c e eh h e h−= − − 3.711 0.0758 0.9867 5.835 0.0748 0.9953 

10 0/(0.7680 )c eh h S= −  3.714 0.0754 0.9867 5.829 0.0742 0.9953 

11 02( )cD S S
c eh h e + +=  3.816 0.0815 0.9890 5.414 0.0779 0.9963 

12 0SD
c eh e h D−=  4.045 0.0784 0.9860 6.543 0.0771 0.9951 

13 0 cS S
c eh h e +=  4.048 0.0802 0.9843 6.364 0.0803 0.9945 

14 
0.8782

0( )1.3039 S
c eh h e=  4.114 0.0790 0.9837 6.391 0.0782 0.9942 

15 0 0.94582( / )
S

c e ch h S=  4.164 0.0895 0.9878 6.339 0.0847 0.9958 

16 0( 0.28897)S
c eh h e +=  4.374 0.0800 0.9816 6.985 0.0803 0.9934 

17 0( )1.2544 cS S
c eh h e +=  4.405 0.0813 0.9813 7.084 0.0827 0.9932 

18 0( )cS SD
c eh e h e +=  4.418 0.0831 0.9813 6.889 0.0849 0.9932 

19 0( )SD
c e ch e h S e= +  4.462 0.0827 0.9806 7.042 0.0843 0.9929 

20 01.37936 S
c eh h −= cS  4.501 0.0794 0.9806 7.275 0.0809 0.9929 

Table (6-4): Selected expressions and the value of MRSS, RMSE and CoD for training and 

test data. 

 

No. Expression 
Normalized Total 

CoDn - RMSEn 
RMSE CoD 

1 0 00.25 1.53( S S
c eh h e + += )  0.0000 0.6785 0.6785 

3 0(0.15 ) / 0.60S
c eh h e +=  0.1959 0.4794 0.2835 

4 01.661.28 S
c eh h e=  0.1959 0.4794 0.2834 

2 00.24 1.67( cS S
c eh h e + += )  0.2210 0.4881 0.2671 

8 02 SD
c eh e h e=  1.0000 1.0000 0.0000 

6 0
0( D S

c eh h e S+= + )  0.3820 0.2776 -0.1044 

10 0/(0.768 )c eh h S= −  0.2294 0.0000 -0.2294 

Table (6-5):  Normalized values of RMSE and CoD for the remaining expressions. 
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Figure (6-4): Performance of top 5 expressions on circular training and test data. 
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Figure (6-4): Continued. 

 

Table (6-5) and Figure (6-4) show that all top 5 expressions fit the data from the training set 

extremely well, while the statistical performance on the set of the “unseen” test data, 

demonstrates that overfitting did not occur.  This close performance on both sets of training 

and testing data implies that statistically, none of the expressions has any specific priority 

over others.  Expressions 1, 3 and 4 express the critical depth as a function of end depth and 

bed slope and its only expression 2 that includes the critical slope.  As measuring the critical 

slope accurately is difficult and requires the knowledge of the critical depth, expression 2 was 

discarded.  Furthermore, although having the best overall performance, expression 1 was also 

discarded because of its relative complexity.  A closer look at the expressions reveals that 

equations 3, 4 and 8 have the same structure and are only different in their coefficients.  As a 

result, expression 4 ( 01.661.28 S
c eh h e= ) was selected as the most suitable model for 

calculating the critical depth.   

 

6.3.1.3 Modelling validation 

In order to validate the selected model, the fitness of the model was tested on another set of 

unseen data, namely the validation data.  Figure (6-5) shows the performance of the selected 

expression ( 01.661.28 S
c eh h e= ) on the validation data.  The CoD for this expression is 0.996 

and the RMSE is 0.0685.  This realistic estimate of future performance shows that the model 

is reliable and can be used for other cases. 

 

6-11 



CHAPTER 6 – Genetic Computation: An Efficient Tool for Knowledge Discovery 

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25
Experimental  h c

C
om

pu
te

d 
  h

c

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.00 0.05 0.10 0.15 0.20 0.25

Experimental  h c

R
es

id
ua

l

 

Exp.  No (4)  01.661.28 S
c eh h e=  

Figure (6-5): Performance of the selected expression structure on the validation dataset. 

 

6.3.2 Rectangular free overfall 

6.3.2.1 Introduction to the datasets 

Following the work of Ledoux (1924), Rouse (1932; 1936; 1943) was perhaps the first to 

realize that the end depth of flow in a rectangular channel could be used as a simple flow 

measuring device.  He started his experiments on a wide range of flat rectangular overfall in 

Karlsruhe University laboratory in 1932 and continued his research to investigate the effects 

of bed slope and Froude number on the end depth.  Since then, because of its importance and 

also relatively simple laboratory setup, a large number of theoretical and experimental studies 

(e.g. Delleur et al., 1956; Rajaratnam and Muralidhar, 1968a&b; Ali and Sykes, 1972; Hager, 

1983) have been carried out to understand the hydraulics of the end-depth problem and to 

determine the end-depth ratio (EDR=he/hc) in rectangular channels. 

 

Investigating various rectangular channels with different slopes and roughnesses, Delleur et 

al. (1956) found that the end-depth is independent of roughness but dependent on relative 

slope (So/Sc).  However, Rajaratnam and Muralidhar, (1968a&b) discovered that the EDR in 

supercritical flow varies with the change of relative slope (So/Sc) and Froude number (Fr).  

Davis et al. (1998) undertook a similar experimental study and observed that the EDR was 

influenced by both slope and roughness and that the roughness had more effect at steeper 

slopes. 
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After a comprehensive search of the literature, seven different datasets (Rajaratnam and 

Muralidhar, 1968a&b; 1976; Davis et al., 1998; Ferro, 1999; Turan, 2002; Firat, 2004 and 

Kutlu, 2005) relating to measurements free overfalls in rectangular channels were obtained 

and integrated to form a database.  The entire database consisted of a sub total of 354 

individual experiments covering a wide range of rectangular channels with different bed 

slopes and flow regimes.  Table (6-6) shows a summary of these datasets. 
 

Series 
Bed width (B)  Bed slope (S0) Discharge (Q) End depth (he) 

(m) (%) (ls-1) (m) 

Rajaratnam  and Muralidhar  (1968a&b) 0.46 0.00 ~ 2.88 31.43 ~ 67.32 0.0363 ~ 0.0957 
Rajaratnam and Muralidhar (1976) 0.46 0.00 ~ 1.36 12.84 ~ 108.09 0.0183 ~ 0.1751 
Davis et al. (1998) 0.295 0.30 ~ 0.20 0.44 ~ 14.01 0.0050 ~ 0.0365 
Ferro (1999) 0.05 ~ 0.3 0.00 2.10 ~ 30.50 0.0167 ~ 0.0784 
Turan (2002) 1.00 0.17 ~ 4.00 12.33 ~ 77.97 0.0101 ~ 0.0581 
Firat (2004) 1.00 0.03 ~ 3.94 1.61 ~ 84.12 0.0038 ~ 0.0545 
Kutlu (2005) 1.00 0.063 ~ 3.87 1.75 ~ 61.36 0.0046 ~ 0.0503 

Table (6-6): Rectangular free overfall datasets. 
 

6.3.2.2 Modelling results 

In continuation of the knowledge discovery process undertaken on circular channels, the same 

modelling methodology was applied to the preprocessed rectangular database and the best 

suitable models were derived.  The terminal set was chosen as {B, he, S0, Sc, S0
0.5, Sc

0.5, 

random number}.  Table (6-7) shows the 5 top expressions after the objective selection and 

the values of different fitness measures on training and test data.  Figure (6-6) illustrates the 

calculated and measured values of the critical depth along with the residual distributions for 

these expressions. 
 

No. Expression 
Training data Test data Total 

MRSS 
(x10-4) 

RMSE CoD MRSS 
(x10-4) 

RMSE CoD RMSE CoD 

1 02.051.35 S
c eh h e=  2.927 0.0890 0.9738 5.203 0.0989 0.9803 0.1879 1.9541 

2 01.48c e eh h h= + S  4.290 0.1230 0.9509 8.351 0.1573 0.9520 0.2803 1.9029 

3 01.47 0.15c eh h= + S  4.403 0.1242 0.9443 8.506 0.1386 0.9465 0.2628 1.8908 

4 00.48 S
c e eh h h e= +  4.208 0.1207 0.9525 8.182 0.1545 0.9538 0.2752 1.9063 

5 2
02c e eh h h= + S  3.769 0.1303 0.9580 7.164 0.1238 0.9637 0.2541 1.9217 

Table (6-7): Value of MRSS, RMSE and CoD for rectangular training and test data. 
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Figure (6-6): Performance of top 5 expressions on rectangular training and test data. 
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Figure (6-6): Continued. 

 

It is interesting to note that in keeping with the above analysis, an expression of the form 

0BA S
c eh h e= is found to be the simplest and most successful model at predicting the critical 

depth in rectangular free overfalls.  In order to investigate the accuracy of this model for 

individual datasets, a least square regression was performed and the optimum coefficients of 

the expression were derived for each dataset.  Table (6-8) shows the obtained coefficients 

along with the values of CoD, RMSE and MRSS.  It can be seen that except for the dataset of 

Rajaratnam and Muralidhar (1968a & b), the model is relatively successful in simulating all 

other datasets.  Furthermore, the examination of Tables (6-6) and (6-8) shows no immediate 

correlation between the coefficient values and available characteristics of the channels and 

flow. 

 

Series A B MRSS (x10-4) RMSE CoD 
Rajaratnam  and Muralidhar  (1968a&b) 1.31 2.55 11.2619 1.4936 0.9156 
Rajaratnam and Muralidhar (1976) 1.42 1.63 11.427 0.1030 0.9843 
Davis et al. (1998) 1.10 2.96 4.4108 0.2424 0.9783 
Ferro (1999) 1.33 2.87 1.7660 0.0238 0.9945 
Turan (2002) 1.23 3.45 3.8150 0.0364 0.9897 
Firat (2004) 1.35 2.46 3.6197 0.1016 0.9641 
Kutlu (2005) 1.37 1.42 2.0409 0.0318 0.9923 
All Data 1.32 2.31 2.4940 0.1240 0.9742 

Table (6-8): The A and B coefficients in 0BA S
c eh h e= , CoD, MRSS and RMSE for 

rectangular datasets. 
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6.3.3 Trapezoidal free overfall 

6.3.3.1 Introduction to the datasets 

Compared with the rectangular overfall, the investigations of the free overfall in channels 

with a trapezoidal cross section are small in number.  The earliest significant study of this 

problem appears to be that of Diskin (1961).  Subsequently, other researchers (e.g. Replogle, 

1962; Rajaratnam and Muralidhar, 1970; Ali and Skyes, 1972; Subramanya and 

Keshavamurthy, 1987; Gupta et al., 1993) continued the research and studied the influence of 

roughness and slope.  For example, Rajaratnam and Muralidhar (1970) observed that for the 

horizontal free overfall, the EDR is only a function of a non-dimensional length parameter, 

shc/B, and that the EDR increases from 0.705 to 0.758 as shc/B increases from 0 to about 9.0.  

Furthermore, in sloping channels, they found EDR to be a function of shc/B and the relative 

slope, So/Sc. 

 

Five datasets (Diskin, 1961; Rajaratnam and Muralidhar, 1970; Keller and Fong, 1989; Yuen, 

1989; Pagliara and Viti, 1995) relating to measurements in a wide range of trapezoidal free 

overfalls were derived from the literature.  A summary of these data sets is shown in Table (6-

9).   

Series 
Bed width (B)  Side slope (s) Bed slope (S0) Discharge (Q) End depth (he) 

(m) 1:s = v:h (%) (ls-1) (m) 

Diskin (1961) 0.125  
0.167  

1.5 
2.0 0.15 8.722 ~ 50.206 0.0399 ~ 0.1052 

Rajaratnam and 
Muralidhar (1970) 0.0127 ~ 0.1016 0.17 ~ 1.00 0.00 ~ 6.73 0.878 ~ 44.288 0.0076 ~ 0.1676 

Keller and 
Fong (1989) 0.150  1.00 0.067 6.130 ~ 23.190 0.0350 ~ 0.0779 

Yuen (1989) 0.150  
0.450  1.00 0.00 ~ 2.743 1.715 ~ 22.200 0.0144 ~ 0.0440 

0.0098 ~ 0.0425 
Pagliara and 
Viti (1995) 

0.280  
0.300  1.00 0.00 ~ 2.10 1.740 ~ 80.500 0.0100 ~ 0.1150 

Table (6-9): Range of trapezoidal free overfall datasets. 
 

6.3.3.2 Modelling results 

Following the same modelling procedure as outlined above, the database of trapezoidal free 

overfall, which consisted of 336 individual experiments, was preprocessed and divided into 

training, testing and validation subsets.  Selecting the GP terminal set as {b, s, he, S0, Sc, S0
0.5, 

Sc
0.5, random number}, the GP algorithm was run 50 times to generate models on the training 
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data.  The subjective and objective model selection procedures were then performed to find 

the best models (Table (6-10)).  Figure (6-7) illustrates the performance of these models on 

training and testing subsets.  Again, it is observed that an expression of the form 

0BA S
c eh h e= is found as one of the “best” expressions.  The only model which can compete 

with this model in terms of performance is expression number 4 which due to the existence of 

the critical slope in its structure is an impractical expression. Table (6-11) also the shows the 

A and B coefficients for each individual dataset, obtained through regression. 
 

No. Expression 
Training data Test data Total 

MRSS 
 (x10-4) RMSE CoD MRSS 

(x10-4) RMSE CoD RMSE CoD 

1 01.401.354 S
c eh h e=  6.556 0.0813 0.9796 8.371 0.0785 0.9843 0.1598 1.9639 

2 01.431 0.280c eh h= + S  5.875 0.0956 0.9720 18.902 0.0810 0.9740 0.1766 1.946 

3 0( )c e c e e
c

Sh h S h h
S

= + + × 5.661 0.0898 0.9776 9.352 0.0868 0.9714 0.1766 1.949 

4 0.75
01.419 0.132c eh h S= +  5.770 0.0916 0.9726 8.529 0.0781 0.9755 0.1697 1.9481 

5 01.384 .c eh h S= + cS  5.016 0.1030 0.9792 6.702 0.0803 0.9849 0.1833 1.9641 

Table (6-10): Value of MRSS, RMSE and CoD for training and test data. 
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Figure (6-7): Performance of top 5 expressions on trapezoidal training and test data. 
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Figure (6-7): Continued. 
 

Series A B MRSS (x10-4) RMSE CoD 
Diskin (1961) 1.30 1.23 3.4089 0.0183 0.9929 
Rajaratnam and Muralidhar (1970) 1.34 1.23 7.8027 0.0658 0.9717 
Keller and Fong (1989) 1.32 2.00 2.2265 0.0171 0.9886 
Yuen (1989) 1.25 3.11 3.8655 0.0623 0.9668 
Pagliara and Viti (1995) 1.37 2.14 3.3729 0.0309 0.9971 

Table (6-11): The A and B coefficients in 0BA S
c eh h e= , Cod, RMSE and RMSE for 

trapezoidal datasets. 
 

6.3.4 Channels with other cross sectional shapes 

Compared to the studies of rectangular and trapezoidal free overfall, investigations of the free 

overfall in other channels are relatively few.  Circular (Smith, 1962 and Rajaratnam and 
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Muralidhar, 1964a) parabolic and triangular (Diskin, 1961 Rajaratnam and Muralidhar, 

1964b), egg-shaped (Biggiero, 1963 cited in Dey, 2002b), elliptic (Dey, 2001b), inverted 

semicircular (Dey, 2001c; Dey et al., 2004), U-shaped (Dey, 2003; 2005) and Δ-shaped (Dey 

and Kumar, 2002) channels are among the cross-sections which have been investigated. 
 

The available experimental data relating to some of the mentioned channels (circular, inverted 

semi-circular, Δ-shaped, U-shaped and triangular) were extracted from earlier studies reported 

in the literature.  Figure (6-8) illustrates the geometry of these cross-sections and Table (6-12) 

shows a summary of the datasets.  The lack of sufficient data points in each set prevented 

accurate modelling using the methods outlined above.  Hence, only the goodness of fit of the 

expression of the form 0BA S
c eh h e= was investigated.  Table (6-13) shows the obtained 

optimum values of A and B coefficients (found through a least square regression) and the 

CoD and RMSE values for each data set.  Furthermore, Figure (6-9) illustrates the calculated 

and measured values of the critical depth along with the residual distribution.  Analyzing the 

results, it can be concluded that this expression is also suitable for channels with cross-

sections other than circular, rectangular and trapezoidal. 
 

Comparing Tables (6-5, 6-8 & 6-11) it is observed that the obtained “A” coefficient for all 

examined datasets lies in the range of 1.23 to 1.37 with only two exceptions being Rajaratnam 

and Muralidhar (1976) (A=1.42) and Davis et al. (1998) (A=1.1). This implies that the value 

of this coefficient might be independent of channel geometry and flow conditions and thus 

considering an average value of 1.30 for this coefficient for any cross-section will be a 

rational assumption. 

Series Cross-section 
Length parameter  Bed slope (S0) Discharge (Q) End depth (he) 

(m) (%) (l.s-1) (m) 

Smith (1962) Circular D: 0.1532 0.00 1.048~18.916 0.0210~0.1125 

Rajaratnam and 
Muralidhar (1964) Circular D: 0.2032 0.00 ~ 5.53 1.019~28.147 0.0192~0.1040 

Dey and Ravi 
Kumar (2002) Δ-shaped B: 0.12 ~ 0.18 0.00 0.787~17.824 0.0087~0.0740 

Dey (2003) U-Shaped D: 0.07 ~ 0.13 0.00 0.729~0.73665 0.0221~0.2287 

Dey et al. (2004) Inverted semi-
circular D: 0.043 ~ 0.128 0.00 ~ 2.70 0.037~2.179 0.0029~0.0225 

Ahmad (2006) Triangular s: 1 0.00 ~ 3.33 0.970~14.570 0.0370~0.1350 

Table (6-12): Free overfall datasets in channels with other cross-sections. 
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a) Inverted semi-circular b) Δ-shaped c) U-Shaped d) Triangular 
Figure (6-8): Cross-section of other channels. 

 

Series Cross-section A B CoD RMSE 

Smith (1962) Circular 1.23 2.46 0.9839 0.0491 

Rajaratnam and Muralidhar (1964) Circular 1.38 1.71 0.9928 0.0057 

Dey and Ravi Kumar (2002) Δ-shaped 1.43 2.46 0.9983 0.0160 

Dey (2003) U-Shaped 1.38 2.46 0.9975 0.0318 

Dey et al. (2004) Inverted semi-circular 1.41 1.29 0.9839 0.0449 

Ahmad (2006) Triangular 1.19 1.15 0.9819 0.0412 

Table (6-13): Performance of 0BA S
c ee=h h on other cross-sections. 

 

6.3.5 Discussion 

Finding a global expression for predicting the critical depth in channels with different cross 

sections and flow regimes, two separate analyses were performed to both verify the selected 

“best” expression and also investigate the underlying state of the expression’s coefficients.  

First, using the Buckingham Pi theorem, a dimensional analysis was performed to investigate 

the general form of the relationship between the end-depth and critical depth.  Then, a 

Principal Component Analysis (PCA) was performed on the available attributes of different 

datasets to define the principal variables of the problem.  Furthermore, the performance of the 

obtained expression was compared to those of a number of proposed equations in the 

literature and an error analysis was done to find the maximum errors in predicting the 

discharge with using this equation. 
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Figure (6-9): Performance of 0BA S
c eh h e= on other datasets. 

 

6.3.5.1 Dimensional analysis 

Dimensional analysis is a powerful tool for simplifying equations as well as clarifying the 

scaling behaviour of a system.  In his Pi theorem, Buckingham (1914) showed that the 

original dimensional variables of a problem can be reconstructed into a set of dimensionless 

products using the constraints imposed upon them by their dimensions.  According to this 

theorem, the original relationship between n variables represented by 1 2( , ,..., ) 0nf x x x = , can 

be transformed into a new function 1 2( , ,..., )nφ π π π of n-m independent dimensionless 
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products ( jπ ) of the original variables ( ix ).  Here, m is the total number of fundamental 

dimensions of the original physical variables. 
 

The dimensional analysis of the free overfall problem in different channels has been 

previously investigated by different researchers (e.g. Ferro, 2004; Firat, 2004).  A similar 

dimensional analysis was performed to investigate the general form of the relationship 

between the end-depth and critical depth in rectangular free overfalls.  Table (6-14) shows the 

variables which are thought to affect the behaviour of the flow at a free overfall.  Therefore, a 

relationship in the form of 0( , , , , , , , , ) 0e nf h h B S q g nμ ρ =  can be considered for a free 

overfall. 
 

Applying the Buckingham Pi technique, with q, hn and ρ as the repeating variables, 6 

dimensionless parameters were obtained: 

1 /e nh hπ = , 2 / nB hπ = , 3 0Sπ = , 4 nπ = , ,3 2
5 / Fngh qπ = = 2r 6 / 1/q Reπ μ ρ= =  (6-1)

Combining 1π  and 5π  a new dimensionless parameter can be formed: 

1/3
1/3

7 1 5 2 /3 23 /
e n e

n c

h h g h h
h q hq g

π π π= × = × = = e  (6-2)

Substituting the simplified parameters, it can be concluded that: 

0( / , , , Fr,Re)e
n

c

hEDR f l h S n
h

= =  (6-3)

This dimensional analysis implies that to be able to build an accurate model for predicting the 

critical depth or the end-depth ratio, in addition to the cross-section geometry, data regarding 

the uniform depth, channel roughness, Froude and Reynolds numbers should also be 

available. 

Variable Symbol Dimension 
End depth  he L 
Uniform flow depth hn L 
Channel width B L 
Bed slope S0 - 
Unit discharge  q L3/T/L 
Gravitational acceleration g L/T2 
Dynamic viscosity μ M/LT 
Density of water ρ M/L3 
Manning roughness parameter n - 

Table (6-14): Variables affecting the behaviour of the free overfall 
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6.3.5.2 Dimensional reduction based on principal component analysis 

Principal component analysis (PCA) (Johnson and Wichern, 1988) is an eigenvector-based 

multivariate analysis that produces a new set of variables (principal components) from the 

linear combination of the original variables.  The first principal component tends to account 

for as a large degree of variability in the data as possible, while the second component 

accounts for less than the first but more than the third and so on.  The goal of PCA is to 

identify the smallest number of components which can be used to summarize the data without 

a significant loss in information.  In general, the number of principal components is equal to 

the number of original variables; however, for most of the datasets, the first few principal 

components account for most of the variance (as long as there is at least one dominant 

structure within the data).  As a result, the rest of the principal components can be ignored 

with the minimal loss of information (for more details on PCA see Appendix (V)) 

 

Mardia et al. (1979) introduced a procedure for discarding redundant variables and selecting 

principal variables using principal component analysis.  In this approach, the important 

characteristics (variables) of the dataset that contribute most to its variance are retained by 

ignoring the dominant variables of less important components.  This variable elimination 

process can be summarized as follows: 

 

1- First, the matrix of the normalized independent variables is formed. 

2- The PCA is then applied to the normalized data and the variance explained by each of 

the corresponding principal components is calculated (see Figure (6-10)).  Based on 

the results, the number of sufficient components for describing most of the variations 

(e.g. 90%) in the dataset is found. 

3- The eigenvalue vector and the principal component coefficient matrix for the principal 

components are derived from PCA. 

4- The coefficient matrix is searched and the variable that has the largest absolute 

coefficient value (most dominant variable) for the component with the smallest 

eigenvalue (least important component) is found and eliminated from the entire 

variable set. 

5- PCA is again performed on the remaining variables and steps 3 to 5 are repeated. 
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6- This elimination process continues until the number of sufficient components (defined 

in step 2) remains.  The remaining variables are the principal variables.   

 

This method was implemented on the data set of rectangular, trapezoidal, and flat bed circular 

free overfall to obtain the principal variables.  For rectangular channels, the set of variables 

was selected as{ , , ( / ), , , , , ( / ), ( / )}e e 0 c 0 c 0 c 0 cB h h B S S S S S S S S .  The PCA was then 

applied to the normalized variable matrix to determine the variance explained by each of the 9 

components (Figure (6-10)).  Based on this Figure, it can be argued that at least four principal 

components are required to describe more than 90% of the variability in the data.  However, 

the first two components have an important role since they contain more than the 80% of the 

variability in the whole data set. 

 

 
Figure (6-10): The percentage of total variability described by each principal component. 

 

By visualizing the PCA results, it would be possible to analyze the role of each variable in the 

formation of the principal components.  Figure (6-11) shows such a plot for the first two 

principal components.  In this figure the lines indicate the effect of each of the original 

variables on the first and second principal component (principal components coefficients) and 

the dots show the locations of the mapped data in the surface of the first two principal 

components.  Each of the nine original variables is represented by a vector.  The length and 
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the direction of these vectors can indicate how the variables contribute in each of the principal 

components.  For instance, it can be shown that the square root of the bed slope, 0S , has the 

highest contribution in the formation of the first principal component while the channel bed 

width, B, has a major role in the formation of the second principal component.  It is also 

observed that the vectors representing the variables and their square root (e.g. ,c cS S ) 

overlap, which indicates the high correlation among these attributes.  By considering such a 

plot for the last two principal components (the least important principal components), it would 

be possible to eliminate the variable that has the largest absolute principal components 

coefficients regarding the less important component. 

 

Table (6-15) shows the principal component coefficient matrix for the principal components.  

It can be observed that the dominant variable for the last principal component is ( / )0 cS S .  

Removing this variable and continuing the elimination process for the reduced variable 

matrix, , , ,e 0 cB h S S were found as the principal variables.  Implementing the same 

procedure for trapezoidal and flat bed circular channels, , , ,es B h S0 and 

, . / , ,e e 0h t h D S Sc were found as the principal variables, respectively.  The results of this 

analysis verify the presence of he and 0S in the structure of the “best” expression and 

indicate that the two coefficients should be highly correlated with the geometry of the 

channel.  It should be noted that this analysis was performed only on the available attributes 

of the datasets, and that the results could have been different if other variables (e.g. friction, 

Froude and Reynolds) were included. A more descriptive explanation of this elimination 

procedure is provided in Appendix (V.3). 
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variable 
Principal component 

I II III IV V VI VII VIII IX 

B -0.52 -0.75 -0.22 -0.26 -0.05 0.19 -0.07 0.02 -0.01 

he 0.17 0.04 0.29 -0.86 -0.24 -0.29 0.00 -0.02 0.02 

he/B 0.15 0.15 0.15 -0.24 0.08 0.91 0.20 0.05 -0.06 

S0 -0.48 0.35 0.29 0.02 -0.17 0.14 -0.67 0.22 0.13 

Sc 0.02 -0.25 0.52 0.10 0.32 -0.13 0.09 0.61 -0.40 

0S  -0.56 0.23 0.24 0.10 -0.33 -0.06 0.57 -0.22 -0.28 

cS  0.05 -0.30 0.65 0.18 0.15 0.03 -0.01 -0.49 0.44 

/0 cS S  -0.18 0.17 -0.05 -0.20 0.65 -0.05 -0.22 -0.47 -0.45 

/0 cS S  -0.32 0.23 -0.12 -0.19 0.50 -0.12 0.34 0.28 0.58 

Table (6-15): Principal component coefficient matrix for rectangular free overfall data. 

 

 

 

B

B

Figure (6-11): Visualization of the principal component coefficient matrix for the first two 

principal components. 
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6.3.5.3 Performance comparison 

A number of expressions have been previously proposed by researchers for the prediction of 

the EDR in different channel sections (see Table (2-3)).  Most of these expressions are derived 

for a particular bed slope and describe the EDR as a constant value (linear relationship 

between the he and the hc) and hence, not applicable to all channels.  However, there are a few 

more complex equations which relate the EDR to different parameters of the channel and flow 

and are more suitable for comparison. 

 

Table (6-16) compares the obtained RMSE and CoD of 0BA S
c eh h e=  with the equation 

proposed by Davis et al., (1998) on different rectangular free overfalls.  Table (6-17) also 

shows the comparison of the performance of the proposed equation with Pagliara’s (1995) 

equation for trapezoidal free overfalls.  It can be seen that 0BA S
c eh h e= outperforms both 

equations for all datasets.   

 

Series 
0B=A S

c eh h e  0.5
0/(0.77 2.05 )c eh h S= −  

RMSE CoD RMSE CoD 
Rajaratnam  and Muralidhar  (1968a&b) 1.4936 0.9156 1.5233 0.7494 
Rajaratnam and Muralidhar (1976) 0.1030 0.9843 0.1445 0.9333 
Davis et al. (1998) 0.2424 0.9783 0.3559 0.9758 
Ferro (1999) 0.0238 0.9945 0.0324 0.9945 
Turan (2002) 0.0364 0.9897 0.0663 0.9822 
Firat (2004) 0.1016 0.9641 0.1468 0.9523 
Kutlu (2005) 0.0318 0.9923 0.1912 0.8909 
All Data 0.1240 0.9742 0.1625 0.9513 

Table (6-16): Comparison of the performance of the obtained expression with the equation 

proposed by Davis et al., (1998) for rectangular datasets. 

 

Series 
0B=A S

c eh h e  /(0.705 0.029( / ))c e eh h mh B= +  

RMSE CoD RMSE CoD 
Diskin (1961) 0.0183 0.9929 0.0219 0.9876 
Rajaratnam and Muralidhar (1970) 0.0658 0.9717 0.1741 0.8799 
Keller and Fong (1989) 0.0171 0.9886 0.0106 0.9887 
Yuen (1989) 0.0623 0.9668 0.2067 0.7965 
Pagliara and Viti (1995) 0.0309 0.9971 0.1460 0.8972 

Table (6-17): Comparison of the performance of the obtained expression with the equation 

proposed by Pagliara, (1995) for trapezoidal datasets. 
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6.3.5.4 The free overfall as a measuring device 

The main aim of this chapter was to establish a definite relationship between the critical 

depth, hc, and the end depth, he.  Applying GP, an equation in the form of 0BA S
c eh h e=  was 

found as a rigorous relationship which is valid in different channels and flow regimes.  In this 

subsection, the effect that the variation of the calculated value of hc has upon the discharge 

will be examined. 

 

Rectangular channels 

The critical depth can be evaluated using: 
2 3Q A

g T
=  (6-4)

which for a rectangular channel yields: 

2 1/ 2
c cQ gB h g Bh= = 3/ 2  (6-5)

hence: 
1/ 2 1/ 21.5 c cdQ g Bh dh=  (6-6)

1/ 2 1/ 2

1/ 2 3/ 2

1.5 1.5c c

c c

g Bh dh dhdQ
Q g Bh

= = c

h
 (6-7)

For small percentages of error in the calculation of hc, ( ), Eq. (6-7) can be used as an 

alternative to the direct calculation of error, to approximate the error in estimating the 

discharge.  This equation implies that an error of x% in the estimation of hc, results in a 

corresponding error of 1.5x% in the discharge.  In the previous subsections, it was shown that 

the values of the “A” and “B” coefficients are related to the geometry of the channel and flow 

parameters, which cannot be identified in this stage of research.  However, if proper constants 

values are chosen for the more reliable datasets (see Table (6.8)), the critical depth can be 

estimated with 5% of error.  This yields a maximum error of about 7.5% for the discharge. 

/c cdh h

 

Trapezoidal channels 

In the critical section of a trapezoidal channel, the discharge can be found by: 
2 3

2 3Q A Q gA T
g T

−= → = 1  (6-8)

where 
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( c cA B sh h= + )  and  2 cA B sh T′ = + = (6-9)

( 2 cT B sh= + )  and  2T s′ = (6-10)

Differentiating both sides of Eq. (6-8) yields: 
2 1 2 32 (3 ) cQdQ g A A T T T A dh− −′ ′= −  (6-11)

2 1 2 3

3 1

(3 )
2

cg A A T T T A dhdQ
Q gA T

− −

−

′ ′−
=  (6-12)

1 3( )
2 c

dQ A T dh
Q A T

′ ′
= −  (6-13)

substituting Eqs. (6-9 & 6-10) in Eq. (6-13) and rearranging gives: 

3( 2 )1 2[ ]
2 ( 2 ) ( 2 )

c
c

c c c

B shdQ s dh
Q B h h B sh

+
= −

+ +
 (6-14)

3( 2 )1 2[ ]
2 ( 2 ) ( / 2 )

c c

c c c

B sh dhdQ s
Q B h B h s

+
= −

+ + h
 (6-15)

As it can be seen from Eq. (6-15), a totally different form of relationship between the error in 

critical depth and the error in discharge is found.  This equation is implicit and implies that 

the range of the bed width, wall slope and the value of the critical depth itself influence the 

calculated error in discharge.  Applying Eq. (6-15) to the range of the trapezoidal datasets 

(Table (6-9)) used in this research, it can be concluded that x% error in the estimation of hc, 

would result in a maximum error of approximately 1.61x% in the discharge.  Using 

0BA S
c eh h e= with appropriate coefficients for the more reliable datasets results in 

approximating the critical depth with 6% error.  Consequently, the error in the estimated 

discharge would be less than 10%.   

 

Circular channels 

Applying a similar analysis, the maximum error in estimating the discharge for circular 

channels is found to be less than 10%. The error analysis calculation for circular channels is 

available in Sterling (1998).  
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6.4 SUMMARY 

In this chapter, Genetic Programming was used as a powerful knowledge discovery tool for 

solving a classic problem in open channel flow.  Applying this tool and following a two-stage 

model selection procedure, a global transparent model in the form of 0BA S
c eh h e=  

(or 0B/ (1/ A) S
e cEDR h h e−= = ) was found as the most suitable and applicable expression for 

predicting critical depth and EDR in a wide range of channels.  In addition to being 

dimensionally correct (Sharifi et al., 2009b), this expression appears to be universal and can 

be applied to all common cross-section channel shapes and different flow regimes (subcritical 

and supercritical).  Furthermore, its overall performance is better than any other proposed 

empirical relationship. 

 

The knowledge discovery process by means of the Genetic Programming technique has 

brought us a step nearer to a better understanding of the free overfall problem.  Although, the 

correct values of the two coefficients within the expression ( 0BA S
c eh h e= ) still remain 

unknown, this equation can be confidently used after a simple calibration.  At this stage, and 

based on the available measurements, not much can be said about these coefficients.  In order 

to discover rules for defining these coefficients, which were shown to be related to the 

channel geometry, roughness, uniform depth Froude and Reynolds numbers, more 

experimental work is needed on various different channels. 
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CHAPTER 7 

 
CONCLUSIONS 
 

7.1 REVIEW OF MAIN GOALS 

This thesis investigated the application of two Evolutionary Computation techniques to two 

different aspects of open channel flow: 

 

• NSGA-II was used to build a three-phase calibration framework for the SKM.  

Measured data from various sources were used in conjunction with the framework to 

calibrate the SKM for inbank flows in open channels with simple rectangular and 

trapezoidal cross sections (Sections 5.2 & 5.3). In addition, the method has also been 

applied to a variety of natural river cross sections (Section 5.4).  Finally, in the light of 

the calibration result, the lateral variations of optimal parameter values of f, λ and Γ 

were investigated. 

 

• Genetic programming was used as an effective data mining tool to build a model 

induction methodology for knowledge discovery.  The methodology was applied to 

various laboratory data and a conceptual global model for the physical process of the 

free overfall problem was obtained. 

 

The results showed that Evolutionary Computation techniques can be applied effectively to 

the above.  Furthermore, a clear advantage of using these techniques as opposed to classical 

methods was illustrated in both applications.  The summary of the conclusions of this research 

are outlined below. 
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7.2 MULTI-OBJECTIVE CALIBRATION OF THE SKM FOR INBANK 
FLOW 

7.2.1 General remarks 

1- It has been shown that the multi-objective evolutionary algorithm implemented (NSGA-

II) is a powerful tool for detailed critical analysis of lumped parameters within a RANS-

based model, in supporting a considerably difficult model calibration problem (Chapters 

4 and 5). 

2- The methodology explained in this thesis can be used for addressing the calibration of 

other similar models in the field of hydroinformatics. 

3- The calibration results revealed that SKM suffers from lack of identifiability and that 

various parameters sets can produce equally accepted outputs (Sections 4.4.6.3 and 4.5). 

4- The application of simultaneous competing objective functions were found to be effective 

in reducing the uncertainty in parameter estimation (Section 4.4.1). 

5- Being thoroughly tested on a variety of channels and rivers with inbank flow, the SKM 

was shown to be able to accurately predict the lateral distributions of depth-averaged 

velocity and boundary shear stress, as well as the overall discharge and %SFw with the 

minimum of computational effort (Chapter 5 and Appendix IV). 

6- The superiority of the proposed calibration framework over previous calibration 

approaches for the SKM was shown by comparing the predictions of mean velocity and 

boundary shear stress distribution using the calibrated parameter values (Section 5.5.1). 

7- Guidance has been given relating to the trend and values of the three calibration 

coefficients, f, λ and Γ in each panel for rectangular and trapezoidal channels.  The results 

will enable the user to both understand how these parameters interact and to model 

inbank flow for such geometries. 

8- The panelling philosophy of Knight and co-workers (Knight et al., 2007) was shown to 

be acceptable for both smooth and rough trapezoidal channels. 

9- Based on the available datasets, a two panel structure (allocating 80% of half the 

symmetric channel width to the first panel and the remaining 20% to the second panel) 

was found to be the most suitable panel structure for modelling flows in rectangular 
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channels (Section 5.3).  This is in contrast with the modelling philosophies of Omran 

(2005) and Chlebeck (2009) which suggest 4 or 6 panels for half of the symmetric 

channel. 

10- The SKM was shown to be capable of modelling flows in rivers with different 

roughnesses by adopting an 8 panel structure for the cross-section (see Section 5.4 and 

Appendix IV.5). 

11- The values of the friction factor were found to be less dependent on the panel structure, 

while the depth-averaged lumped values of λ and Γ were highly affected by the panel 

structure.  This might be due to the fact that these lumped parameters lose some degree of 

physical interpretation when averaged over time and depth and hence become dependent 

on the size and position of the panels. 

 

7.2.2 Lateral variation of the friction factor 

12- The value of the friction factor in shallower regions of channels and rivers was found to 

be higher than its value in deeper regions (Figures (5-4a), (5-10a) and (5-33a)).  

13- For the same channel geometry and bed slope, the increase in the mean depth causes the 

values of the local friction to decrease (Figures (5-4b), (IV-10b), (IV-18b), (IV-24b), (5-

17), (5-32a).  This finding was justified by the Colebrook-White equation (Eq. 2.87) 

(Section 5.5.2). 

14- Using laterally varied friction factor values within the model (see Section 5.2.2.2), was 

shown to result in smoother predictions of the shear stress distribution. 

15- For smooth trapezoidal channels with aspect ratios between 7.5 and 30 (FCF Series 04 

dataset), the friction factor linearly increases from the first to the third panel, then appears 

to remain constant or reduce before increasing to its highest value in the fifth panel 

(Figure (5-4a)).   

16- For smooth trapezoidal channels with aspect ratios between 1.0 and 5.26 (Yuen’s 

dataset), the friction factor increases almost linearly from the centerline of the channel 

towards the wall (Figure (5-10a)). 
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17- In smooth trapezoidal channels the value of the zonal friction factor in each panel was 

shown to increase with increase in the wetted perimeter ratio, Pb/Pw (Figures (5-4b), (IV-

10b), (IV-18b) & (IV-24b)). 

18- For differentially roughened trapezoidal channels, the value of the friction factor in the 

second bed panel, f2, was slightly lower than in the first panel, f1.  In the rough wall 

region the value of f increases significantly from the bed-wall intersection, f3, to its 

maximum at the channel edge, f4 (Figures (5-17a) & (5-17b)). 

19- In differentially roughened trapezoidal channels the values of the friction factors in the 

sloping sidewall region panels, f3 and f4, increase with an increase in the wetted perimeter 

ratio (Figures (5-17a) & (5-17b)) 

20- Generally, in the flat bed region of differentially and uniformly roughened trapezoidal 

channels, for same aspect ratios, larger values of 1f  and 2f  are found for channels with 

rougher walls.  As the aspect ratio increases, the difference between the values of 1f  and 

2f in both types of channels decreases. 

21- For uniformly roughened channels the friction factor in all panels were found to increase 

almost linearly with the increase in the wetted perimeter ratio, with an exception in the 

last panel where the friction factor remains more or less constant.  (Figure (5-17c & d)). 

22- The results of modelling a river section with different inbank depths revealed that the 

lateral variation of friction follows a similar trend for all depths (Figure (5-33)). 

 

7.2.3 Lateral variation of the dimensionless eddy viscosity 

23- In smooth trapezoidal channels, the value of the dimensionless eddy viscosity does not 

appear to follow any specific pattern in the panels positioned in the constant depth region 

(Figures (5-4c) & (5-10b)).  This implies the insensitivity of the SKM to this parameter in 

this region.  As the bed slope increases, the model becomes more sensitive to the value of 

this parameter in this region.  A general value of 0.6 for this parameter was found to 

result in acceptable model predictions.   

24- In the panels located on the sidewall region of smooth trapezoidal channels, the value of 

λ increases significantly as the wall is approached (Figures (5-4c) & (5-10b)). 
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25- In smooth trapezoidal channels, the values of λ increase linearly with the increase in the 

wetted perimeter ratio, Pb/Pw (Figures (5-4d), (IV-10d), (IV-18d) & (IV-24d)). 

26- In partially roughened trapezoidal channels, the optimum values found for λ in the 

smooth bed region of channels are scattered.  This implies that the model is not sensitive 

to λ in these smooth regions.  On the other hand, the model is found to be very sensitive 

to the value of λ in the third and fourth panels.   

27- In homogeneously roughened channels, the zonal dimensionless eddy viscosity, λ, 

increases with the increase in the wetted perimeter ratio, Pb/Pw (Figures (5-18c & 5-18d)). 

 

7.2.4 Lateral variation of the secondary flow term 

28- In smooth trapezoidal channels, the optimum sign pattern of the secondary flow term, Γ, 

alternates between negative and positive in adjacent panels. This is consistent with the 

assumptions made for choosing the panel structure and confirms the modelling 

philosophy of Knight et al (2007) (see Section 2.6.9.3). 

29- Generally, higher values of the secondary flow term are found for the panels in the 

sidewall region which implies high levels of circulation in these regions. 

30- In smooth trapezoidal channels, the absolute value of Γ in all the panels decreases by the 

increase in the wetted perimeter ratio, Pb/Pw (Figures (5-4f), (IV-10f), (IV-18f) & (IV-

24f)). 

31- In smooth trapezoidal channels with aspect ratios higher than 7.5, the secondary flow 

term, Γ, is initially negative in the first panel and then rises towards zero in all cases.  The 

value of this parameter then increases slightly in the third panel to a value near 0.10 

before decreasing to a negative value in the fourth panel.  Finally, a maximum positive 

value is obtained in the fifth panel (Figure (5-4e)).   

32- In trapezoidal channels with aspect ratios between 1.0 and 5.26, the secondary flow term, 

Γ, is initially negative in the first panel and then rises towards 0.15 in all cases.  The 

value of this parameter then decreases to a negative value in the third panel.  Finally, a 

maximum positive value is obtained in the forth panel (Figures (5-10c), (IV-10e), (IV-

18e) & (IV-24e)). 
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33- In differentially roughened trapezoidal channels the best pattern for the sign of Γ is found 

to alternate between positive and negative values, i.e. it is opposite to that of smooth and 

uniformly roughened channels.  This change in the sign of Γ can be interpreted as a 

change in the rotating direction of all the secondary flow cells. 

34- The lateral variation of the absolute optimum values of Γ is similar in uniformly and 

partially roughened trapezoidal channels.  The absolute value of Γ in the second panel of 

all cases again converges to a value near 0.25 which is slightly different from the smooth 

cases.  The significant difference is that the maximum value of Γ for differentially 

roughened channels does not appear in the final panel (Figures (IV-30e), (IV-44e) & (IV-

58e). 

35- Modelling river sections with the suggested eight panel structure and evaluating the 

calibration results on the depth-averaged velocity distribution and discharge, results in 

scattered values for the secondary flow term (Table (5-17)). 

 

7.3 THE FREE OVERFALL PROBLEM 

36- It was shown that Genetic Programming is powerful and effective data mining tool which 

can be used for model induction purposes. 

37- Applying this tool and following a two-stage model selection procedure, a global white 

box (transparent) model in the form of 0BA S
c eh h e=  (or 0B/ (1/ A) S

e cEDR h h e−= = ) 

was found as the most suitable and applicable expression for predicting critical depth and 

EDR in a wide range of channels. 

38- In addition to being dimensionally correct, this expression appears to be universal and 

can be applied to all common cross-section channel shapes and different flow regimes 

(subcritical and supercritical). 

39- The overall performance of this model is better than any other proposed empirical 

relationship (Section 6.3.5.3). 

40- Comparison of the optimum values of the A coefficients for different data sets revealed 

that the value of this coefficient might be independent of channel geometry and flow 

conditions.  A global value of 1.30 was suggested to be suitable for the expression. 
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41- The overall structure of the found model was confirmed by Dimensional analysis and 

Principal Component Analysis. 

42- It was also shown that the A and B coefficients of the expression should be related to the 

channel geometry, roughness, uniform depth, Froude and Reynolds numbers. 
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CHAPTER 8 

 
RESEARCH LIMITATIONS AND 
RECOMMENDATIONS FOR FUTURE WORK  
 

8.1 INTRODUCTION 

Two different applications of Evolutionary Computation to open channel flow modelling were 

presented in this thesis.  This chapter attempts to reiterate the gaps in knowledge, addresses 

the limitations of the work and suggest recommendations for the future work. 

 

8.2 THE SKM MODEL 

The analysis of the SKM revealed that this method is able to accurately model the flow in 

simple and complicated channel geometries.  However, there are different sources of 

uncertainty which may influence the predictions of the model.  The main sources of 

uncertainty in SKM modelling are: 

 

• Structure uncertainty: the outputs of the SKM directly depend on the selected panel 

structure. 

• Perception uncertainty: the time averaging and the spatial averaging of the lumped 

parameters within the model have caused these parameters to lose some degree of 

interpretation in the sense of being independently measurable. 

• Parameter estimation uncertainty: the SKM system of equations is ill-posed in a sense that 

many sets of parameters would result in equally accepted model results. 

 

The major part of this research was dedicated to overcome the overall uncertainty to some 

degree by building a robust evolutionary calibration framework to identify the model’s 
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immeasurable parameters.  To improve the modelling results and the applicability of SKM 

modelling, the following work is suggested to be undertaken on the SKM model: 
 

• SKM should undergo uncertainty and structural identifiability analysis (Petersen, 2000), 

and the identified areas in the model domain which contribute to uncertainty should be 

modified. 

• The structure of the panels should be examined in greater detail.  A “roadmap” should be 

developed for the number and position of the panels by further studying of the secondary 

flows and the panel boundary conditions, and also conducting sensitivity analysis on various 

datasets. 

• At rough boundaries, the boundary shear stress simulations are of poor quality, particularly 

at greater depths.  This suggests that the use of a local friction factor f to relate the depth-

averaged velocity and boundary shear stress (Eq. 2-51) may not be appropriate.  An 

investigation should be made of alternative methods of boundary shear stress calculation. 

• Generally, there are almost never sufficient calibration data to identify the spatially 

distributed parameters.  The model calibration shows that further experimental work should 

be undertaken to investigate the effect of channel geometry and boundary roughness on the 

lateral variation of the SKM parameters and to quantify and detail the range for each 

parameter. 

• SKM incorporates a spatially averaged secondary flow model Γ (Eq. 2-69), which provides 

the average effect of these circulations in each panel.  Further study of the lateral and vertical 

components of velocity should be undertaken by conducting field measurements with using 

Acoustic Doppler Velocimeters and Acoustic Doppler Current Profiles.  This would provide 

information on the number, position and intensity of the secondary flow cells and help 

developing the SKM. 

 

8.3 THE CALIBRATION FRAMEWORK 

Multi-objective calibration of a hydrodynamic model showed a challenging optimization 

problem.  The following procedures are suggested towards improving the quality of multi-

objective calibration: 
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• More constraints should be added to the optimization framework in order to improve 

convergence and ease the parameter identification process.  This can be achieved by 

conducting further measurements and gaining knowledge on the range and quantities of the 

model parameters. 

• Alternative fitness measures (RMSE, MRSS, etc.) should be incorporated in the algorithm 

and their efficiency on the convergence should be evaluated.   

• Different genetic operators should be tested in the algorithm. 

• The most suitable algorithm termination criteria should be defined. 

• Alternative powerful multi-objective search algorithms, e.g. Multi-Objective Shuffled 

Complex Evolution Metropolis Algorithm (MOSCEM) (Vurgt et al., 2003) and LNSGA-II 

(Nazemi, 2008), should be tested in the framework. 

• Advanced clustering techniques should be employed to identify similar Pareto solutions.   

• Attempts should be made towards increasing the automation of the calibration framework. 

 

Applying some modifications, the proposed calibration framework can be used for the 

parameter estimation of other models (including other hydrodynamic models).  However, 

some fundamental work should be done beforehand: 

• The basic question which is always asked in the context of modelling is “When is a model 

calibration good enough?”  Methods and guidelines for robust and effective hydrodynamic 

model calibration should be proposed. 

• The calibration framework should be tested and evaluated on other hydrodynamic models, 

and its weaknesses should be diagnosed. 

• A guideline should be proposed for the selection of the NSGA-II internal parameters for 

hydrodynamic models. 
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8.4 THE FREE OVERFALL MODEL 

Applying Genetic Programming and following a two-stage model selection procedure, a 

global transparent model in the form of 0BA S
c eh h e=  (or 0B/ (1/ A) S

e cEDR h h e−= = ) was 

found as the most suitable and applicable expression for predicting critical depth and EDR in 

a wide range of channels.  To be able to confidently use this model, the A and B coefficients 

should be predefined.  Dimensional analysis and PCA showed that these coefficients should 

be related to the channel geometry, roughness, uniform depth, Froude and Reynolds numbers.  

Unfortunately, at the time of modelling due to the lack of measurements, these coefficients 

could not be defined.  However, initial analysis revealed that “A” seems to be independent of 

the channel geometry and flow conditions.  To obtain exact relationships for “A” and “B”, 

experiments should be designed and conducted in various channels and accurate 

measurements of the mentioned attributes should be made.  In the light of the obtained 

formulation of these coefficients, stronger steps can be taken towards knowledge discovery 

and understanding the probable physics behind the equation. 
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SKM MATRIX APPROACH 
 

II.1 FOUR PANEL TRAPEZOIDAL CHANNEL 

1- SKM matrix approach for a four panel trapezoidal channel 
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Figure (II-1): 4 panel structure 
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II.2 FIVE PANEL TRAPEZOIDAL CHANNEL 
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II.3 16 PANEL RIVER SECTION 

 

Table (II-3): 16 panel structure 
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Boundary conditions 
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APPENDIX III 

 

MATLAB IMPLEMENTATION OF NSGA-II 
 

III.1 INPUT 

function [B H S ss YU UD YT TT Qt]=innput(temp1) 

 
% This function contains the inputs for a typical test case: 

% Yuen 406 (2b/h=7.04 h=0.2131) 

% temp1 is a temporary variable 

  

DATTA=[0.075 0.07299 23.3700e-3 1]; 

  
B=DATTA(1);     % half of channel width 
H=DATTA(2);     % channel depth 
S=DATTA(3);     % channel slope 
ss=DATTA(4);    % side slope ss(H):1(V) 
  

Qt=39.0;        % total discharge (lit/s) 
  

% YU is the lateral coordinates of depth-averaged velocity data (m) 

% UD is the relative depth-averaged velocity (m/s) 

 
YU=[0.0000  0.0200  0.0400  0.0600  0.0800  0.1000  0.1200  0.1400  

0.1480]; 
UD=[2.5883  2.5687  2.5225  2.4899  2.3749  2.2098  2.0198  1.4395  

0.0000]; 

  
% YT is the lateral coordinates of bed shear stress data (m) 

% UD is the relative bed shear stress (N/m^2) 

YT=[0.0000  0.0050  0.0100  0.0150  0.0200  0.0250  0.0300  0.0350  

0.0400... 
    0.0450  0.0500  0.0550  0.0600  0.0650  0.0700  0.0740  0.0757  

0.0785... 
    0.0821  0.0856  0.0891  0.0927  0.0997  0.1068  0.1139  0.1210  

0.1280... 
    0.1351  0.1422  0.1480]; 
TT=[11.1883 11.2800 11.3372 11.4402 11.5973 11.6600 11.8409 11.8922 

11.9675... 
    11.9476 11.9363 11.9647 11.7868 12.1876 11.2184 9.9693  9.9693  

11.3558... 
    11.5773 11.5216 11.3944 11.1295 10.6580 10.0651 9.8064  9.6417  

9.2615... 
    8.2118  5.7539  0.0000]; 
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III.2 INITIAL_POPULATION.M 

function [f min max]= initial_population(N,B,H,S,ss,YU,YT,UD,TT) 
% This function generates the initial population set 

% N is the Population size 

% B,H,S,ss,YU,YT,UD,TT are the data related to the experimental test case 

V = 12;     % number of decision variables 
O = 2;      % number of objectives 
K = V + O;   
%% Defining the range for all the decision variables. 

% min is a vector with the lower bounds of all variables 

% mix is a vector with the upper bounds of all variables 

for i=1:V/3 

    % the range for friction (f) 

    min((i-1)*3+1)=0.01; 
    max((i-1)*3+1)=0.50; 

    % the range for dimensionless eddy viscosity (Lamda) 

    min((i-1)*3+2)=0.05; 
    max((i-1)*3+2)=1.50; 

    % the range for secondary term (Gamma) 

    min((i-1)*3+3)=-1.50; 
    max((i-1)*3+3)=1.50; 

end 

 

%% Initialize the decision variables and evaluating the objective functions 

for i = 1 : N 
    % Initialize the decision variables 

    for j = 1 : V       
        f(i,j) = min(j) + (max(j) - min(j))*rand(1); 
    end 
%   Evaluate evaluating the objective functions 

    f(i,V + 1: K) = evaluate_objective(f(i,:),B,H,S,ss,YU,YT,UD,TT); 
end 

 

III.3 EVALUATE_OBJECTIVE.M 

function f = evaluate_objective(x,B,H,S,ss,YU,YT,UD,TT) 
% This function evaluates the objective functions 

% x is the decision variables 

% B,H,S,ss,YU,YT,UD,TT are the data related to the experimental test case 

  

%% SKM is first used to find the calculated values of depth-averaged 

velocity and bed shear stress at positions where experimental measurements 

are available 

[Ud,To]=SKM(B,H,S,ss,YU,YT,x(1,1),x(1,2),x(1,3),x(1,4),x(1,5),x(1,6),x(1,7)

... 
    ,x(1,8),x(1,9),x(1,10),x(1,11),x(1,12)); 

  
%% The objective functions are evaluated by calculating the sum of squared 

errors 

err1=(Ud-UD).^2; 
err2=(To-TT).^2; 
f(1)=sum(err1); 
f(2)=sum(err2);         
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III.4 SKM.M 

function 

[Ud,To]=SKM(B,H,S,ss,YU,YT,f1,La1,Ga1,f2,La2,Ga2,f3,La3,Ga3,f4,La4,Ga4) 
% This function calculates the depth-averaged velocity and bed shear stress 

% at defined lateral positions using SKM 

% B,H,S,ss,YU,YT are the data related to the experimental test case 

% f is the friction  

% La is the dimension less eddy viscosity 

% Ga is the secondary flow term 

  

%% Arranging SKM inputs 

h(1:4)=H;               % channel depth 
S0(1:4)=S;              % bed slope 
BP=ss*H;                % width of sloping section 
f=[f1 f2 f3 f4];         
La=[La1 La2 La3 La4]; 
Ga=[Ga1 Ga2 Ga3 Ga4]; 

  
%% Calculating SKM variables (Beta,k,Nu,Mu,alpha,omega,eta) 

Beta=Ga./(9.81*1000.*h.*S0); 
k =8*9.81.*S0.*h./f.*(1-Beta); 
Nu=((2./La).^0.5).*((f/8).^0.25).*(1./h); 
Mu=La.*(f./8).^0.5; 
alfa=-0.5+0.5.*(1+ss*(1+ss^2)^0.5./La.*(8.*f).^0.5).^0.5; 
omega=9.81*S./((1+ss^2)^0.5/ss.*f./8-La./ss^2.*(f./8).^0.5); 
eta=-Ga./((1+ss^2)^0.5/ss*1000.*f./8); 

  
%% Calculating the variable matrix (X) 

X=ones(8,8); 

  
X(1,1)=1; 
X(1,2)=-1; 
X(1,3:8)=0; 

  
X(2,1:7)=0; 
X(2,8)=1; 

  
X(3,1:4)=0; 
X(3,5)=(H/2)^alfa(1,3); 
X(3,6)=(H/2)^(-1*(alfa(1,3)+1)); 
X(3,7)=-1*(H/2)^alfa(1,4); 
X(3,8)=-1*(H/2)^(-1*(alfa(1,4)+1)); 

  
X(4,1:4)=0; 
X(4,5)=Mu(1,3)*alfa(1,3)*(H/2)^(alfa(1,3)-1); 
X(4,6)=-Mu(1,3)*(alfa(1,3)+1)*(H/2)^(-1*(alfa(1,3)+2)); 
X(4,7)=-Mu(1,4)*alfa(1,4)*(H/2)^(alfa(1,4)-1); 
X(4,8)=Mu(1,4)*(alfa(1,4)+1)*(H/2)^(-1*(alfa(1,4)+2)); 

  
X(5,1:2)=0; 
X(5,3)=exp(Nu(1,2)*B); 
X(5,4)=exp(-1*Nu(1,2)*B); 
X(5,5)=-1*H^alfa(1,3); 
X(5,6)=-1*H^(-1*(alfa(1,3)+1)); 
X(5,7:8)=0; 
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X(6,1:2)=0; 
X(6,3)=-1*Mu(1,2)*Nu(1,2)*ss*exp(Nu(1,2)*B); 
X(6,4)=Mu(1,2)*Nu(1,2)*ss*exp(-1*Nu(1,2)*B); 
X(6,5)=-1*Mu(1,3)*alfa(1,3)*H^(alfa(1,3)-1); 
X(6,6)=Mu(1,3)*(alfa(1,3)+1)*H^(-1*(alfa(1,3)+2)); 
X(6,7:8)=0; 

  

  
X(7,1)=exp(Nu(1,1)*(B/2)); 
X(7,2)=exp(-1*Nu(1,1)*(B/2)); 
X(7,3)=-exp(Nu(1,2)*(B/2)); 
X(7,4)=-exp(-1*Nu(1,2)*(B/2)); 
X(7,5:8)=0; 

  
X(8,1)=Mu(1,1)*Nu(1,1)*exp(Nu(1,1)*(B/2)); 
X(8,2)=-Mu(1,1)*Nu(1,1)*exp(-1*Nu(1,1)*(B/2)); 
X(8,3)=-Mu(1,2)*Nu(1,2)*exp(Nu(1,2)*(B/2)); 
X(8,4)=Mu(1,2)*Nu(1,2)*exp(-1*Nu(1,2)*(B/2)); 
X(8,5:8)=0; 

  
%% Introducing the coefficient matrix (C) 

C(1,1)=0; 
C(2,1)=0; 
C(3,1)=(H/2)*(omega(1,4)-omega(1,3))+eta(1,4)-eta(1,3); 
C(4,1)=Mu(1,4)*omega(1,4)-Mu(1,3)*omega(1,3); 
C(5,1)=omega(1,3)*H+eta(1,3)-k(1,2); 
C(6,1)=Mu(1,3)*omega(1,3); 
C(7,1)=k(1,2)-k(1,1); 
C(8,1)=0; 

  
%% Calculating the A coefficient matrix 

A=X\C; 

  
%% Calculating depth-averaged velocity (Ud) 

y=YU; 
for i=1:length(YU); 
    if y(1,i)<(B/2)  
        Ud(1,i)=real((A(1,1)*exp(Nu(1,1)*y(1,i))+A(2,1)*exp(-1*Nu(1,1)*... 
            y(1,i))+k(1,1))^0.5); 
    else 
        if y(1,i)<(B) 
            Ud(1,i)=real((A(3,1)*exp(Nu(1,2)*y(1,i))+A(4,1)*exp(-

1*Nu(1,2)... 
                *y(1,i))+k(1,2))^0.5); 
        else 
            if y(1,i)<(B+BP/2) 
                kessi=H-(y(1,i)-B)/ss; 
                Ud(1,i)=real((A(5,1)*kessi^alfa(1,3)+A(6,1)*kessi^(-1*... 
                    (alfa(1,3)+1))+omega(1,3)*kessi+eta(1,3))^0.5); 
            else 
                kessi=H-(y(1,i)-B)/ss; 
                Ud(1,i)=real((A(7,1)*kessi^alfa(1,4)+A(8,1)*kessi^(-1*... 
                    (alfa(1,4)+1))+omega(1,4)*kessi+eta(1,4))^0.5); 
            end 
        end 
    end 
end 
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%% Caclulating bed shear stress (To) 

y=YT; 

  
for i=1:length(YT); 
    if y(1,i)<(B/2)  
        Udd(1,i)=real((A(1,1)*exp(Nu(1,1)*y(1,i))+A(2,1)*exp(-1*Nu(1,1)*... 
            y(1,i))+k(1,1))^0.5); 
        To(1,i)=real(1000.*f(1,1)/8.*Udd(1,i).^2); 
    else 
        if y(1,i)<(B) 
            Udd(1,i)=real((A(3,1)*exp(Nu(1,2)*y(1,i))+A(4,1)*exp(-

1*Nu(1,2)... 
                *y(1,i))+k(1,2))^0.5); 
            To(1,i)=real(1000.*f(1,2)/8.*Udd(1,i).^2); 
        else 
            if y(1,i)<(B+BP/2) 
                kessi=H-(y(1,i)-B)/ss; 
                Udd(1,i)=real((A(5,1)*kessi^alfa(1,3)+A(6,1)*kessi^(-1*... 
                    (alfa(1,3)+1))+omega(1,3)*kessi+eta(1,3))^0.5); 
                To(1,i)=real(1000.*f(1,3)/8.*Udd(1,i).^2); 
            else 
                kessi=H-(y(1,i)-B)/ss; 
                Udd(1,i)=real((A(7,1)*kessi^alfa(1,4)+A(8,1)*kessi^(-1*... 
                    (alfa(1,4)+1))+omega(1,4)*kessi+eta(1,4))^0.5); 
                To(1,i)=real(1000.*f(1,4)/8.*Udd(1,i).^2); 
            end 
        end 
    end 
end 
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III.5 NON_DOMINATION_SORT.M 

function f = non_domination_sort(x) 
% This function sorts the current population based on non-domination.  

% All individuals in the first front are given a rank of 1, the second 

front individuals are assigned rank 2 and so on. After assigning the rank 

the crowding in each front is calculated. 
  

[N,M] = size(x); 
M = 2; 
V = 12; 
front = 1; 

  
F(front).f = []; 
individual = []; 
for i = 1 : N 
    % Number of individuals that dominate this individual 

    individual(i).n = 0; 
    % Individuals which this individual dominate 

    individual(i).p = []; 
    for j = 1 : N 
        dom_less = 0; 
        dom_equal = 0; 
        dom_more = 0; 
        for k = 1 : M 
            if (x(i,V + k) < x(j,V + k)) 
                dom_less = dom_less + 1; 
            elseif (x(i,V + k) == x(j,V + k)) 
                dom_equal = dom_equal + 1; 
            else 
                dom_more = dom_more + 1; 
            end 
        end 
        if dom_less == 0 & dom_equal ~= M 
            individual(i).n = individual(i).n + 1; 
        elseif dom_more == 0 & dom_equal ~= M 
            individual(i).p = [individual(i).p j]; 
        end 
    end    
    if individual(i).n == 0 
        x(i,M + V + 1) = 1; 
        F(front).f = [F(front).f i]; 
    end 
end 
% Find the subsequent fronts 

while ~isempty(F(front).f) 
   Q = []; 
   for i = 1 : length(F(front).f) 
       if ~isempty(individual(F(front).f(i)).p) 
            for j = 1 : length(individual(F(front).f(i)).p) 
                individual(individual(F(front).f(i)).p(j)).n = ... 
                    individual(individual(F(front).f(i)).p(j)).n - 1; 
                if individual(individual(F(front).f(i)).p(j)).n == 0 
                    x(individual(F(front).f(i)).p(j),M + V + 1) = ... 
                        front + 1; 
                    Q = [Q individual(F(front).f(i)).p(j)]; 
                end 
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            end 
       end 
   end 
   front =  front + 1; 
   F(front).f = Q; 
end 

  
[temp,index_of_fronts] = sort(x(:,M + V + 1)); 
for i = 1 : length(index_of_fronts) 
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:); 
end 
current_index = 0; 
% Find the crowding distance for each individual in each front 

for front = 1 : (length(F) - 1) 
    objective = []; 
    distance = 0; 
    y = []; 
    previous_index = current_index + 1; 
    for i = 1 : length(F(front).f) 
        y(i,:) = sorted_based_on_front(current_index + i,:); 
    end 
    current_index = current_index + i; 
    % Sort each individual based on the objective 

    sorted_based_on_objective = []; 
    for i = 1 : M 
        [sorted_based_on_objective, index_of_objectives] = ... 
            sort(y(:,V + i)); 
        sorted_based_on_objective = []; 
        for j = 1 : length(index_of_objectives) 
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:); 
        end 
        f_max = ... 
            sorted_based_on_objective(length(index_of_objectives), V + i); 
        f_min = sorted_based_on_objective(1, V + i); 
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + 

i)... 
            = Inf; 
        y(index_of_objectives(1),M + V + 1 + i) = Inf; 
         for j = 2 : length(index_of_objectives) - 1 
            next_obj  = sorted_based_on_objective(j + 1,V + i); 
            previous_obj  = sorted_based_on_objective(j - 1,V + i); 
            if (f_max - f_min == 0) 
                y(index_of_objectives(j),M + V + 1 + i) = Inf; 
            else 
                y(index_of_objectives(j),M + V + 1 + i) = ... 
                     (next_obj - previous_obj)/(f_max - f_min); 
            end 
         end 
    end 
    distance = []; 
    distance(:,1) = zeros(length(F(front).f),1); 
    for i = 1 : M 
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i); 
    end 
    y(:,M + V + 2) = distance; 
    y = y(:,1 : M + V + 2); 
    z(previous_index:current_index,:) = y; 
end 
f = z(); 
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III.6 TOURNAMENT.M 

function f = tournament(chromosome,pool_size,tour_size) 
% This function selects the parents for reproduction 

% The selection is based on tournament selection. 

% chromosome is the current generation population from which the 

individuals are selected to  

  

[pop,variables] = size(chromosome); 
rank = variables - 1; 
distance = variables; 

  
for i = 1 : pool_size 
    for j = 1 : tour_size 
        candidate(j) = round(pop*rand(1)); 
        if candidate(j) == 0 
            candidate(j) = 1; 
        end 
        if j > 1 
            while ~isempty(find(candidate(1 : j - 1) == candidate(j))) 
                candidate(j) = round(pop*rand(1)); 
                if candidate(j) == 0 
                    candidate(j) = 1; 
                end 
            end 
        end 
    end 
    for j = 1 : tour_size 
        c_obj_rank(j) = chromosome(candidate(j),rank); 
        c_obj_distance(j) = chromosome(candidate(j),distance); 
    end 
    min_candidate = ... 
        find(c_obj_rank == min(c_obj_rank)); 
    if length(min_candidate) ~= 1 
        max_candidate = ... 
        find(c_obj_distance(min_candidate) == 

max(c_obj_distance(min_candidate))); 
        if length(max_candidate) ~= 1 
            max_candidate = max_candidate(1); 
        end 
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:); 
    else 
        f(i,:) = chromosome(candidate(min_candidate(1)),:); 
    end 
end 
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III.7 GENETIC_OPERATOR .M 

function f = genetic_operator ... 

(parent_population,Pc,muc,Pm,mum,B,H,S,ss,YU,YT,UD,TT,min,max) 
% This function is utilized to produce offsprings from parent chromosomes 

% by applying Simulated Binary Crossover (SBX) and Polynomial mutation. 

  

% parent_population is the set of selected chromosomes. 

% Pc is the probability of crossover 

% muc is the distribution index for crossover 

% mum - distribution index for mutation 

% B,H,S,ss,YU,YT,UD,TT are the data related to the experimental test case 

% min - a vector of lower bounds for the corresponding decsion variables 

% max - a vector of upper bounds for the corresponding decsion variables 

  

[N,ttemp] = size(parent_population); 
clear 'ttemp' 

 
M = 2;      % number of objectives 
V = 12;     % number of variables 
p = 1; 

 
was_crossover = 0; 
was_mutation = 0; 
for i = 1 : N 
    if rand(1) < Pc 
        child_1 = []; 
        child_2 = []; 
        parent_1 = round(N*rand(1)); 
        if parent_1 < 1 
            parent_1 = 1; 
        end 
        parent_2 = round(N*rand(1)); 
        if parent_2 < 1 
            parent_2 = 1; 
        end 
        while 

isequal(parent_population(parent_1,:),parent_population(parent_2,:)) 
            parent_2 = round(N*rand(1)); 
            if parent_2 < 1 
                parent_2 = 1; 
            end 
        end 
        parent_1 = parent_population(parent_1,:); 
        parent_2 = parent_population(parent_2,:); 
        for j = 1 : V 
            % SBX (Simulated Binary Crossover) 

            u(j) = rand(1); 
            if u(j) <= 0.5 
                bq(j) = (2*u(j))^(1/(muc+1)); 
            else 
                bq(j) = (1/(2*(1 - u(j))))^(1/(muc+1)); 
            end 
            child_1(j) = ... 
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j)); 
            child_2(j) = ... 
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j)); 
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% Make sure that the mutation does not result in variables out                         

of the search space.  
            if child_1(j) > max(j) 
                child_1(j) = max(j); 
            elseif child_1(j) < min(j) 
                child_1(j) = min(j); 
            end 
            if child_2(j) > max(j) 
                child_2(j) = max(j); 
            elseif child_2(j) < min(j) 
                child_2(j) = min(j); 
            end 
        end 
        child_1(:,V + 1: M + V) = 

evaluate_objective(child_1,B,H,S,ss,YU,YT,UD,TT); 
        child_2(:,V + 1: M + V) = 

evaluate_objective(child_2,B,H,S,ss,YU,YT,UD,TT); 
        was_crossover = 1; 
        was_mutation = 0; 
    else 
        parent_3 = round(N*rand(1)); 
        if parent_3 < 1 
            parent_3 = 1; 
        end 
        child_3 = parent_population(parent_3,:); 
        for j = 1 : V 
           r(j) = rand(1); 
           if r(j) < 0.5 
               delta(j) = (2*r(j))^(1/(mum+1)) - 1; 
           else 
               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1)); 
           end 
           child_3(j) = child_3(j) + delta(j); 
         % Make sure that the mutation does not result in variables out of 

         % the search space.  

          if child_3(j) > max(j); 
               child_3(j) = max(j); 
           elseif child_3(j) < min(j) 
               child_3(j) = min(j); 
           end 
        end 
        child_3(:,V + 1: M + V) = 

evaluate_objective(child_3,B,H,S,ss,YU,YT,UD,TT); 
        was_mutation = 1; 
        was_crossover = 0; 
    end 
    if was_crossover 
        child(p,:) = child_1; 
        child(p+1,:) = child_2; 
        was_cossover = 0; 
        p = p + 2; 
    elseif was_mutation 
        child(p,:) = child_3(1,1 : M + V); 
        was_mutation = 0; 
        p = p + 1; 
    end 
end 
f = child; 
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III.6 SELECT.M 

function f  = select(inter_pop,pop) 
% This function replaces the parents based on rank and crowding distance. 

% inter_pop is the intermediate population 

% pop is the number of population 

  

[N,V] = size(inter_pop); 
M = 2; 
V = 12; 

  
% Get the index for the population sort based on the rank 

[temp,index] = sort(inter_pop(:,M + V + 1)); 

  
% Now sort the individuals based on the index 

for i = 1 : N 
    sorted_chromosome(i,:) = inter_pop(index(i),:); 
end 

  
% Find the maximum rank in the current population 

max_rank = max(inter_pop(:,M + V + 1)); 

  
% Start adding each front based on rank and crowing distance until the 

% whole population is filled. 

previous_index = 0; 
for i = 1 : max_rank 
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i)); 
    if current_index > pop 
        remaining = pop - previous_index; 
        temp_pop = ... 
            sorted_chromosome(previous_index + 1 : current_index, :); 
        [temp_sort,temp_sort_index] = ... 
            sort(temp_pop(:, M + V + 2),'descend'); 
        for j = 1 : remaining 
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:); 
        end 
        return; 
    elseif current_index < pop 
        f(previous_index + 1 : current_index, :) = ... 
            sorted_chromosome(previous_index + 1 : current_index, :); 
    else 
        f(previous_index + 1 : current_index, :) = ... 
            sorted_chromosome(previous_index + 1 : current_index, :); 
        return; 
    end 
    previous_index = current_index; 
end 
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Figure (IV-1): FCF 0501; depth 0.0486m; Qdata=29.90 l.s
-1

; QSKM=27.60 l.s
-1
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Figure (IV-2): FCF 7501; depth 0.0755m; Qdata=64.00 l.s
-1

; QSKM=64.20 l.s
-1
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Figure (IV-3): FCF 1002; depth 0.1009m; Qdata=103.5 l.s
-1

; QSKM=105.40 l.s
-1

 



Appendix IV – SKM Predictions of Depth-Averaged Velocity and Shear Stress 

IV-2 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Lateral distance across section,  y (m)

D
ep

th
-a

v
er

ag
ed

 v
el

o
ci

ty
, 
 U

d
 (

m
/s

)

Experimental Data

SKM Prediction

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Lateral distance across section,  y (m)

B
o
u
n
d
ar

y
 s

h
ea

r 
st

re
ss

, 
 τ 

(N
/m

2
)

Experimental Data

SKM Prediction

 

Figure (IV-4): FCF 1502; depth 0.1488m; Qdata=202.3 l.s
-1

; QSKM=200.60 l.s
-1
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Figure (IV-5): FCF 0401; depth 0.1580m; Qdata=223.70 l.s
-1

; QSKM=222.40 l.s
-1
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Figure (IV-6): FCF 0402; depth 0.1662m; Qdata=241.40 l.s
-1

; QSKM=240.60 l.s
-1
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Figure (IV-7): FCF 0403; depth 0.1753m; Qdata=262.30 l.s
-1

; QSKM=261.40 l.s
-1
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Figure (IV-8): FCF 0404; depth 0.1869m; Qdata=290.90 l.s
-1

; QSKM=290.50 l.s
-1
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Figure (IV-9): FCF 0405; depth 0.1992m; Qdata=324.00 l.s
-1

; QSKM=321.20 l.s
-1

 

IV.2 YUEN’S DATA 

IV.2.1 Yuen Series 1 (S0=1.000x10-3) 

 

Yuen test case 004 006 008 010 013 014 016 

2b/h 3.00 2.50 2.00 1.80 1.50 1.40 1.00 

Pb/Pw 1.06 0.88 0.71 0.64 0.53 0.50 0.35 

f 0.0199 0.0189 0.0187 0.0181 0.0170 0.0166 0.0159 

λ 1.08 1.35 1.29 1.30 0.79 1.05 1.07 Panel 1 

Γ -0.50 -0.52 -0.54 -0.55 -0.57 -0.63 -0.72 

f 0.0231 0.0218 0.0207 0.0198 0.0182 0.0177 0.0171 

λ 0.49 0.45 0.38 0.30 0.28 0.24 0.16 Panel 2 

Γ 0.16 0.15 0.13 0.14 0.15 0.15 0.12 

f 0.0244 0.0235 0.0221 0.0210 0.0200 0.0194 0.0185 

λ 0.86 0.84 0.84 0.84 0.82 0.77 0.71 Panel 3 

Γ -0.15 -0.25 -0.36 -0.42 -0.55 -0.62 -0.64 

f 0.0283 0.0268 0.0250 0.0244 0.0228 0.0222 0.0210 

λ 1.57 1.55 1.50 1.47 1.47 1.44 1.36 Panel 4 

Γ 0.71 0.72 0.79 0.82 0.89 0.93 0.96 

Table (IV-1): The optimal parameter values in different panels of Yuen’s series 1 data. 
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Figure (IV-10): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel number and wetted perimeter ratio (Pb/Pw) for Yuen’s series 1 

(1.0<2b/h<3.0 and S0=1.000x10
-3

) 
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Figure (IV-11): Yuen 004; depth 0.0500 m; Qdata=3.5 l.s
-1

; QSKM=3.49 l.s
-1
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Figure (IV-12): Yuen 006; depth 0. 0600 m; Qdata=4.65 l.s
-1

; QSKM=4.82 l.s
-1
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Figure (IV-13): Yuen 008; depth 0.0750 m; Qdata=7.00 l.s
-1

; QSKM=7.11 l.s
-1
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Figure (IV-14): Yuen 010; depth 0.0833 m; Qdata=8.55 l.s
-1

; QSKM=8.63 l.s
-1
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Figure (IV-15): Yuen 013; depth 0.100 m; Qdata=12.00 l.s
-1

; QSKM=12.21 l.s
-1
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Figure (IV-16): Yuen 014; depth 0.1071 m; Qdata=13.70 l.s
-1

; QSKM=14.12 l.s
-1
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Figure (IV-17): Yuen 016; depth 0.150 m; Qdata=26.30 l.s
-1

; QSKM=26.26 l.s
-1

 

 

 

IV.2.2 Yuen Series 3 (S0=8.706x10-3) 

 

Yuen test case 201 203 205 206 207 

2b/h 5.26 3.67 2.61 2.05 1.52 

Pb/Pw 1.86 1.30 0.92 0.73 0.54 

f 0.0180 0.0165 0.0164 0.0150 0.0144 

λ 0.98 0.62 0.77 0.55 0.78 Panel 1 

Γ -0.35 -0.53 -0.65 -0.79 -0.96 

f 0.0208 0.0183 0.0168 0.0162 0.0157 

λ 0.15 0.14 0.12 0.11 0.11 Panel 2 

Γ 0.32 0.23 0.22 0.22 0.20 

f 0.0240 0.0203 0.0188 0.0179 0.0167 

λ 0.50 0.39 0.32 0.29 0.24 Panel 3 

Γ -0.67 -0.67 -0.78 -0.89 -1.14 

f 0.0250 0.0221 0.0205 0.0194 0.0185 

λ 0.67 0.60 0.53 0.49 0.40 Panel 4 

Γ 1.04 1.30 1.57 1.70 1.80 

Table (IV-2): The optimal parameter values in different panels of Yuen’s series 3 data. 
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Figure (IV-18): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel number and wetted perimeter ratio (Pb/Pw) for Yuen’s series 3 

(1.52<2b/h<5.26 and S0=8.706x10
-3

) 
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Figure (IV-19): Yuen 201; depth 0.285 m; Qdata=4.70 l.s
-1

; QSKM=4.47 l.s
-1
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Figure (IV-20): Yuen 203; depth 0.409 m; Qdata=8.68 l.s
-1

; QSKM=8.39 l.s
-1

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Lateral distance across section,  y (m)

D
ep

th
-a

v
er

ag
ed

 v
el

o
ci

ty
, 
 U

d
 (

m
/s

)

SKM Prediction

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Lateral distance across section,  y (m)

B
o
u
n
d
ar

y
 s

h
ea

r 
st

re
ss

, 
 τ 

( N
/m

2
)

Experimental Data

SKM Prediction

 

Figure (IV-21): Yuen 205; depth 0.575 m; Qdata=15.60 l.s
-1

; QSKM=14.84 l.s
-1
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Figure (IV-22): Yuen 206; depth 0.730 m; Qdata=23.90 l.s
-1

; QSKM= l.s
-1

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Lateral distance across section,  y (m)

D
ep

th
-a

v
er

ag
ed

 v
el

o
ci

ty
, 
 U

d
 (

m
/s

)

Experimental Data

SKM

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Lateral distance across section,  y (m)

B
o
u
n
d
ar

y
 s

h
ea

r 
st

re
ss

, 
 τ 

( N
/m

2
)

Experimental Data

SKM Prediction

 

Figure (IV-23): Yuen 207; depth 0.990 m; Qdata=41.10 l.s
-1

; QSKM=39.28 l.s
-1
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IV.2.3 Yuen Series 5 (S0=23.370x10-3) 

 

Yuen test case 401 403 405 406 407 

2b/h 5.26 3.57 2.65 2.05 1.52 

Pb/Pw 1.86 1.26 0.94 0.73 0.54 

f 0.0159 0.0157 0.0150 0.0144 0.0136 

λ 0.75 0.68 0.72 0.64 0.64 Panel 1 

Γ -0.74 -0.82 -0.88 -0.97 -1.10 

f 0.0184 0.0176 0.0160 0.0157 0.0149 

λ 0.14 0.14 0.15 0.12 0.12 Panel 2 

Γ 0.10 0.20 0.13 0.18 0.18 

f 0.0218 0.0191 0.0174 0.0167 0.0159 

λ 0.31 0.27 0.25 0.22 0.20 Panel 3 

Γ -1.00 -1.10 -1.16 -1.30 -1.41 

f 0.0253 0.0219 0.0198 0.0185 0.0176 

λ 0.43 0.41 0.35 0.31 0.30 Panel 4 

Γ 1.35 1.58 1.72 1.91 1.98 

Table (IV-3): The optimal parameter values in different panels of Yuen’s series 5 data. 
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Figure (IV-24): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel number and wetted perimeter ratio (Pb/Pw) for Yuen’s series 5 
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-3

) 
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Figure (IV-25): Yuen 401; depth 0.0285 m; Qdata=8.10 l.s
-1

; QSKM=7.91 l.s
-1
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Figure (IV-26): Yuen 403; depth 0.0420 m; Qdata=15.33 l.s
-1

; QSKM=14.78 l.s
-1
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Figure (IV-27): Yuen 405; depth 0.0565 m; Qdata=25.55 l.s
-1

; QSKM=24.61 l.s
-1
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Figure (IV-28): Yuen 406; depth 0.0730 m; Qdata=39.00 l.s
-1

; QSKM=38.44 l.s
-1
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Figure (IV-29): Yuen 407; depth 0.0990 m; Qdata=66.30 l.s
-1

; QSKM=66.13 l.s
-1
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IV.3 AL-HAMID’S DATA 

IV.3.1 Smooth Bed and R1 on the Walls  
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Figure (IV-30): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel number for Al-Hamid’s trapezoidal channels with smooth bed and 

R1 on the wall (So=3.920x10
-3

) 
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Figure (IV-31): Al-Hamid 01; depth 0.126 m; 

 Qdata=13.69 l.s
-1

; QSKM=13.04 l.s
-1

; %SFwdata=94.70; %SFwSKM=93.99 
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Figure (IV-32): Al-Hamid 02; depth 0.107 m; 

 Qdata=9.99 l.s
-1

; QSKM=10.10 l.s
-1

; %SFwdata=93.33; %SFwSKM=91.51 
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Figure (IV-33): Al-Hamid 03; depth 0.075 m; 

 Qdata=5.15 l.s
-1

; QSKM=4.96 l.s
-1

; %SFwdata=90.99; %SFwSKM=89.73 
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Figure (IV-34): Al-Hamid 04; depth 0.054 m; 

 Qdata=2.91 l.s
-1

; QSKM=2.86 l.s
-1

; %SFwdata=87.38; %SFwSKM=86.96 
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Figure (IV-35): Al-Hamid 05; depth 0.043 m; 

 Qdata=2.01 l.s
-1

; QSKM=2.05 l.s
-1

; %SFwdata=84.69; %SFwSKM=84.60 
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Figure (IV-36): Al-Hamid 23; depth 0.085 m; 

 Qdata=15.53 l.s
-1

; QSKM=15.18 l.s
-1

; %SFwdata=81.14; %SFwSKM=78.48 
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Figure (IV-37): Al-Hamid 24; depth 0.064 m; 

 Qdata=9.68 l.s
-1

; QSKM=9.79 l.s
-1

; %SFwdata=76.65; %SFwSKM=73.25 
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Figure (IV-38): Al-Hamid 25; depth 0.051 m; 

 Qdata=6.71 l.s
-1

; QSKM=6.72 l.s
-1

; %SFwdata=73.65; %SFwSKM=72.40 
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Figure (IV-39): Al-Hamid 26; depth 0.067 m; 

 Qdata=20.05 l.s
-1

; QSKM=20.14 l.s
-1

; %SFwdata=67.81; %SFwSKM=64.85 
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Figure (IV-40): Al-Hamid 27; depth 0.057 m; 

 Qdata=15.76 l.s
-1

; QSKM=15.61 l.s
-1

; %SFwdata=64.04; %SFwSKM=61.46 
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Figure (IV-41): Al-Hamid 28; depth 0.050 m; 

 Qdata=12.99 l.s
-1

; QSKM=13.40 l.s
-1

; %SFwdata=61.50; %SFwSKM=61.49 
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Figure (IV-42): Al-Hamid 29; depth 0.044 m; 

 Qdata=10.83 l.s
-1

; QSKM=10.76 l.s
-1

; %SFwdata=57.90; %SFwSKM=57.97 
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Figure (IV-43): Al-Hamid 30; depth 0.040 m; 

 Qdata=9.30 l.s
-1

; QSKM=9.31 l.s
-1

; %SFwdata=56.34; %SFwSKM=56.67 
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IV.3.2 Smooth Bed and R2 on the Walls  
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Figure (IV-44): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel number for Al-Hamid’s trapezoidal channels with smooth bed and 

R2 on the wall 
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Figure (IV-45): Al-Hamid 09; depth 0.1426 m; 

 Qdata=21.95 l.s
-1

; QSKM=21.21 l.s
-1

; %SFwdata=92.87; %SFwSKM=92.11 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Lateral distance across section,  y (m)

D
e
p

th
-a

v
e
ra

g
e
d

 v
e
lo

c
it

y
, 

 
U

d
 (

m
/s

)

Experimental Data

SKM Prediction

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Lateral distance across section,  y (m)

B
o

u
n

d
a
ry

 s
h

e
a
r 

st
re

ss
, 

 τ 
( N

/m
2
)

Experimental Data

SKM Prediction

 

Figure (IV-46): Al-Hamid 10; depth 0.121 m; 

 Qdata=15.91 l.s
-1

; QSKM=15.81 l.s
-1

; %SFwdata=91.16; %SFwSKM=89.68 
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Figure (IV-47): Al-Hamid 11; depth 0.081 m; 

 Qdata=7.38 l.s
-1

; QSKM=7.75 l.s
-1

; %SFwdata=87.36; %SFwSKM=83.21 
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Figure (IV-48): Al-Hamid 12; depth 0.060 m; 

 Qdata=4.48 l.s
-1

; QSKM=4.56 l.s
-1

; %SFwdata=82.73; %SFwSKM=81.07 
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Figure (IV-49): Al-Hamid 13; depth 0.048 m; 

 Qdata=3.11 l.s
-1

; QSKM=2.92 l.s
-1

; %SFwdata=79.59; %SFwSKM=80.58 
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Figure (IV-50): Al-Hamid 17; depth 0.091 m; 

Qdata=22.25 l.s
-1

; QSKM=21.75 l.s
-1

; %SFwdata=74.68; %SFwSKM=74.34 
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Figure (IV-51): Al-Hamid 18; depth 0.068 m; 

 Qdata=14.09 l.s
-1

; QSKM=13.86 l.s
-1

; %SFwdata=68.32 ; %SFwSKM=68.01 
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Figure (IV-52): Al-Hamid 19; depth 0.055 m; 

 Qdata=10.00 l.s
-1

; QSKM=9.79 l.s
-1

; %SFwdata=64.36; %SFwSKM=65.05 
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Figure (IV-53): Al-Hamid 31; depth 0.070 m; 

 Qdata=18.47 l.s
-1

; QSKM=18.25 l.s
-1

; %SFwdata=59.66; %SFwSKM=60.97 
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Figure (IV-54): Al-Hamid 32; depth 0.059 m; 

 Qdata=14.30 l.s
-1

; QSKM=14.13 l.s
-1

; %SFwdata=55.56; %SFwSKM=58.85 
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Figure (IV-55): Al-Hamid 33; depth 0.052 m; 

 Qdata=11.53 l.s
-1

; QSKM=11.44 l.s
-1

; %SFwdata=52.22; %SFwSKM=54.97 
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Figure (IV-56): Al-Hamid 34; depth 0.046 m; 

 Qdata=9.61 l.s
-1

; QSKM=9.44 l.s
-1

; %SFwdata=49.99; %SFwSKM=51.88 
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Figure (IV-57): Al-Hamid 35; depth 0.042 m; 

 Qdata=8.03 l.s
-1

; QSKM=7.95 l.s
-1

; %SFwdata=46.91; %SFwSKM=44.71 
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IV.3.2 Rough Bed and Rough Walls  
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Figure (IV-58): Variation of the friction factor, dimensionless eddy viscosity and secondary 

flow term against the panel number for Al-Hamid’s trapezoidal channels with rough bed and 

wall. 
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Figure (IV-59): Al-Hamid 06; depth 0.094 m; 

 Qdata=8.02 l.s
-1

; QSKM=7.75 l.s
-1

; %SFwdata=64.09; %SFwSKM=61.34 
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Figure (IV-60): Al-Hamid 07; depth 0.070 m; 

 Qdata=4.43 l.s
-1

; QSKM=4.37 l.s
-1

; %SFwdata=52.13; %SFwSKM=51.03 
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Figure (IV-61): Al-Hamid 08; depth 0.056 m; 

 Qdata=2.82 l.s
-1

; QSKM=2.9 l.s
-1

; %SFwdata=47.89; %SFwSKM=46.04 
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Figure (IV-62): Al-Hamid 14; depth 0.095 m; 

 Qdata=9.50 l.s
-1

; QSKM=9.29 l.s
-1

; %SFwdata=62.93; %SFwSKM=60.33 
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Figure (IV-63): Al-Hamid 15; depth 0.072 m; 

 Qdata=5.33 l.s
-1

; QSKM=5.40 l.s
-1

; %SFwdata=53.88; %SFwSKM=55.80 
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Figure (IV-64): Al-Hamid 16; depth 0.057 m; 

 Qdata=3.31 l.s
-1

; QSKM=3.15 l.s
-1

; %SFwdata=49.01; %SFwSKM=47.43 
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Figure (IV-65): Al-Hamid 20; depth 0.074 m; 

 Qdata=11.78 l.s
-1

; QSKM=11.52 l.s
-1

; %SFwdata=38.18; %SFwSKM=36.56 
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Figure (IV-66): Al-Hamid 21; depth 0.060 m; 

 Qdata=7.86 l.s
-1

; QSKM=7.72 l.s
-1

; %SFwdata=32.12; %SFwSKM=31.80 
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Figure (IV-67): Al-Hamid 22; depth 0.050 m; 

 Qdata=5.58 l.s
-1

; QSKM=5.54 l.s
-1

; %SFwdata=29.03; %SFwSKM=28.36 
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Figure (IV-68): Al-Hamid 36; depth 0.059 m; 

 Qdata=11.43 l.s
-1

; QSKM=11.11 l.s
-1

; %SFwdata=24.12; %SFwSKM=23.57 
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Figure (IV-69): Al-Hamid 37; depth 0.052 m; 

 Qdata=9.01 l.s
-1

; QSKM=8.75 l.s
-1

; %SFwdata=21.15; %SFwSKM=20.90 
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Figure (IV-70): Al-Hamid 38; depth 0.044 m; 

 Qdata=6.66 l.s
-1

; QSKM=6.46 l.s
-1

; %SFwdata=18.08; %SFwSKM=17.65 
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IV.4 RECTANGULAR DATA 
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Figure (IV-71): DWK01; depth 0.0858 m; Qdata=4.80 l.s
-1

; QSKM=4.78 l.s
-1
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Figure (IV-72): DWK02; depth 0.0970 m; Qdata=5.60 l.s
-1

; QSKM=5.57 l.s
-1
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Figure (IV-73): DWK03; depth 0.1026 m; Qdata=6.07 l.s
-1

; QSKM=6.03 l.s
-1
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Figure (IV-74): DWK04; depth 0.1136 m; Qdata=7.00 l.s
-1

; QSKM=6.94 l.s
-1
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Figure (IV-75): DWK05; depth 0.1259 m; Qdata=8.00 l.s
-1

; QSKM=7.96 l.s
-1
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Figure (IV-76): DWK06; depth 0.1530 m; Qdata=9.85 l.s
-1

; QSKM=9.73 l.s
-1
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Figure (IV-77): AP1001; depth 0.0683 m; Qdata=9.85 l.s
-1

; QSKM=10.70 l.s
-1
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Figure (IV-78): AP1002; depth 0.0499 m; Qdata=5.81 l.s
-1

; QSKM=6.30 l.s
-1
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Figure (IV-79): AP1601; depth 0.0663 m; Qdata=9.25 l.s
-1

; QSKM=9.94 l.s
-1
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Figure (IV-80): AP1602; depth 0.0496 m; Qdata=5.87 l.s
-1

; QSKM=6.29 l.s
-1

 

 

 

 

IV.5 RIVERS WITH INBANK FLOW 

IV.5.1 River Colorado 
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Figure (IV-81): Colorado 01; depth 1.900m; 

Qdata=90.15 m
3
.s

-1
; QSKM=88.52m

3
.s

-1 
Figure (IV-82): Colorado 02; depth 1.984m; 

Qdata=100.62 m
3
.s

-1
; QSKM=97.05 m

3
.s

-1
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Figure (IV-83): Colorado 03; depth 2.040m; 

Qdata=108.56 m
3
.s

-1
; QSKM=108.48 m

3
.s

-1
 

Figure (IV-84): Colorado 04; depth 2.190m; 

Qdata=128.90 m
3
.s

-1
; QSKM=125.44 m

3
.s

-1
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Figure (IV-85): Colorado 05; depth 2.210m; 

Qdata=132.27 m
3
.s

-1
; QSKM=130.30 m

3
.s

-1
 

Figure (IV-86): Colorado 06; depth 2.280m; 

Qdata=144.58 m
3
.s

-1
; QSKM=144.53 m

3
.s

-1
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Figure (IV-87): Colorado 07; depth 2.494m; 

Qdata=181.98 m
3
.s

-1
; QSKM=182.14 m

3
.s

-1
 

Figure (IV-88): Colorado 08; depth 2.899m; 

Qdata=267.15 m
3
.s

-1
; QSKM=263.87 m

3
.s

-1
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Figure (IV-89): Colorado 09; depth 3.198m; 

Qdata=331.03 m
3
.s

-1
; QSKM=325.46 m

3
.s

-1
 

Figure (IV-90): Colorado 10; depth 3.690m; 

Qdata=449.57 m
3
.s

-1
; QSKM=453.78 m

3
.s

-1
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IV.5.2 RIVer La Suela 
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Figure (IV-91): La Suela 01; depth 0.99m; 

Qdata=15.30 m
3
.s

-1
; QSKM=17.91 m

3
.s

-1 
Figure (IV-92): La Suela 02; depth 1.28m; 

Qdata=21.11 m
3
.s

-1
; QSKM=26.92 m

3
.s

-1 
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Figure (IV-93): La Suela 03; depth 1.35m; 

Qdata=21.31 m
3
.s

-1
; QSKM=27.22 m

3
.s

-1
                    

Figure (IV-94): La Suela 04; depth 1.40m; 

Qdata=27.87 m
3
.s

-1
; QSKM=30.44 m

3
.s

-1
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Figure (IV-95): La Suela 05; depth 1.49m; 

Qdata=33.96 m
3
.s

-1
; QSKM=38.27 m

3
.s

-1 
Figure (IV-96): La Suela 06; depth 1.52m; 

Qdata=35.75 m
3
.s

-1
; QSKM=37.24 m

3
.s

-1
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Figure (IV-97): La Suela 07; depth 1.60m;  

Qdata=42.60 m
3
.s

-1
; QSKM=47.24 m

3
.s

-1 
Figure (IV-98): La Suela 08; depth 1.75m; 

Qdata=49.30 m
3
.s

-1
; QSKM=57.99 m

3
.s

-1 
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Figure (IV-99): La Suela 09; depth 1.95m; 

Qdata=59.79 m
3
.s

-1
; QSKM=67.54 m

3
.s

-1 
Figure (IV-100): La Suela 10; depth 2.15m; 

Qdata=83.41 m
3
.s

-1
; QSKM=89.06 m

3
.s

-1 

 

 

IV.5.3 Other River Sections 
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Figure (IV-101): River Main at Bridge End; 

depth 0.49m;  Qdata=6.03m
3
.s

-1
; QSKM=6.03m

3
.s

-1 
Figure (IV-102): River Main at Bridge End; 

depth 0.79m; Qdata=14.82m
3
.s

-1
; QSKM=15.16m

3
.s

-1 
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Figure (IV-103): River Severn at Montford; 

depth 4.753m; Qdata=98.3m
3
.s

-1
; 

QSKM=96.12m
3
.s

-1 

Figure (IV-104): River Trent at Yoxall; 

Depth 2.360m; Qdata=82.59 m
3
.s

-1
; 

QSKM=83.48m
3
.s

-1 
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Figure (IV-105): River Cuenca Ecuador; 

depth 1.95m; Qdata=135.470 m
3
.s

1
; 

QSKM=125.625 m
3
.s

-1 

Figure (IV-106): River Tomebamba, Ecuador; 

depth 1.53m; Qdata=29.22 m
3
.s

-1
; 

  QSKM=29.23 m
3
.s

-1 
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APPENDIX V 

 

STATISTICAL PROCEDURES 
 

V.1 INTRODUCTION 

In this Appendix, two statistical procedures which were used in the context of this research 

will be briefly explained. Samples of the application of each procedure will also be provided 

for further clarification. In the second stage of the calibration framework post-validation 

phase (Section 4.4.6.2), the k-means clustering method (Gnanadesikan, 1977) was used to 

detect the clusters of solutions on the effective portion of the Pareto front, each representing a 

region of attraction in the parametric space. In addition, a backward elimination procedure 

(Mardia et al., 1979; Johnson and Wichern, 1988) based on the PCA of the free overfall data 

was conducted to find the principal variables that mainly govern the end-depth ratio (EDR). 

 

V.2 K-MEANS CLUSTER ANALYSIS 

Cluster analysis is a statistical technique used to classify or group objects of similar kind into 

meaningful sets or clusters by means of maximizing the degree of similarity (homogeneity) of 

the characteristics possessed within each cluster, and heterogeneity between clusters 

(Blashfield and Aldenderfer, 1978). Cluster analysis was first discussed in the social sciences 

during the 1930s and its popularity grew in the 1960s when biological taxonomists began 

using clustering methods for classificatory research. Clustering techniques have been applied 

in many fields including anthropology, archaeology, biology, medicine, market segmentation, 

statistics, psychology, psychiatry, pattern recognition, and other social sciences (Blashfield 

and Aldenderfer, 1978; Steinley, 2006). 

 

The different methods of cluster analysis fall mainly into two families: hierarchical methods 

and iterative partitioning methods (nonhierarchical methods) (Gnanadesikan,a1977). 
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Hierarchical clustering can be “agglomerative” where clustering builds up toward a single 

cluster, or “divisive” where clustering breaks up into smaller subsets and is often represented 

by a tree or a “dendogram” (Gnanadesikan, 1977). The agglomerative method begins at the 

top of the tree with each data point as its own cluster, and similar entities are linked together 

sequentially based on the defined linkage rules. Clusters are built gradually as separate data 

points (entities) merge into larger clusters. Clustering continues until one cluster contains the 

entire dataset. In contrast, the divisive method begins at the roots of the tree with the whole 

set in one cluster and continuously divides it into smaller clusters (Gnanadesikan, 1977). 

 

Unlike hierarchical methods, iterative partitioning begins with a predetermined number of 

clusters. Centroids are assumed, estimated, or computed for each cluster and data points are 

assigned to the cluster with the closest centroid. After allocation, new centroids are 

recalculated followed by updated cluster membership. Based on the new centroids, members 

may be reassigned if they are closer to a different cluster’s centroid. This process continues 

until no reassignments occur (Gnanadesikan, 1977; Blashfield and Aldenderfer, 1984). 

 

Best known for its simplicity and computational efficiency, k-means method is one of the 

most popular methods of nonhierarchical clustering (Gnanadesikan, 1977). In this technique, 

first, the numbers of clusters are determined and accordingly, data points are assigned to the 

clusters in a way that the means across clusters are as different from each other as possible. 

The final clusters are found by an iterative process of minimizing the variability within each 

cluster and maximizing the variability between clusters (without any overlap between 

clusters). This process contains the following steps: 

 

1- The items are randomly separated into K initial clusters and the centroid (mean) of each 

cluster is calculated 

 

2- The distance (normally the Euclidian distance) of each item to the centroid of all clusters is 

measured and items are reassigned to the nearest cluster. 

 

3- Step 2 is repeated for all individuals until no more reassignments take place. 
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Example 

Table (V-1) shows the measured variables (X1 and X2) for four items where the objective is to 

divide them into k = 2 clusters. 

Item X1 X2 

A 7 2 

B -1 4 

C 2 -3 

D -4 -1 

 

Table (V-1): Raw data. 

 

Following the first step, the items are arbitrarily partitioned into two clusters, such as (AB) 

and (CD), and the coordinates (mean) of the clusters’ centroid are calculated (Table (V-2)).  

 

Cluster 
1X  2X  

(AB) 
7 ( 1)

3
2

+ −
=  

2 4
3

2

+
=  

(CD) 
2 ( 4)

1
2

+ −
= −  

3 ( 1)
2

2

− + −
= −  

 

Table (V-2): Coordinates of cluster centroids. 

 

At step 2, the Euclidian distance of each item to the centroid of the clusters is measured: 

 

2 2 2(A, (AB)) (7 3) (2 3) 17d = − + − =  (V-1) 

2 2 2(A, (CD)) (7 1) (2 2) 80d = + + + =  (V-2) 

Since A is closer to cluster (AB) than cluster (CD), it is not reassigned. Continuing, 

2 2 2(B,(AB)) ( 1 3) (4 3) 17d = − − + − =  (V-3) 

2 2 2(B,(CD)) ( 1 1) (4 2) 36d = − + + + =  (V-4) 
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B is reassigned to cluster (CD) giving cluster (BCD) and the following updated centroid 

coordinates (Table (V-3)): 

 

Cluster 
1X  

2X  

(A) 7 2 

(BCD) -1 0 

 

Table (V-3): Coordinates of updated cluster centroids. 

 

Again Step 2 is repeated and each item is checked for reassignment (Table (V-4)): 

 

Cluster A B C D 

(A) 0 80 50 130 

(BCD) 125 16 18 10 

 

Table (V-4): Squared distances to group centroids. 

 

It can be observed that each item is assigned to the cluster with the nearest centroid and hence 

the process stops. The final clusters are (A) and (BCD) 

 

V.3 P RINCIPAL COMPONENT ANALYSIS (PCA) 

PCA is a statistical method for reducing the dimensionality of a large dataset while retaining 

as much information as possible by computing a compact and optimal description of the data 

(Flury, 1988; Jolliffe, 1986). This technique uses the correlation coefficient between different 

variables to create a subset of independent components (also known as principal components 

or eigenvectors). This subset is a linear combination of the original variables, and represents a 

large proportion of the variation in the system. The unique feature of PCA is that the first 

principal component produced in the analysis, tends to account for a large degree of 

variability in the data as possible. The next component accounts for the maximum variance 

that has not been explained by the first component and so on (Johnson and Wichern, 1988). In 

general, the number of principal components is equal to the number of original variables; 

however, for most of the datasets, the first few principal components account for most of the 
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variance (as long as there is at least one dominant structure within the data). As a result, the 

rest of the principal components can be ignored with the minimal loss of information. To 

apply the PCA on a dataset, the following steps should be taken (Smith, 2002): 

 

1- Normalizing the dataset.  

2- Calculating the covariance matrix. 

3- Calculating the unit eigenvectors and eigenvalues of the covariance matrix. 

4- Ordering the eigenvectors (components) by their eigenvalue, from highest to lowest. 

This gives the components in order of significance. 

5- Selecting the components and forming a coefficient matrix from the eigenvectors.  

6- Mapping the data on the selected eigenvectors. 

  

Based on PCA, Mardia et al. (1979) introduced a procedure for discarding redundant 

variables and selecting principal variables. In this approach, the important characteristics 

(variables) of the dataset that contribute most to its variance are retained by ignoring the 

dominant variables of less important components. This variable elimination process can be 

summarized as follows: 

 

1- First, the matrix of the normalized independent variables is formed. 

2- The PCA is then applied to the normalized data and the variance explained by each of 

the corresponding principal components is calculated. Based on the results, the 

number of sufficient components for describing most of the variations (e.g. 90%) in 

the dataset is found. 

3- The eigenvalue vector and the principal component coefficient matrix (eigenvector 

matrix) for the principal components are derived from PCA. 

4- The coefficient matrix is searched and the variable that has the largest absolute 

coefficient value (most dominant variable) for the component with the smallest 

eigenvalue (least important component) is found and eliminated from the entire 

variable set. 

5- PCA is again performed on the remaining variables and steps 3 to 5 are repeated. 

6- This elimination process continues until the number of sufficient components (defined 

in step 2) is obtained. The remaining variables are the principal variables.  
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Example- rectangular free overfall 

The detailed application of the introduced backward elimination procedure as applied to a 

rectangular free overfall is outlined here as an example. The goal is to find the principal 

variables from the set of { , , ( / ), , , , , ( / ), ( / )}
e e 0 c 0 c 0 c 0 c

b h h b S S S S S S S S that are important 

in estimating the critical depth. 

 

The first step is to prepare the normalized matrix of the variables. This is done by subtracting 

the mean from each of the data dimensions and dividing the result by the difference of 

maximum and minimum of that variable. Next PCA is applied to the normalized matrix. The 

covariance matrix (Table (V-5)) is formed and the eigenvalues (Table (V-6)) and unit 

eigenvectors (Table (V-7)) of the covariance matrix are calculated. Table (V-6) and Figure 

(V-1) indicate that the first 4 components account for nearly 95% of the variability within the 

data (see Figure (6-10)).  Following the elimination procedure, the most dominant variable of 

the least important component is detected and eliminated. Table (V-7) shows that ( / )
0 c

S S  

has the largest absolute coefficient value and hence should be removed. 

 

In the next step, the normalized dataset matrix with eight variables (original dataset 

without ( / )
0 c

S S ) is formed and the previous step is repeated. The covariance matrix is 

formed and the eigenvalue and eigenvectors (Table (V-8)) are calculated. Here, the critical 

depth, Sc, is found as the dominant variable of the least important component (component 

number VII).  Sc is removed from the dataset and the elimination procedure is continued until 

4 variables are left (Table (VIII). These variables are the principal variables that mainly 

govern the end-depth ratio (EDR) in rectangular free overfall. 
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 B he he/b S0 Sc 0
S  

c
S  /

0 c
S S  /

0 c
S S  

B 0.142 -0.027 -0.033 0.040 0.011 0.060 0.011 0.014 0.030 

he -0.027 0.028 0.011 -0.018 0.004 -0.023 0.005 -0.007 -0.014 

he/B -0.033 0.011 0.017 -0.013 -0.001 -0.019 0.001 -0.004 -0.010 

S0 0.040 -0.018 -0.013 0.084 -0.007 0.087 -0.010 0.030 0.049 

Sc 0.011 0.004 -0.001 -0.007 0.020 -0.006 0.023 -0.005 -0.008 

0
S  0.060 -0.023 -0.019 0.087 -0.006 0.100 -0.009 0.029 0.053 

c
S  0.011 0.005 0.001 -0.010 0.023 -0.009 0.029 -0.008 -0.015 

/0 cS S  0.014 -0.007 -0.004 0.030 -0.005 0.029 -0.008 0.020 0.026 

/0 cS S

 

0.030 -0.014 -0.010 0.049 -0.008 0.053 -0.015 0.026 0.040 

Table (V-5): Covariance matrix. 

 

 

 I II III IV V VI VII VIII IX 

Eigenvalue 0.2839 0.1095 0.0417 0.0192 0.0139 0.0074 0.0035 0.0008 0.0001 

Percentage 

of variability 
59.17 22.81 8.68 4.01 2.90 1.54 0.72 0.17 0.03 

Table (V-6): Eigenvalues of the covariance matrix. 

 

 

Figure (V-I): The percentage of total variability described by each principal component. 
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Principal component 
variable 

I II III IV V VI VII VIII IX 

B -0.52 -0.75 -0.22 -0.26 -0.05 0.19 -0.07 0.02 -0.01 

he 0.17 0.04 0.29 -0.86 -0.24 -0.29 0.00 -0.02 0.02 

he/B 0.15 0.15 0.15 -0.24 0.08 0.91 0.20 0.05 -0.06 

S0 -0.48 0.35 0.29 0.02 -0.17 0.14 -0.67 0.22 0.13 

Sc 0.02 -0.25 0.52 0.10 0.32 -0.13 0.09 0.61 -0.40 

0
S  -0.56 0.23 0.24 0.10 -0.33 -0.06 0.57 -0.22 -0.28 

c
S  0.05 -0.30 0.65 0.18 0.15 0.03 -0.01 -0.49 0.44 

/
0 c

S S  -0.18 0.17 -0.05 -0.20 0.65 -0.05 -0.22 -0.47 -0.45 

/0 cS S  -0.32 0.23 -0.12 -0.19 0.50 -0.12 0.34 0.28 0.58 

Table (V-7): Eigenvectors of the covariance matrix. 

 

 

Principal component 
variable 

I II III IV V VI VII VIII 

B -0.58 -0.71 -0.21 -0.27 -0.07 0.17 0.07 -0.01 

he 0.18 0.02 0.31 -0.88 0.17 -0.26 -0.01 0.02 

he/B 0.16 0.13 0.15 -0.22 -0.30 0.87 -0.15 -0.08 

S0 -0.49 0.43 0.25 -0.04 -0.04 0.07 0.71 -0.09 

Sc 0.01 -0.25 0.54 0.18 -0.18 -0.16 -0.11 -0.73 

0S  -0.58 0.32 0.19 0.02 0.33 0.04 -0.64 0.03 

cS  0.03 -0.30 0.66 0.23 -0.02 0.04 0.06 0.64 

/
0 c

S S  -0.18 0.18 -0.04 -0.11 -0.85 -0.33 -0.22 0.20 

Table (V-8): Eigenvectors of the covariance matrix. 

 

 

Principal component 
variable 

I II III IV 

B -0.80 -0.55 0.15 -0.22 

he 0.21 -0.12 -0.52 -0.82 

0S  -0.57 0.73 -0.38 -0.02 

c
S  -0.02 -0.39 -0.76 0.53 

Table (V-9): Eigenvectors of the covariance matrix. 
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