
146 Journal of Intelligent Computing Volume 1 Number 3 September 2010

Software Effort Estimation for NASA Projects Using Genetic Programming

Received: 11 May 2010, Revised 18 June 2010, Accepted 25 June 2010

©2010 DLINE. All rights reserved

1. Introduction

Reliable predictions of project costs primarily effort are greatly needed for better planning of software projects.

The software project manager should be able to reliablely estimate the overall project costs, duration, required man power
and schedule [1]. He must be able to fairly distribute the resources over time such that the project could be finished on time
and within budget. It was found that there are many similarities between the process of managing project resources and
system modeling. In system modeling we need to develop some sort of a relationship between the system input and output
such that the system function is approximated in a form of a model. The model can be used for simulation and performance
evaluation of the original system under various operating conditions. In project management, the manager need to collect
enough data about various attributes which affect the quality and the cost of a project. These collected data helps in
developing a plan or a model for cost distribution over various phases of a project. The developed model can be calibrated
in each phase of the project to meet the project goals, the quality of the product and the available resources.

1.1 The estimation of software effort
Software effort estimation process has a similar nature since it is part of project management. In this case, the objective is to
develop a sort of relationship between the expected Developed (DL) Line Of Code of a project as an input variable and the
expected effort required to implement this project in man-month. There has been extensive research into software effort

Alaa F. Sheta1, Alaa Al-Afeef2

1The World Islamic Sciences and Education University (WISE)
Amman, Jordan
alaa.sheta@wise.edu.jo
2Image Technologies Inc (ITEC)
Amman, Jordan
alaa.afeef@gmail.com

ABSTRACT: There is still an urgent need of finding a mathematical model which can provide an accurate relationship
between the software project effort/cost and the cost drivers. A powerful algorithm which can optimize such a relationship
via developing a mathematical relationship between model variables is urgently needed. In this paper, we explore the use
of Genetic Programming (GP) to develop a software cost estimation model utilizing the effect of both the developed line of
code and the used methodology during the development. An application of estimating the effort for some NASA software
projects is introduced. The performance of the developed GP based model was tested and compared to known models in the
literature. The developed GP model was able to provide valuable estimation capabilities compared to other models.

Keywords: Software Cost Estimation; Software Engineering; Genetic Programming; NASA Software

Journal of Intelligent Computing Volume 1 Number 3 September 2010 147

estimation, with researchers assessing a number of approaches to improving prediction accuracy. One of the famous effort
DL-E relationship [2], [3] known as the COnstructive COst MOdel (COCOMO) is give as in Equation 1.

E = a(DL)b (1)

The DL include all program instructions and formal statements [4]. The values of the parameters a and b depend mainly on the
class of software project. Software projects were classified based on the complexity of the project into three categories. They
are: 1) Organic 2) Semidetached and 3) Embedded. COCOMO model was first provided by Boehm [2], [5]. This model was built
based on 63 software projects. The model helps is defining mathematical equations that identify the the cost, schedule and
quality of a software product. The estimation accuracy is significantly improved when adopting models such as the Intermediate
and Complex COCOMO models [2]. Extensions of COCOMO, such as COMCOMO II, can be found in [3].

Typical models for software effort estimation are given in Table I. These models have been derived by studying large number
of completed software projects from various organizations and applications to explore how project sizes mapped into project
effort.

Model name Model equation

Halstead E = 5.2(DL)1.50

Walston-Felix E = 0.7(DL)0.91

Bailey-Basili E = 5.5 + 0.73(DL)1.16

Doty (for DL > 9) E = 5.288(DL)1.047

Table 1. Known Effort Estimation Models

1.2 Previous Work
In the past, most of the proposed models used to solve the software cost estimation modeling problem are linear in nature. It
was found that dealing with a linear model makes it easier to use techniques such as least square estimation (LSE) or
Instrumental Variable method to identify the parameters of the given model. In the other case, if the actual model is nonlinear,
attempting to approximate this structure with a linear model cannot guarantee the accuracy of the model. In solving the
software cost estimation problem, it is important to develop models using a small number of measurements and in the
presence of measurement noise.

Recently, many questions were introduced about the applicability of using Soft Computing and Machine Learning Techniques
to solve the effort and cost estimation problem for software systems. In [6], [7], authors presented a detailed study on using
number of techniques such as genetic programming and neural networks to estimate software project effort. Author concluded
that GP can perform well on handling such a problem. In [8], author provided an innovative set of models modified from the
famous COCOMO model with interesting results. Later on, many authors explored the same idea with some modification [9]–
[12] and provided a comparison to the work presented in [8]. In [13], author used Particle Swarm Optimization (PSO) to tune
the parameters of the famous COnstructive COst MOdel (COCOMO). They also explored the advantages of Fuzzy Logic to
build a set of linear models over the domain of possible software Line Of Code (LOC). The performance of the developed
model was evaluated using NASA software projects data set. Also a variety of machine learning methods have been used
such as case based reasoning (CBR) [14], [15], rule induction (RI) [16] and Hybrids [17].

In this paper, an evolutionary approach, Genetic Programming (GP), is used to fit nonlinear models to a dataset of some NASA
software projects, aiming to improve the prediction of software effort for NASA software projects.

In this paper, Genetic Programming is used to develop an effort estimation model for software systems due to the advantages
of GP as provided in Section II-A. The theoretical foundations of genetic programming are summarized in [18].

In the following Section II, GP is introduced briefly. The experiment setup and control parameters for the application of GP in
evolution of software development effort estimation programs is discussed in Section III and the developed results in
Section IV. This includes data preparation, GP details and results obtained. A comparison of related developed results are
presented in Section V. Section VI draws the conclusions and future work.

148 Journal of Intelligent Computing Volume 1 Number 3 September 2010

2. Overview of Genetic Programming

Genetic programming (GP) is an evolutionary computation (EC) technique that automatically searches for an optimal solution
of a problem without requiring the user to know or specify the form or structure of the solution in advance [19], [20]. GP
technique has been successfully applied to solve large number of difficult problems, such as modeling of industrial processes
[21], [22], forecasting of river flow [23], image reconstruction [24], [25] and Generating models to fit data [26]–[28].

2.1 Advantages of using Genetic Programming
Evolutionary algorithms have been found ’experimentally’ efficient in finding solutions to the Modeling problems. GP is
considered one of the evolutionary algorithms that hold all advantage offered by evolutionary algorithms and adds several
more. The advantages offered by GP for Modeling can be summarized as:

 • GP is a global search technique that makes use of hyper plane search which, makes it less likely to get stuck in the
local optimum. This is different from other techniques such as neural networks and gradient descent which are
prone to local optimal values.

 • GP has the benefits of variety in solution structures unlike most of the evolutionary algorithms that has fixed size
solutions such as genetic algorithms or fixed architectures such as neural networks [29].

 • GP can automatically eliminate unrelated attributes of the Modeling problem performing the task of feature extraction
algorithm [29] in which important attributes can appear near the root while less important ones would appear deeper
in the tree [30].

 • GP is able to operate on portion of data to extract significant rules. There is no need to use all of the training data to
develop models [29].

 • GP are like white boxes that clearly sketch the relationships between attributes, as opposed to many other black box
solutions like neural networks [31].

 • GP has the ability to operate upon the data in its original form. No pre-processing or data transformations are usually
required to apply GP for modeling task.

 • GP based evolution is not affected by the data distribution [29]. This is in contrast to the neural networks which are
highly dependent on the data distribution. This autonomy enables efficient discovery of unknown knowledge from
the data.

2.2 Representation in GP
In GP, programs are usually represented as a variable sized tree structure. This type of representation allows a variety of
models to be developed. A tree consists of nodes and terminals. In every terminal node, there is an operand and in every node
there is a function. Trees can be easily evaluated in a recursive manner. This way we can evolve mathematical models in a very
simple way such as in programming using Lisp language [32]. Such a representation is simple and has been used frequently
for the data classification and modeling problems. A simple tree structure can be presented in Figure 1 as described in
Equation (2).

 E = 1.7 • DL ME (2)

2.3. Preparatory Steps of GP
Before applying the Evolutionary Process, as in Figure (2), four major preparatory steps require to be specified [19], [20]:

1) The definition of the function and terminal set (primitive set) for a particular problem.

2) Fitness measure for the problem. This specifies what needs to be done.

3) The control parameters for the run (for example,population size, max generations and maximum tree depth).

4) The termination criterion which may include a maximum number of generations to be run as well as a problem-specific
optimum solution.

Journal of Intelligent Computing Volume 1 Number 3 September 2010 149

Figure 1. Example of GP tree structure

Figure 2. GP evolutionary process

2.4. Performance evaluation Criteria
In order to check the performance of the developed models, two evaluation criteria will be adopted. We compute the Variance-
Accounted-For (VAF) performance criterion to measure how close the measured values to the values developed using the
fuzzy models. Given that E, E are the actual effort and the estimated effort, respectively. The VAF is computed as follows:^

V AF = [1-] x 100% (3)
var (E-E)^

var (E)

The Mean Magnitude of Relative Error (MMRE) as the main performance measure was also used in many articles [13], [33].
MMRE is defined as:

1
NΣ

N

i=1

|E - E^
 MMRE = (4)

|
 |Ε|

We will also adopt these two criteria’s for evaluating the cost estimation models investigated here.

3. Experiment Setup and Control Parameters

GP Setup (Table II) is adapted for modeling the problem under study. The adopted control parameters are shown in Table IV
and Table VI according to [19].

Experiments have been conducted on a data set presented by Bailey and Basili [34] to explore strengthen of the developed
GP based model. The dataset consist of the following variables:

• Developed Line of Code (DL)

• Methodology (ME) and

• Effort (E) in man-month.
The dataset is presented in Table III. The data was split to two sets training (i.e. 13 projects) and testing/validation (i.e. 5
projects). We used Lilgp1.1 [35] (C language package for developing genetic programming applications) to produce our
results. Lilgp is well-known to be a fast, memory efficient and well documented GP tool that provides support for several
features not typically found in other GP systems, such as the support of parallel processing.

150 Journal of Intelligent Computing Volume 1 Number 3 September 2010

Objective Find a function of 2 independent variable[Line Of
Code (DL), Methodology(ME)] and one dependent
variable [Effort (E)], in symbolicform, that fits a
given Training sample of the form (DL, ME, E) data
points.

Terminal set DL, ME (the independent variables).

Function set +, -, *

Fitness criteria The fitness is the absolute value of the difference
between the estimated values produced by GP and
the target value of the effort.
(|Ei

Target - E
i
Estimated|).

Raw fitness The sum taken over the fitness cases (N)
 (Σ

Standardized fitness Equals raw fitness divided by the count of fitness
cases.

Hits Number of fitness cases for which the valueof the
dependent variable produced by theGP comes within
 0.001 of the target value.

i=1

N Ei
Target - E

i
Estimated)

Table 2.GP Experiment setup for the Effort Estimation Problem

Project No. DL ME Effort E

 1 2.1 28 5.0

 2 3.1 26 7.0

 3 4.2 19 9.0

 4 5.0 29 8.4

 5 7.8 31 7.3

 6 9.7 27 15.6

 7 10.5 34 10.3

 8 12.5 27 23.9

 9 12.8 26 18.9

 10 21.5 31 28.5

 11 31.1 35 39.6

 12 46.2 20 96.0

 13 46.5 19 79.0

 14 54.5 20 90.8

 15 67.5 29 98.4

 16 78.6 35 98.7

 17 90.2 30 115.8

 18 100.8 34 138.3

Table 3. Sorted Nasa Software Project Data

Journal of Intelligent Computing Volume 1 Number 3 September 2010 151

3.1 GP Effort Model based DL
The developed GP model should be able to significantly generalize the computation of the developed effort for all projects.
We run GP to develop a new software effort estimation model. The developed Lisp expression program is given in Equation
5 which is simplified in Equation 6.

(*(-(+(1.35730DL)1.75992)(*1.36186DL))DL) (5)

E = 1.75992 • DL - 4.56 • 10-3DL2 (6)

We run GP with various population sizes (i.e. 1000, . . . ,9000). The convergence process for all runs were measured and the
best so far curves are presented in Figure (3). It is shown that all curves convergence to the same optimal value for the fitness
criteria. The rest of the tuning parameters for the Lilgp experimental setup is given in Table IV. Table (V) show the measured
and estimated GP effort.

3.2 GP Effort Model based DL and ME
GP was used to find the model structure which describe the relationship between the effort and both the developed line of
code and the methodology. We run GP was various population sizes to explore the possibility of having a good model
structure which better estimate the software effort. the tuning parameters for the GP evolutionary process is presented in
Table VI. The Lisp expression developed using Lilgp1.1 program is given in Equation 7 and simplified in Equation 8. The
convergence process for GP is presented in Figure (4). GP convergence to the best possible model with a good prediction
capabilities. Table (VII) show the measured and estimated GP effort.

 (-(+DL DL) (*(*(*(*0.022970.02588)M E)DL)M E)) (7)

E = 2 • DL - 0.59 • 10-3ME2 • DL (8)

Parameter Value

Max generations 100

Max tree depth 5

Max tree nodes 11

Initial tree depth 2-4

Crossover rate 0.8

Reproduction rate 0.1

Mutation rate 0.1

selection method fitness_overselect

Table 4. LILGP Experimental Setupe For DL Based Model

5. Comparison with Other Models

The computed performance of the developed models is presented in Table VIII. The computed VAF is high in the case of the
DL-ME based model and better than the case of the DL based model. This is an evidence that the inclusion in the ME as a
variable in the modeling process of the effort enhance the model capabilities to better estimate the effort. Thus, GP was able
to better find the function f which related the E and both DL and ME, E = f(DL,ME).

In [13], authors presented an extended work on the use of Soft Computing Techniques to build a suitable model structure to
utilize improved estimations of software effort for NASA software projects. A comparison between COCOMOPSO, Fuzzy
Logic (FL), Halstead, Walston-Felix, Bailey- Basili and Doty models were provided. In Table IX, we show the MMRE criteria
computed overall data set. It is shown that the GP and the COCOMO based PSO models have almost similar properties. The
FL model is the model found to provide the minimum MMRE since it consists of three linear models with various membership
functions. This gives an advantage of the FL model over other effort estimation models.

152 Journal of Intelligent Computing Volume 1 Number 3 September 2010

Figure 3. Convergence of GP with various population sizes for DL

Project Measured Estimated
 No. Effort E Effort E

 1 5.0000 3.6755

 2 7.0000 5.4115

 3 9.0000 7.3105

 4 8.4000 8.6846

 5 7.3000 13.4475

 6 15.6000 16.6384

 7 10.3000 17.9720

 8 23.9000 21.2802

 9 18.9000 21.7733

 10 28.5000 35.7119

 11 39.6000 50.2843

 12 96.0000 71.4899

 13 79.0000 71.8899

 14 90.8000 82.2525

 15 98.4000 97.8358

 16 98.7000 109.9111

 17 115.8000 121.3190

 18 138.3000 130.6610

 ^

Table 5. Actual and Estimated Effort Using the GP Based DL Model

Parameter Value

Max generations 100

Max tree depth 5

Max tree nodes 13

Initial tree depth 2-5

Crossover rate 0.8

Reproduction rate 0.1

Mutation rate 0.1

selection method fitness overselect

Table 6.LILGP Experimental Setup For DL - ME Based Model

Journal of Intelligent Computing Volume 1 Number 3 September 2010 153

Figure 4. Convergence of GP with various population sizes for DL-ME

 Project Measured Estimated
 No. Effort E Effort E

 1 5.0000 3.2213

 2 7.0000 4.9542

 3 9.0000 7.4987

 4 8.4000 7.5003

 5 7.3000 11.1440

 6 15.6000 15.1964

 7 10.3000 13.7844

 8 23.9000 19.5830

 9 18.9000 20.4562

 10 28.5000 30.7175

 11 39.6000 39.5524

 12 96.0000 81.4143

 13 79.0000 83.0210

 14 90.8000 96.0407

 15 98.4000 101.2538

 16 98.7000 99.9621

 17 115.8000 132.1414

 18 138.3000 132.3302

 ^

Table 7. Actual and Esimated Effort
Using GP Based DL-ME Model

Model VAF MMRE

DL based Model 96.5538 0.0052

DL-ME based Model 98.2346 0.0039

Table 8. The Computed Perormance of the
Developed GP Models

154 Journal of Intelligent Computing Volume 1 Number 3 September 2010

Model Fuzzy GP COCOMO Walston-Felix Bailey-Basili Halstead Doty
 Model Model based PSO Model Model Model Model

MMRE 0.0046 0.0052 0.0074 0.0822 0.0095 0.1479 0.1848

Table 9. The Computed MMRE Criterion for All Models Based DL Only

6. Conclusions and future work

In this paper we proposed a new model structure to estimate the software effort for projects sponsored by NASA using
genetic programming. The performance of the developed GP model was tested on NASA software projects data presented in
[34]. The developed software effort estimation model based GP was capable of providing good effort estimation as compared
to other known model in the literature such as Halstead, Walston-Felix, Bailey-Basili and Doty models. the consideration of
other attributes such as the Methodology while developing the effort most significantly improves the model prediction
capabilities. GP was able to provide an advanced mathematical function utilizing the DL and ME such that the computed
effort is more accurate.

References

[1] Kemere, C. F. (1987). An empirical validation of software cost estimation models, Communication ACM, 30, 416–429.

[2] Boehm, B. (1995). Cost Models for Future Software Life Cycle Process: COCOMO2. Annals of Software Engineering.

[3] Boehm, B. et al (2000). Software Cost Estimation with COCOMO II. Prentice Hall PTR.

[4] Menzies, T., Port, D., Chen, Z. Hihn, J., Stukes, S. (2005). Validation methods for calibrating software effort models, In:
Proceedings of the 27th international conference on Software Engineering (ICSE’05), (New York, NY, USA), p. 587–595, ACM
Press.

[5] Boehm, B (1981). Software Engineering Economics. Englewood Cliffs, NJ, Prentice-Hall.

[6] Lefley, M., Shepperd, M.J (2003). Using genetic programming to improve software effort estimation based on general data
sets, In: GECCO’03: Proceedings of the 2003 International conference on Genetic and evolutionary computation, (Berlin,
Heidelberg), p. 2477–2487, Springer-Verlag.

[7] Venkatachalam, A. R. (1993). Software cost estimation using artificial neural networks, In: Proceedings of 1993 IEEE
International Conference on Neural Networks (ICNN’93), V. 1, (Nagoya, Japan), p. 987–990, IEEE/INNS, Oct. 1993. University
of New Hampshire.

[8] Sheta, A. F. (2006). Estimation of the COCOMO model parameters using genetic algorithms for NASA software projects,
Journal of Computer Science, 2 (2) 118–123.

[9] Mittal, H., Bhatia, P (2007). A comparative study of conventional effort estimation and fuzzy effort estimation based on
triangular fuzzy numbers, International Journal of Computer Science and Security, 1 (4) 36–47.

[10] Mittal, H., Bhatia, P (2007). Optimization criteria for effort estimation using fuzzy technique, CLEI ELECTRONIC JOURNAL,
10 (1) 1–11.

[11] Uysal, M. (2008). Estimation of the effort component of the software projects using simulated annealing algorithm, In:
World Academy of Science, Engineering and Technology, 41, p. 258–261.

[12] Sandhu, P. S., Prashar, M., Bassi, P., Bisht, A. (2009). A model for estimation of efforts in development of software
systems, In: World Academy of Science, Engineering and Technology, 56, p. 148–152.

[13] Sheta, A. Rine, D., Ayesh, A. (2008). Development of software effort and schedule estimation models using soft computing
techniques, In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE CEC 2008) within the 2008 IEEE
World Congress on Computational Intelligence (WCCI 2008), Hong Kong, 1-6 June, p. 1283–1289.

Journal of Intelligent Computing Volume 1 Number 3 September 2010 155

[14] Finnie, G. R., Wittig, G. W., Desharnais, J.-M. (1997). Estimating software development effort with case-based reasoning,
In: Proceedings of the 2nd International Conference on Case-Based Reasoning (ICCBR-97) (D. B. Leake and E. Plaza, eds.),
vol. 1266 of LNAI, (Berlin), p. 13–22, Springer, July 25–27.

[15] Shepperd, M. J, Schofield, C., Kitchenham, B.(1996). Effort estimation using analogy, In: ICSE, p. 170–178.

[16] Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S. (2000). An investigation of machine
learning based prediction systems, The Journal of Systems and Software, 53, p. 23–29, July.

[17]. Shukla, K. K (2000). Neuro-genetic prediction of software development effort, Information & Software Technology, 42,
(10) 701–713.

[18] Langdon, W. B., Poli, R. (2002). Foundations of Genetic Programming. Springer-Verlag.

[19] Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.

[20] Poli, R. Langdon, W. B. and McPhee, N. F. A field guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[21] Hussian, A. Sheta, A. Kamel, M., Telbany, M., Abdelwahab, A. (2000). Modeling of a winding machine using genetic
programming, In: Proceedings of the Congress on Evolutionary Computation (CEC2000), p. 398–402.

[22] Sheta, A., Gertler, J. (2000). Modeling the dynamics of an automotive engine using genetic programming, In: Proceedings
of the International Symposium on Engineering of Natural and Artificial Intelligent Systems (ENAIS2001), American University
in Dubai, U.A.E.

[23] Sheta, A., Mahmoud, A (2001). Forecasting using genetic programming, In: Proceedings of the 33 rd Southern Symposium
on System Theory, March 19-20, Athens, Ohio, USA, p. 343–347.

[24] Al-Afeef, A. S. (2010). Image reconstructing in electrical capacitance tomography of manufacturing processes using
genetic programming, Master’s thesis, Al-Balqa Applied University, July.

[25] Al-Afeef, A., Alaa, F. S., Al-Rabea, A. (2010). Image reconstruction of a metal fill industrial process using genetic
programming, In: ISDA, p. 12–17, IEEE.

[26] Davidson, J. W., Savic, D. A., Walters, G. A. (2001). Symbolic and numerical regression: experiments and applications, In:
Developments in Soft Computing (R. John and R. Birkenhead, eds.), (De Montfort University, Leicester, UK), p. 175–182,
Physica Verlag, 29-30 June.

[27] Xiong, S., Wang, W., Li, F. (2003). A new genetic programming approach in symbolic regression, In: Proceedings 15th
IEEE International Conference on Tools with Artificial Intelligence, p. 161–165, IEEE, 3-5 Nov.

[28] Alaa, F. S., Al-Afeef, A (2010). A GP effort estimation model utilizing line of code and methodology for NASA software
projects, In: ISDA, p. 290–295, IEEE.

[29] Kishore, J. K., Patnaik, L. M., Mani, V., Agrawal, V. K. (2000). Application of genetic programming for multicategory
pattern classification, IEEE Transactions on Evolutionary Computation, 4, 242–258.

[30] Luke, S. (2000). Code growth is not caused by introns, In: Late Breaking Papers at the 2000 Genetic and Evolutionary
Computation Conference (D. Whitley, ed.), (Las Vegas, Nevada, USA), p. 228–235, 8 July.

[31] Rouwhorst, S. E., Engelbrecht, A. P (2000). Searching the forest: Using decision trees as building blocks for evolutionary
search in classification databases, In: Proceedings of the 2000 Congress on Evolutionary Computation CEC00, vol. 1, (La
Jolla Marriott Hotel La Jolla, California, USA), p. 633–638, IEEE Press, 6-9 July.

[32] S. C. S. (Editor) (1992). Encyclopedia of Artificial Intelligence. John Wiley, 2 ed., January. 1792 p.

[33] Sheta, A (2006). Software effort estimation and stock market prediction using takagi-sugeno fuzzy models, In: Proceedings
of the 2006 IEEE Fuzzy Logic Conference, Sheraton, Vancouver Wall Centre, Vancouver, BC, Canada, July 16-21, p.579–
586.

156 Journal of Intelligent Computing Volume 1 Number 3 September 2010

[34] Bailey, J. W., Basili, V. R (1981). A meta model for software development resource expenditure, In: Proceedings of the
International Conference on Software Engineering, p. 107–115, 1981.

[35] Zongker, D., Punch, B. (1996). “lilgp 1.01 user’s manual,” tech. rep., Michigan State University, USA, 26.

