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1. Introduction

Reliable predictions of project costs primarily effort are greatly needed for better planning of software projects.

The software project manager should be able to reliablely estimate the overall project costs, duration, required man power
and schedule [1]. He must be able to fairly distribute the resources over time such that the project could be finished on time
and within budget. It was found that there are many similarities between the process of managing project resources and
system modeling. In system modeling we need to develop some sort of a relationship between the system input and output
such that the system function is approximated in a form of a model. The model can be used for simulation and performance
evaluation of the original system under various operating conditions. In project management, the manager need to collect
enough data about various attributes which affect the quality and the cost of a project. These collected data helps in
developing a plan or a model for cost distribution over various phases of a project. The developed model can be calibrated
in each phase of the project to meet the project goals, the quality of the product and the available resources.

1.1 The estimation of software effort
Software effort estimation process has a similar nature since it is part of project management. In this case, the objective is to
develop a sort of relationship between the expected Developed (DL) Line Of Code of a project as an input variable and the
expected effort required to implement this project in man-month. There has been extensive research into software effort
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estimation, with researchers assessing a number of approaches to improving prediction accuracy. One of the famous effort
DL-E relationship [2], [3] known as the COnstructive COst MOdel (COCOMO) is give as in Equation 1.

E = a(DL)b                                                                                (1)

The DL include all program instructions and formal statements [4]. The values of the parameters a and b depend mainly on the
class of software project. Software projects were classified based on the complexity of the project into three categories. They
are: 1) Organic 2) Semidetached and 3) Embedded. COCOMO model was first provided by Boehm [2], [5]. This model was built
based on 63 software projects. The model helps is defining mathematical equations that identify the the cost, schedule and
quality of a software product. The estimation accuracy is significantly improved when adopting models such as the Intermediate
and Complex COCOMO models [2]. Extensions of COCOMO, such as COMCOMO II, can be found in [3].

Typical models for software effort estimation are given in Table I. These models have been derived by studying large number
of completed software projects from various organizations and applications to explore how project sizes mapped into project
effort.

Model name Model equation

Halstead E = 5.2(DL)1.50

Walston-Felix E = 0.7(DL)0.91

Bailey-Basili E = 5.5 + 0.73(DL)1.16

Doty (for DL > 9) E = 5.288(DL)1.047

Table 1. Known Effort Estimation Models

1.2 Previous Work
In the past, most of the proposed models used to solve the software cost estimation modeling problem are linear in nature. It
was found that dealing with a linear model makes it easier to use techniques such as least square estimation (LSE) or
Instrumental Variable method to identify the parameters of the given model. In the other case, if the actual model is nonlinear,
attempting to approximate this structure with a linear model cannot guarantee the accuracy of the model. In solving the
software cost estimation problem, it is important to develop models using a small number of measurements and in the
presence of measurement noise.

Recently, many questions were introduced about the applicability of using Soft Computing and Machine Learning Techniques
to solve the effort and cost estimation problem for software systems. In [6], [7], authors presented a detailed study on using
number of techniques such as genetic programming and neural networks to estimate software project effort. Author concluded
that GP can perform well on handling such a problem. In [8], author provided an innovative set of models modified from the
famous COCOMO model with interesting results. Later on, many authors explored the same idea with some modification [9]–
[12] and provided a comparison to the work presented in [8]. In [13], author used Particle Swarm Optimization (PSO) to tune
the parameters of the famous COnstructive COst MOdel (COCOMO). They also explored the advantages of Fuzzy Logic to
build a set of linear models over the domain of possible software Line Of Code (LOC). The performance of the developed
model was evaluated using NASA software projects data set. Also a variety of machine learning methods have been used
such as case based reasoning (CBR) [14], [15], rule induction (RI) [16] and Hybrids [17].

In this paper, an evolutionary approach, Genetic Programming (GP), is used to fit nonlinear models to a dataset of some NASA
software projects, aiming to improve the prediction of software effort for NASA software projects.

In this paper, Genetic Programming is used to develop an effort estimation model for software systems due to the advantages
of GP as provided in Section II-A. The theoretical foundations of genetic programming are summarized in [18].

In the following Section II, GP is introduced briefly. The experiment setup and control parameters for the application of GP in
evolution of software development effort estimation programs is discussed in Section III and the developed results in
Section IV. This includes data preparation, GP details and results obtained. A comparison of related developed results are
presented in Section V. Section VI draws the conclusions and future work.
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2. Overview of Genetic Programming

Genetic programming (GP) is an evolutionary computation (EC) technique that automatically searches for an optimal solution
of a problem without requiring the user to know or specify the form or structure of the solution in advance [19], [20]. GP
technique has been successfully applied to solve large number of difficult problems, such as modeling of industrial processes
[21], [22], forecasting of river flow [23], image reconstruction [24], [25] and Generating models to fit data [26]–[28].

2.1 Advantages of using Genetic Programming
Evolutionary algorithms have been found ’experimentally’ efficient in finding solutions to the Modeling problems. GP is
considered one of the evolutionary algorithms that hold all advantage offered by evolutionary algorithms and adds several
more. The advantages offered by GP for Modeling can be summarized as:

        •    GP is a global search technique that makes use of hyper plane search which, makes it less likely to get stuck in the
local optimum. This is different from other techniques such as neural networks and gradient descent which are
prone to local optimal values.

       • GP has the benefits of variety in solution structures unlike most of the evolutionary algorithms that has fixed size
solutions such as genetic algorithms or fixed architectures such as neural networks [29].

       • GP can automatically eliminate unrelated attributes of the Modeling problem performing the task of feature extraction
algorithm [29] in which important attributes can appear near the root while less important ones would appear deeper
in the tree [30].

       • GP is able to operate on portion of data to extract significant rules. There is no need to use all of the training data to
develop models [29].

       • GP are like white boxes that clearly sketch the relationships between attributes, as opposed to many other black box
solutions like neural networks [31].

       • GP has the ability to operate upon the data in its original form. No pre-processing or data transformations are usually
required to apply GP for modeling task.

       • GP based evolution is not affected by the data distribution [29]. This is in contrast to the neural networks which are
highly dependent on the data distribution. This autonomy enables efficient discovery of unknown knowledge from
the data.

2.2 Representation in GP
In GP, programs are usually represented as a variable sized tree structure. This type of representation allows a variety of
models to be developed. A tree consists of nodes and terminals. In every terminal node, there is an operand and in every node
there is a function. Trees can be easily evaluated in a recursive manner. This way we can evolve mathematical models in a very
simple way such as in programming using Lisp language [32]. Such a representation is simple and has been used frequently
for the data classification and modeling problems. A simple tree structure can be presented in Figure 1 as described in
Equation (2).

                                                   E = 1.7 • DL     ME                                              (2)

2.3. Preparatory Steps of GP
Before applying the Evolutionary Process, as in Figure (2), four major preparatory steps require to be specified [19], [20]:

1) The definition of the function and terminal set (primitive set) for a particular problem.

2) Fitness measure for the problem. This specifies what needs to be done.

3) The control parameters for the run (for example,population size, max generations and maximum tree depth).

4) The termination criterion which may include a maximum number of generations to be run as well as a problem-specific
optimum solution.
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Figure 1. Example of GP tree structure

Figure 2. GP evolutionary process

2.4. Performance evaluation Criteria
In order to check the performance of the developed models, two evaluation criteria will be adopted. We compute the Variance-
Accounted-For (VAF) performance criterion to measure how close the measured values to the values developed using the
fuzzy models. Given that E, E are the actual effort and the estimated effort, respectively. The VAF is computed as follows:^

V AF = [1-                  ] x 100%                                     (3)
var (E-E)^

var (E)

The Mean Magnitude of Relative Error (MMRE) as the main performance measure was also used in many articles [13], [33].
MMRE is defined as:

1
NΣ

N

i=1

|E - E^
              MMRE =                                                                       (4)

|
 |Ε|

We will also adopt these two criteria’s for evaluating the cost estimation models investigated here.

3. Experiment Setup and Control Parameters

GP Setup (Table II) is adapted for modeling the problem under study. The adopted control parameters are shown in Table IV
and Table VI according to [19].

Experiments have been conducted on a data set presented by Bailey and Basili [34] to explore strengthen of the developed
GP based model. The dataset consist of the following variables:

•   Developed Line of Code (DL)

•   Methodology (ME) and

•   Effort (E) in man-month.
The dataset is presented in Table III. The data was split to two sets training (i.e. 13 projects) and testing/validation (i.e. 5
projects). We used Lilgp1.1 [35] (C language package for developing genetic programming applications) to produce our
results. Lilgp is well-known to be a fast, memory efficient and well documented GP tool that provides support for several
features not typically found in other GP systems, such as the support of parallel processing.
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Objective Find a function of 2 independent variable[Line Of
Code (DL), Methodology(ME)] and one dependent
variable [Effort (E)], in symbolicform, that fits a
given Training sample of the form (DL, ME, E) data
points.

Terminal set DL, ME (the independent variables).

Function set +, -, *

Fitness criteria The fitness is the absolute value of the difference
between the estimated values produced by GP and
the target value of the effort.
(|Ei

Target - E
i
Estimated| ).

Raw fitness The sum taken over the fitness cases (N)
 (Σ

Standardized fitness Equals raw fitness divided by the count  of fitness
cases.

Hits Number of fitness cases for which the valueof the
dependent variable produced by theGP comes within
 0.001 of the target value.

i=1

N Ei
Target - E

i
Estimated )

Table 2.GP Experiment setup for the Effort Estimation Problem

Project No. DL ME Effort E

     1 2.1  28   5.0

     2 3.1  26   7.0

     3 4.2  19   9.0

    4 5.0  29   8.4

    5 7.8  31   7.3

    6 9.7  27   15.6

    7 10.5  34   10.3

    8 12.5  27   23.9

    9 12.8  26   18.9

   10 21.5  31   28.5

   11 31.1  35   39.6

   12 46.2  20   96.0

   13 46.5  19   79.0

   14 54.5  20   90.8

   15 67.5  29   98.4

   16 78.6  35   98.7

   17 90.2  30   115.8

   18 100.8  34   138.3

Table 3. Sorted Nasa Software Project Data
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3.1 GP Effort Model based DL
The developed GP model should be able to significantly generalize the computation of the developed effort for all projects.
We run GP to develop a new software effort estimation model. The developed Lisp expression program is given in Equation
5 which is simplified in Equation 6.

(*(-(+(1.35730DL)1.75992)(*1.36186DL))DL) (5)

E = 1.75992 • DL - 4.56 • 10-3DL2 (6)

We run GP with various population sizes (i.e. 1000, . . . ,9000). The convergence process for all runs were measured and the
best so far curves are presented in Figure (3). It is shown that all curves convergence to the same optimal value for the fitness
criteria. The rest of the tuning parameters for the Lilgp experimental setup is given in Table IV. Table (V) show the measured
and estimated GP effort.

3.2 GP Effort Model based DL and ME
GP was used to find the model structure which describe the relationship between the effort and both the developed line of
code and the methodology. We run GP was various population sizes to explore the possibility of having a good model
structure which better estimate the software effort. the tuning parameters for the GP evolutionary process is presented in
Table VI. The Lisp expression developed using Lilgp1.1 program is given in Equation 7 and simplified in Equation 8. The
convergence process for GP is presented in Figure (4). GP convergence to the best possible model with a good prediction
capabilities. Table (VII) show the measured and estimated GP effort.

            (-(+DL DL) (*(*(*(*0.022970.02588)M E)DL)M E))  (7)

E = 2 • DL - 0.59 • 10-3ME2 • DL  (8)

Parameter Value

Max generations  100

Max tree depth   5

Max tree nodes  11

Initial tree depth  2-4

Crossover rate  0.8

Reproduction rate  0.1

Mutation rate  0.1

selection method                 fitness_overselect

Table 4. LILGP Experimental Setupe For DL Based Model

5. Comparison with Other Models

The computed performance of the developed models is presented in Table VIII. The computed VAF is high in the case of the
DL-ME based model and better than the case of the DL based model. This is an evidence that the inclusion in the ME as a
variable in the modeling process of the effort enhance the model capabilities to better estimate the effort. Thus, GP was able
to better find the function f which related the E and both DL and ME, E = f(DL,ME).

In [13], authors presented an extended work on the use of Soft Computing Techniques to build a suitable model structure to
utilize improved estimations of software effort for NASA software projects. A comparison between COCOMOPSO, Fuzzy
Logic (FL), Halstead, Walston-Felix, Bailey- Basili and Doty models were provided. In Table IX, we show the MMRE criteria
computed overall data set. It is shown that the GP and the COCOMO based PSO models have almost similar properties. The
FL model is the model found to provide the minimum MMRE since it consists of three linear models with various membership
functions. This gives an advantage of the FL model over other effort estimation models.
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Figure 3. Convergence of GP with various population sizes for DL

Project Measured Estimated
  No.  Effort E  Effort E

  1   5.0000   3.6755

  2   7.0000   5.4115

  3   9.0000   7.3105

  4   8.4000   8.6846

  5   7.3000  13.4475

  6  15.6000  16.6384

  7  10.3000  17.9720

  8  23.9000  21.2802

  9  18.9000  21.7733

  10  28.5000  35.7119

  11  39.6000  50.2843

  12  96.0000  71.4899

  13  79.0000  71.8899

  14  90.8000  82.2525

  15  98.4000  97.8358

  16  98.7000  109.9111

  17 115.8000  121.3190

  18 138.3000  130.6610

 ^

Table 5. Actual and Estimated Effort Using the GP Based DL Model

Parameter Value

Max generations 100

Max tree depth 5

Max tree nodes 13

Initial tree depth 2-5

Crossover rate 0.8

Reproduction rate 0.1

Mutation rate 0.1

selection method fitness overselect

Table 6.LILGP Experimental Setup For DL - ME Based Model
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Figure 4. Convergence of GP with various population sizes for DL-ME

 Project Measured Estimated
   No.  Effort E  Effort E

   1   5.0000   3.2213

   2   7.0000   4.9542

   3   9.0000   7.4987

   4   8.4000   7.5003

   5   7.3000  11.1440

   6  15.6000  15.1964

   7  10.3000  13.7844

   8  23.9000  19.5830

   9  18.9000  20.4562

   10  28.5000  30.7175

   11  39.6000  39.5524

   12  96.0000  81.4143

   13  79.0000  83.0210

   14  90.8000  96.0407

   15  98.4000 101.2538

   16  98.7000  99.9621

  17 115.8000 132.1414

  18 138.3000 132.3302

 ^

Table 7. Actual and Esimated Effort
Using GP Based DL-ME Model

Model VAF MMRE

DL based Model 96.5538 0.0052

DL-ME based Model 98.2346 0.0039

Table 8. The Computed Perormance of the
Developed GP Models
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Model     Fuzzy            GP COCOMO          Walston-Felix Bailey-Basili Halstead          Doty
   Model          Model based PSO    Model     Model    Model          Model

MMRE    0.0046           0.0052    0.0074    0.0822   0.0095    0.1479          0.1848

Table 9. The Computed MMRE Criterion for All Models Based DL Only

6. Conclusions and future work

In this paper we proposed a new model structure to estimate the software effort for projects sponsored by NASA using
genetic programming. The performance of the developed GP model was tested on NASA software projects data presented in
[34]. The developed software effort estimation model based GP was capable of providing good effort estimation as compared
to other known model in the literature such as Halstead, Walston-Felix, Bailey-Basili and Doty models. the consideration of
other attributes such as the Methodology while developing the effort most significantly improves the model prediction
capabilities. GP was able to provide an advanced mathematical function utilizing the DL and ME such that the computed
effort is more accurate.
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