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Motivation – Learning to Rank

Amazon, YouTube, Facebook, Netflix, Taobao
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Background – Multi-armed Bandit Problem

A special case of reinforcement learning

There are L arms

Each arm a has an unknown reward distribution with unknown mean αa

The best arm is a∗ = argmax αa
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Background – Multi-armed Bandit Setting

At each time t

The learning agent selects one arm at
Observe the reward Xat ,t

The objective is to minimize the regret in T rounds

R(T ) = Tα∗ − E

[
T∑
t=1

αat

]

Balance the trade-off between exploitation and exploration

Exploitation: select arms that yield good results so far
Exploration: select arms that have not been tried much before
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Background – Upper Confidence Bound

UCB (Upper Confidence Bound) [ACF’02]

UCB policy: select

at = argmaxa α̂a,t +

√
3 ln(t)

2Ta(t)

where
α̂a,t is the empirical mean of arm a in time t — Exploitation
Ta(t) is the played times of arm a — Exploration

Gap-dependent bound O( L
∆ log(T )) where ∆ = minαa<α∗ α

∗ − αa,
match lower bound
Gap-free bound O(

√
LT log(T )) tight up to a factor of

√
log(T )
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Online Learning to Rank

There are L items

Each item a with an unknown attractiveness α(a)

There are K positions

At time t

The learning agent selects a list of items At = (at1, . . . , a
t
K )

Receive the click feedback Ct ∈ {0, 1}K

The objective is to minimize the regret over T rounds

R(T ) = T r(A∗)− E

[
T∑
t=1

r(At)

]

where

r(A) is the reward of list A
A∗ = (1, 2, . . . ,K ) by assuming arms are ordered by
α(1) ≥ α(2) ≥ · · · ≥ α(L)
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Click Models

Click models describe how users interact with a list of
items

Cascade Model (CM)

Assumes the user checks the list from position 1 to
position K , clicks at the first satisfying item and stops
At most 1 click
r(A) = 1−

∏K
k=1(1− α(ak)) = OR(α(a1), . . . , α(aK ))

The meaning of received feedback (0, 0, 1, 0, 0)

7

7

X

?

?

Click Model Regret

[KSWA, 2015] CM O( L
∆ log(T ))
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Contextual Bandit Setting

Contexts

User profiles, search keywords
Important for search and recommendations

Assume each item a is represented by xt,a ∈ Rd

Assume the attractiveness for item a

αt(a) = θ>xt,a

by a fixed but unknown weight vector θ

When xt,a’s are one-hot representations, and θ = (α(1), . . . , α(L)), it
returns to multi-armed bandit setting.
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Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Algorithm

C 3-UCB Algorithm
Initialization: θ̂ = 0 ∈ Rd×1,V = λI ∈ Rd×d , b = 0 ∈ Rd×1

For time t = 1, 2, . . .
Obtain items {xt,a}a∈E ⊂ Rd×1

With high probability ∥∥∥θ̂ − θ∥∥∥
V
≤ βt

thus with high probability

αt(a) ∈ θ̂>xt,a ± βt ‖xt,a‖V−1

Select the list At by UCBs of arms Ut(a) = θ̂>xt,a + βt ‖xt,a‖V−1

Receive feedback Ct ∈ {0, 1}K
Compute the stopping position Kt = min{k : Ct(k) = 1} ∪ {K} and
update

V ← V +

Kt∑
k=1

xt,at
k
x>t,at

k
, b ← b +

Kt∑
k=1

xt,at
k
Ct(k)

θ̂ = V−1b

Shuai LI (CUHK) Learning to Rank 16 / 53



Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Algorithm

C 3-UCB Algorithm
Initialization: θ̂ = 0 ∈ Rd×1,V = λI ∈ Rd×d , b = 0 ∈ Rd×1

For time t = 1, 2, . . .

Obtain items {xt,a}a∈E ⊂ Rd×1

With high probability ∥∥∥θ̂ − θ∥∥∥
V
≤ βt

thus with high probability

αt(a) ∈ θ̂>xt,a ± βt ‖xt,a‖V−1

Select the list At by UCBs of arms Ut(a) = θ̂>xt,a + βt ‖xt,a‖V−1

Receive feedback Ct ∈ {0, 1}K
Compute the stopping position Kt = min{k : Ct(k) = 1} ∪ {K} and
update

V ← V +

Kt∑
k=1

xt,at
k
x>t,at

k
, b ← b +

Kt∑
k=1

xt,at
k
Ct(k)

θ̂ = V−1b

Shuai LI (CUHK) Learning to Rank 16 / 53



Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Algorithm

C 3-UCB Algorithm
Initialization: θ̂ = 0 ∈ Rd×1,V = λI ∈ Rd×d , b = 0 ∈ Rd×1

For time t = 1, 2, . . .
Obtain items {xt,a}a∈E ⊂ Rd×1

With high probability ∥∥∥θ̂ − θ∥∥∥
V
≤ βt

thus with high probability

αt(a) ∈ θ̂>xt,a ± βt ‖xt,a‖V−1

Select the list At by UCBs of arms Ut(a) = θ̂>xt,a + βt ‖xt,a‖V−1

Receive feedback Ct ∈ {0, 1}K
Compute the stopping position Kt = min{k : Ct(k) = 1} ∪ {K} and
update

V ← V +

Kt∑
k=1

xt,at
k
x>t,at

k
, b ← b +

Kt∑
k=1

xt,at
k
Ct(k)

θ̂ = V−1b

Shuai LI (CUHK) Learning to Rank 16 / 53



Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Algorithm

C 3-UCB Algorithm
Initialization: θ̂ = 0 ∈ Rd×1,V = λI ∈ Rd×d , b = 0 ∈ Rd×1

For time t = 1, 2, . . .
Obtain items {xt,a}a∈E ⊂ Rd×1

With high probability ∥∥∥θ̂ − θ∥∥∥
V
≤ βt

thus with high probability

αt(a) ∈ θ̂>xt,a ± βt ‖xt,a‖V−1

Select the list At by UCBs of arms Ut(a) = θ̂>xt,a + βt ‖xt,a‖V−1

Receive feedback Ct ∈ {0, 1}K
Compute the stopping position Kt = min{k : Ct(k) = 1} ∪ {K} and
update

V ← V +

Kt∑
k=1

xt,at
k
x>t,at

k
, b ← b +

Kt∑
k=1

xt,at
k
Ct(k)

θ̂ = V−1b

Shuai LI (CUHK) Learning to Rank 16 / 53



Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Algorithm

C 3-UCB Algorithm
Initialization: θ̂ = 0 ∈ Rd×1,V = λI ∈ Rd×d , b = 0 ∈ Rd×1

For time t = 1, 2, . . .
Obtain items {xt,a}a∈E ⊂ Rd×1

With high probability ∥∥∥θ̂ − θ∥∥∥
V
≤ βt

thus with high probability

αt(a) ∈ θ̂>xt,a ± βt ‖xt,a‖V−1

Select the list At by UCBs of arms Ut(a) = θ̂>xt,a + βt ‖xt,a‖V−1

Receive feedback Ct ∈ {0, 1}K
Compute the stopping position Kt = min{k : Ct(k) = 1} ∪ {K} and
update

V ← V +

Kt∑
k=1

xt,at
k
x>t,at

k
, b ← b +

Kt∑
k=1

xt,at
k
Ct(k)

θ̂ = V−1b

Shuai LI (CUHK) Learning to Rank 16 / 53



Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Algorithm

C 3-UCB Algorithm
Initialization: θ̂ = 0 ∈ Rd×1,V = λI ∈ Rd×d , b = 0 ∈ Rd×1

For time t = 1, 2, . . .
Obtain items {xt,a}a∈E ⊂ Rd×1

With high probability ∥∥∥θ̂ − θ∥∥∥
V
≤ βt

thus with high probability

αt(a) ∈ θ̂>xt,a ± βt ‖xt,a‖V−1

Select the list At by UCBs of arms Ut(a) = θ̂>xt,a + βt ‖xt,a‖V−1

Receive feedback Ct ∈ {0, 1}K
Compute the stopping position Kt = min{k : Ct(k) = 1} ∪ {K} and
update

V ← V +

Kt∑
k=1

xt,at
k
x>t,at

k
, b ← b +

Kt∑
k=1

xt,at
k
Ct(k)

θ̂ = V−1b
Shuai LI (CUHK) Learning to Rank 16 / 53



Contextual Combinatorial Cascading Bandits[LWZC,
ICML’2016] – Results

We prove a regret bound

R(T ) = O

(
d

p∗

√
TK ln(T )

)

Experimental results —Ours —CombCascade
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Summary on Bandits with Click Models

Context Click Model Regret

[KSWA, 2015] - CM O( L
∆ log(T ))

[LWZC, ICML’2016] Linear CM O( d
p∗

√
TK log(T ))
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Online Clustering of Contextual Cascading Bandits [LZ,
AAAI’2018]

Find clustering over users as well as recommending

The attractiveness function is generalized linear (GL)

Improve the regret results

Experiments —Ours · · ·C3-UCB
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Context Click Model Regret

[KSWA, 2015] - CM O( L
∆ log(T ))

[LWZC, ICML’2016] Linear CM O( d
p∗

√
TK log(T ))

[LZ, AAAI’2018] GL CM O(d
√
TK log(T ))
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Improved Algorithm on Clustering Bandits [LCLL,
IJCAI’2019]

Arbitrary frequency distribution over users (compared to uniform
distribution)

Prove a regret bound that is free of the minimal frequency over users

R(T ) = O

(
d
√
mT ln(T ) +

(
1

γ2
p

+
nu
γ2λ3

x

)
ln(T )

)
(compared to R(T ) = O

(
d
√
mT ln(T ) + 1

pminγ2λ3
x

ln(T )
)

)

where nu is number of users and m is number of clusters

Experiments —Ours —CLUB —LinUCB-One —LinUCB-Ind
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Dependent Click Model (DCM)

Allow multiple clicks

Assumes there is a probability of
satisfaction after each click

r(A) = 1−
∏K

k=1(1− α(ak)γk)

γk : satisfaction probability after click
on position k

The meaning of received feedback
(0, 1, 0, 1, 0)

7no click

Xclick, not satisfied

7no click

Xclick, satisfied?

?

Context Click Model Regret

[KSWA, 2015] - CM O( L
∆ log(T ))

[LWZC, ICML’2016] Linear CM O( d
p∗

√
TK log(T ))

[LZ, AAAI’2018] GL CM O(d
√
TK log(T ))

[KKSW, 2016] - DCM O( L
∆ log(T ))

[LLZ, COCOON’2018] GL DCM O(dK
√
TK log(T ))
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Position-Based Model (PBM)

Most popular model in industry

Assumes the user click probability on an item a of position k can be
factored into βk · α(a)

βk is position bias. Usually β1 ≥ β2 ≥ · · · ≥ βK

r(A) =
∑K

k=1 βkα(ak)

The meaning of received feedback (0, 1, 0, 1, 0)
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Summary on Bandits with Click Models

Context Click Model Regret

[KSWA, 2015] - CM O( L
∆ log(T ))

[LWZC, ICML’2016] Linear CM O( d
p∗

√
TK log(T ))

[LZ, AAAI’2018] GL CM O(d
√
TK log(T ))

[KKSW, 2016] - DCM O( L
∆ log(T ))

[LLZ, COCOON’2018] GL DCM O(dK
√
TK log(T ))

[LVC, 2016] - PBM with β O( L
∆ log(T ))
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General Click Models

Common observations for click models

The click-through-rate (CTR) of list A on position k can be factored
into

CTR(A, k) = χ(A, k) α(ak)

χ(A, k) is the examination probability of list A on position k

E.g. χ(A, k) =
∏k−1

i=1 (1− α(ai )) in Cascade Model and χ(A, k) = βk
in Position Based Model

Difficulties on General Click Models

χ depends on both click models and lists
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[LLZ, COCOON’2018] GL DCM O(dK
√
TK log(T ))

[LVC, 2016] - PBM with β O( L
∆ log(T ))

[ZTGKSW, 2017] - General O(K
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[LKLS, NIPS’2018] - General O
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Online Learning to Rank with Features [LLS, ICML’2019] –
Preparation

Recall

Each item a is represented by a feature vector xa ∈ Rd

The attractiveness of item a is α(a) = θ>xa

We bring up an algorithm called RecurRank (Recursive Ranking)

G-optimal design

Minimize the covariance of the least-squares estimator
X = {x1, . . . , xn} ⊂ Rd

For any distribution π : X → [0, 1], let Q(π) =
∑

x∈X π(x)xx>

By the Kiefer–Wolfowitz theorem there exists a π called the G -optimal
design such that

max det(Q(π)) or equivalently max
x∈X
‖x‖2

Q(π)† ≤ d

John’s theorem implies that π may be chosen so that
|{x : π(x) > 0}| ≤ d(d + 3)/2
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Online Learning to Rank with Features [LLS, ICML’2019] –
Algorithm

RecurRank Algorithm

Each instantiation is called with three arguments:
1 A phase number ` ∈ {1, 2, . . .};
2 An ordered tuple of items A = (a1, a2, . . . , an);
3 A tuple of positions K = (k, . . . , k + m − 1) and m ≤ n.

The algorithm is first called with ` = 1, a random order over all items
{1, . . . , L}, and K = (1, . . . ,K )

Find a G -optimal design π = Gopt(A). Then compute

T (a) =

⌈
d π(a)

2∆2
`

log

(
|A|
δ`

)⌉
, ∆` = 2−`

Hope to satisfy |α(a)− α̂(a)| ≤ ∆` for any a ∈ A by the end of this
instantiation
This instantiation runs for

∑
a∈A T (a) times
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Online Learning to Rank with Features [LLS, ICML’2019] –
Algorithm (Continued)

RecurRank Algorithm (Continued)

Select each item a ∈ A exactly T (a) times at position k and put the
first m − 1 items in A \ {a} at remaining positions
{k + 1, . . . , k + m − 1}
first position — exploration
remaining positions — exploitation
only first position has the same examination probability χ for all lists

E.g. Suppose we have computed T (a3) = 100, then it puts
(a3, a1, a2, a4, . . . , am) on positions (k, . . . , k + m − 1) for 100 rounds
Compute θ̂ only using the feedbacks from first position k and rank
items in decreasing order of the estimated attractiveness

α̂(â1) ≥ α̂(â2) ≥ α̂(â3) ≥ · · · ≥ α̂(ân)
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Online Learning to Rank with Features [LLS, ICML’2019] –
Algorithm (Continued)

RecurRank Algorithm (Continued)

Eliminate bad arms ân′+1, . . . , ân if

α̂(â1) ≥ · · · ≥ α̂(âm) ≥ · · · ≥ α̂(ân′) ≥ α̂(ân′+1)︸ ︷︷ ︸
gap ≥2∆`

≥ · · · ≥ α̂(ân)

Split the partition for each consecutive gap larger than 2∆`

α̂(â1) ≥ · · · ≥ α̂(âk1 )

∣∣∣∣∣ α̂(âk1+1)︸ ︷︷ ︸
gap ≥2∆`

≥ · · · ≥ α̂(âk2 )

∣∣∣∣∣ α̂(âk2+1)︸ ︷︷ ︸
gap ≥2∆`

≥ · · · ≥ α̂(ân′)

k, · · · , k + k1 − 1

∣∣∣∣∣ k + k1, · · · , k + k2 − 1

∣∣∣∣∣ k + k2, · · · , k + m − 1

Call the refined partitions with phase `+ 1
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α̂(â1) ≥ · · · ≥ α̂(âk1 )
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Online Learning to Rank with Features [LLS, ICML’2019] –
Results

Regret bound

R(T ) = O(K
√

dT log(LT ))

Experiments —RecurRank(Ours) —C3-UCB —TopRank
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Summary on Bandits with Click Models

Context Click Model Regret

[KSWA, 2015] - CM O( L
∆ log(T ))

[LWZC, ICML’2016] Linear CM O( d
p∗

√
TK log(T ))

[LZ, AAAI’2018] GL CM O(d
√
TK log(T ))

[KKSW, 2016] - DCM O( L
∆ log(T ))

[LLZ, COCOON’2018] GL DCM O(dK
√
TK log(T ))

[LVC, 2016] - PBM with β O( L
∆ log(T ))

[ZTGKSW, 2017] - General O(K
3L

∆ log(T ))

[LKLS, NIPS’2018] - General O
(
KL
∆ log(T )

)
O
(√

K 3LT log(T )
)

Ω
(√

KLT
)

[LLS, ICML’2019] Linear General O(K
√
dT log(LT ))
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2 Background

3 Problem Definition – Online

4 Click Models
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AAAI’2018
IJCAI’2019

Dependent Click Model – A co-authored work
Position-Based Model
General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018
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Offline Evaluations

Motivation

Can we estimate the expected number of clicks of new policies without
directly employing it?

Offline Evaluation!

Objective:

To design statistically efficient estimators based on logged dataset for
any ranking policy

Challenge:

The number of different lists is exponential in K
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Offline Evaluation of Ranking Policies with Click Models
[LAKMVW, KDD’2018]– Results

We design estimators for different click models

Item-Position, Random, Rank-Based, Position-Based, Document-Based

We prove that our estimators

are unbiased in a larger class of policies
have lower bias
the best policy have better theoretical guarantees

than the existing unstructured estimators under the corresponding
click model assumptions
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Offline Evaluation of Ranking Policies with Click Models
[LAKMVW, KDD’2018] – Experiments

Experiments – 100 most frequent queries in Yandex dataset
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Conclusions

Context + Cascade model (CM) / Dependent click model (DCM)

Online clustering of bandits + Cascade model (CM)

Improved algorithm on clustering of bandits

Context + General click model

Offline evaluation of ranking policies with click models
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Thank you!

&

Questions?
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A Key Part Proof for CLUB-cascade (Improving C3-UCB)

Et [R(At , y t)]

=Et

[(
1−

K∏
k=1

(1− y t(x
∗
t,k))

)
−

(
1−

K∏
k=1

(1− y t(x t,k))

)]

=Et

[
K∏

k=1

(1− y t(x t,k))−
K∏

k=1

(1− y t(x
∗
t,k))

]

=Et

[
K∑

k=1

(
k−1∏
`=1

(1− y t(x t,`))

)[
(1− y t(x t,k))− (1− y t(x

∗
t,k))

]( K∏
`=k+1

(1− y t(x
∗
t,`))

)]

≤Et

[
K∑

k=1

(
k−1∏
`=1

(1− y t(x t,`))

)
[y t(x

∗
t,k)− y t(x t,k)]

]

=Et

[
K t∑
k=1

[y t(x
∗
t,k)− y t(x t,k)]

]

Shuai LI (CUHK) Learning to Rank 52 / 53



Proof Sketch for RecurRank

Use (`, i) to represent the i-th call of RecurRank with `,A`i ,K`i

Prove with high probability for any (`, i)

a∗k ∈ A`i if k ∈ K`i
|θ̂>`i xa − χ`iθ>∗ xa| ≤ ∆`, where χ`i is the examination probability of the
optimal list on the first position in K`i

In (`, i)th call, item a is put at position k, then

χ`i (α(a∗k)− α(a)) ≤ 8|K`i |∆` if k is the first position in K`i
χ`i (α(a∗k)− α(a)) ≤ 4∆` if k is the remaining position
thus O(|K`i |∆`) regret for this part

Shuai LI (CUHK) Learning to Rank 53 / 53



Proof Sketch for RecurRank

Use (`, i) to represent the i-th call of RecurRank with `,A`i ,K`i
Prove with high probability for any (`, i)

a∗k ∈ A`i if k ∈ K`i
|θ̂>`i xa − χ`iθ>∗ xa| ≤ ∆`, where χ`i is the examination probability of the
optimal list on the first position in K`i

In (`, i)th call, item a is put at position k, then

χ`i (α(a∗k)− α(a)) ≤ 8|K`i |∆` if k is the first position in K`i
χ`i (α(a∗k)− α(a)) ≤ 4∆` if k is the remaining position
thus O(|K`i |∆`) regret for this part

Shuai LI (CUHK) Learning to Rank 53 / 53



Proof Sketch for RecurRank

Use (`, i) to represent the i-th call of RecurRank with `,A`i ,K`i
Prove with high probability for any (`, i)

a∗k ∈ A`i if k ∈ K`i
|θ̂>`i xa − χ`iθ>∗ xa| ≤ ∆`, where χ`i is the examination probability of the
optimal list on the first position in K`i

In (`, i)th call, item a is put at position k, then

χ`i (α(a∗k)− α(a)) ≤ 8|K`i |∆` if k is the first position in K`i
χ`i (α(a∗k)− α(a)) ≤ 4∆` if k is the remaining position
thus O(|K`i |∆`) regret for this part

Shuai LI (CUHK) Learning to Rank 53 / 53


	Motivation
	Background
	Problem Definition – Online
	Click Models
	Cascade Model (CM)
	Dependent Click Model – A co-authored work
	Position-Based Model
	General Click Models – A co-authored work, ICML'2019

	Offline Evaluations – KDD'2018
	Conclusions

