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ABSTRACT
In this paper we use Genetic Programming for the classifi-
cation of different seafloor habitats, based on the acoustic
backscatter data from an echo sounder. By developing a dif-
ferent fitness function and dividing the multiple-class prob-
lem into several two-class problems, we were able to improve
the results presented in a previously published work, pro-
viding a better discrimination between most of the seafloor
types used in this study. We discuss the quality of these re-
sults and provide ideas to further improve the classification
performance.

1. INTRODUCTION
Genetic Programming (GP) can solve complex problems

by evolving computer programs using Darwinian evolution
and Mendelian genetics as sources of inspiration [1,2]. Many
GP systems represent the programs as trees. Tree-based
GP is the most widely used, but its nature does not make
it particularly suited for multiclass classification tasks, al-
though some studies have already been developed on this
subject [3–5].

The aim of this work is to provide a better understand-
ing of the acoustic backscatter from marine macro-benthos
(MMB), including mainly seagrass, algae, and other ma-
rine organisms living on the seafloor. Since these organisms
live on or around their substrates, the understanding of the
acoustic backscatter from their substrates is also essential.

The analysis of the acoustic backscattered signals of MMB
and related substrates has been studied with a variety of
different approaches [6–9]. One of them [9] has been the
target for improvement in a work using GP [10], where GP
was able to provide an improved discrimination between the
different seafloor habitats. The initial motivation to use GP
for this task came from a work on diesel engine diagnosis
[11]. Other works on fault diagnosis using GP are available
[12, 13].
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Here we tackle the same problem studied in [10], devel-
oping a new fitness function for the GP system, testing the
pairwise separability of the different classes involved in the
study, and ultimately dividing the 5-class problem into sev-
eral 2-class problems, whose solutions can be joined to pro-
vide a perfect discrimination of most of the seafloor habitats.

The next section describes the data used in this study,
how it was acquired and prepared for being used. Section 3
describes the GP system used, its main parameters and the
fitness function developed for this particular problem. Sec-
tion 4 describes the results achieved, and how they were
combined to build the final solution. Section 5 discusses the
quality and usefulness of the proposed solution, suggesting
future developments of this work. Finally, Section 6 con-
cludes this study.

2. THE DATA
This section describes the data collection process, the re-

moval of incomplete data and definition of representative
data sets, and the statistical preprocessing suffered by the
data before being used by the GP system.

2.1 Data Acquisition
The acoustic backscattered signals were collected from

Cockburn Sound Western Australia on the 10th of August
2004 by a SIMRAD EQ60 single beam echo sounder. The
data collection was made on two sites of shallow coastal wa-
ters where the water depths were less than 6 meters. In site
1, the seafloor habitats are predominantly sand, seagrass 1
(Posidonia sinuosa), and seagrass 2 (Posidonia australis).
On the other hand, site 2 mainly consists of sand, reef and
macro algae with canopy heights much higher than both of
the seagrasses in site 1. Along with the collection of the
acoustic data, synchronized tridimensional (3D) still images
were also taken simultaneously.

Figure 1 shows an echo sounder transmitting a signal to
the seafloor. The sound is backscattered from the seafloor
to the sea surface, and back to the seafloor, several times.
The echo sounder receives several returns for each sample.
Figure 2 represents a typical sample of acoustic backscat-
ter collected from an echo sounder, showing several echo
returns. Although SIMRAD EQ60 provides both 38 and
200kHz sampling ability, only the 200kHz signals have been
used in our study, due to its higher resolution of 25µs sam-
pling rate. The volume backscatter coefficient (in decibel
scale) was used due to its ready availability.



Figure 1: Sound transmitted from the echo sounder
to the seafloor (1), echo from the seafloor producing
the first bottom return (2), echo from the sea surface
to the seafloor (3), and again from the seafloor to
the sea surface and to the echo sounder, producing
the second bottom return (4).
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Figure 2: A typical sample of the acoustic backscat-
ter collected from an echo sounder. Several echo
returns are present.
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Figure 3: Still images (left) and echo signals (right)
from both seagrasses: Posidonia sinuosa(top) and
Posidonia australis(bottom).

2.2 Defining Data Sets
Due to the cost and technical limitations of this study,

only 1232 samples of both echoes and still images were ac-
quired. The MMB and the related substrates were roughly
classified into five classes: sand, bare reef, macro algae, sea-
grass 1 (P. sinuosa), and seagrass 2 (P. australis) according
to the visual interpretation of the 3D still images. From
now on, we will refer to the seagrasses simply as sinuosa
and australis. After further examination of the images and
the echoes, 689 samples were rejected for not being fully in-
tact, and some others were discarded for containing mixed
habitat types. In the end, 300 samples were used as pure
representatives of the five classes, unevenly distributed like
this: 81 (sand), 10 (reef), 8 (algae), 21 (sinuosa), 180 (aus-
tralis). Each sample consisting of several bottom returns
was then truncated to contain only the first bottom return
(see Figure 2), represented by a 100-point sequence that is
believed to fully describe the interactions between the trans-
mitted sound and the respective targets.

Figure 3 shows an example of still images of both sea-
grasses and the available echoes (after being truncated) for
these classes. The intra-class variety and inter-class similar-
ity of the echo signals immediately hints at the difficulty of
this problem.

2.3 Statistical Preprocessing
Before being given to the GP system, each sample suffers

a major transformation, one that may well determine the
success or failure of the GP learning. Each of the 100-point
sequences (S = {p1, p2, ..., pn}, n = 100) is reduced to only
seven statistical features (F = {x1, x2, ..., x7}):
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This particular set of statistical features was based on the
set by [11]. After calculating the different statistical features
for all the samples, the 300-element vectors obtained for each
feature are normalized. Each fitness case of the GP system
is a 7-tuple with all the statistical features of the sample
(x1, x2, ..., x7), along with an identifier of the class to which
it belongs.

By themselves, these seven features do not seem to have
the ability to discriminate between our several classes. Fig-
ure 4 shows the plotting of four of these features (Maximum,
Mean, Skewness, Standard deviation) for the five classes in-
volved. The plots produced by the remaining features are
not very different from the ones shown. The samples of
the least represented classes were randomly replicated until
each class contained 180 points in the plot, for visualization
purposes only. For an easier recognition of the ranges oc-
cupied by each classes, consecutive points are connected by



0 50 100 150
0  

0.2

0.4

0.6

0.8

1  

1.2
Maximum

0 50 100 150
0

0.2

0.4

0.6

0.8
Mean

Algae Reef Australis Sinuosa Sand

0 50 100 150
0

0.2

0.4

0.6

0.8
Skewness

0 50 100 150
0.25

0.3

0.35

0.4
Standard deviation

Figure 4: Plotting of four statistical features for the
five classes involved in the study.

Table 1: Main running parameters of the GP system
used.

Function Set {+,−,×,÷} (protected [1])
Terminal Set {x1, x2, x3, x4, x5, x6, x7}
Population Initialization Ramped Half-and-Half [1]
Population Size 500
Maximum Tree Depth initial: 6, final: unlimited [15]
Operator Rates crossover/mutation: 0.5/0.5
Reproduction Rate 0.1
Selection for reproduction tournament [16], size 50
Selection for survival replacement (no elitism)

lines. Sand is the class that seems to be more easily sepa-
rated from the rest, but still none of the single features is
able to do that. GP is expected to be able to combine the
single features into a compound feature that will avoid the
overlapping between the ranges of any two classes.

3. THE GP SYSTEM
This section describes the main parameters of the GP sys-

tem used, as well as the fitness function developed for this
work.

3.1 Parameters
As in [10], the GP system used was an adaptation of

GPLAB, a GP toolbox for MATLAB [14], with the main
running parameters indicated in Table 1.

The function set used was shorter than in [10], containing
only the most basic operators. As in [10], we have used the
Lexicographic Parsimony Pressure tournament [16] and the
Heavy Dynamic Limit [15] on tree depth to avoid excessive
code growth, but without using any traditional static limit.

3.2 Fitness function
The most influential element of any GP system is the fit-

ness function. After studying the limitations of the system

nclasses = number of classes
nsamples_c = number of samples in class c
min_c = minimum value plotted in class c
max_c = maximum value plotted in class c

overlapped = 0
for c = 1 to nclasses

for s = 1 to nsamples_c
value_s = value plotted for sample s
for nc = 1 to nclasses, nc <> c

if value_s between min_nc and max_nc
overlapped = overlapped + 1/nsamples_c

fitness = 100 * overlapped / nclasses

Figure 5: Pseudocode of the fitness function.

presented in [10], we have developed a new fitness function
that allows a better learning of the feature combinations
necessary to differentiate the different classes involved.

The previous fitness function [10] was based on inter-class
and intra-class distances, inspired by the fitness function
on [11]. But it lacked the full objectivity needed to guide
GP through a difficult error landscape. This allowed the GP
system to “cheat”, by dispersing the values plotted (like in
Figure 4) by the compound feature (the candidate solution)
such that the calculated fitness value was indeed increased,
but without really improving the separability between the
classes.

The new fitness function is not presented as a neat for-
mula, but as a pseudocode procedure that totally disregards
the notion of distances between and within classes. Instead,
it simply calculates the percentage of points in the plot (like
in Figure 4) that fall within the range of more than one
class. Minimizing this percentage is our final goal, a sim-
ple and clear objective that allows the GP system complete
freedom to devise any possible discrimination strategy, as
long as it reaches its purpose. Figure 5 shows the pseu-
docode for the fitness function. Because the available sam-
ples are unequally distributed between the classes, we give
more weight to the points of the under-represented classes,
such that each class contributes equally to the calculation
of the fitness value. So, a point from class algae (8 samples)
weights 22.5 times more than a point from class australis
(180 samples).

4. RESULTS
This section shows two types of results. First we present

some preliminary tests regarding the pairwise separability
of the classes involved. We also show additional tests where
we have tried to separate more than two classes at the same
time. Then we propose a solution for discriminating between
most of the classes involved in this study, by dividing the
5-class problem into several 2-class problems.

4.1 Pairwise Separability
Our first approach to solve the multiclass classification

problem was to check the separability between all pairs of
classes.

4.1.1 Pairing with Sand
Just by looking at Figure 4, one can immediately see that

Sand can be separated from Algae, Sinuosa and Australis



using the single features x1 (Kurtosis, not shown in the fig-
ure), x3 (Mean) or x5 (Skewness). Reef was the only class
that could not be completely separated from Sand using
single features. So we performed a few GP runs, using the
system described in Section 3, and easily found a couple of
compound features, short and simple, that can do the job:
x2 − x3 and x3 − x2. We hypothesize that a good way to
attack the 5-class problem would be to first separate Sand
from the remaining group of classes, and then proceed to
solve the remaining 4-class problem.

4.1.2 Pairing with Reef
We proceeded with the pairwise separability tests by try-

ing to separate Reef from the remaining classes (except Sand,
of course). Finding a compound feature that perfectly dis-
criminates between Reef and Algae proved to be a fairly
simple task for the GP system:

x1x2

x3(x3 − x6)

Discriminating between Reef and Sinuosa also posed no
difficulties:

x4

x6(x7 − 1)
− x1

On the other hand, separating Reef from Australis proved
to be a difficult task. In most of the runs, the GP system
converged to compound features that could not separate
both classes perfectly, meaning that the fitness (weighted
percentage of overlapped points, see Section 3.2) did not
reach zero. But eventually it was able to find a perfect so-
lution:

x3(x3x5 − x6)(x5 + x6 − x7)

x5(x1 − 2x2 + x5 − x6)
− x5

Due to the difficulties mentioned, we hypothesize that sep-
arating Reef from all the remaining classes may not be an
easy task.

4.1.3 Pairing with Algae
To continue testing the pairwise separability, we tried to

separate Algae from the remaining classes, both seagrasses.
Finding a compound feature to discriminate between Algae
and Sinuosa was very easy: x4 + x5 + x6. However, separat-
ing Algae from Australis proved to be very difficult. The GP
system did not converge to any perfect solution in a reason-
able amount of time, only finding almost perfect compound
features that could not completely discriminate among both
classes. We hypothesize that it may be very difficult or im-
possible to separate Algae from a set of classes that includes
Australis.

4.1.4 Pairing the Seagrasses
To finish the tests on pairwise separability, we have finally

tried to separate both seagrasses, but the GP system could
not find any perfect solution. In fact, the fitness of the
solutions it converged to was far from zero. We present one
of the best solutions found, with fitness 44.0 (44% of the
samples are overlapped), in Section 4.3.4, and hypothesize
that separating both seagrasses may be an impossible task
using the current data, features and settings.

4.2 Separability of Multiple Classes
From the results achieved in Section 4.1 we proceeded to

more complex tests where we tried to discriminate between

more than two classes at the same time. The pairwise sep-
arability tests have revealed a group of classes with good
prospects of being easily separated from each other: Sand,
Algae, and Sinuosa. The separation between any two of
these classes was achieved with short and easy to find com-
pound features, so we decided to check if the GP system
could find a compound feature capable of discriminating be-
tween the three. A short solution was found with not much
difficulty (the plot is shown in Figure 6, left):

x6 + 2(
x5

x3 + x6

)

We tried the same thing with a slightly different group:
Sand, Algae, and Reef. From the results of pairwise sep-
arability with Reef, we were expecting this to be a more
complex task. Although with more difficulty, the GP sys-
tem was once again able to find a perfect solution (the plot
is shown in Figure 6, right):

x7 − (2x1 + x2x5 +
x5

x3

)

−
x3x4x5

x2x3(x1 + x5 − x7 + x2x5) + x5(x2 + x3x6)

In the plots of Figure 6 the samples of the least represented
classes were randomly replicated until each class contained
81 points, the number of samples of the largest class in this
case.

We did not perform any additional tests with other groups
of three classes. Instead, we tried to separate a group of
four classes, made of the classes contained in the two previ-
ous trios: Sand, Algae, Sinuosa, Reef. The GP system did
not find any perfect solutions, so we moved to a different
strategy.

4.3 Divide and Conquer
Because of the failure reported in Section 4.2 in discrim-

inating among the four easiest classes of our problem, we
adopted a divide and conquer strategy, dividing the 5-class
problem into several 2-class problems. We used the pairwise
separability results obtained in Section 4.1 to guide this pro-
cess.

4.3.1 Separating Sand
As already stated, Sand was the easiest class to separate

from any of the others, so we began by searching a compound
feature to discriminate between Sand and the set of all the
remaining classes. As expected, this was an easy task for
our GP system:

x2

3

x2

(1)

The plot produced by this perfect solution is shown in
Figure 7, top left. The dashed line indicates the boundary
between Sand and the remaining classes.

4.3.2 Separating Reef
We proceeded by searching for a compound feature to

discriminate between Reef and the set of remaining classes
(except Sand, of course). Due to hard pairwise separability
between Reef and Australis, we were expecting this to be
a very difficult task, and so it was. Most of the GP runs
converged to non perfect solutions, or to extremely complex
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compound features, as this one:

x6(x5 − x7 − x2x6)

x3 − x4x6

×

×

[

1 + x4x5(x3 − x2) + x3x7(x3 − x4) −
x3

3x7

x4x5

−

−
x2(x3x7 − x5) + x3(x3x7 + x5)

x4

+
x2

3

x5

+

+
x3x5(x3 − x2) + x4x

2

5(x2 − x3)

x4(x1x3x4x5 − x4x5(x3 + 1) + x3)

]

−1

(2)

The plot produced by this perfect solution is shown in
Figure 7, top right. The dashed line indicates the boundary
between Reef and the remaining classes.

4.3.3 Separating Algae
We continued our divide and conquer strategy by search-

ing for a compound feature to discriminate between Algae
and the two remaining classes, the seagrasses. We were not
expecting to find a perfect solution for this problem, because
we had never achieved the pairwise separation between Al-
gae and Australis. We were wrong, and given enough per-
sistence we were eventually able to find a perfect solution
(that is obviously also a solution for the pairwise problem):

x4x5(x1 + x4)

x4 + x5

×
x6 + (x3 + x7)(2x2 + x5)

2x2 + x5

×

×

[

x6(x2 + 2x7)(x6 + x2x5 + x2

5(x2 + x5 + 1))

x6(x2 + 2x7) + x2

5
(x2 + x5)(x2 + 2x7)

+
x5x7(x2 + x5)(x1 + x3 − x7)

x6(x2 + 2x7) + x2

5
(x2 + x5)(x2 + 2x7)

]

−1

(3)

The plot produced by this perfect solution is shown in Fig-
ure 7, bottom left. The dashed line indicates the boundary
between Algae and the remaining classes.

4.3.4 Separating Seagrasses
After successfully separating the previous classes, we were

left with the problem of discriminating between both sea-
grasses. This is the exact same problem already dealt with
in Section 4.1.4, that we have concluded to be too difficult,
if not impossible. Here we present one of the best solutions
that could be found:

x2 + x4 + x5 −
2(x6(x3 − 1) + 2x2 − x1)(x2 − x1)

x4x5x6

+

+
x5x7

x3(x1 + x3 + x4)(x6 − 2x5)
−

x2(x3 + x6)

x1x5

+

+
x1x4x6(x5(x6 − x2) − x3 + x4)(x6 − 2x5)(x7 + x1x3)

(x1 + x2 − x5)(x2x7 + x2

1
(x6 − 2x5)(x7 + x1x3))

(4)

The plot produced by this far from perfect solution is
shown in Figure 7, bottom right. The dashed line indicates
a possible boundary to approximate a rough discrimination
between both seagrasses.

4.4 The proposed solution
The results of the divide and conquer strategy presented

in Section 4.3 can now be joined together to produce a candi-
date solution for the original 5-class problem. This solution
is a binary tree where each node compares a compound fea-
ture with a threshold value, in order to determine if a class is

formula (1) < 0.2307

Sandformula (2) > -0.0478

Reefformula (3) < 0.2754

Algaeformula (4) < 2.0412

AustralisSinuosa or Australis

?
@

@@R

?
@

@@R

?
@

@@R

@
@@R

@
@@R

yesno

yesno

yesno

yesno

Figure 8: Proposed solution for the multiple class
classification problem. Formulas (1), (2), (3) and
(4) can be found in Section 4.3.

already identified or if other nodes need to be visited. The
threshold values are the dashed lines plotted in Figure 7.
Figure 8 shows the proposed solution.

5. DISCUSSION AND FUTURE WORK
The results presented in Section 4 represent a major im-

provement over the results published earlier [10]. In the
previous work, all the five classes were partially overlapped,
while in this work only the seagrasses could not be com-
pletely separated from each other. The reasons for this lim-
itation may be inherent to the data, that may not contain
enough information to perform this discrimination, or to the
large removal of information caused by the adoption of the
statistical features as sole representatives of the samples.
Using different statistical features, or ones that concentrate
on smaller areas of the 100-point sequences, may allow us to
finally distinguish between these two similar classes.

From the marine science point of view, it may not even
be that important to achieve a solution that discriminates
among all the classes. For example, it is known that live
seagrasses only exist on sand, and algae only grow on reef.
So the chances of erroneously identifying seagrass as algae
are very low when most of the seafloor is sand. Likewise, one
will hardly misidentify algae as seagrass when the substrates
are reef. With this knowledge, it may be possible to reduce
the complexity of the problem and concentrate the efforts
on solving only the most important and practical issues.

In spite of its apparent quality, the solution proposed must
be used with caution. Because the available data samples
were highly unbalanced between the different classes, it was
not possible to perform any cross-validation of the results.
The solution may be biased toward some outliers that may
be present and may represent a high proportion of data in
the most under-represented classes.

New data is being collected that will allow us to test the
proposed solution more thoroughly. If the new results turn
out to be poor, then we are probably facing the problem
of overfitting, a phenomenon that is already hinted by the



large size of some of the compound features found. If the
new data confirms this, it will also serve to build a new and
more robust solution that can avoid this problem.

It should also be noted that we have only used pure habi-
tats types to derive the proposed solution. If we had used
mixed types, finding compound features to completely sepa-
rate between classes would not only be virtually impossible,
but would also not make much sense in practical terms. The
fact is that the proposed solution is not appropriate for deal-
ing with mixed types at all. Since the divide and conquer
strategy seems to be a promising way of dealing with the
inadequacy of GP for multiclass classification problems, in
the future we may adopt a different technique for solving
each of the sub-problems.

Like what typically happens when training an artificial
neural network, GP can also be taught to output a number
between 0 and 1 that can be interpreted as representing the
likelihood that a given sample belongs to a given class. Join-
ing the solutions of the different sub-problems would then
result in a vector containing as many elements (numbers be-
tween 0 and 1) as classes involved in the study. This would
allow the GP system to perform a fuzzy classification, as op-
posed to the sharp and clear-cut classification performed by
the current solution, which hardly represents the real condi-
tions of most samples collected in the natural environment.

Finally, the fitness function used in this work, although
better than the one previously published [10], is still lack-
ing an important feature. It can lead the GP system to
the complete separation of classes, but once it gets there it
does not promote any further separation, meaning it does
not reward the solutions that present a larger distance be-
tween the classes. The result is that there is only a thin
range of values from where to choose the thresholds of the
final solution, something that will probably impair the per-
formance in new data sets. The current fitness function can
be extended to promote a larger distance between classes.
Currently, it assumes values between 100 and 0, where the
null value corresponds to the best cases, with no superpo-
sition of classes. In the future, the range of possible fitness
values may reach below 0, where lower values represent cases
with no superpositions and larger distances between classes,
the truly ideal situation. But there are, of course, many
other possibilities for improving the fitness function and the
general performance of the entire GP system.

6. CONCLUSIONS
In this paper we have illustrated the usage of Genetic

Programming on the classification of seafloor habitats. Us-
ing a fitness function different from the previous one [10]
and dividing the multiple-class problem into several easier
two-class problems, we have proposed a solution that repre-
sents a major improvement over the results published earlier.
From the five classes involved in our classification problem,
only two could not be completely separated from each other.
The quality of these results is a motivation for performing
further validation with new data, and for developing other
GP techniques appropriate for solving harder problems of
seafloor habitat classification.
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