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ABSTRACT

In recent years, there has been an increasing development of hyper-heuristics in

the field of combinatorial optimisation. Broadly speaking, the term

hyper-heuristic refers to a technique or algorithm that aims to provide a more

generalised solution to, usually, a combinatorial problem. Hyper-heuristics

differ from other combinatorial solution methods by working primarily in the

heuristic space, as opposed to the solution space, to create more generalisable

solutions for problems. There are four types of hyper-heuristics: generation

constructive (GC), generation perturbative (GP), selection constructive (SC)

and selection perturbative (SP). Each type functions by either generating new

heuristics or by selecting which existing heuristics to apply to a problem. They

are further delineated by whether the hyper-heuristic is constructive or

perturbative with the former making solutions from scratch and the latter

modifying and refining existing solutions.

Despite increasing research into hyper-heuristics, one area where research has

been lacking is in the use of ant algorithms by hyper-heuristics to drive the

search through the heuristic space. While there have been some investigations

into the employment of ant algorithms by hyper-heuristics, a comprehensive

study into the use of ant algorithms and in particular their central search

mechanism, the pheromone map, has largely not been done. This research

endeavours to investigate and study the use of ant algorithms by the four

different types of hyper-heuristic to search the heuristic space. The goal is to

improve the employment of ant algorithms by hyper-heuristics through the

study of how the pheromone map can be used to explore the heuristic space.

A general ant algorithm for searching the heuristic space (HACO) was

presented and extended for each of the four types of hyper-heuristics. This

investigation specifically focused on examining the impact that using different
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pheromone maps (1D, 2D and 3D) would have on the ant algorithms used by

the hyper-heuristics. Furthermore, a hybrid algorithm (HACOH), one that

combines multiple HACO algorithms with their pheromone maps, was

presented to improve upon the use of the different pheromone maps.

The proposed algorithms (HACO and HACOH) were evaluated in multiple

problem domains based on their use as one of the four hyper-heuristics. The

SC and SP experiments were performed in the quadratic assignment problem

(QAP) and movie scene scheduling problem (MSSP) domains. The GC

experiments were conducted in the one-dimensional bin packing problem

(1BPP) and MSSP domains and finally, the GP experiments were conducted in

the capacitated vehicle routing problem (CVRP) and MSSP domains. These

algorithms were assessed primarily in terms of optimality and generality

although consideration of runtimes and comparisons with existing heuristics

was included as well.

The results showed that there were statistically significant differences between

the different pheromone maps when used in ant-based hyper-heuristics across a

wide number of the problem domains. The only exception was the SC-MSSP

experiments where differences were observed but not significant. In these

experiments, at least one type of pheromone map emerged as suboptimal for

use in the hyper-heuristic in the problem domain. It was not always the case

that a single type of pheromone map would predominate over the others, but

the results indicated clear delineations between better or worse pheromone

maps to use in hyper-heuristics across the domain experiments. The HACOH

algorithm showed some promise in use in the generation hyper-heuristics, in

the 1BPP and MSSP domains, but was generally inferior to a non-hybrid

HACO algorithm in the majority of the experiments, indicating that the

hybrid algorithm is not universally superior to its non-hybrid counterparts.
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These results have met the research objectives of this thesis by showing that,

firstly, ant algorithms can be employed successfully, by all four types of

hyper-heuristics. More importantly, however, the results showed that there are

meaningful differences between the use of the different pheromone maps in

ant-based hyper-heuristics and that choosing the optimal map for an ant-based

hyper-heuristic depends on the problem domain among other factors.
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CHAPTER 1

Introduction

1.1 Purpose of the Study

The field of hyper-heuristics is one with the aim of creating generalisable so-
lutions to combinatorial problems, and it achieves this through working in a
heuristic space that is distinct from the solution space [1]. Research into hyper-
heuristics has resulted in the development of four main types which are the
selection constructive, selection perturbative, generation constructive and gener-
ation perturbative hyper-heuristics [2]. Selection hyper-heuristics revolve around
choosing and applying existing low-level heuristics whereas construction hyper-
heuristics revolve around creating new heuristics. Constructive and perturbative
in this context refer to whether the underlying solution will be created from
scratch or modified from an existing prior form respectively. Subsequent chap-
ters will define these concepts in greater detail.

However, despite research into these types of hyper-heuristics, the existing
work has largely fixated on a few well-known techniques, like genetic algorithm
(GA), genetic programming (GP), and other evolutionary algorithms. Beyond
some limited applications in selection constructive hyper-heuristics [3], ant algo-
rithms have not been widely studied for selection perturbative hyper-heuristics
and generation hyper-heuristics to search the heuristic space. Moreover, the ex-
isting research has purely focused on limited applications of ant algorithms with-
out consideration of how the algorithms could be best applied by hyper-heuristics
to search the heuristic space. This has left open potential for the development
of ant-based hyper-heuristics for generation hyper-heuristics. More importantly,
this demonstrates that there is a void in terms of the research regarding how the
ant-based algorithms are used as hyper-heuristics themselves.

Specifically, in the past, selection hyper-heuristics have employed ant algo-
rithms primarily fusing the ant algorithm to search the heuristic space in the
same way that ant algorithms are applied to search the solution space. This
research hypothesises that this is a sub-optimal method and that a better study
of how ant algorithms could be employed to search the heuristic space would
improve ant-based hyper-heuristics.

Hence the purpose of this research is to do a comprehensive investigation into
improving how the operating mechanism of ant algorithms, the pheromone map,
could be better studied for improving the use of ant-based hyper-heuristics. A
central hypothesis of this thesis is that different types of pheromone maps will
greatly impact the ability of the ant-based hyper-heuristic to succeed. Specifi-
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cally, this investigation aims to examine the impact of different types of pheromone
maps (1D, 2D, and 3D) in how they influence the performance of ant-based
hyper-heuristics. Further justification is provided in Section 2.6.

1.2 Objectives

The primary goal of this study is to investigate the effects that different pheromone
(1D, 2D, and 3D) maps have on ant-algorithms used in the four types of hyper-
heuristics. To achieve this goal several objectives have to be met.

1. To design and implement an ant-based selection constructive hyper-heuristic
with 1D, 2D, and 3D pheromone maps.

2. To design and implement an ant-based selection perturbative hyper-heuristic
with 1D, 2D, and 3D pheromone maps.

3. To design and implement an ant-based generation constructive hyper-heuristic
with 1D, 2D, and 3D pheromone maps.

4. To design and implement an ant-based generation perturbative hyper-heuristic
with 1D, 2D, and 3D pheromone maps.

5. To design and implement a method such that multiple ant algorithms, each
using a different pheromone map, can be hybridised together.

6. To assess the effect of 1D, 2D and 3D pheromone maps have on the four types
of ant-based hyper-heuristics as well as to compare the hybrid algorithm
against the non-hybrid algorithms

1.3 Thesis Scope

The scope of this thesis is the use of ant colony optimisation (ACO) algorithms
as the basis for four types of hyper-heuristics and the evaluation of the effect
that different pheromone maps have on these hyper-heuristics. The scope is as
follows:

– Ant Algorithms: There are two types of ant algorithm that are considered,
and adapted where necessary, as the operating mechanism for the various
hyper-heuristics in this thesis. They are the ant system algorithm [4] and
the fast ant algorithm [5].

– Hyper-Heuristics: The scope of this thesis is restricted to the four types of
four hyper-heuristics. They are selection constructive, selection perturbative,
generation constructive, and generation perturbative hyper-heuristics.

– Optimisation Problems: This thesis considers 4 discrete combinatorial opti-
misation problem domains. All of these problems are minimisation problems
that have a single objective value that is to be minimised.

– Problem Domains: There are four domains considered in this thesis. These
are the capacitated vehicle routing problem (CVRP), the one-dimensional
bin packing problem(1BPP)[6], the quadratic assignment problem (QAP),
and the movie scene scheduling problem (MSSP). The first three domains are
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common domains that have been widely used in hyper-heuristic and discrete
combinatorial optimisation research. The last domain was chosen because
it is a more recent domain in the field and has not been used before. The
choice, therefore, of domains reflects a desire to use old and new domains
to study the different types of ant-based hyper-heuristics in this research.
Broad coverage of different types of optimisation problems also provides a
good platform for assessing the application of the ant algorithms to hyper-
heuristics.

The focus of this thesis is on improving the application of ant algorithms in
hyper-heuristics specifically. It is not in competing or replacing existing hyper-
heuristic methods.

1.4 Contributions

The main contribution of this thesis is the comprehensive study of how different
types of pheromone maps can influence the operating capacity of various ant-
based hyper-heuristics. To the knowledge of the author, this is the first study of
its kind that provides an in-depth analysis of how hyper-heuristics can employ
ant algorithms to search the heuristic space, including hyper-heuristics that have
not employed any form of ant algorithm in the past.

1. A comprehensive study of the effects of different types of pheromone maps
in terms of how those affect ant-based hyper-heuristics across all four types
of hyper-heuristics.

2. The employment of ant algorithms by a generation constructive and gen-
eration perturbative hyper-heuristic is a truly novel application that has
demonstrated that ant-based methods can be utilised far outside their orig-
inal operating scope.

3. The hybridisation of the different ant-based hyper-heuristics, with distinct
pheromone maps, has demonstrated that the effects of using different pheromone
maps, with their relative advantages and disadvantages, can be combined
into a single algorithm that offers comparable performance to any single
pheromone map without requiring the different maps to be selected based
on the problem.

1.5 Thesis Layout

The rest of the thesis is organised as follows:

1.5.1 Chapter 2 - Background

This chapter provides the necessary background information pertinent to this
thesis and surveys the related work. The chapter also provides information about
discrete optimisation problems, ant algorithms, and their existing employment
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by hyper-heuristics and a discussion of the four kinds of hyper-heuristics. Fi-
nally, background information for the problem domains used in this research is
presented here.

1.5.2 Chapter 3 - Research Methodology

Chapter 3 presents a brief description of existing research methods in Com-
puter Science. It also provides an explanation of how the appropriate research
methodology is applied to meet the objectives indicated in Section 1.2. A detailed
description of the problem domains and the instances is presented as well as a
description of the experiments done for the thesis and the necessary parameter
values and assessment metrics.

1.5.3 Chapter 4 - Pheromone Maps

In this chapter, a detailed description of the central operating mechanism of the
ant algorithm, the pheromone map, is given. The focus of this chapter is specifi-
cally on how the pheromone map will be modified and adapted for this research.
Namely with the methods of compression and projection that are used in pro-
ducing different kinds of pheromone maps outside of the native two-dimensional
form.

1.5.4 Chapter 5 - Hyper-Heuristic Ant Colony Optimisation

This chapter details the basics of how the ant algorithms are used by hyper-
heuristics. This covers a generalised form of the ant-based hyper-heuristic that
broadly applies to all types of hyper-heuristics. Details specific to each hyper-
heuristic will be provided in their chapters.

1.5.5 Chapter 6 - Ant-Based Selection Hyper-Heuristics

In this chapter, a detailed description of how an ant algorithm is employed by
the two types of selection hyper-heuristics is provided. This covers selection con-
structive and selection perturbative hyper-heuristics. The reason is that selec-
tion hyper-heuristics do not differ much for both constructive and perturbative
tasks. This chapter includes the details of the application of hyper-heuristics
to the MSSP and QAP domains. Finally, parameters that are specific to the
hyper-heuristics are presented here.

1.5.6 Chapter 7 - Ant-Based Generation Constructive
Hyper-Heuristic

In this chapter, a detailed description of an ant-based generation constructive
hyper-heuristic is provided. This includes the details of the application of the
hyper-heuristic to the 1BPP and MSSP domains. Finally, parameters that are
specific to this hyper-heuristic are presented here.
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1.5.7 Chapter 8 - Ant-Based Generation Perturbative
Hyper-Heuristic

This chapter provides a detailed description of the ant-based generation pertur-
bative hyper-heuristic. This includes the details of the application of the hyper-
heuristic to the CVRP and MSSP domains. Finally, parameters that are specific
to this hyper-heuristic are presented here.

1.5.8 Chapter 9 - Hybridising Ant-Based Hyper-Heuristics

In this chapter a detailed methodology for an algorithm that hybridises the
algorithms that use the three types of pheromone maps is presented. This covers
the hybridisation scheme and its operating parameters and conditions.

1.5.9 Chapter 10 - Results and Discussion

This chapter provides the results of the experiments in this thesis. The results
are assessed in terms of their optimality and generality in their respective do-
mains with comparisons to existing heuristics and techniques provided where
necessary. This chapter also includes an analysis of the pheromone maps with
the appropriate graphical representation.

1.5.10 Chapter 11 - Conclusion and Future Work

Finally, this chapter provides the conclusion of this thesis and presents ideas for
future work.
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CHAPTER 2

Background

2.1 Introduction

This chapter provides the foundation for the research presented in this thesis.
This includes both a background on topics relevant to this research as well as
a justification for it. The rest of this chapter is organised as follows. Section
2.2 provides a brief overview of discrete combinatorial optimisation problems as
these are the problems considered in this research. Section 2.3 provides an ex-
planation of ACO algorithms upon which the basis of this research is conducted.
Section 2.4 introduces the concept of hyper-heuristics and details the four types.
Section 2.5 provides a summary of the existing applications of ACO to hyper-
heuristics. Section 2.6 provides the critical analysis of relevant literature and
finally, Section 2.8 provides a summary for the entire chapter.

2.2 Discrete Combinatorial Optimisation

Combinatorial optimisation is a type of optimisation task that concerns itself
with finding an optimal object or arrangement of objects from a finite set of
them [7,8]. The use of the phrase discrete refers to the fact that these problems
revolve around indivisible objects that do not operate in the real-valued domain.

A formal definition, adopted from [9], for a combinatorial optimisation prob-
lem is as follows:

– A set of variables Xk = {x1, x2, ..., xn} which defines all possible values of
xk.

– A set of constraints, C that impose relationships and requirements on the
variables.

– An objective function, f be optimised.

In general, there are two types of combinatorial optimisation problems: maximi-
sation and minimisation problems. This research concerns itself with minimisa-
tion problems but in principle, every maximisation problem can be converted to
a minimisation problem by negating f .

An important part of the problem is feasibility. Feasibility in this context
refers to a solution to a combinatorial optimisation problem that does not violate
any of the problem’s constraints. Solutions that exist that violate any of the
constraints are called infeasible solutions. The goal of any good technique is to
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move away from the infeasible regions of the search space, to the feasible regions
with good solutions. Therefore, the set of all feasible solutions, also called the
search/solution space S, can be defined as follows:

S = {s = {(x1, v1), (x2, v2), ..., (xn, vn)}| vi ∈ Di} (2.1)

where vi refers to a specific value taken from Di, a set of possible values, and
assigned to the variable xi and s satisfies all constraints.

2.3 Ant-Colony Optimisation

The term ant algorithm broadly refers to a category of algorithms that are mod-
elled on particular behaviours of organic ants in real life [10]. These behaviours,
for example, foraging behaviour, have been developed in an algorithm by Dorigo
in [11]. Since then, the field of research has grown into a suite of various kinds of
ant-based algorithms that rely on the same fundamental behaviours described in
the original algorithm to solve a variety of problems, most notably combinatorial
and search problems [11,12].

The basis of the functioning of most ant algorithms is derived from the com-
munication of information between the ants and their search process for a given
solution to a problem. This is an application of stigmergy [12] whereby the ants
use an artificial replication of natural ant pheromones to communicate informa-
tion about their searches. As the group of ants engage in searches, a tendency
towards the increase of pheromone in good areas of the search space gradually
produces better and better solutions. Like any stochastic, evolutionary-based
optimisation method, there is no hard guarantee that the found solution will
always be the best, especially in high dimensionality problems but unlike many,
it does come with a guarantee of convergence although the speed of convergence
is problem dependent [13].

Nevertheless, ant algorithms are an attractive choice for combinatorial prob-
lems for many reasons. Their ability to function on any problem that has a
graph-based representation makes them applicable to a wide domain of prob-
lems [14]. The shared information of the ants also leads to rapidly improving
solutions as well as the ability to more readily adapt to dynamic or changing
problem environments [14].

2.3.1 Ant Algorithm Operation

To better illustrate the operation of ACO, consider the following simple graph
of nodes in Figure 2.1 and the problem of trying to find the lowest cost route
between Node A and Node G. This problem is purely for illustrative purposes.
Ant algorithms can be applied to any problem with a graph-based representation.

This graph, G = (V,E) where V is a set of nodes and E is a matrix represent-
ing the costs to move between nodes (links i to j), is a common representation
for a common optimisation problem, namely the shortest path problem [15]. In
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Fig. 2.1: Graph for Shortest Path Problem

this graph, two pheromone concentrations are given as a and b on the links of
the graph. For the purposes of this problem, the graph can be considered to be
directed although this is less relevant to the principle at hand. In the graph, a
possible solution is indicated with solid arrows. Namely, the path of A → D → G.
The dotted lines represent other possible connections.

To illustrate a generalised functioning of an ant algorithm, consider the Sim-
ple Ant Colony Optimisation algorithm (SACO) [16]. This is one of the simplest
versions of the ACO and serves to illustrate the generalised functioning of an
ACO algorithm without unnecessary, at this point, details.

For SACO, the algorithm starts with all edges initialised with small random
values for the initial pheromone values. An ant, the decision-making agent, is
placed at the start node and then decides which edges to move to. This can be
generalised to k ants but is kept to a single ant for simplicity.

During each iteration of the SACO, the ants will construct paths from the
start node to the end node using a decision policy to decide which of the nodes
to move to.

If ant k is at node i, then it will select the next node j ∈ Nk
i based on the

probability rule [16],

pkij(t) =


τα
ij(t)∑

j∈Nk
i
(t)

τα
ij(t)

if j ∈ Nk
i (t)

0 if j /∈ Nk
i (t)

(2.2)

where Nk
i is the set of feasible nodes connected to node i and ant k’s position

in the graph. The variable t denotes the current iteration of the algorithm. For
the sake of simplicity, ignore the potential for loops.

In Equation 2.2 α is a positive constant that magnifies the influence of the
pheromone concentration at the indices of (i, j) in the pheromone map. Larger
values increase the significance afforded to larger concentrations of pheromone
and more heavily influence the ant’s search direction.
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Once the ant has traced its path from the start to the end node, it deposits
some amount of pheromone on each link visited, in the reverse order of traversal.
The ant drops a pheromone amount,

τkij(t) ∝
1

Lk(t)
(2.3)

where Lk(t) is the length of the path constructed by ant k at iteration t. The
notation choice here refers to the pheromone, τkij , deposited by ant k specifically.
This pheromone is deposited in a two-dimensional matrix called a pheromone
map, which is structured identically to the edge matrix. It serves as a collective
knowledge store of all the ants and their efforts to solve the problem. Over several
ants, the pheromone for a given link at t is merely the sum of all ants’ deposited
pheromone on that link. For this example, the fitness of the path is its length
although this can vary based on the problem. Different measures can be used
to decide how much pheromone should be deposited and this is discussed in
Sections 2.3.2 and 2.3.3.

The last component of a generalised ant algorithm is the management of
pheromone over time. An initial problem with SACO was the premature con-
vergence of the ants on paths that became saturated with pheromone early on
[17]. To prevent this, pheromone evaporates, on a link (i, j) at a rate given by,

τij(t) = (1− p)τij(t) (2.4)

where p ∈ [0, 1]. The notation in this context refers to the pheromone, τij , in
the map at indices (i, j) for evaporation which does not require reference to
any ant k. The constant p controls the rate of evaporation which enables some
information contained on a link to evaporate and be forgotten, allowing other
links to be explored. Taken together, the SACO algorithm is formalised into
Algorithm 1.
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Algorithm 1: SACO Path Construction Process

1 initialise τij(0) to small random values;
2 t = 0;
3 Place nk ants on the origin node;
4 while t < tmax do
5 foreach ant k = 1, ..., nk do
6 Construct a path xk(t);

7 xk(t) = ∅;
8 while path incomplete do
9 Select the next node using Equation 2.2;

10 Add link (i, j) to path xk(t);

11 Calculate path length of f(xk(t));

12 foreach link (i, j) do
13 Evaporate pheromone using Equation 2.4;

14 foreach ant k do
15 foreach link (i, j) of xk(t) do
16 δτk = 1

f(xk(t))
;

17 Update τij(t);

18 t = t+ 1;

19 Return the best path found;

This algorithm describes the most basic operation of an ant algorithm. In
Line 4, the terminating condition is an iteration limit specified by tmax but other
termination criteria can be used as well. It is a cooperative process between all
of the ants each of which contributes some amount of information about the
problem they are trying to solve with the others through the shared access and
maintenance of, pheromone accumulation.

2.3.2 Ant System

Dorigo [11] developed the first ant algorithm called the ant system (AS). While
the SACO is meant to demonstrate the basic principles of ant algorithms, the
AS is the more recognisable form of the canonical algorithm [18].

The AS retains most of the features of operation that are recognisable in the
SACO except for two small, but significant, changes. The first is the use of a
different probability transition rule. This is given as,

pkij(t) =


τα
ij(t)η

β
ij(t)∑

j∈Nk
i
(t)

τα
ij(t)η

β
ij(t)

, if j ∈ Nk
i (t)

0, if j /∈ Nk
i (t)

(2.5)

In this new probability transition rule, ηij represents the attractiveness of
moving to a given node based on some external heuristic. In this way, the
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pheromone associated with moving to a node, τij is now weighed against a heuris-
tic score of moving to that node, with α and β serving as control coefficients
that determine the magnitude of the respective influences of both components.

The other change to the formulation is the use of a tabu list to prevent loops
from being formed. This is a necessary inclusion to remedy one of the issues of
the native SACO implementation.

2.3.3 Fast Ant System

The fast ant system (FANT) was developed by Taillard and Gambardella [5,19]
as a specific solver for the QAP. As an ant algorithm, it has some major deviances
from the more standard formulation. The first deviation is the use of only a single
ant, hence the name. Other ant algorithms typically rely on the cooperation
and interaction of multiple ants, as agents, to facilitate the search process. The
FANT algorithm makes use of a single ant to greatly reduce its computational
complexity.

The second significant departure from conventional ant algorithms is the
probability transition rule. The rule is given as,

pkij(t) =


τα
ij(t)∑

j∈Nk
i
(t)

τα
ij(t)

, if j ∈ Nk
i (t)

0, if j /∈ Nk
i (t)

(2.6)

This is very similar to the AS update rule with the noted omission of η. This is
because β = 0 in the FANT system as it deliberately omits heuristic information
in favour of a pure reliance on pheromone information to guide the search.

The third and final deviation is in the pheromone update rule. This is given
as,

τij(t+ 1) = τij(t) + w1∆τ̃ij(t) + w2τ̂
+
ij (2.7)

where w1 and w2 are control parameters that weight the influence of the current
solution, τ̃ij at t and the best solution, τ̂+ij (t), found so far. A link receives
pheromone depending on whether it is included in the current solution or the
best solution. Therefore, the pheromone values are calculated as,

∆τ̃ij(t) =

{
1 if (i, j) ∈ x̃(t)

0 otherwise
(2.8)

and

∆τ̂ij(t) =

{
1 if (i, j) ∈ x̂(t)

0 otherwise
(2.9)

where x̃ and x̂ are the current path and best path respectively.
In this way, the reinforcement provided to the pheromone is relatively large

and purely based on occurrence in paths, regardless of the path’s actual length.
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These modifications require further changes to the underlying algorithm.
In particular, all of the pheromones must be initialised to 1 at execution and
whenever a new best solution is found, the pheromone must be reinitialised again.
This allows the algorithm to exploit the area of the new best path. Finally, if
the current solution is the same as the best, the value of w1 is increased. As w1

controls the influence of the current path, this diminishes the influence of the
best path to encourage additional exploration.

2.4 Hyper-Heuristics

The term hyper-heuristics refers to a field of research that aims to provide
generalisable solutions to combinatorial optimisation problems by working in
the heuristic space instead of the solution space [2]. The solution space refers,
broadly, to the range of possible direct solutions for a given problem whereas the
heuristic space refers to a range of possible choices relating to heuristics that can
then be applied to solve the problem [1,20]. This works at a level of abstraction
one step removed from the direct solution. Broadly speaking, hyper-heuristics
are either used to select from an existing pool of low-level heuristics or use some
technique to generate new ones.

A low-level heuristic is simply any kind of heuristic procedure or method that
can be applied to solve a problem and can be either constructive or perturbative
[2]. These methods are meant to solve a wide range of instances within a problem
domain. A constructive heuristic builds a solution to a problem from scratch
whereas a perturbative heuristic modifies or perturbs an existing solution in the
hope of refining its quality.

Hence, four kinds of hyper-heuristics relate to how the hyper-heuristic inter-
acts with low-level heuristics and what kind of low-level heuristics that inter-
action is meant to facilitate [21,22]. These are selection constructive, selection
perturbative, generation constructive and generation perturbative. These types
are discussed in Sections 2.4.1–2.4.4.

2.4.1 Selection Constructive Hyper-Heuristics

A selection constructive hyper-heuristic is a hyper-heuristic that continuously
selects a low-level heuristic to apply to a problem in a particular state until a
solution for that problem is fully constructed [2].

That is, given a set of low-level construction heuristics H and a problem
P , a selection constructive hyper-heuristic will gradually construct a solution s
for P by choosing and applying heuristics from H until the problem is solved.
A generalised form of this algorithm is given in Algorithm 2. This algorithm
represents a generalised version of a selection constructive hyper-heuristic, and
as such, makes use of a termination criterion that applies to all of them. Namely,
stopping once a complete solution is made. It is possible to use different criteria
as termination conditions but that would be more problem or implementation-
specific, such as accounting for partial completion of the solution.
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Algorithm 2: Generalised Selection Constructive Hyper-Heuristic

Data: problem p, a set of construction heuristics H
Result: a solution s

1 s = ∅;
2 while s is incomplete do
3 Select heuristic h from H;
4 Apply h to s;

There are several different methods of choosing the heuristic from the set.
The first type is called case-based reasoning. With case-based reasoning, the idea
is to solve new problems based on previously solved old problems [23]. That is,
to create a set of solved problems or cases, and use this to solve new instances
based on their similarity to any of the prior solved cases. This is a simple solu-
tion to the problem but comes with the challenges of building an effective case
base as well as choosing the appropriate similarity metric for the comparison of
cases. In practice, case-based reasoning has been successfully employed by sev-
eral selection constructive hyper-heuristics in many domains like examination
timetabling [24,25].

Another option is to use a local search method to search the heuristic space
[2]. Local search methods like tabu search (TS) [26] and variable-neighbour
search (VNS) [27] can be used to search the heuristic space in the way that
they are used to search a solution space. In these cases, the algorithms explore
the heuristic space of a heuristic combination that is a set of heuristics where a
given heuristic h can be applied. Every heuristic can be applied at least once with
the total size of the heuristic combination, and thus the number of heuristics,
dependent on the problem. An example of a heuristic combination is h0h1h2h3.

In contrast to the local search methods, which only explore a single point in
the heuristic space at a time, population-based methods are capable of search-
ing multiple points simultaneously, with evolutionary algorithms (EA) being the
chief method employed to facilitate this [2]. In this case, genetic operators are
used on the heuristic combinations described previously. Instead of modifying
the heuristic combination one heuristic at a time, these operators use evolu-
tionary algorithms to modify large regions of the heuristic combination which is
represented as a chromosome in the EA. This technique has been applied success-
fully to both the examination timetabling problem [28] and the one-dimensional
bin-packing problem [29].

Finally, it is possible to employ an adaptive or hybridised method to drive
the hyper-heuristic. Sabar et al. [30] is one such example. They created a hy-
bridisation between four low-level graph colouring construction heuristics for the
examination timetabling problem.
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2.4.2 Selection Perturbative Hyper-Heuristics

Selection perturbative hyper-heuristics are similar to selection constructive hyper-
heuristics in the sense that they also select low-level heuristics. However, they
select low-level perturbative heuristics to apply to an initially complete solu-
tion to improve that solution’s quality [2]. The initial solution can be created
with construction heuristics or through random generation, depending on the
problem. Each perturbative heuristic modifies the state of the problem to im-
prove the quality of the solution with each operation, ideally until no additional
improvements can be reached.

That is, given a set of low-level perturbative heuristics H, an initial solution
s and a problem P , a selection perturbative hyper-heuristic will gradually per-
turb the solution s for P by choosing and applying heuristics from H until no
improvement is possible or another stopping condition is met.

In general, there are two types of selection perturbative hyper-heuristics:
single-point and multi-point search methods. In the former case, the two most
important considerations are the heuristic selection technique and the move ac-
ceptance technique [21].

Algorithm 3: Single-Point Selection Perturbative Hyper-Heuristic

Data: problem p, an initial solution s0, a set of perturbative heuristics
H

Result: a solution si
1 termination criteria = false;
2 while termination criteria == false do
3 Select heuristic h from H using the heuristic selection technique;
4 Apply h to si to produce si+1;
5 Use move acceptance technique on si+1;
6 if move accepted then
7 si = si+1;

8 if finished == true then
9 termination criteria = true;

2.4.2.1 Single-Point Selection Perturbative Hyper-Heuristic A gener-
alised form of a single-point selection perturbative hyper-heuristic algorithm is
given in Algorithm 3. The algorithm can make use of a variety of different termi-
nation criteria to stop the perturbation process. A simple option is to use several
iterations, but another option is to continue the process until no further improve-
ments over a time window are observed. If the move is not accepted, denoted
by Line 6, then nothing happens and the algorithm will continue. Alternative
schemes extend beyond the general algorithm presented here.
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There are a wide variety of different heuristic selection techniques that are ap-
plicable in a single-point selection perturbative hyper-heuristic. The most simple
is the random selection strategy which just randomly chooses the next pertur-
bative heuristic to apply [31,32,33]. On the opposite end of the spectrum is the
technique which applies all of the perturbative heuristics and picks the one that
ends up producing the best objective value [21]. It is also possible to make use of
techniques derived from evolutionary algorithms like tournament selection and
fitness proportionate selection [21].

The move acceptance technique refers to the technique used to decide if
the solution produced by applying the perturbative heuristic should be retained
or discarded. The most basic of all move acceptance techniques is to accept
all moves [21]. This simply accepts the outcome of applying the perturbative
heuristic regardless if it causes a decrease in the quality of the solution. Another
technique would be to accept only improving moves [34]. This is where only
moves that result in an improved solution quality are accepted. There are a
large variety of move acceptance techniques and this coverage is by no means
exhaustive.

2.4.2.2 Multi-Point Selection Perturbative Hyper-Heuristic Multi-
point selection perturbative hyper-heuristics are so-called because they make
use of a population-based method to explore the heuristic space [2]. In terms of
methods, genetic algorithms [35,36,37] and particle swarm optimisation [38] have
been used successfully to drive the heuristic process. In particular, genetic algo-
rithms have been the most popular search method used by selection perturbative
hyper-heuristics [2]. For their application, a multi-point selection perturbative
hyper-heuristic can be used to produce a single heuristic [38] or a set of heuristics
that can then be applied to an initially generated solution [35].

2.4.3 Generation Constructive Hyper-Heuristics

One of the challenges of low-level construction heuristics is deriving them, often
through intensive study of the problem domains and with human input [2].
Generation constructive hyper-heuristics, therefore, aim to solve this problem
by automating the process of producing constructive heuristics. The same basic
goal is retained, that is to construct a solution wholly from scratch, but the key
difference is that a generation constructive hyper-heuristic produces an entirely
new heuristic for this process.

More specifically, given a set of problem attributes A = {A0, A1, ..., AN}
and at least a problem instance i, a generation constructive hyper-heuristic will
produce a new constructive heuristic h using A that can provide a solution for i.
Sometimes a construction heuristic can be expanded in scope to provide solutions
to previously unseen problems and this is referred to as a reusable heuristic[21].
The generation of a heuristic for a specific problem instance is referred to as
a disposable heuristic. The principle approach used in generation constructive
hyper-heuristics is genetic programming [39].
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2.4.3.1 Representation of Low-Level Heuristics At the most basic form,
a low-level heuristic is comprised of problem-specific attributes and operators
that manipulate them [2]. Two things are necessary for the success of a generation
constructive hyper-heuristic. The first is that the problem attributes being used
as inputs should be as basic as possible and the second is that the hyper-heuristic
itself should be able to aggregate characteristics of these attributes together [40].

The source for the attributes can come from the decomposition of existing
low-level constructive heuristics and problem characteristics. These attributes
can then be used to create new heuristics that either represent an arithmetic
function [41] or rules [42]. The former represents functions that are used to cal-
culate priorities or desirability scores for components while assembling a solution.
The latter consist of conditions and actions where the conditions enable actions
to be undertaken with probabilistic branching.

2.4.4 Generation Perturbative Hyper-Heuristics

The last of the hyper-heuristic types, generation perturbative hyper-heuristics
concern themselves with generating new low-level perturbative heuristics for
a given problem domain or instance [2]. Like generation constructive hyper-
heuristics, these create new heuristics primarily through the combination of at-
tributes and components derived from existing heuristics. However, they apply
these heuristics to fully complete solutions. Additionally, these hyper-heuristics
place a greater emphasis on the use of conditional branching and iterative con-
struct statements in their generation process, such as the if-then statement or
for loops.

Generation perturbative hyper-heuristics are the least studied of all the
hyper-heuristics but existing research has primarily focused around the use of ge-
netic programming [43,44] and the grammar-based grammatical evolution (GE)
[45].

One area where generation perturbative hyper-heuristics stand out is the
ability of the algorithms to create new low-level perturbative heuristics that are
in effect, algorithms of their own to solve problems like the travelling salesman
problem [46].

The ability of the hyper-heuristic to incorporate elements like conditional-
branching constructs, if-then-else statements, and iterative construct, the while
loop, in conjunction with more usual operators like the logical AND, allowed the
hyper-heuristic to produce heuristics that were more complicated than conven-
tional low-level heuristics.

2.5 ACO Hyper-Heuristics

Ant algorithms have been utilised in hyper-heuristics although their application
has focused solely on selection hyper-heuristics [3]. One of the challenges of
studying ACO in the context of hyper-heuristics is the extremely limited research
that has been done with using ACO for hyper-heuristics. In the case of generation
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hyper-heuristics, there has been no prior research. However, there are still some
interesting examples to draw upon.

A particular early example of an ant-based hyper-heuristic is the work of [47].
This was one of the first attempts to use ant algorithms with hyper-heuristics.
The authors made use of a selection constructive hyper-heuristic driven by a
modified ant system algorithm. This system was tested on the two-dimensional
bin-packing problem (2BPP) and demonstrated good performance against the
existing heuristics.

Another example is the application of ACO in a selective perturbative hyper-
heuristic for the set covering problem [48]. The algorithm used was based on
the ant system algorithm as well but modified for heuristics. The algorithm
performed competitively against an ant algorithm that was optimised for the set
covering the problem specifically.

In [49], the author applied an ant-based selection constructive hyper-heuristic
to the travelling salesman problem. The method itself was based on the ant
system algorithm and showed reasonable results in terms of being competitive
with other methods like simulated annealing and GA but not being optimal in
the majority of instances.

In a similar vein, in [50] the authors applied an ant-based hyper-heuristic for
the travelling tournament problem, which is a related problem to the travelling
salesman problem. The proposed algorithm was based on a modified version of
the ant system. The results showed that the algorithm was competitive with
several existing methods like simulated annealing and tabu search, although the
algorithm did struggle on the larger problems. In particular, the authors noted
the improved speed of the process which is an important aspect to consider for
hyper-heuristics.

These examples illustrate two things. Firstly, ant algorithms have been ap-
plied successfully to create some types of hyper-heuristics but also that this
development has halted around the other types of hyper-heuristics, namely gen-
eration constructive and generation perturbative. Secondly, the usage of the ant
algorithm has largely crystallised into a single form that mirrors the applica-
tion of ACO in non-hyper-heuristic settings. The ant algorithm is applied with
some modifications to make the transition for the heuristic space but a deeper
investigation of this is still needed.

2.6 Critical Analysis

Ant algorithms have been utilised in a variety of selective hyper-heuristics, pri-
marily as the driver of the selection of heuristics for a given problem [3,49,50].
These applications of the ant algorithm to this kind of problem are natural, given
that tasks like the selection of heuristics can be reformulated into graph-based
searches where ants traverse a heuristic space and apply heuristics to solutions
in the hope of refining them into better ones.

However, these applications have left several questions in the existing research
that have stifled the potential of ACO in the field of hyper-heuristics. Firstly, the
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application of ACO has fixated on the basic application of the ACO algorithm
with little consideration for how the algorithm would need to be modified for the
heuristic space. The second question is the lack of the use of the ACO algorithm
by other types of hyper-heuristics beyond selection hyper-heuristics. Resolving
these questions is the main aim of this research and the sections below will
provide a greater justification.

2.6.1 Justification for Use of ACO

As discussed in this chapter, there have been some hyper-heuristics that have
used ACO as the primary mechanism for driving the hyper-heuristic [3,49,50].
However, the use of ACO in hyper-heuristics has been limited to selection hyper-
heuristics. One of the central aims of this research is to expand the use of ACO
in hyper-heuristics by extending the use of ACO to both generation constructive
and generation perturbative hyper-heuristics, which remain unexplored areas of
research in the field of ACO hyper-heuristics.

Moreover, this also has the effect of advancing ant-colony optimisation re-
search as well. One of the requirements of an ACO algorithm is that the under-
lying problem should be representable in a graph-based format [11]. This has
had the effect of limiting where ACO algorithms could be employed as some
problems are either too cumbersome to adapt to ACO or impossible. Moving
the ACO into the heuristic space, across all hyper-heuristics, enables ACO and
ACO-based algorithms to operate on any problem that could be solvable through
hyper-heuristics, greatly expanding its potential.

2.6.2 Justification for Different Pheromone Maps

Primarily, the majority of the research into ant algorithms has focused on their
utility in solving problems in the solution space. However, this has the effect of
limiting ant algorithms to only problems that are structured around the basics
of any given ant algorithm [11]. In particular, in the applications of ACO to
hyper-heuristics performed thus far, the ACO is used in the hyper-heuristic in
the same way that it would be used in the solution space. Namely, the ACO
is deployed with a two-dimensional pheromone map and the task of choosing
pheromone in the heuristic space is taken to be identical to choosing pheromone
in a solution space.

This, however, ignores the reality that the heuristic space is a different kind of
space to the solution space and that they are not directly comparable [51]. There-
fore this research of comparing the effect of different formulations of pheromone
maps is justified as it would properly contextualise how the heuristic space could
be searched by an ant algorithm in the most appropriate way.

2.6.3 Justification for Hybridisation of Pheromone Maps

The hybridisation of hyper-heuristics is not something alien to the field. Several
attempts have been made to hybridise different elements of hyper-heuristics.
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One example made use of the combined efforts of a generation constructive and
selection constructive hyper-heuristic to great effect in solving a vehicle routing
problem [52]. Another made effective use of all four types of hyper-heuristics
in an inter-cell scheduling problem [53]. The scope of hybridisation was even
extended to use hybrid hyper-heuristics in automating the design of particle
swarm algorithms [54].

So the potential for hybridisation does exist within the field of hyper-heuristics.
However, as pointed out by Beckedahl and Pillay [51], heuristic spaces and solu-
tion spaces are separate and distinct in terms of their operations. The investiga-
tion of the multiple types of pheromone maps also opens up a line of inquiry into
whether differentiations need to be made between the maps. More specifically,
if the ant-based hyper-heuristics with different pheromone maps are distinct,
with their advantages and disadvantages, then there may yet be potential in
attempting to use all of them together as opposed to individually. Hence, the
justification for attempting to combine the ant-based hyper-heuristics, with their
distinct pheromone maps, together is an extension of existing lines of thought
for hybridising hyper-heuristics.

2.7 Problem Domains

This thesis concerns itself with four different problem domains and presents
the relevant background information pertinent to each domain. These domains
are the one-dimension bin packing problem (1BPP), the quadratic assignment
problem (QAP), the capacitated vehicle routing problem (CVRP) and the movie
scene scheduling problem (MSSP). The first three are well known NP-hard prob-
lems and are commonly used in discrete combinatorial optimisation research. The
last problem is a newly developed discrete combinatorial optimisation problem.

This approach enables the different hyper-heuristics to be assessed in both
relatively familiar and unfamiliar domains to quantify the performance of the
use of ant algorithms by the hyper-heuristics. The goal is not to derive some
optimal hyper-heuristic, but rather to study the hyper-heuristics in isolation as
they cannot be compared.

Finally, this section also contains summaries of the literature regarding ex-
isting solution techniques that have been applied in these domains including
hyper-heuristics where applicable. This research, however, does not focus on
the state of the art methods for comparison; it merely provides context to the
research.

2.7.1 1BPP

The one-dimensional bin packing problem (1BPP) concerns itself with the task
of packing several items, n, into x number of bins with all bins typically of the
same capacity [6]. It is a minimisation problem to reduce the number of bins
used to pack all of the items.
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In terms of solutions, there are several offline and online heuristics that have
been used to solve bin packing problems [55]. Some of the more popular ones
include the Next Fit (NF), First-Fit (FF) and Best-Fit (FF) heuristics. Despite
the many heuristic methods, exact techniques do exist like the Bin Comple-
tion algorithm created by Korf [56] and then later improved [57]. Despite these
improvements, there remains no universally perfect method for solving the BPP.

More recently, and of interest to this research, is the use of GP to automate
the design of bin-packing heuristics [58]. This represents a large contribution to
the field as the authors were successfully able to develop competitive packing
heuristics with the GP technique, establishing that hyper-heuristics can be viable
for this domain.

2.7.1.1 Problem Definition The basic form of the 1BPP is to pack n items
of a fixed size into m number of bins of a given fixed capacity C. The solution is
optimised based on the number of bins needed to contain all of the items with
the optimal solution using the fewest number of possible bins.

An alternative fitness function, however, is used in this research. The fitness
function [59] is presented in Equation 2.10.

Fitness = 1−

(∑n
i=1(

∑m
j=1 vjxij

C )2

n

)
(2.10)

where n = number of bins, m =number of items, vj = size of the item j, xij = 1
if piece j is in bin i and 0 otherwise. Finally C = bin capacity.

This function, Equation 2.10, prioritises minimising the wasted space in each
bin, favouring bins that are nearly full or full. This avoids the issue of large fitness
plateaus that might arise if just the number of bins was used as the fitness value
as two solutions could use the same number of bins but have differing levels of
fullness with the one minimising wasted space being preferable.

2.7.2 QAP

The quadratic assignment problem or QAP is a combinatorial optimisation prob-
lem that revolves around the optimisation of the logistical flow between facilities
or factories and where they are located [60].

With the utility of such a problem in many industrial and commercial ap-
plications, there are tailor-made solutions for the problem like the FANT [5].
However, there is interest in hyper-heuristic solutions to this problem as well
such as [61]. This has even led to the inclusion of the QAP in the HyFlex bench-
mark set for hyper-heuristics [62], enabling greater research of the application of
hyper-heuristics to the QAP. Despite its inclusion in the Hyflex benchmark, the
QAP has yet to be properly studied in the context of hyper-heuristics research,
something this research is aimed to remedy.

In terms of solutions, exact solutions do exist for the QAP problem but
these struggle once the problems grow in size [63]. Additional techniques like
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TS, hybrid GAs and branch-and-bound algorithms have all found great success
in solving QAP problems [64] although research remains ongoing for the largest
QAP instances which can be difficult to solve with either meta-heuristic or exact
methods.

2.7.2.1 Problem Definition The QAP problem consists of two elements:
locations L and facilities F . L and F are sets such that L ∈ {L1, ...Lx} and
F ∈ {F1, ...Fx}. These sets refer to lists of facilities and locations to place said
facilities on. Each facility has the potential to have a logistical flow with other
facilities, which refers to the movement of industrial outputs or inputs between
facilities. The goal of this problem is to assign the set of facilities to locations
with each facility assigned to a single location such that flow amongst facilities
is minimised. It can be formalised as:

f(π) =

nx∑
i,j=1

dijfπ(i)π(j) (2.11)

where dij is the Euclidean distance between locations i and j and fhk describes
the amount of flow between facilities h and k.

2.7.3 Capacitated Vehicle Routing Problem

Vehicle Routing Problems (VRP) are a class of problems that involve the schedul-
ing of routes of different vehicles such that several customers can be satisfied
whilst at the same time minimising the travel distance of all of the vehicles in-
volved [65]. VRPs are especially relevant because of their real-world applications
in a variety of industrial and commercial settings (like food delivery, passenger
transportation etc) and their study, even more so, given the difficulty of solving
these problems [66].

Of particular interest is the CVRP which is the capacitated VRP that adds
the additional condition that vehicles have a specific carrying capacity and there-
fore, no vehicle may operate a route that exceeds its capacity [67].

In terms of hyper-heuristics, there are some relevant research papers. In [68],
the authors made use of grammatical evolution (GE) to evolve heuristics that
were then applied to a capacitated vehicle routing problem. GE was used to
generate heuristics for application to the problem, with the grammar evolving
to represent construction heuristics for the CVRP. The particular use of GE was
to overcome a problem with standard GP, namely the explosion of the search
leading to increasingly meaningless output.

Sim and Hart, demonstrated that a combined generative and selection hybrid
hyper-heuristic could be applied to vehicle routing problems with great success
[69]. Their techniques highlight that the combination of heuristic methods can
be used, even on relatively difficult problems, to produce good solutions in a
reasonable time.
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More recently, the CVRP has been used with a generation perturbative
hyper-heuristic [70]. In this case, GE was used to combine basic sets of opera-
tions and components into perturbative heuristics that were applied to various
CVRP instances to great effect.

2.7.3.1 Problem Definition The basic VRP is typically modelled as the
graph G = (V,A) where V = {v0, v1, .., vn} which indicate a number of nodes,
representing customers or clients, and the initial vehicle dispatching depot, v0
and A = {(vl, vk), vl, vk ∈ V, l ̸= k} represents the links that connect each
customer with each link having an associated cost dl,k. The CVRP is an extension
of the basic VRP with the added condition that vehicles have a specific carrying
capacity and therefore, no vehicle may operate a route that exceeds its capacity
[67]. The fitness of a given solution is the total cost of all of the routes provided
no route violates any of its constraints.

2.7.4 MSSP

The MSSP was not entirely derived in isolation. The problem relates to a broad
category of similar entertainment scheduling problems. An early example is the
rehearsal problem which involved the scheduling of musicians who need to re-
hearse pieces of music [71]. The ordering of the musicians to pieces is similar to
that of actors to scenes. The authors’ used a model checking procedure. This
was extended to unequal length musical pieces and a two-stage method was then
applied [72].

One of the earliest examples of a movie scheduling problem started with fixed
length scenes [73]. This study focused entirely on variable actor wages with later
authors extending this by applying GA to this problem which produced better
results [74]. These early studies did not consider variable-length scenes which is
an issue for real-world applications.

Later work increased the complexity by considering different scene durations
and different actor wages [75]. The authors made use of a dynamic program-
ming algorithm although it required bounding to function optimally. Typically,
a modern movie production requires scheduling at multiple locations.

Naturally scheduling of scenes in different locations was be next [76]. This
required additional complexities like transfer costs and transfer times which were
factored into the scheduling process. The authors initially made use of a tabu-
search method and a particle swarm optimisation (PSO) method. They extended
the work to include ant colony optimisation (ACO) [77]. This formulation ex-
tended the MSSP further by mirroring the realities of real-world movie pro-
duction. What is apparent when one looks at the development of the MSSP is
that the general trend is towards increasing the complexity of the models and
their definitions to better replicate the actual conditions of movie production.
No model can perfectly replicate the exact conditions of movie production but
some models can get close enough to serve as useful approximations and as such
this will be the basis of the MSSP definition considered here.
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Given the relative recency of the MSSP as a problem domain for study, there
have been relatively few studies that make use of it as a problem domain. A
variety of techniques from PSO and GA, to model checking and TS, have been
applied. In terms of hyper-heuristics, however, there have been no studies that
make use of the MSSP as a problem domain. Therefore making use of the MSSP
in this research represents, on its own, a small but novel contribution to the
field.

2.7.4.1 Problem Definition In this section, the MSSP is formally defined
with its mathematical model, parameters, and inputs. The definition presented
here is based on the formulation that extended the model in prior work [78].

The MSSP contains the following elements: the set of n scenes S, the set
of m locations L, and the set of o actors A. All scenes must be scheduled only
once with no scenes overlapping each other and every scene assigned to only
one location. Scenes may be assigned to the same location but this must be at
different times. At least one actor must be assigned to a scene although every
actor can be in many non-current scenes.

There are several secondary variables required for defining the MSSP:

– W : This defines a set of daily actor wages. They are paid for each day of
production they are involved in including downtime between two scenes.
Each actor’s daily wage is in the range of [50,100].

– D: This defines the duration of each scene in days. Every scene once sched-
uled will be fully completed. Each scene’s duration is in the range of [1,10]
days.

– O: This refers to the location assigned to scene i. Each scene is assigned a
randomly determined location out of the list of locations L. Every location
has an equal probability of selection and every scene must be assigned a
location.

– Txy: This variable is a matrix of transfer times (in days) between different
locations. The transfer time to move from location x to x is 0. Each value is
in the range [1,10] days.

– Cxy: This variable is a matrix of transfer costs between different scenes. The
transfer cost to move from scene x to x is 0. Each value is in the range
[100,999].

– AS: This quantifies the assignment of o actors to scene i. For each scene,
a randomly shuffled list of all of the actors is generated. A random number
of actors, in the range of [1,ns], are removed from this list. The remaining
actors are then assigned to scene i.

The costs of scheduling scenes are derived from two components: transfer
costs between scenes and wages paid to the actors. The task of MSSP therefore
is to order the set S into a permutation R such that the costs of scheduling the
scenes is minimised:

min

∑
m∈R

∑
n∈R

∑
p∈A

µmnpWp +
∑
n∈R

∑
m∈R

λmnCmn

 (2.12)
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Equation 2.12 gives the mathematical formulation of the MSSP. The cost func-
tion is made up of two components. The first, µmnpWp, consists of the time
interval of a given actor p between scenes m and n multiplied by their daily
wage. This is done for all actors across all of their scenes. The second compo-
nent consists of λmnCmn which establishes the total cost to move between all
scenes where λmn is set to 1 if the scenes m,n are adjacent in R, the scheduling
order and 0 otherwise. These are the two major cost components of the movie
produced. The task of MSSP, therefore, is to order the set S into a schedule R
such that the costs of scheduling the scenes are minimised.

2.8 Summary

This chapter has laid out the foundations for the concepts and material that need
to be understood for subsequent chapters. The chapter provided a brief introduc-
tion to combinatorial optimisation. Greater detail was provided to explain the
functioning of ant-colony optimisation and the broad family of hyper-heuristics.
The chapter presented a critical analysis of why this research is worth doing.
The chapter concluded with descriptions of the problem domains considered in
this research and any appropriate background information pertinent to them.
The following chapter presents the research methodology used in this research
to achieve its objectives.
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CHAPTER 3

Methodology

3.1 Introduction

This chapter provides the outline for the research methodology considered in
this thesis. This methodology is used to meet the research objectives outlined
in Section 1.2 of Chapter 1. The rest of this chapter is structured as follows.
Section 3.2 provides an overview of pertinent methodologies to this research.
Section 3.3 discusses how the chosen research methodology will be able to meet
the research objectives outlined in Section 1.2. Section 3.5 provides an outline of
how comparative analysis techniques are used to compare the different types of
pheromone maps and their effect on ant-based hyper-heuristics. In Section 2.7,
the domains considered in this research are presented. Section 3.4 describes the
benchmark datasets used for each problem domain. Section 3.5.2 outlines the
various experiments that are conducted to meet the research goals. Section 3.6
lists the pertinent technical specifications of the hardware and software used in
this research. Finally, Section 3.7 provides a summary of the entire chapter.

3.2 Research Methodologies

The choice of a research methodology for research in the field of computer sci-
ence is not simple nor straightforward [79]. This is because according to Demeyer
[79], computer science has a multidisciplinary origin, with many different fields
contributing their part to its development, with mathematics and engineering
playing pivotal roles. In particular, mathematical proofs and engineering meth-
ods based on experiments and measurements are prevalent depending on the
type of research being conducted [79].

In terms of pertinent research methodologies, Oates [80] presents the ac-
tion research and design and creation research methodologies. Johnson [81]
presents the proof by demonstration and empiricism methodologies. Each of
these methodologies has its specific uses which are discussed below.

3.2.1 Action Research

The action research methodology is widely used in the fields of psychology, sociol-
ogy and the medical sciences with later adaptations enabling its use in computer
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science and information systems [82]. Action research consists of a five-phase cy-
cle [83]. These phases consist of problem identification, planning, and implemen-
tation of actions based on planning and examining the outcomes of the actions
with a goal of learning and improvement of subsequent phases.

3.2.2 Design and Creation

Whereas action research evolved from existing sciences (psychology and sociol-
ogy) and was then adapted for computer science, the design and creation research
methodology is more suited for computer science research tasks that typically
focus on the use of the computer (algorithms and computer systems) to solve
a problem [80]. The key to this methodology is the development of a computer
artefact that solves the research problem with iterative assessment and improve-
ment steps to refine the artefact over time.

3.2.3 Proof by Demonstration

Proof by demonstration, as a research methodology, is one based on iterative
refinement of an algorithm to produce the desired solution [84]. As the approach
or algorithm is developed, evidence of the success or failure of the approach is
used to guide the development and refine the approach until it meets the desired
research goals. In this sense, the proof by demonstration methodology aims to
demonstrate, via the creation of a software artefact, that a given approach can
provide a solution to a problem posed by the research.

In the case of this research, the proof by demonstration is applicable as
it is used to demonstrate that all four types of hyper-heuristics can employ
ant algorithms to search the heuristic space of a wide variety of problems and
different hyper-heuristics.

3.2.4 Empiricism

Johnson described the empiricism research methodology as it could be applied to
research in computer science [81]. The core of the research method is to generate
and then test a hypothesis that encapsulates the core ideas being investigated
by the research. In this way, the empirical methodology can be used to meet
some of the research objectives defined in Section 1.2 as these objectives relate
to hypothesises posed about the nature of the different pheromone maps.

3.3 Hybrid Research Methodologies

The primary goal of this thesis is to examine the effect that different formula-
tions of the pheromone map will have on ant-based hyper-heuristics. However,
this process will also require the development of algorithms that use ant algo-
rithms to drive the hyper-heuristic process. As a result, a hybridisation of the
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aforementioned research methodologies will be needed. The proof by demonstra-
tion methodology is used to demonstrate that ant algorithms can be employed
by all four types of hyper-heuristics with the empirical methodology used to then
assess the effects that the different pheromone maps have when used by the ant
algorithms in all of the hyper-heuristics. This section is dedicated to explaining
how the research objectives laid down in Section 1.2 will be met through the
research methodologies.

3.3.1 Objectives One to Four

The first four objectives of this research are presented in Section 1.2. They
concern themselves with the development of ant-based hyper-heuristics for the
four hyper-heuristic tasks. These objectives principally concern themselves with
the feasibility of using ant-based methods for hyper-heuristics with the ultimate
aim of this research being to improve the application of ant-based methods in
hyper-heuristics.

To achieve these objectives, a hyper-heuristic ant colony optimisation algo-
rithm (HACO) is designed and implemented. This HACO algorithm is further
specified by the type of hyper-heuristic the HACO algorithm is used to drive.
This is given as:

– Selection Constructive: HACO-SC
– Selection Perturbative: HACO-SP
– Generation Constructive: HACO-GC
– Generation Perturbative: HACO-GP

Following the proof by demonstration methodology, the four HACO algorithms
will be evaluated with pre-determined assessment criteria to determine if they
meet the required outcomes. If the algorithms fail to do so then they should be
analysed and those insights gleaned from the analysis should be used to refine the
algorithms until they produce the desired outcome or no further improvement is
possible.

1. Create an Initial Approach: Create an initial implementation of the HACO
algorithm.

2. Define Evaluation Criteria: The individual HACO algorithms are evaluated
by examining their performance in terms of optimality, defined by problem-
specific objective functions in Section 2.7, and generality, defined by a met-
ric presented in Section 3.5. Each HACO algorithm is evaluated on two
problems. The HACO-GC is evaluated on 1BPP, the HACO-GP on CVRP
and the HACO-SC and HACO-SP are evaluated on the QAP. The other
problem for each hyper-heuristic is the MSSP. Each HACO will be assessed
against the other HACOs with different pheromone maps in the same hyper-
heuristic. The best-known solutions will be used in each domain as a baseline
of the algorithm’s performance. Their inclusion will help establish an idea of
the algorithm’s relative successes or failures in each domain.
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The QAP, 1BPP and CVRP are all well known combinatorial problems that
have a history of use in previous hyper-heuristic research. Their inclusion
also provides a variety of different problem types for assessment. The MSSP
problem, by contrast, was selected as it is a relatively new problem and as
such could also demonstrate the capacities of ant-based hyper-heuristics for
a new domain.

3. Development: Analyse, design, implement and evaluate each of the HACO
algorithms. Each algorithm variant is expanded in detail for each of the
hyper-heuristics. The evaluation criteria are defined in Step 2.

4. Refinement: If the HACO algorithms fail to reach the desired solution, as
determined by comparisons with known or existing good solutions, the fol-
lowing changes could be considered:
– The parameters of the HACO algorithm.
– The components, operators or low-level heuristics of the HACO algo-

rithm, are dependent on the given hyper-heuristic in question.
– The probabilistic ant decision method: tournament selection, roulette

wheel, elitism, etc.
5. Repeat steps 3–5 until the desired outcome is acquired or no longer possible.

3.3.2 Objective Five

Objective five in Section 1.2 concerns itself with extending the existing algo-
rithm framework so that HACO algorithms using the three types of pheromone
maps can be used in a single hyper-heuristic. In this way, a hybridisation of
the HACO algorithms is achieved. To achieve this, an extension to the exist-
ing HACO algorithm is designed and implemented. This is the hyper-heuristic
ant colony optimisation hybrid (HACOH) algorithm. The HACOH algorithm is
further specified by the type of hyper-heuristic that it is. This is given as:

– Selection Constructive: HACOH-SC
– Selection Perturbative: HACOH-SP
– Generation Constructive: HACOH-GC
– Generation Perturbative: HACOH-GP

The process for reaching this objective is as follows.

1. Create an Initial Approach: Create an initial implementation of the HACOH
algorithm. This implementation is based on the approach used for the HACO
algorithm.

2. Define Evaluation Criteria: The individual HACOH algorithms are evaluated
by examining their performance in terms of optimality, defined by problem-
specific objective functions in Section 2.7, and generality, defined by a metric
presented in Section 3.5. Each HACOH algorithm is evaluated on two prob-
lems. The HACOH-GC is evaluated on 1BPP, the HACOH-GP on CVRP
and the HACOH-SC and HACOH-SP are evaluated on the QAP. The other
problem for each hyper-heuristic is the MSSP. Each HACOH will be assessed
against the non-hybrid HACOs.
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3. Development: Analyse, design, implement and evaluate each of the HACOH
algorithms. Each algorithm variant is expanded in detail for each of the
hyper-heuristics. The evaluation criteria are defined in Step 2.

4. Refinement: If the HACOH algorithms fail to reach the desired solution, the
following changes could be considered:

– The parameters of the HACOH algorithm

– The components, operators or low-level heuristics of the HACOH algo-
rithm, dependent on the given hyper-heuristic in question.

– The hybridisation scheme control parameters.

– The hybridisation perturbation operator: random permutation operator
or gradual mutation operator.

– The probabilistic ant decision method: tournament selection, roulette
wheel, elitism, etc.

5. Repeat steps 3–5 until the desired outcome is acquired or no longer possible.

3.3.3 Objective Six

The sixth objective defined in Section 1.2 relates to one of the fundamental objec-
tives of this research. Namely, determining the effect of using different pheromone
maps for the different types of hyper-heuristics. The prior objectives concerned
themselves with actually building the algorithms but this one relates to their
serious evaluation. Hence the use of the empirical methodology as previously
defined.

To this end, the process for reaching this objective is as follows:

1. Generate the hypotheses: There are several hypotheses that this research
hopes to assess. These hypotheses were determined through examination
of the results of prior ant-based hyper-heuristics conducted as part of this
thesis. They are:

(a) The type of pheromone map will significantly affect the performance of
the ant-based hyper-heuristic.

(b) 1D pheromone maps work better for selection hyper-heuristics than 2D
or 3D pheromone maps.

(c) 3D pheromone maps work better for generation hyper-heuristics than
1D or 2D pheromone maps.

(d) The hybridisation of HACO will work better for an ant-based hyper-
heuristic than a non-hybrid equivalent.

2. Perform Experiments: Many experiments will be performed using each type
of ant-based hyper-heuristic across all of the specified problem domains. The
results of the experiments will be compiled and assessed with statistical tests
outlined in Section 3.5.

3. Evaluate Hypotheses: The results of the tests will then be used to affirm or
reject the hypotheses proposed in this research.
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3.4 Benchmark Datasets

This section describes the benchmark datasets used for each of the problem
domains. The best-known values for the domains, where applicable, will be pre-
sented in Section 10 during the presentation of the results.

3.4.1 1BPP

The datasets sets used in this study described in Table 3.1.

Table 3.1: Datasets in the Uniform and Hard 1BPP Benchmark

1BPP Datasets Number of Instances Number of Items Bin Size
u120 20 120 150
u250 20 250 150
u500 20 500 150
u1000 20 1000 150
Hard 10 200 100000

These datasets are taken from the Falkenauer [85] and Scholl [86] bench-
marks. The data for the benchmarks was taken from [87] and [88] respectively.
The number of items and the size of each bin are provided for the instances that
fall within each of the datasets that make up the benchmark. These sets were
chosen based on existing literature for generation hyper-heuristics [58]. In terms
of these datasets, the instances from the Hard dataset are regarded as particu-
larly difficult as the size of the items is large and many items have to be packed
quite well together to minimise wasted space. With regards to the other datasets
from the Uniform benchmark, the instances scale in difficulty as the number of
items needing to be packed increases. The easiest instances are found within the
u120 dataset with the hardest instances being found in the u1000 where many
items have to be packed into relatively small bins.

3.4.2 QAP

All of the QAP data was acquired from QAPLib [89]. The QAPLib is a repository
that combines many of the known QAP benchmarks into a single location.

Table 3.2 provides describes the characteristics of the QAP instances that
have been used in this study. The number of facilities and locations are indicated
for each instance.

As a quadratic problem, the number of facilities and locations will always
be equal. In general, QAP problem instances become more difficult as these
two values increase. Very small problems, like chr12a for instance, can even be
solved with brute force as the solution space is small in comparison to the larger
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Table 3.2: QAP Benchmark Instances

Instance Number of Facilities Number of Locations
chr12a 12 12
chr12b 12 12
chr12c 12 12
chr15a 15 15
chr15b 15 15
chr15c 15 15
chr18a 18 18
chr18b 18 18
chr20a 20 20
chr20b 20 20
chr20c 20 20
chr22a 22 22
chr22b 22 22
chr25a 25 25
els19 19 19
had12 12 12
had14 14 14
had16 16 16
had18 18 18
had20 20 20
kra30a 30 30
kra30b 30 30
kra32 32 32
scr12 12 12
sko42 42 42
sko49 49 49
sko56 56 56
sko64 64 64
sko72 72 72
sko81 81 81

problems like sko42 and larger. These problems provide a wide range of potential
challenges for the hyper-heuristics and should demonstrate their capacities across
a range of potential problem instances.

3.4.3 CVRP

This study makes use of data taken from CVRPLIB [90]. The instances are rep-
resented in Table 3.3. In the above table, n is the number of vertices that need
visiting, K is the number of vehicles and Q is the capacity of each vehicle. These
instances were chosen to reflect a wide variety of CVRP instances of varying
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Table 3.3: CVRP Benchmark Instances

Instance n K Q
A-n32-k5 31 5 100
A-n33-k5 32 5 100
A-n33-k6 32 6 100
A-n34-k5 33 5 100
A-n36-k5 35 5 100
A-n37-k5 36 5 100
A-n37-k6 36 6 100
A-n38-k5 37 5 100
A-n39-k5 38 5 100
A-n39-k6 38 6 100
A-n44-k6 43 6 100
A-n45-k6 44 6 100
A-n45-k7 44 7 100
A-n46-k7 45 7 100
A-n48-k7 47 7 100
A-n53-k7 52 7 100
A-n54-k7 53 7 100
A-n55-k9 54 9 100
A-n60-k9 59 9 100
A-n61-k9 60 9 100
A-n62-k8 61 8 100
A-n63-k9 62 9 100
A-n63-k10 62 10 100
A-n64-k9 63 9 100
A-n65-k9 64 9 100
A-n69-k9 68 9 100
A-n80-k10 79 10 100
M-n101-k10 100 10 200
M-n121-k7 120 7 200
M-n151-k12 150 12 200
M-n200-k16 199 16 200
M-n200-k17 199 17 200

sizes. In terms of the problem difficulty, the CVRP instances scale in difficulty
as the quantity of the problem components increase. The smaller problems, like
A-n32-k5, with five routes and thirty-two vertices, are much easier to solve than
the larger ones like M-n1210-k7. As the number of routes increases, it becomes
more difficult to determine the optimal solution as the potential number of con-
figurations for each route grows, so problems with a similar number of vertices
but a different number of routes can differ significantly in their difficulty.
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3.4.4 MSSP

This research makes use of the dataset generated in prior research [78]. This
establishes continuity with that prior research in terms of dataset reuse and also
obviates the need to generate new instances as well. As such, it makes use of
the four different problem classes, each with five problems, for a total of twenty
instances. Each of the instances within each class has similar objective values in
the sense that all problems of the same class should have optimal values that are
very similar. Across problem classes, however, is where larger differences in the
objective values will be noted. The description of the problem classes is given in
Table 3.4:

Table 3.4: MSSP Benchmark Instances by Class

Class 0 1 2 3
Scenes (S) 10 25 50 100
Actors (A) 5 10 30 60

Locations (L) 3 5 10 15

3.5 Comparative Analysis and Assessment

To achieve the objectives of this research, a comparative analysis will be con-
ducted on the results of the experiments conducted with the HACO and HACOH
algorithms. This entails conducting several experiments in the domains described
in Section 2.7. These experiments will be assessed using the metrics and methods
described in Section 3.5.1.

3.5.1 Assessment Metrics

Assessment of hyper-heuristics needs to be holistic to get an accurate picture of
how the hyper-heuristic is performing, not merely as a solution to the underlying
problem, but also as a hyper-heuristic itself.

3.5.1.1 Optimality Assessment of a hyper-heuristic’s optimality refers to the
quality of the solutions that the hyper-heuristic can produce. This is typically
measured with the fitness value of the solutions produced by the hyper-heuristic
and of course, will vary amongst the different problem domains. Importantly, the
assessment of optimality happens between instances in a given problem domain,
and not across that domain. This means that when assessing the optimality of
a given hyper-heuristic, the comparisons are drawn specifically against the per-
formance of the hyper-heuristic in each problem instance. This way of assessing
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the hyper-heuristics provides a high level of granularity that can demonstrate
trends in the hyper-heuristic’s performance that might otherwise be hidden by
a higher level of abstraction.

For each of the domains, this assessment will make use of the fitness value for
those domains as the basis for the optimality comparison. However for bench-
mark sets with a large number of instances, like the 1BPP, a fitness ratio, FR is
calculated. This represents the average quality of solutions over a certain number
of instances. The reason for this is to allow for improved clarity in presentation.
The ratio, FR, is calculated as follows:

InstanceAverage =

∑I
i=1 ri
I

InstanceRatio =
InstanceAverage

z

FR =

∑m
i=1 InstanceRatioi

m

(3.1)

The InstanceAverage is the mean value of the algorithm’s performance over I
runs. This is then divided by the optimal solution for that instance, z. Finally,
the average of all of these InstanceRatios is averaged over several instances, m.
In terms of interpretation, the smaller the value, the more optimal the algorithm
as values close to 1.0 represent the algorithm producing near-optimal solutions.

3.5.1.2 Generality The other major assessment metric for a hyper-heuristic
is generality. Unlike optimality, generality is assessed across all the instances of
a given problem domain because generality reflects an aggregated assessment of
how well the hyper-heuristic performs over many instances.

To assess the various algorithms in terms of their generality, a generality
metric, standard deviation of distances or SDD, is employed [91]. It is formulated
as:

SDD(H) =

√∑N
i=1(xi − x̄)2

N − 1
(3.2)

SDD is designed to assess the performance of a hyper-heuristic of several problem
instances N . The lower the value the better the score. This metric will be useful
in understanding the degree to which different pheromone maps will be able to
generalise across problems and domains. Generality is one of the goals of hyper-
heuristics and hyper-heuristics that have improved generality are preferable to
ones with reduced generality [91].

3.5.1.3 Pheromone Map Analysis To complete the analysis of the hyper-
heuristics, it is important to understand how the different pheromone maps
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behave with respect to the hyper-heuristic process. The concentration and dis-
tribution of pheromone in the map will be demonstrative of the characteristics of
that map type. To that end, visualisations of these pheromone maps as heatmaps
will aid in the analysis. The heatmaps will be generated using the tool detailed
in [92].

3.5.1.4 Existing Heuristics While it is not the primary focus of this re-
search, it can be important to contextualise the performance of the ant-based
hyper-heuristics in some way. To this end, the results of the hyper-heuristics will
be compared against existing heuristics in each of the domains. The comparison
against existing heuristics provides a solid grounding point for demonstrating
whether the different pheromone maps are improving or not improving the suc-
cess of the hyper-heuristic.

3.5.2 Experiments

Two primary experiments will be conducted during this research. This section
provides an overview of the experiments which are described in greater detail in
Chapters 6–8.

The first set of experiments to be conducted involves testing each of the
HACO algorithms on their respective problem domains with 1D, 2D and 3D
pheromone maps respectively. Each of these simulations will be conducted with
30 runs. During each run, the hyper-heuristic will attempt to search the respec-
tive heuristic space to either generate heuristics that are applied to a problem
or produce a selection of heuristics.

The second set of experiments involves the HACOH algorithms in the same
domains as in the first experiment. The major difference between these two
experiments is that executing the HACOH algorithms is a two-phase process.
The first phase of the process involves determining how the different pheromone
maps will be used in the second phase which executes on the full benchmark set
in the problem domain. This is described in greater detail in Chapter 9.

3.5.3 Parameter Sensitivity

The HACO algorithm has several parameters. Most of them relate directly to
the operation of the ant algorithm itself but some relate more to its use in experi-
ments. The control parameters are p, the rate of evaporation and α, a desirability
weight for pheromones. These two parameters are adjusted by the algorithm it-
self and so do not require parameter tuning. There are two parameters w1 and
w2 which are pertinent for the 1D HACO algorithm as well which is also ad-
justed internally by the algorithm. These parameters and their configurations
are described in greater detail in Section 5.7.

Another parameter pl, the path length, is more specific to each of the differ-
ent hyper-heuristics and its configuration is described in the chapter about the
appropriate hyper-heuristic, Chapters 6–8.
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In terms of the remaining parameters for the experiments, the number of
ants nk and the number of iterations are most important. The remainder of the
control parameters is dynamically adjusted as the algorithm executes. Therefore
a process is used to determine good values for nk and the number of iterations
for a fair comparison of the HACO and HACOH algorithms.

More specifically, a 2D HACO algorithm was executed 30 times with differ-
ent values for nk and the number of iterations to assess how well the algorithm
performed with these values. This is a grid-search technique of different config-
urations for the algorithm. As computing resources are not unlimited, the range
of values chosen for both variables is

– nk: [5,10,20,50,100]

– Number of iterations: [50,100,200,500,1000]

These values provide a large enough coverage of different experimental config-
urations without requiring excessive computing resources. Optimality consider-
ations are not the only factor to weigh when deciding on the parameters. The
computational runtimes are also important to consider. In an ideal world, the ex-
periments could be run with the largest possible configurations, but in practice,
there are trade-offs to consider concerning algorithm runtimes as well.

The number of runs is fixed at 30 to provide a large sample of data for
statistical testing. As the purpose of this research is the comparison between
HACO algorithms using different pheromone maps, the HACO algorithms must
be tested with the same experimental conditions for the comparison to be fair. To
that end, the 2D HACO is used for this process to establish a baseline assessment
of the algorithm’s capacities. As the conditions will be the same for all types of
HACO, any differences that result in the experiments will be primarily due to
the influence of the type of pheromone map, and not that specific algorithm’s
parameters.

This process will be performed for each type of hyper-heuristic with both the
optimality and runtime of the algorithm taken into consideration for the analysis.
Additionally, correlation coefficients [93] will be calculated for the comparisons
between fitness and the number of iterations and nk respectively.

The input data for this process will be taken from the MSSP domain. Specif-
ically, the C S 2 I0 was chosen because it is one of the larger instances in the
MSSP domain and should serve as a sufficiently difficult problem for the various
algorithms. Its size and complexity in relation to the other instances make it an
ideal candidate for use in the parameter tuning process. The MSSP domain is
used across all four parameter tuning processes because it allows for a standard-
ised comparison of the parameter tuning results as the process uses the same
data despite the type of hyper-heuristic being applied.

This research is not aiming to produce the best possible values for the given
problem domains and as such, it is unnecessary to tune the algorithm for each
different instance. Rather it is to assess algorithm behaviours under a broad
spectrum of different experimental configurations. These results will then be as-
sessed to choose a final configuration for the full experiments. These smaller-scale
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tests are meant to provide rough approximations of the algorithm performance
so that larger and more comprehensive tests can be performed.

Finally, the values that are determined by this process will be used by the
HACOH algorithm as that algorithm uses HACO algorithms that are otherwise
indistinguishable from the normal ones, and do not require special configuration
to work.

3.5.4 Statistical Tests

Due to the nature of the research in this thesis, statistical testing is needed to
properly assess the validity of the results of the experiments. Based on guide-
lines for comparing stochastic algorithms [94], the recommended approach is to
perform a multiple comparison test. This research makes use of the Friedman
test [95] as it is a widely used statistical test and appropriate for the comparison
of multiple algorithms. In addition, a post-hoc analysis procedure is required to
refine the significance of the testing results.

In this case, the use of the Mann-Whitney U Test[96] is then used to examine
where the differences between algorithms might occur. The reason for this is that
samples are all from independent runs of the algorithm; one set of algorithm
executions has no bearing on the outcomes of execution of another.

As these tests make use of multiple comparisons, the Bonferroni correction
method is applied to determine if the differences between algorithms are statisti-
cally significant [97]. The purpose of this testing procedure is to establish the sta-
tistical significance of the results of comparing the different types of pheromone
maps in the ant-based hyper-heuristics to one another.

Additionally, an effect size metric is calculated for each of the statistical
Mann-Whitney U Tests. The effect size is used to quantify the magnitude of the
difference between tested groups. It is used in conjunction with the statistical test
as alone, it cannot determine if a difference is statistically significant. However,
for statistically significant results, it quantifies the magnitude of the difference
between the results.

The effect size used in this case is Hedge’s g [98,99]. Like Cohen’s D, [100],
Hedge’s g has some issues regarding bias when the samples are small (less than
fifty elements). To correct this, a bias correction formula [101] is applied to the
Hedge’s g calculation. The formula is:

n− 3

n− 2.25
∗
√

n− 2

n
(3.3)

where n is the sum of the number of samples from both groups being compared.
Finally in terms of the interpretation, Cohen [100], suggests the following:

– Small Effect: An effect size around 0.2 is considered small.
– Medium Effect: An effect size around 0.5 is considered a medium effect.
– Large Effect: An effect size around 0.8 is considered a large effect.

The important aspect to emphasize regarding the effect size is the magnitude.
The effect can be positive or negative depending on the differences between the
two samples but only the magnitude is important in this case.
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3.5.4.1 Statistical Test Procedure The Friedman test is conducted at a
0.05 significance level. This test is used to establish whether there are significant
differences across the results of the experiments. For example, testing if there
is a statistically significant difference between different HACO algorithms in
a domain. This will filter out the instances where the differences are minimal
between the methods being tested.

The Mann-Whitney U Test is then applied in a post-hoc analysis procedure
to determine which of the comparisons (between algorithms) are specifically
significant if they have reached significance under the Friedman Test. This is
conducted with a one-tailed test at a 0.05 level of significance.

The hypothesis for this test is as follows:

– The Null Hypothesis (H0): µ1 ≥ µ2

– Alternative Hypothesis (H1): µ1 < µ2

In this case, µ1 and µ2 represent the mean values of a sample of output results
from different techniques 1 and 2 respectively. These tests compare the means of
these sets of samples to establish which of the means (and therefore techniques)
has the lower mean and thus the better performance on average.

The Bonferroni correction method is applied to these tests to account for the
repeated comparisons. The testing procedure compares the 2D pheromone map
against the 1D and 3D, as well as the 1D and the 3D. This is to establish which
of the maps is optimal. Then, the hybrid (HACOH), is compared against the
1D, 2D and 3D pheromone maps, in the same way, to determine if the hybrid
outperforms any of the non-hybrid methods.

3.6 Technical Specifications

For this research, a computing cluster provided by the University of Pretoria was
used for running the experiments. The technical specifications of this cluster are
377GB RAM, 56 cores at 2.40GhX (Intel Xeon CPU E6-2680 v4) and 1TB of
Ceph Storage. Java 1.8 with the Netbeans 8.1 Integrated Development environ-
ment was used for the development of the software. The implementation of the
HACO/HACOH algorithms makes use of the concurrent programming methods
to improve processing times. Additional statistical tests and calculations were
provided by Python and Excel where needed.

3.7 Summary

This chapter presented the methodology to be used to investigate the effect
of different pheromone maps on ant-based hyper-heuristics. This chapter also
detailed the various problem domains, and their respective datasets, that will
be used for the experiments. The next chapter presents the explanation of how
different pheromone maps could be formed.
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CHAPTER 4

Pheromone Maps for Hyper-Heuristics

4.1 Introduction

This chapter provides an in-depth explanation of how the pheromone mechanism
that underlies an ACO algorithm operates and will be modified for use in this
research. It also provides details and explanations of how the pheromone maps
can be compressed and projected onto different dimensions for use in hyper-
heuristics. Section 4.2 details the operation of conventional pheromone spaces.
Section 4.3 details how a pheromone map can be projected into the third dimen-
sion. Section 4.4 details how a pheromone map can be compressed into a single
dimension. Finally a summary is given in Section 4.5.

4.2 Pheromone Mechanism

The basic mechanism of the ACO algorithm is the pheromone map. One of the
limitations of ACO has been that it depends on a graph-based representation for
the problem it will be applied. The graph-based representation naturally lends
itself toward representing the pheromone map which holds the search informa-
tion gathered by the ants [11]. As the ants perform their search they deposit
pheromone on parts of the map to correspond to links in the ant’s search path.
For the sake of illustration, consider the case of a basic QAP as in the case of
Figure 4.1. This applies to any applicable problem for ACO but the use of a
simple problem aids in clarifying the relevant principles.

Fig. 4.1: A Simple QAP Problem
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This graph has four nodes, F1 to F4, and represents several facilities to pick
from selecting which facilities to place. A corresponding pheromone map for this
problem, in the solution space, would look like Figure 4.2.

Fig. 4.2: 2D Pheromone Map

This representation is of the solution space and indicates how ants can build
a solution for the problem. By traversing the graph and choosing facilities, a so-
lution is created. The best solution emerges over time through the accumulation
of pheromone in better regions.

However, this is not directly transferable in the case of a hyper-heuristic
that operates in the heuristic space, and not the solution space. Consider a
representation of the heuristic space in Figure 4.3.

Fig. 4.3: A Simple Heuristic Space

This figure represents a heuristic space for a selection constructive hyper-
heuristic task. For the sake of the example, this considers a selection constructive
hyper-heuristic but these principles apply to all of the hyper-heuristics with
the appropriate heuristic spaces. Each node (A, B, C, D) represents a low-level
heuristic that can be applied to progressively build a solution for a given problem.
This space differs significantly from the solution space in several ways. Firstly, in
a solution-space-based pheromone map, there is semantic meaning to choosing to
deposit pheromone at link (i, j) because of the direct corresponding relationship
to the solution. The link (F1, F2) is meaningful because it is unique and relates
directly to an overall structured solution.
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In the heuristic space, however, multiple heuristics can be repeated several
times over, with duplicated links appearing in a given solution. For example, a
heuristic selection of just four heuristics could look like this,

<A,B,A,A,B,C>

In this case, the link (A, B) appears twice in the set but at very different places.
Therefore attempting to deposit pheromone at this link will simply deposit dou-
ble the pheromone at one location ignoring that this link appears at different
points in the heuristic solution with all the potential significance this difference
could apply.

The problem with a 2D representation is that, while it can determine which
links (between components) are important, it cannot account for where those
links might be in the actual path being constructed. The same link can be
found at different points in the path and not necessarily have the same effect for
example.

4.3 Map Projection

The solution to the loss of information problem is to add another dimension to
this matrix, essentially projecting it into the third dimension. This is depicted
in Figure 4.4.

Fig. 4.4: 3D Pheromone Map

In this new projection, the third dimension represents points in the heuristic
path being created by the ant and can be divided into layers. Each layer repre-
sents a connection between components in the path at that point in the path. So
the first layer represents the first link and so on. In this way, both the connection
between components and their position in the actual path is accounted for as
the ants can differentiate between different links taken at different points in the
search.

The limit of this third dimension is dependent on, primarily, the type of
hyper-heuristic the HACO algorithm is being used for. For generation hyper-
heuristics, the user can define a limit as this will control the size and complexity
of the generated heuristics. This limit is referred to as flimit.
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For selection hyper-heuristics, the limits are usually based on the size of the
problem as they more directly interact with the problem through the use of
low-level heuristics.

How this size is calculated generally depends on the problem but usually
will refer to the number of nodes, vertices or other components that make up a
solution.

An ant algorithm operating with a 2D pheromone map in the heuristic space
should be at a disadvantage in terms of its ability to produce good heuristic
selections. However, in terms of the search process, this is not so theoretically
clear cut.

Specifically, a path generated from a 2D pheromone map can still be used
to deposit pheromone on that same map. The issue is that the map cannot
meaningfully differentiate between where a link in the path is and where it
should be deposited on the map. For example, if the link (A,B) appears in a
path several times, a 2D pheromone map cannot differentiate wherein the path
this link occurred and thus will accumulate all of the pheromones on a single
location on the 2D map.

So gradually over time, the behaviour that would be expected is for the
links in the better paths to accumulate pheromone in greater quantities over
other links from weaker paths, resulting in a 2D pheromone map that contains
information about the best components, but not how those components should
be ordered to produce a heuristic.

To clarify this situation, consider the case of an ant that has to construct a
path on an example 2D pheromone map after some pheromone has been already
deposited.

Fig. 4.5: Pheromone Distribution on a 2D Pheromone Map
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The pheromone map in Figure 4.5 is represented with the pheromone con-
centrations given by a colour gradient.

In Figure 4.5, the ant has no idea what order it should visit the links rep-
resented by the pheromone deposited on the map. As ACO-based methods are
probabilistic, the ant has a probabilistic chance to visit these links in a variety
of orders, none of which may end up being the original order that produced the
underlying heuristic that was used to deposit the pheromone. If this case is ex-
panded to consider many ants, now it should be seen that these many ants will
perform something approximating a local search of these best components. The
ants will probabilistically combine these components in such a way that they
end up searching these components for combinations that, ideally improve upon
past work, but since the ants cannot meaningfully record the structure of their
search in the 2D map, their behaviour will always revert to this local searching
around the best components.

The 3D pheromone map solves this issue by representing the position of the
link in the ant’s path in the layer of the 3D pheromone map. Each layer relates
to a particular point in the heuristic search for when that amount of pheromone
was applicable and in this way, enables a more precise refinement to occur. The
reason for this, of course, is that the ants have been transplanted from working
in the solution space, for which a 2D map is sufficient, to working in a heuristic
space, where those normal conditions no longer apply. This is not to say that
the 2D map would be theoretically always inferior to the 3D map.

Theoretically, for small enough problems or problems where the degree of
precision in adjusting the pheromone map to reflect heuristic information is
minimal, a 2D pheromone map would enable the ants to continue to do their
local searching until they found a good heuristic. If a given problem has com-
plicated feasibility conditions for its solutions, the 2D pheromone map should
be at a disadvantage as it can only find the best heuristic selection within those
feasibility conditions through an extensive search over time, rather than being
able to precisely refine the components as would be the case for a 3D pheromone
map. In that sense, having a 3D pheromone allows an ant’s path through the
3D space as a trajectory to represent the original kind of information as if the
ant would have been searching a solution space instead of a heuristic space.

Despite this, the 3D pheromone map comes with drawbacks of its own.
Adding a dimension will dramatically increase the search effort required to find
good heuristic selections because the space of potential searching has been mag-
nified, by increasing the size of the area needing to be searched.

This has the potential of increasing the overall cost of using the algorithm
as compared to the 2D pheromone map. As is the case with the no free lunch
theorem, it would be the case that each type of pheromone map would have
different uses for hyper-heuristic tasks.
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4.4 Map Compression

The general idea around the pheromone space projection, which is going from
2D to 3D, is that the additional projection enables the heuristic space to re-
flect information that is necessary for a precise refinement of a given heuristic
solution. In cases where precise refinement of the heuristic solution is necessary,
this capacity, hypothetically, enables a better-suited hyper-heuristic. However
for selection hyper-heuristics, constructive and perturbative, specifically there
may be issues with the pheromone map formulation that could lead to less than
optimal outcomes.

The first aspect is the low-level heuristics themselves. The underlying low-
level heuristics for a problem can reflect a wide variety of different methods
for building solutions. A heuristic selection is simply a permutation of a set of
heuristics that are used to solve a heuristic problem; constructing a solution in
this case. In particular, if a low-level heuristic makes use of randomness in any
way it can pose a potential problem for any kind of selection hyper-heuristic. This
is because two sets of identical heuristic selections could produce two different
solutions of differing fitness.

Consider the heuristics A,B and C where A and B are deterministic heuris-
tics in the sense that they will always behave predictably when used in a hyper-
heuristic. Heuristic C on the other hand is stochastic in some way. So different
executions of heuristic C will have different results each time it is executed. Ran-
domness in low-level heuristics is not necessarily a bad thing as it can increase
the degree of exploration during solution construction.

However, the issue arises when the heuristics are used in a heuristic selection
such as < A,B,C >. As C has some random component, different executions
of this selection will produce different solutions of different quality. The effect
of this is that feedback mechanisms that are attempting to capture or otherwise
use solution information to guide their search mechanisms cannot reliably do so
as the single point in the heuristic space can no longer reliably and consistently
map to the same point in the solution space. This effect is heightened as the
heuristic selection’s size grows.

The effect of this problem is further magnified by the addition of multiple
solution agents which attempt to construct a population of heuristic selections to
facilitate some population-based search of the heuristic space. Multiple ants, each
trying to evaluate the merit of their heuristic selections, will now end up polluting
their pheromone map with potentially contradictory information. Given this, it
may be the case that the 3D pheromone map projection does not offer the best
representation of the heuristic space for the specific kind of hyper-heuristic task.

This does mean, however, that an alternative formulation of the pheromone
map could offer a representation of the heuristic space that is more amenable to
the ACO method. Hence the idea of pheromone space compression, or the 1D
pheromone map.

Ultimately the task of a selection hyper-heuristic is to find some optimal
selection of low-level heuristics that provide the solution, constructed or per-
turbed. While the task can be thought of as finding the optimal permutation,
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another way to think about the problem is to find an optimal distribution of
low-level heuristics for a given problem. In particular, if the low-level heuristics
themselves can be subject to something like randomness, then the task becomes
more about finding a set of heuristics, that in aggregate, tends to result in the
best solution. Consider a 2D pheromone map as given in Figure 4.6.

Fig. 4.6: 2D Pheromone Map

This pheromone map represents the initial way of implementing a mapping
for the heuristic space in a given selection problem. Figure 4.7 represents a
compression of that 2D map into a 1D plane. Only a single row is now needed
to represent each heuristic.

Fig. 4.7: 1D Pheromone Map

In the process of transforming the pheromone map into the one-dimensional
plane, what the map represents has changed as well. Ordinarily, a 2D pheromone
map represents the linkages between different components in a path towards a
solution. The map in its current form now represents the proportion of each
heuristic in a given heuristic selection. Each index, therefore, becomes an accu-
mulation of the number of times that the given associated heuristic was included
in a heuristic selection. The 1D pheromone map now represents an underlying
statistical distribution of the various heuristics in a selection. In this way, the
more a heuristic is included in a solution, the more likely that heuristic is to
be associated with better fitness. Over time the distribution of pheromone in
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this map represents the probability that the given heuristic will be included in
a selection.

This adaptation to the pheromone space is inspired partially by the FANT
[5]. The FANT methodology will be used in an adaptation of the existing ant
algorithms for 1D pheromone spaces. In addition, the use of a single ant typical
to the FANT also suits the nature of the task as a single ant minimises the effect
of contradictory fitness values from the same heuristic. Even though a single ant
is used, this is still within the realm of an ant algorithm in part because the
ant operates as a search agent to explore the heuristic space like any other ant,
and also because ant colonies have no hard requirements on the number of ants
contained within.

These principles are also more broadly applicable to all hyper-heuristics.
Generation constructive and generation perturbative hyper-heuristics can incor-
porate elements into them that facilitate the behaviours that are more associated
with selection hyper-heuristics. So the methodology outlined here can be applied
to those types of hyper-heuristics as well.

The purpose of the 3D pheromone map is to provide greater precision to the
ant-based hyper-heuristic in terms of its ability to precisely capture information
about the results of a heuristic selection. This comes at the cost of increasing the
computational effort required to perform that search given the larger pheromone
map space that is involved. A 3D pheromone map is larger than a 1D pheromone
map by a scale of 2 additional dimensions. It will be up to the experiments to
determine whether the trade-offs will be worth it.

The 1D pheromone map performs the opposite function. By trading the abil-
ity to capture precise information, the 1D pheromone map operates in a much
smaller pheromone domain that is much easier to search.

4.5 Summary

This chapter presented an explanation for the different types of pheromone maps
used in this research for 1D, 2D and 3D pheromone maps. The next chapter
presents the hyper-heuristic ant colony optimisation algorithm.
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CHAPTER 5

Hyper-Heuristic Ant Colony Optimisation Al-
gorithm

5.1 Introduction

This chapter introduces the hyper-heuristic ant colony optimisation algorithm
(HACO). As discussed in Section 3.3, the HACO algorithm has several vari-
ants based on the different types of hyper-heuristics. However, there remains
great commonality in the functioning of the HACO algorithm across its vari-
ants. Therefore, this chapter presents a generalised HACO algorithm that de-
scribes the algorithm without the specific details that are pertinent to the vari-
ant and the type of hyper-heuristic. Refer to the later chapters for those specific
details. The rest of this chapter is organised as follows. In Section 5.2 a high-
level overview of the general HACO algorithm is presented. Section 5.3 presents
the pheromone update rules for 1D pheromone maps. Section 5.4 presents the
pheromone update rules for 2D and 3D pheromone maps. Section 5.5 describes
the general method of path construction in a HACO algorithm. Section 5.6 de-
tails the desirability heuristic used in the algorithm. Section 5.7 describes the
control parameters of the algorithm and finally a summary is given in Section
5.8.

5.2 HACO General Algorithm Overview

The high-level algorithm of the HACO method is presented in Algorithm 4.
This algorithm details a broad overview of how the algorithm functions. Unless
otherwise noted, the algorithm also functions the same regardless of the type
of pheromone map given to it. This overview broadly applies to all types of
the HACO algorithm but some pheromone maps necessitate changes. Those are
discussed in Sections 5.2.0.1–5.4.

Algorithm 4 starts with a population of ants that are initially created (with
empty paths) between (Lines 2–3). Over several iterations, the ants will con-
struct paths, (Line 9). These paths are evaluated, with a problem-dependent
fitness function (Line 11), and that information is used to update the shared
pheromone map accordingly (Lines 16–17). The pheromone update procedure is
a two-part procedure. First, the existing pheromone will be evaporated accord-
ing to the appropriate scheme. Then the new values of the pheromone map will
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Algorithm 4: High-Level Algorithm

Input: nk ant colony, it the max number of iterations, ph a pheromone
map, p the evaporation rate, α the pheromone desirability, sized
the path limit

Result: SB the best solution, PB the best path
1 initialise ph with small random values;
2 foreach a ∈ nk do
3 initialise a

4 i=0;
5 best = inf;
6 for i < it do
7 fitness[] = [nk];
8 foreach a ∈ nk do
9 construct a path using Algorithm 7

10 foreach ant a in nk do
11 fitness[a]=evaluate(a.path);
12 if fitness[a] < best then
13 best = fitness[a];
14 SB=a.getSolution();
15 PB=a.getPath();

16 evaporate ph using the Equation 5.1;
17 update ph using the Equation 5.2;
18 update p using the Equation 5.4;
19 update α using the Equation 5.5;
20 i = i+ 1;

be calculated and the map will be updated. At the end of the algorithm’s execu-
tion, the best solution found as well as the best path, which was found through
a search of the component space, is returned. The component space in this con-
text refers to the space containing all of the possible components (operators and
domain attributes) for a given problem.

The general algorithm makes use of an iteration-based stopping criterion that
will stop it after a certain number of iterations have been performed. Additional
criteria like stopping after no improvements have been observed after several
iterations, or after reaching a certain fitness value are possible as well.

The pheromone map is initialised randomly with small random values in the
range of [0,1] for the 2D and 3D HACO. In the case of the 1D HACO, each index
of the map is set to 1 to ensure each heuristic has the same random chance of
selection. This initialisation is needed to make sure that the ants have as wide
an exploration of the heuristic space as possible during the first few iterations.
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5.2.0.1 1D Modifications Algorithm 4 is generalised to represent HACO
algorithms that make use of the 2D and 3D pheromone maps. This is because,
at this level of granularity, the distinction between a 2D and 3D pheromone map
is minimal. However, some modifications are necessary for the HACO algorithm
to use the 1D pheromone map. These modifications are necessary to retain the
functioning of the algorithm in the 1D pheromone space but otherwise represent
minor modifications to the overall algorithm. In addition, only a single ant is
needed for this type of pheromone map based on Section 4.4. The compression
of the pheromone map to a single dimension does not fundamentally alter the
nature of the ant algorithm that operates on it. The principles of the FANT
[5], are applied for this type of pheromone map as they would be for any other
in principle. The mechanism of pheromone reinforcement would be the same
regardless of the type of pheromone map, but as discussed in Section 4.4, the
FANT methodology is adapted for the 1D pheromone map specifically. These
modifications are presented in Algorithm 5.

Algorithm 5: High Level Algorithm for 1D Pheromone Map

Input: a ant, it the max number of iterations, ph a pheromone map, α
the pheromone desirability, sized the path limit

Result: SB the best solution, PB the best path
1 initialise ph to 1;
2 w1 = 1;
3 w2 = 1;
4 initialise a;
5 i=0;
6 best = inf;
7 for i < it do
8 fitness = 0;
9 Construct a path using Algorithm 7

10 fitness=evaluate(a.path);
11 if fitness < best then
12 best = fitness;
13 SB=a.getSolution();
14 PB=a.getPath();

15 if similarity(current path, best path)=0.85 then
16 w1 = w1 + 1;

17 if fitness <best then
18 reinitialise ph;

19 else
20 update ph using the Algorithm 6;

21 update α using the Equation 5.5;
22 i = i+ 1;

If the current solution produced is at least 85% similar to the best solution (in
terms of similarity of their respective paths) then the value of w1, the exploration
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coefficient, is increased by 1. The similarity function makes use of Levenshtein
distance to compute the difference between the current and best path [102]. The
85% similarity is used to account for some degree of variance between paths that
are mostly the same without requiring a strict and total match. The algorithm
does have a sensitivity to this choice of value. In particular, the higher the value
that is chosen, the less likely w1 is to be increased. The smaller the value, the
more likely w1 is to be increased. As w1 increases, the influence of the best path
is reduced so high values for the similarity comparison enable the best path to
remain dominant for longer in the search whereas lower values enable the domi-
nance of the current path. The implication of this is to balance against favouring
exploration (low similarity value) or exploitation (high similarity value).

The reason why w1 is increased, Line 16, is to increase the exploration poten-
tial of the algorithm. If the current search is starting to stagnate in terms of its
resemblance to the existing path, then increasing w1 decreases the influence of
the best path by increasing the influence of the current path on the pheromone
update process.

The second modification is a pheromone map reset condition. If the current
solution is an improvement over the best solution then the 1D pheromone map is
reset back to its initial state. This is the mechanism that allows for evaporation
of pheromone as it essentially removes the accumulated pheromone when the
current solution improves on the existing one, and removing the pheromone
allows subsequent paths to explore the space without the added pheromone
influencing the search back to the known best path.

5.3 1D Pheromone Updates

The update procedure for a 1D HACO is given in Algorithm 6. For each heuristic
under consideration, a count of its frequency in the current ant’s path is multi-
plied against a value w1. This is then added to a count of the frequency of that
heuristic in the best path found multiplied by w2. These coefficients, w1 and w2,
balance the exploration/exploitation potential of the algorithm.

Algorithm 6: 1D HACO Update Procedure

Input: A pheromone map phC , w1, w2 the exploration/exploitation
coefficients

Result: phC or phP is updated
1 for each heuristic p do
2 δ1=w1*countFrequencyCurr(p);
3 δ2=w2*countFrequencyBest(p);
4 ph(p)+=δ1+δ2;
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In this case, w1 weighs the influence of the current solution’s heuristics and
w2 weighs the influence of the best heuristic path. Larger values of either would
increase the amount of pheromone that is accumulated for that heuristic.

The values of w1 and w2 are initially set to 1, with separate coefficients for
each ant. This is to ensure that all heuristics have an equal probability of being
initially selected during the beginning of the algorithm. During the execution of
each ant’s iteration procedure, w1 can be increased to increase exploration.

The 1D HACO does not make use of evaporation because of the pheromone
map being reset during the algorithm’s execution if the current solution is similar
enough to the best-found solution. The act of resetting the map is what provides
an evaporation effect. The resetting also provides some degree of exploration as
areas of large pheromone concentration are removed and other parts of the map
have increased chances of selection again.

Both of these coefficients initially will be set to 1 to have a balanced explo-
ration/exploitation trade-off between exploration and exploitation.

5.4 2D and 3D Pheromone Updates and Evaporation

Once the ants have constructed their path, two updates need to occur in Al-
gorithm 4, (Lines 16–17). Specifically applying the evaporation effect to the
pheromone map and then updating the pheromone map with the new values
based on the outcome of the fitness evaluations.

The evaporation is based on the following equation:

phxyz = (1− p) ∗ (phxyz) (5.1)

where x, y refers to the components x and y on layer z. The evaporation process
for a 2D pheromone map is identical save for the omission of the z layer.

The update process is the same as the standard Ant System (AS) [11]. The
only modification is to the specific pheromone update value, ∆τkxyz. This is given
by:

∆τkxyz =

{ 1
f(xk)∗len(xk)

if link (x,y,z) ∈ path xk

0 if link (x,y,z) ̸∈ path xk

}
(5.2)

The update procedure for a 2D pheromone map is the same except that the z
layer is omitted.

This modification takes the length of the path into account alongside the
fitness associated with that path. This gives weight to both parts of the solution,
with the incentive being to minimise both the solution quality and the size of
the path associated with that fitness.

5.5 Generalised Path Construction

The process for an ant to construct a path does largely depend on the partic-
ular type of hyper-heuristic it is being used in. Firstly because specific hyper-
heuristics conceptualise and represent the heuristic space in different ways. For
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example, selection hyper-heuristics make use of low-level heuristics whereas gen-
eration hyper-heuristics make use of components. The second aspect is the size
of the path which also depends on the nature of the hyper-heuristic.

Regardless, there is a generalisable process that all ants, regardless of pheromone
map and hyper-heuristic, have to follow to build their paths and this is given in
Algorithm 7.

Algorithm 7: Path Construction Process

Input: a ant, pl the limit of the path
Result: P a path of nodes

1 P = ∅;
2 while P.size! = pl do
3 Select a node, nd, using the appropriate technique;
4 P = P ∩ nd;

The process in Algorithm 7 is the skeleton of the process used to decide
what to add to the path of the ant currently under consideration. The word
node in this context refers to either the components, in the case of a generation
hyper-heuristic or low-level heuristics, in the case of a selection hyper-heuristic.
As both are represented in the same way on the pheromone map, the general
process for building a path is the same. That is, start with an empty path and
add nodes to it until the limit has been reached. The limit, pl depends on the
type of hyper-heuristic and this is described in subsequent chapters.

5.6 Desirability Heuristic

The AS upon which the HACO algorithm is based makes use of a desirability
heuristic to counterbalance the influence of the pheromone concentration when
performing the calculation to decide which node to move to. As the HACO
algorithm operates in the heuristic space, and not the solution space, a heuristic
needs to be proposed to guide the search process.

The desirability heuristic, hk, is simply:

hk(x, path) =
1

count(x, path)
(5.3)

where x is the node being considered to add to the path and path is the existing
path of the ant. The count function returns the number of instances of x in the
current path. Hence this desirability heuristic is one of novelty; it will always
bias toward the least represented nodes in the path being constructed.

The reason for this particular kind of heuristic is to capitalise on the explo-
ration potential of the algorithm. Novelty in terms of very diverse paths will be
favoured by the heuristic but the behaviour of the algorithm is designed such that
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it will initially favour the heuristic’s influence, leading to more novel and diverse
solutions, with a gradual but steady increase in the influence of the pheromone
concentration over time, leading to exploitative behaviour that should refine the
best solution found thus far. This heuristic is used across all HACO and HACOH
algorithms.

5.7 Control Parameters

In terms of the control parameters for the algorithms, they are presented in two
sections. The first section covers the variables used for HACO algorithms that
use 2D and 3D pheromone maps. The next section is for 1D pheromone maps
as they differ in their operation and thus require different variables.

5.7.1 2D and 3D Pheromone Map Variables

There are two control variables used in HACO algorithm: p and α. The former
variable is used to control the rate of evaporation during the execution of the
algorithm when using a 2D and 3D pheromone map. The latter is used to weigh
the desirability of the pheromone value when choosing nodes. During the execu-
tion of the algorithm these variables will be modified through the use of a linear
change equation which update these values after every iteration t. These are as
follows:

pt = (pinit − pfinal) ∗
it− t

it
+ pfinal (5.4)

where pinit and pfinal refer to the initial and final value of p respectively and t
refers to the current iteration and it refers to the maximum number of iterations.

αt = (αinit − αfinal) ∗
it− t

it
+ αfinal (5.5)

where αinit and αfinal refer to the initial and final value of α respectively.
The values of p and α make use of change functions to adjust their values

during the executions of the appropriate algorithms. This decision is based on
a wider strategy that is meant to facilitate an optimisation behaviour in the
algorithms.

More specifically, the initial and final values of p and α will both be in the
range of [0.1,1.0]. A depiction of this curve for 10 iterations, as an example, is
given in Figure 5.1.

This gives both these variables a constant and linear change over the length of
the algorithm’s execution. For α this means that the value will initially be small
and increase over time. Since α controls the influence of the pheromone concen-
tration and the influence of the desirability heuristic (Section 5.6) is governed by
(1-α), this means that initially, the algorithm will heavily favour the heuristic
over the pheromone concentration. Over time it will reverse this position until
the pheromone concentration is favoured to the exclusion of the heuristic. In
a conventional AS, the heuristic used is meant to offer additional information
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Fig. 5.1: Curve of α and p for 10 Iterations

about the desirability of a node in the context of the solution space. However
since this is operating in the heuristic space, a different approach is required.
Instead, the search heuristic adds to the explorative potential of the algorithm
by favouring the inclusion of novel nodes in the path. The effect of this means
that the initial part of the algorithm’s execution will explore the heuristic space
to a great degree before gradually coalescing around the best paths as decided
by pheromone.

The other variable p, which controls the rate of evaporation, is also subject
to this same curve and change. As the rate of evaporation is given in Equation
5.1, this means that the initial rate of evaporation will be low with a gradual
transition to a high evaporation rate. More specifically, a low value of p means
that much more of the pheromone will persist from iteration to iteration. The
effect of this will be an initial saturation of pheromone as much of it will persist
from iteration to iteration. However as p increases, the rate of evaporation will
increase as well which applies a filtering effect on the pheromone as only the
strongest, and thus best, regions of pheromone will remain which facilitates
exploitation of those remaining regions.

The totality of these two configurations and the behaviour they enable pro-
duces an exploration/exploitation trade-off behaviour that provides a general
parameter configuration that can be used across a wide array of problems with-
out specific tuning. Hence the reason why this strategy has been adopted in this
research.
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5.7.2 1D Pheromone Map Variables

HACO algorithms that make use of the 1D pheromone map obviate the need to
include the variable p via the update procedure specified in Section 5.3. However,
instead of the variable p, it makes use of w1 and w2 which are variables that
weigh the influence of the best and current paths respectively.

These variables both have the initial value of 1.0 whenever they are used in
the experiments. The reason for this is to start the algorithm’s execution with
an equal bias for both potential influences. Once stagnation starts to occur, that
is the best path is similar enough to the current path, w1 will be increased and
allow for more exploration.

5.8 Summary

This chapter has presented the generalised form of the HACO algorithm which
later chapters will build on and expand. This includes the high-level overview
algorithm and some of the specific details of the approach that are relevant to all
of the algorithms regardless of which hyper-heuristic they are. The next chapter
will present the specific details of the HACO algorithm as it directly pertains to
selection hyper-heuristics.
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CHAPTER 6

Ant-Based Selection Hyper-Heuristics

6.1 Introduction

This chapter presents the implementation-specific details that are required for
the HACO-SC and HACO-SP algorithms. The previous chapter presented a
high-level overview of a generalised HACO algorithm and this chapter provides
details that are pertinent to selection constructive and selection perturbative
ant-based hyper-heuristics. This chapter covers both of these topics together as
selection constructive and selection perturbative hyper-heuristics are not entirely
dissimilar in their operation and thus the details presented here are sufficient for
both hyper-heuristics. The rest of this chapter is organised as follows. Section
6.2 will discuss how the ant-based selection hyper-heuristics choose the nodes
to build their paths. Section 6.3 presents all of the low-level constructive and
perturbative heuristics for both of the problem domains. Section 6.4 details the
experiments that will be conducted using the algorithms and finally a summary
is provided in Section 6.5.

6.2 Node Selection

Algorithm 8 describes the process of choosing nodes for the HACO-SC and
HACO-SP algorithms using 3D pheromone maps. The reason for this is that the
1D and 2D pheromone maps follow the same process but just use the smaller
dimensional maps instead. This process is applied whenever an ant needs to
decide which node to add to its path through the path construction process such
as in Algorithm 7. The primary mechanism of node selection is based on the
roulette wheel selection via a stochastic acceptance process [103,104]. In terms
of the calculation, there are two factors in choosing a node: heuristic desirability,
h, and pheromone concentration, ph. The actual selection process makes use of
a different formulation of the calculation [105]. By using this formulation, it
removes the need for a separate β parameter that is used in the AS.

The variable llh, Line 5, refers to all of the low-level heuristics, constructive
or perturbative, that are available for selection. If the limit has been reached
then the process will simply return, as a precaution for preventing excessive
path construction. The limit, in this case, refers to the size of the path, which
for selection hyper-heuristics, is a value dependent on the size of the problem.
For selection constructive hyper-heuristics, this is because the path has to stop
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Algorithm 8: Node Selection Process

Input: a ant
Result: choice the selected node to add to the current path for ant a

1 set = ∅;
2 if a.currF > limit then
3 return;

4 else
5 set = llh;

6 nind=indexOf(curr node of a.path);
7 lind=a.path.size()-1;
8 tmp[] = [set.size()];
9 phs[] = [set.size()];

10 sumprob = 0;
11 j = 0;
12 for j < set.size() do
13 tmp[j] = α ∗ ph[nind][j][lind] + (1− α) ∗ hk(nodej , a.path);
14 sumprob+ = tmp[j];
15 j = j + 1;

16 i = 0;
17 for i < set.size() do

18 pks[i] = tmp[i]
sumprob

;

19 i = i+ 1;

20 ind = 0;
21 sum = pks[0];
22 r = U(0, 1);
23 while sum < r do
24 ind = ind+ 1;
25 sum = sum+ pks[ind];

26 choice = set[ind];
27 a.currF+ = 1;

at a fully constructed solution and for selection perturbative hyper-heuristics,
the size of the problem is a natural limit that allows for a scalable degree of
modification to the underlying solution.

To decide on which node to move to, (Lines 11–13), a desirability score has to
be calculated that accounts for both pheromone concentration and the novelty
heuristic. This movement consists of moving from the current node i to a node
j on layer l.

Once the values are calculated for choosing the next node, the roulette wheel
with a stochastic acceptance process will take place, Lines 16—24. This process
selects the next node (low-level heuristic) to be added to the path. The node
with the highest desirability has a proportionally higher chance of selection.
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Some considerations need to be made based on the type of pheromone map
used in the algorithm. For a 2D pheromone map, the process is identical except
that Line 12 would omit the layer index dimension. For the 1D process, the
second index, nind, is removed and only j is needed to iterate through the 1D
pheromone map. The skeleton of the procedure remains the same. The only thing
that needs modification is how the pheromone is accessed from the map which
depends on the type of pheromone map that it is.

6.3 Low-Level Heuristics

This section presents the low-level heuristics considered in both the selection con-
structive and selection perturbative hyper-heuristics, the HACO-SC and HACO-
SP respectively.

6.3.1 Constructive Heuristics

In terms of how the construction heuristics are applied to the problems, an ant’s
path in the HACO-SC represents a set of heuristics that each contribute some-
thing towards the completion of a full solution. This process starts with an ini-
tially empty solution and constructs the solution, piece-by-piece, and heuristic-
by-heuristic. As a result, the size of an ant’s path is typically equal to the number
of heuristics required to produce a fully complete solution for that specific prob-
lem.

6.3.1.1 QAP Heuristics The construction heuristics used for this problem
were developed for this research using the principles discussed in [2]. These
heuristics were developed because of the lack of available existing constructive
heuristics. What follows is a list of the constructive heuristics where Ci denotes
constructive heuristic i:

– C1: Insert the facility with the most number of flow links to other facilities
in the location with the lowest average distance to other locations.

– C2: Insert the facility with the largest flow value to another facility at a
location nearest to where its corresponding facility is.

– C3: Insert a random facility at the location with the lowest average cost to
all other locations.

– C4: Insert the facility with the smallest flow value to another facility at a
location farthest from where its corresponding facility is.

– C5: Insert the facility with the least number of flow links to other facilities
in the location with the highest average distance to other locations.

– C6: Insert a random facility at a random location.
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6.3.1.2 MSSP Heuristics Given that the MSSP is a new problem, construc-
tive heuristics had to be derived from scratch for this problem. These heuristics
were manually derived through the study of the problem domain [78].

What follows is a list of the constructive heuristics where Ci denotes con-
structive heuristic i:

– C1: The next scene is randomly chosen.
– C2: The scene with the most actors is chosen.
– C3: The scene with the fewest actors is chosen.
– C4: The scene with the longest duration is chosen.
– C5: The scene with the shortest duration is chosen.
– C6: The scene with the smallest transfer cost from the prior scene is chosen.
– C7: The scene with the largest transfer cost from the prior scene is chosen.
– C8: A scene is chosen randomly from a list of scenes that share the same

location as the prior scene. If no such scenes exist, the next scene is chosen
randomly.

6.3.2 Perturbative Heuristics

Perturbative heuristics do not construct a solution from scratch. Rather they
perturb an existing solution to improve its quality. The perturbative heuristics
will perturb a solution created with the constructive heuristics of the appropriate
domain.

6.3.2.1 QAP Heuristics The perturbative heuristics used for this problem
were developed for this research using the principles discussed in [2]. What fol-
lows is a list of the perturbative heuristics where Pi denotes perturbative heuris-
tic i:

– P1: Swap the locations of the facilities with the two highest flow scores. The
flow score is defined as r1 ∗ r2 where r1, r2 refer to the flow value between
facilities i, j and the locations m,n.

– P2: Swap the facilities at the best and worst locations (in terms of their
average distance to their neighbours) for new random facilities.

– P3: Perform the 2-opt procedure on the solution permutation.
– P4: Find a pair of facilities (i, j) with the highest flow score and swap them

with the pair of facilities (x, y).
– P5: Randomly shuffle the solution until an improvement in objective value

occurs.
– P6: Pick two random facilities and swap their locations.
– P7: Swap two random facilities until an improvement in objective value oc-

curs.
– P8: Swap the first and last facilities locations.
– P9: Swap the first-most facility for another random facility and swap the

last-most facility for another facility randomly selected.
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– P10: Move every facility one location to the right in the solution, with the
last facility being moved to the first location.

– P11: Move every facility one location to the left in the solution, with the first
facility being moved to the last location.

– P12: Pick a random facility, a pivot point, such that there are at least two
facilities to either side of it in the solution and reverse the order of the
facilities on either side of the pivot point.

The constructive heuristic used for the initial solution for the QAP domain
is a greedy constructive heuristic that inserts the facility with the lowest average
cost from the last facility added. This provides a simple heuristic for producing
the initial solutions required by the selection perturbative hyper-heuristic.

6.3.2.2 MSSP Heuristics These heuristics were manually derived through
the study of the problem domain [78]. What follows is a list of the perturbative
heuristics where Pi denotes perturbative heuristic i:

– P1: The scene order is shuffled until an improvement in fitness occurs.
– P2: The scene with the longest duration is moved to the front of the schedule.
– P3: The scene with the shortest duration is moved to the front of the schedule.
– P4: A random (excluding the end) scene is chosen. From the remaining

scenes, the one which has the lowest transfer cost to the original chosen
scene is determined. This scene is then put into the adjacent position next
to the original random scene.

– P5: The first and last scenes are interchanged with a corresponding randomly
chosen scene from the schedule.

– P6: The scene with the most number of attached actors is moved to a random
position in the schedule.

– P7: The scene with the least number of attached actors is moved to a random
position in the schedule.

– P8: All of the scenes are shifted up one position in the schedule. The scenes
wrap around.

– P9: All of the scenes are shifted down one position in the schedule. The
scenes wrap around.

The constructive heuristic used for the initial solution for the MSSP domain
is heuristic C8 as it was found to have the best performance out of the available
construction heuristics [78].

6.4 Experiments and Parameter Choice

The parameter choices for the selection constructive and selection perturbative
ant-based hyper-heuristics are detailed in their sections below. The HACO-SC
and HACO-SP algorithms will be applied to the MSSP and QAP domains with
the same experimental configurations.
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6.4.1 Selection Constructive Parameters

Figures 6.1 and 6.2 present the result of the process as described in Section
3.5.3. Pearson’s Correlation Coefficient [93] is also calculated for the relationship
between fitness and nk and the number of iterations which are the y and x-axis
respectively. A legend is provided at the top of each graph which indicates the
number of iterations for each entry.

Fig. 6.1: Fitness Comparison between nk and Number of Iterations

Figure 6.1 shows the difference in fitness values for the HACO-SC algorithm
as the number of ants, nk, and the number of iterations is changed. Correla-
tion coefficients are calculated from this data to determine the strength of the
relationship between the variable configurations and the fitness value. The cor-
relation coefficients for the comparison between nk and fitness, and the number
of iterations and fitness, are -0.62 and -0.67 respectively.

In terms of these results, the implications on performance for the HACO-SC
are clear. Adding additional ants and iterations do lead to improvements in the
overall fitness of the solutions produced by the hyper-heuristic, with a fairly
linear relationship between the parameters and the fitness. The correlations are
strongly negative, which indicates a strong negative correlation between fitness
and the parameters; that is an increase in the parameters strongly correlates to
a decrease in fitness.

While there are obvious advantages to using more ants and iterations in the
HACO-SC, Figure 6.2 demonstrates that is not without cost. As the parameters
increase, the average time to execute a single run increases as well, with the
largest values taking several times that of the smaller values. The time taken
around the 20 ant mark seems to provide a good enough runtime efficiency in
relation to its performance as it performs comparably to other configurations,
but with a lower runtime.
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Fig. 6.2: Runtime Comparison between nk and Number of Iterations

Considering these factors, the choice for nk and the number of iterations
should be a compromise between the increased computational load of the larger
values, and the improved performance they offer.

Based on the outcome of these results, the parameters for these experiments
are nk, the number of ants, the number of runs and the number of iterations are:

– nk: 20

– Number of Runs: 30

– Number of Iterations: 750

These values offer a compromise in terms of nk as that is the midpoint of
the range of ant colony sizes and 750 is between the generally better performing
but computationally costly 1000 iterations and the weaker but computationally
more efficient 500 iterations.

The parameter of pl, the path length, is set to the size of the problem. With
the selection constructive hyper-heuristic, each heuristic that is selected will
build up the solution piece-by-piece. Therefore the length of the path must be
as large as the problem to ensure that the solution is fully complete.

6.4.2 Selection Perturbative Parameters

Figures 6.3 and 6.4 present the result of the parameter process as described
in Section 3.5.3. Pearson’s Correlation Coefficient [93] is also calculated for the
relationship between fitness and nk and the number of iterations respectively.
A legend is provided at the top of each graph which indicates the number of
iterations for each entry.

Figure 6.3 shows the difference in fitness values for the HACO-SP algorithm
as the number of ants, nk, and the number of iterations is changed. Correla-
tion coefficients are calculated from this data to determine the strength of the
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Fig. 6.3: Fitness Comparison between nk and Number of Iterations

relationship between the variable configurations and the fitness value. The cor-
relation coefficients for the comparison between nk and fitness, and the number
of iterations and fitness, are -0.66 and -0.60 respectively.

The HACO-SP fitness results, Figure 6.3 are similar to the HACO-SC in
Figure 6.1 with some differences. Primarily, the distinctions between the different
configurations and their fitness results are less strongly differentiated with linear
trends being observed but the lines between the configurations are less distinct.
In particular, the differences between using 500 iterations and 1000 iterations
are reduced going from 10 ants to 20 ants.

Fig. 6.4: Runtime Comparison between nk and Number of Iterations

The runtimes, given in Figure 6.4 are consistent with the behaviour seen in
Figure 6.4. Larger values of nk and the number of iterations result in increasingly
larger runtimes for a single execution of the HACO-SP algorithm. Of course, the
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largest share of this stems from the 1000 iteration configuration which is always
the longest-running configuration, regardless of the value of nk. However, as
demonstrated by Figure 6.3, this increased runtime does not necessarily lead to
improved performance as the differences can be marginal between the 500 and
1000 iterations, depending on the number of ants.

Based on the outcome of these results, the parameters for these experiments
are nk, the number of ants, the number of runs and the number of iterations are:

– nk: 20
– Number of Runs: 30
– Number of Iterations: 750

These values offer a compromise in terms of nk as that is the midpoint of
the range of ant colony sizes and 750 is between the generally better performing
but computationally costly 1000 iterations and the weaker but computationally
more efficient 500 iterations.

The parameter of pl, the path length, is set to the size of the problem. With
the selection perturbative hyper-heuristic, the path length indicates the number
of times a low-level perturbative heuristic is applied to a given solution. Setting
the path limit to the size of the problem is a simple way of ensuring that the
number of permutations that can be applied will always match the complexity
of the current problem.

6.5 Summary

This chapter presented relevant implementation details as they pertained to
the HACO-SC and HACO-SP. These details included how nodes are selected,
the low-level heuristics that are used by the two hyper-heuristics, parameter
considerations and how these hyper-heuristics will be used in experiments. The
next chapter presents the implementation details of the HACO-GC.
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CHAPTER 7

Ant-Based Generation Constructive Hyper-Heuristic

7.1 Introduction

This chapter presents the details of how the HACO algorithm can be used for a
generation constructive hyper-heuristic. These adaptations are made to the gen-
eralised HACO algorithm. This is a more extensive set of modifications to the
baseline algorithm as generation constructive hyper-heuristics differ from their
selection hyper-heuristic counterparts in several ways. The rest of this chap-
ter is organised as follows. Section 7.2 presents the modification to the HACO
path construction algorithm, Algorithm 7, so that ant paths can be used to
construct heuristics. Section 7.4 describes how the created paths can be con-
verted into heuristics. Section 7.3 presents details for the modifications made to
the HACO node selection algorithm, Algorithm 7.3. Section 7.5 explains how
the constructed heuristics are meant to be interpreted. Section 7.6 describes the
problem components in terms of operators and attributes that make up the prob-
lem domains. Section 7.7 details how solutions are constructed for the 1BPP and
MSSP domains. Section 7.9 details the experiments for the HACO-GC algorithm
with a summary of the chapter given in Section 7.10.

7.2 Path Construction

The HACO-GC differs from the HACO-SC and HACO-SP in terms of how it
constructs its path in a significant way. The heuristic space of a generation
constructive hyper-heuristic consists of components that have to be combined to
form a heuristic as opposed to the fully formed heuristics of a selection hyper-
heuristic. This difference necessitates a different type of path construction to
translate the path taken by the ant into a heuristic that can be interpreted and
used.

The process in Algorithm 9 is the skeleton of the process used to convert a set
of nodes representing a path into a structured heuristic that represents a control
function. The control function is used by the solution construction process to
build the solution. This process follows the normal convention for path building,
adding nodes one at a time to a path, but simultaneously, a process is applied to
structure the path into a heuristic format that can later be interpreted as such
for fitness evaluation. Two notational conventions apply to this and subsequent
algorithms. Firstly the ∩ operator is used to show the addition of sets with
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either sets or other elements. Secondly, quotation marks denote the use of string
elements.

Algorithm 9: Generation Constructive Path Construction Process

Input: a ant, p evaporation rate
Result: S a heuristic, P a path of nodes

1 r = U(0, 1);
2 P = ∅;
3 S = {};
4 a.currF = 0;
5 if r > p or S == ∅ then
6 P = P ∩ random operator from the operator set;

7 else
8 P = P ∩ first node of the best path PB ;

9 a.currF+ = 1;
10 S = “[” ∩ P [0] ∩ “; ”;
11 art = getArity(P [0]);
12 i = 0;
13 for i < art do
14 c=choose a node using Algorithm 10;
15 P = P ∩ c;
16 comp = compute(ant, c, P, a.currF );
17 S = S ∩ comp;
18 i = i+ 1;

19 Remove the last character from S;
20 S = S ∩ “]”;

The process starts (Lines 1–3) with a blank path and heuristic, P and S
respectively and starts by adding an operator node to the path, either from the
best path or randomly chosen from the operator set. This choice enables the path
construction process to initially make use of the randomly chosen nodes that will
help facilitate exploration before gradually moving over to making use of the best
path’s initial node to guide the search and rely more on the exploitation of prior
information.

From that point, it will increase currF , the current number of operators for
a given path, (Line 9). The process for path construction will terminate when
currF is equal to the limit, pl. The path limit, pl principally is based on the
number of operators allowed in a heuristic. As only operators add additional
complexity, by needing inputs to their functions, this is the most important
aspect that determines how large a heuristic can grow.

The central mechanism of the algorithm occurs between (Lines 13–18). Here,
the additional number of components is based on the arity of the input path.
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This function makes use of recursion, (Line 16), which is how it can build nested
components inside of others. This process will also resolve the construction of
components in a depth-wise manner, expanding any possible nested components
(if they are operators) before moving to the next component at the same parent
component.

The typical way in which generation constructive hyper-heuristics use the
heuristics that they construct is as a control function in a solution construction
process. That is the constructed heuristic is used as a part of a wider solution
construction strategy with the quality of the heuristic measured in terms of
the quality of the solutions it helps to create. Specifically, the heuristic is used
to determine some desirability score for parts of a solution during the solution
construction process and the solution is built around those calculated scores.

The nature of the algorithm is such that the heuristic returned represents
a complete control function and no repair operation will be needed to remedy
structural errors. The initial operator that forms the first node in the path will
determine, via its arity, the number of additional nodes to add to the path. As
more operators are added, those, in turn, will require more nodes to be added
until the path is complete. A user-defined limit parameter controls the size of the
path as the limit controls how many operators can be added to a path. Finally,
it is important to note that when generated, the heuristics make use of a prefix
notation with regards to their structure.

7.3 Node Selection

Algorithm 10 describes the process of choosing nodes for a HACO algorithm
using a 3D pheromone map. The reason for this is that the 1D and 2D pheromone
maps follow the same process but just use the smaller dimensional maps instead.
This process is applied whenever an ant needs to decide which node to add to
its path through the path construction process. The primary mechanism of node
selection is based on the roulette wheel selection via a stochastic acceptance
process [103,104]. In terms of the calculation, there are two factors in choosing
a node: heuristic desirability, h, and pheromone concentration, ph.

The initial part of the process determines whether the entire set of compo-
nents (functional and domain attributes) are to be chosen or only the domain
attributes (Lines 2–5). Afterwards, a number of necessary initialisations occur
(Lines 6–10). The process calculates the pheromone for the current layer at the
intersection of the current node i moving to node j at the layer l. This will take
place from (Lines 11–13). Once the values are calculated for choosing the next
node, the process of selection will take place, (Lines 16—24). The node with the
highest desirability has a proportionally higher chance of selection.

For a 2D pheromone map, the process is identical except that (Line 12) would
omit the layer index dimension. For a 1D pheromone, the second index, nind,
is removed and only j is needed to iterate through the 1D pheromone map.
The skeleton of the procedure remains the same. The only thing that needs
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modification is how the pheromone is accessed from the map which depends on
the type of pheromone map that it is.

Algorithm 10: Node Selection Process

Input: a ant
Result: choice the selected node to add into the current path for ant a

1 set = ∅;
2 if a.currF < limit then
3 set = domainAttSet ∩ operatorSet;

4 else
5 set = domainAttSet;

6 nind=indexOf(curr node of a.path);
7 lind=a.path.size()-1;
8 tmp[] = [set.size()], phs[] = [set.size()];
9 sumprob = 0;

10 j = 0, i = 0, ind = 0;
11 for j < set.size() do
12 tmp[j] = α ∗ ph[nind][j][lind] + (1− α) ∗ hk(nodej , a.path);
13 sumprob+ = tmp[j];
14 j = j + 1;

15 for i < set.size() do

16 pks[i] = tmp[i]
sumprob

;

17 i = i+ 1;

18 sum = pks[0];
19 r = U(0, 1);
20 while sum < r do
21 ind = ind+ 1;
22 sum = sum+ pks[ind];

23 choice = set[ind];
24 if choice ∈ operatorSet then
25 a.currF+ = 1;

7.4 Heuristic Conversion Process

The underlying ant system traverses through the component space by building a
path. However, the path itself requires structuring to be interpreted as a heuris-
tic. This is facilitated by Algorithm 11. This serves as the wrapper for Algorithm
9 which continues the recursive process.

The function revolves around the expression that is passed to it. If the ex-
pression is in the domain attribute set, it is returned, (Lines 1–2), with a comma
to separate it in the heuristic. Otherwise, the expression represents a function
that necessitates choosing more nodes based on the arity of the function. The
general structure of the remaining algorithm (Lines 7–13), follows a similar pat-
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tern as in the case of Algorithm 9 with the adding and fully expanding any new
components in the heuristic.

This conversion process happens as nodes are added to the ant’s path. So as
the path is added to, its corresponding heuristic is assembled and structured to
be interpretable as a control function. Importantly, domain attribute expressions
are delimited with commas whereas operator expressions, which can include op-
erators and domain attributes, are delimited with the vertical bars. The heuristic
itself is represented as a string expression that represents the combination of do-
main attributes and operators put into a structured format. Some examples of
these expressions are presented below:

A,

-:A,B

+:{-:A,C}|{-:A,B}

Fig. 7.1: Examples of Expressions

Algorithm 11: Compute Recursive Function

Input: a ant, exp a expression representing a component, v a set of
variables about the problem state, currF the current number of
operators in the path

Result: res a heuristic expression
1 if exp ∈ domainAttSet then
2 return exp ∩ “, ”;

3 else
4 res = “{” ∩ exp ∩ “ : ”;
5 art = getArity(exp);
6 i = 0;
7 for i < art do
8 c=choose a node using Algorithm 10;
9 P = P ∩ c;

10 res = res ∩ compute(ant, c, P, a.currF );
11 i = i+ 1;

12 remove the last character from res;
13 res = res ∩ “}|”;
14 return res;

The compute function, Algorithm 11, does the conversion of the path node
into the string heuristic representation. The process is largely the same as the
skeleton function, Algorithm 9, but with the addition of the return exp+ state-
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ment, Line 2. This statement will return the domain attribute to add to the
heuristic but does not entail additional additions to the path as it does not
return an operator like the other return statement on Line 12. By contrast, an
operator requires inputs based on its arity value. These inputs necessitate adding
new components to the path.

7.5 Path Interpretation

In terms of path interpretation, the process functions in reverse to the construc-
tion process. The heuristic will be interpreted recursively from the outermost
operator element to the innermost nested element. The interpretation of the
heuristic function converts the heuristic into an equation where the domain at-
tributes are replaced with their corresponding values where required and then
processed as their inputs to the operator inputs which then returns the final
value to be used in the solution construction process.

Consider a path represented below:

+ -> A -> * -> A -> B

which would then be converted into the following heuristic:

[+:A,{*:A,B}]

which would then be interpreted as the equation:

A+(A*B)

This construction process follows a depth-wise process, with a node being
fully expanded (in terms of the recursive process) before adding the next choice
in the function inputs.

7.6 Problem Components

This section describes the low-level components that are used for the problems.
These are namely operators and domain attributes. The domain attributes are
specific to each problem domain whereas the operators are universal across all
domains.

7.6.1 Operators

The 1BPP and MSSP domain both use the same set of operators. These oper-
ators define a range of possible arithmetic operations that can be done in the
context of a generated heuristic. The operators are given by Table 7.1.

The division function is protected from returning undefined values if the de-
nominator is zero. If the denominator is zero, it will simply return the numerator
instead. The A operator refers to the absolute value. The arity column indicates
the number of inputs required for that function. An operator with an arity of 2
for instance requires two inputs.
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Table 7.1: Domain Operators

Element Arity
+ 2
- 2
* 2
/ 2
A 1

7.6.2 Domain Attributes

The attributes used for the 1BPP and MSSP domains are given below. These
attributes are used in conjunction with the operators to build heuristics.

7.6.2.1 1BPP Attributes In terms of the 1BPP, the domain attributes are
taken from [106]. In their work, the authors provided three domain attributes
which are described below:

– F: returns the sum of the pieces already in the bin.
– C: returns the bin capacity.
– S: returns the size of the current piece.

These are simple domain attributes that reflect the state of the packing process.

7.6.2.2 MSSP Attributes The components were taken from [78] to reflect
basic characteristics of the problem state during the construction process and
they are described below:

– d: Duration of a given scene.
– a: average wage of the actors attached to a given scene.
– lp: number of already scheduled scenes that share a location with the current

scene.
– tc: one divided by the transfer cost from the last scheduled scene to the

current given scene. Returns 1 if there are no scheduled scenes.
– td: one divided by the transfer time from the last scheduled scene to the

current given scene. Returns 1 if there are no scheduled scenes.
– an: number of actors assigned to the current scene.

7.7 Solution Construction Process

Typically a generation constructive hyper-heuristic will evolve a control function.
A control function is a construction heuristic that guides the construction process
as it constructs a solution for a given problem. This control function calculates
a desirability score used to determine which parts of the solution to add during
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construction. The term control function represents the fact that the construction
heuristic is used to control the solution construction process.

For different problems, the desirability score represents different aspects of
the problem, like the desirability to add a given node to a current path for exam-
ple. Each of the algorithms presented below make use of the evolved heuristics
as their control functions which indicate which parts of the solution should be
added during their respective solution construction process.

7.7.1 1BPP

Algorithm 12: 1BPP Construction Method

Input: S a heuristic, items a set of items to pack
Result: sol a constructed solution

1 sol+ =new empty bin;
2 scores = [];
3 while items ̸= ∅ do
4 scores=[items.size()];
5 i = 0;
6 for i < items.size() do
7 scores[i]=evaluateHeuristic(S,items[i]);
8 i = i+ 1;

9 choice = max(scores);
10 if sol.currBin is full then
11 sol = sol ∩ new empty bin;

12 else
13 sol.currBin = sol.currBin ∩ items.remove(choice);

Algorithm 12 describes solution construction process for the 1BPP domain.
This algorithm will construct a complete solution. Starting with a given heuristic
and a set of items to pack, the process starts with a single bin. The current bin
being packed is referred to as currBin. All of the remaining items are evaluated
based on the heuristic with the highest scoring item, Line 7, chosen to be added
to the current bin.

The scores variable, Line 2, is an array that holds the desirability score
determined by each heuristic S that is calculated by the evaluateHeuristic
function. The MSSP solution construction processes will make use of the scores
variable in the same way.

The score represents the desirability of choosing a given item to add to the
bin based on its current state and the problem overall.

If the item cannot fit, a new bin is opened and the process is repeated until
all items are packed. Rather than making assumptions about the number of
bins, this process will arrive at the number of bins through the packing process.
The value of the heuristic determines how much space is wasted in each bin
with better heuristics minimising wasted space and thus using fewer bins. This
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strategy is drawn from existing literature where the solution construction process
makes item selections as opposed to bin selections [2].

The reasoning behind this approach is to arrive at the number of bins for
the solution organically. As all of the bins are of the same capacity, the task
of packing an arbitrary number of items into all of the bins could be reduced
down to packing them in a single bin. Hence the focus is shifted towards devel-
oping a heuristic that minimises wasted space in a bin with the final number of
bins reflecting the degree to which this function was successful. A more optimal
heuristic will need several bins closer to the actual optimal number of bins with-
out having to specify the number of bins beforehand or apply additional repair
methods to a constructed solution.

7.7.2 MSSP

Algorithm 13: MSSP Construction Method

Input: S a heuristic, scenes a set of scenes
Result: sol a constructed solution

1 sol = ∅;
2 scores = [];
3 while scenes ̸= ∅ do
4 scores=[scenes.size()];
5 i = 0;
6 for i < scenes.size() do
7 scores[i]=evaluateHeuristic(S,scenes[i]);
8 i = i+ 1;

9 choice = max(scores);
10 sol = sol ∩ scenes.remove(choice);

Algorithm 13 describes the process by which a given MSSP solution is con-
structed. The given scenes need only be added to a vector to form a permutation.
The score represents the desirability of adding a given scene to the solution as
the next scene to be scheduled. The process uses the maximum score, Line 7,
due to the choice of the domain attributes.

7.8 Comparison Heuristics

Several existing heuristics will be used for comparison against the HACO-GC in
the 1BPP domain. These heuristics were taken from literature and are widely
used packing heuristics [2]. These heuristics are construction heuristics that build
solutions incrementally.

The construction heuristics are as follows:

– First Fit (FF)
– Best Fit (BF)
– Next Fit (NF)
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– Worst Fit (WF)

– First Fit Decreasing (FFD)

– Best Fit Decreasing (BFD)

– Next Fit Decreasing (NFD)

7.9 Experiments and Parameter Tuning

Figures 7.2 and 7.3 present the result of the process as described in Section
3.5.3. Pearson’s Correlation Coefficient [93] is also calculated for the relationship
between fitness and nk and the number of iterations respectively. A legend is
provided at the top of each graph which indicates the number of iterations for
each entry.

Fig. 7.2: Fitness Comparison between nk and Number of Iterations

Figure 7.2 shows the difference in fitness values for the HACO-GC algorithm
as the number of ants, nk, and the number of iterations is changed. Correla-
tion coefficients are calculated from this data to determine the strength of the
relationship between the variable configurations and the fitness value. The cor-
relation coefficients for the comparison between nk and fitness, and the number
of iterations and fitness, are -0.60 and -0.61 respectively.

Based on the results shown in Figure 7.2 there is more of a clear delineation
between the number of iterations and nk and the effect they have on produced
fitness values. In particular, the strong linear trend returns, with strong negative
correlations with the number of iterations, nk and the fitness values. There is also
a flattening of this trend in the higher iteration values (500 and 1000), especially
as the number of ants increases from 20.
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Fig. 7.3: Runtime Comparison between nk and Number of Iterations

The runtime results in Figure 7.3 indicate the same trends as in the prior
runtime comparisons (Figures 6.2 and 6.4). The major factor influencing the
runtime is the number of iterations with the number of ants contributing, but
not as severely to the increased runtimes. Again, the 20 ant point shows a com-
paratively low runtime despite a very comparable performance in fitness values
as compared to the large configurations.

Based on the outcome of these results, the parameters for these experiments
are nk, the number of ants, the number of runs and the number of iterations are:

– nk: 20
– Number of Runs: 30
– pl: 10
– Number of Iterations: 750

The size of the path, pl, determines the size of the construction heuristic
that can be created, in terms of the number of operators that the construction
heuristic can contain. During the development of the HACO-GC, the algorithm
rarely produced heuristics with more operators than 10, even when given larger
limits. The built-in incentive to produce heuristics of minimal size contributes
to this and thus the chosen limit represents a good value for allowing for large
heuristics to be made whilst still allowing for smaller heuristics to be preferred.

These values offer a compromise in terms of nk as that is the midpoint of
the range of ant colony sizes and 750 is between the generally better performing
but computationally costly 1000 iterations and the weaker but computationally
more efficient 500 iterations. The HACO-GC algorithm will be applied to the
1BPP and MSSP domains.

7.10 Summary

This chapter presented implementation details specific to the HACO-GC algo-
rithm. This includes the necessary modifications that explain how the algorithm
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can generate new heuristics. The next chapter will present the HACO-GP ap-
proach which describes how the HACO algorithm is applied for generation per-
turbative hyper-heuristics.
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CHAPTER 8

Ant-Based Generation Perturbative Hyper-Heuristic

8.1 Introduction

This chapter presents the HACO-GP algorithm, the ant-based generation pertur-
bative hyper-heuristic. This is the most novel application of the HACO method-
ology as generation perturbative hyper-heuristics are a relatively understudied
area of hyper-heuristics. The HACO-GP algorithm is explained in detail includ-
ing what kind of perturbative heuristics it is capable of generating. The rest
of this chapter is organised as follows. Section 8.2 explains how perturbative
heuristics can be generated from components and what those components would
be. Section 8.3 details the necessary changes to the path construction process
for the HACO-GP. Section 8.4 presents the process to convert an ant’s path
into a perturbative heuristic. Section 8.3.1 details the changes made to the node
selection process for the HACO-GP. Section 8.5 presents all of the components
for the CVRP and MSSP problem domains considered for this algorithm. Sec-
tion 8.7 explains the experiments that will be conducted using the HACO-GP
algorithm. Finally, Section 8.8 provides a summary of the chapter.

8.2 Generating Perturbative Heuristics from Components

Before the HACO-GP algorithm can be explained in detail, it is necessary to first
explain how perturbative heuristics will be generated and from what elements.
The general model of the perturbative heuristic will follow a similar structure to
those generated by the HACO-GC algorithm in the sense that they will be com-
prised of two types of components that are combined into a single perturbative
heuristic that can be applied to an initial solution.

8.2.1 Selectors and Mutators

The first type of component is called the selector. It is a loose analogue for the
domain attributes used by the HACO-GC. Like a domain attribute, the selector
is a component that has a descriptive value of the given problem at hand, but
unlike the attribute, the selector is specifically so-called because it makes some
kind of selective decision regarding some aspect of the problem being considered.

More specifically, selectors represent decision functions that are capable of
deterministically selecting aspects of a given problem to be used as inputs by
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the mutators which are the second type of component. For example, a selector
could decide which route from a list of routes should be given to a mutator for
modification.

Mutators are so-called because they represent move operators that are ca-
pable of modifying a given solution in some way. They are a loose analogue for
the operators in the HACO-GC in the sense that they receive inputs from the
selectors and then perform an operation based on those inputs.

Consider a basic move operator such as

swap(X1,X2)

In this case, the swap function itself serves as the mutator which will swap two
elements, X1 and X2, that are chosen by selectors.

Through the combination of these two elements, it is, therefore, possible to
create extended heuristics that apply multiple operations to a given problem to
produce the best possible refinement.

A basic example of such a composition would be

swap(swap(X1,X2),swap(X3,X4))

where several swap operations are themselves nested inside a swap operation
with multiple selectors provided to select which elements in the problem should
be considered for the swap operation. For example, for a basic routing problem,
the selectors might select from the available vertices that make up the problem.

8.2.2 State-Based Transition

The model of perturbation that is employed by these heuristics is a state-based
transition model. This means that a generated heuristic starts with an initial
solution state for the problem being solved.

It then linearly interprets the heuristic, from the first mutator. These mu-
tators modify the initial solution in some way before passing the new state to
the next mutator or selector for its operation. The single state is updated as the
operation proceeds so that the solution state is always updated to reflect the
most recent changes.

This process must be as deterministic as possible as randomness in the out-
comes of the operations can drastically affect the quality of the feedback relating
to the effect of the heuristics. If the same heuristic can be applied but have a dif-
ferent effect because some of its components are stochastic, it creates a challenge
for assessing the real capacity of the heuristic.

To understand the state transition process, consider a simple example

swap(swap(X1,X2),swap(X3,X4))

This heuristic can be represented in terms of a state transition diagram which
is given in Figure 8.1

In this diagram, some nodes represent the mutator, swap, and selectors rep-
resented by X1–X4. The diagram indicates the transition of the states over the
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Fig. 8.1: State Transition Diagram

interpretation of the heuristic. In the diagram, the arcs represent states and
the transitions between them. The nodes represent the actions that are used to
modify the states.

From S1, which represents the initial solution state, this is given to the left-
most swap which passes it to the selectors it has as arguments, X1 and X2. Once
those selectors decide on the selection the swap mutator will make the swap,
transitioning the state from S1 to S2 passing that back to the prior swap. The
process repeats for the second swap before the final swap.

In total, the three mutators make three state transitions of the problem from
its initial state to the final state after the execution of the heuristic. Larger
heuristics, that incorporate more elements, will perturb the solution more as
they incorporate more mutators.

In terms of the implementation, the mutators will modify a shared collective
problem state that is passed through the heuristic to both mutators and selectors
as it becomes updated. Only a version of the state exists at any one time to
prevent issues with a deadlock or state incoherence.

The selector itself returns its selection made based on the problem state that
it receives. The exact nature of the selection will depend on the nature of the
problem.

8.2.3 Component Nesting

An important part of the operation of the mutators and selectors is the ability to
nest components within each other. In the HACO-GC algorithm, an operator can
nest other operators within it by having those operators as its arguments. This
works because the operator is capable of returning the result of its operation.
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A plus nested inside of another plus can return its sum to be added to
the parent plus, for instance. However this is slightly more complicated in the
case of the HACO-GP as it is based on the transition of states, and not purely
calculations.

The way this is handled in the HACO-GP is to add an extra argument to
all mutators which is called the return selector. More specifically, every mutator
will have a list of arguments that it accepts. These arguments are selectors that
indicate what components need to be considered by the selector.

To create complex heuristics, mutators must be able to be nested inside other
mutators. More specifically, a mutator can be an argument to another mutator.
However, since mutators do not, on their own, return anything a modification is
required to ensure mutators can be nested.

Each mutator defines one additional argument that defines what that mutator
returns so any parent mutator knows what selection it is going to be using in its
mutation process. This additional argument is called a return selector and it is
a selector that returns a component based on the modified state of the mutator
operation.

Using this information, an example of a perturbative heuristic constructed
in this way could look like

[M8:{M9:S10,S7}|S16]

where MX refers to mutator X and SX refers to selector X. In this way, it is now
possible to construct perturbative heuristics with a similar methodology to the
constructive heuristics with the same generation methodology.

8.3 Path Construction

The HACO-GP differs from the HACO-GP in several ways. The most similar
part is the path construction process which is given in Algorithm 14. Like the
HACO-GC, the HACO-GP has to combine several components to make a heuris-
tic but unlike the HACO-GC there are an additional number of considerations
that have to be considered for the process to achieve the desired effect. The pro-
cess for building a path for the HACO-GP is given by Algorithm 14. It is largely
the same as the HACO-GC process, Algorithm 9 with one major difference.

This major deviation takes place from Line 13. Specifically, accommodation
is made to the path construction process to account for the requirement of the
return selector needed for mutators. The if statement at Line 13 checks if the
given argument being added to the path is the last one for that mutator and
specifically chooses a selector as opposed to choosing normally. The rest of the
algorithm proceeds as it does in Algorithm 9.
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Algorithm 14: Generation Perturbative Path Construction Process

Input: a ant, p evaporation rate
Result: S a heuristic, P a path of nodes

1 r = U(0, 1);
2 P = ∅;
3 S = ;
4 a.currF = 0;
5 if r > p or S == ∅ then
6 P = P ∩ random operator from the operator set;

7 else
8 P = P ∩ first node of the best path PB ;

9 a.currF+ = 1;
10 S = “[” ∩ P [0] ∩ “; ”;
11 art = getArity(P [0]);
12 i = 0;
13 for i < art do
14 if i==art-1 then
15 c=choose a selector using Algorithm 10

16 else
17 c=choose a node using Algorithm 10;

18 P = P ∩ c;
19 comp = compute(ant, c, P, a.currF );
20 S = S ∩ comp;
21 i = i+ 1;

22 Remove the last character from S;
23 S = S ∩ “]”;

8.3.1 Node Selection

The node selection process is the same as the HACO-GC which is given in
Algorithm 10. The only modification is a provision for limiting the scope of
the node selection to choose from the selectors only when choosing the return
selector for a mutator as indicated in Algorithms 14 and 15.

8.4 Heuristic Conversion Process

A recursive process is used to produce the perturbative heuristic. This process
works by converting an ant’s path into its heuristic form. This is similar to
the process used by the HACO-GC in Algorithm 11. The HACO-GP version is
given in Algorithm 15. The major deviation of this algorithm is given from Line
7. Specifically, the algorithm also applies the additional condition to ensure that
the appropriate return selector is chosen during the recursive conversion process.
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Algorithm 15: Compute Recursive Function

Input: a ant, exp a expression representing a component, v a set of
variables about the problem state, currF the current number of
operators in the path

Result: res a heuristic component
1 if exp ∈ selectorSet then
2 return exp ∩ “, ”;

3 else
4 res = “{” ∩ exp ∩ “ : ”;
5 art = getArity(exp);
6 i = 0;
7 for i < art do
8 if i==art-1 then
9 c=choose a selector using Algorithm 10

10 else
11 c=choose a node using Algorithm 10;
12 i = i+ 1;

13 P = P ∩ c;
14 res = res ∩ compute(ant, c, P, a.currF );

15 remove the last character from res;
16 res = res ∩ “}|”;
17 return res;

8.4.1 Path Interpretation

Once a path has been constructed the interpretation process relies on the state-
based interpretation process outlined in Section 8.2.2. An initial solution is pro-
vided to the given heuristic. This initial solution is constructed with construction
heuristics. Then the heuristic will be parsed component by component, mutator
by mutator until each state transition has been applied and the final state of the
solution has been reached.

8.5 Domain Components

This section describes the components, selectors and mutators, used for the
HACO-GP in both the CVRP and MSSP domains. These components were
produced by decomposing existing heuristics into both mutators and selectors.

8.5.1 Selectors

In this section, the selectors used for each of the problem domains are defined.
SX refers to selector X.
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8.5.1.1 CVRP The CVRP selectors are as follows.

1. S1: Select the vertex with the highest demand.
2. S2: Select the vertex with the lowest demand excluding the depot.
3. S3: Select the vertex which is the midpoint of a list of all the vertices sorted

by demand.
4. S4: Select the next vertex from a persistent counter that will start at the

first non-depot vertex and increment to the next one each time this selector
is called. This will continuously cycle through all of the vertices.

5. S5: Select the first non-depot vertex.
6. S6: Select the last vertex.
7. S7: Select the midpoint vertex from an ordered list of all of the vertices.
8. S8: Select the most costly vertex. Cost is defined as the cost to move from

this vertex to the next plus the cost to move to it from another prior vertex.
This can be considered as A− X − B where the cost of vertex X is the cost
to move from A to X added to the cost to move from X to B.

9. S9: Select the least costly vertex. Cost is defined as the cost to move from
this vertex to the next plus the cost to move to it from another prior vertex.
This can be considered as a − x − b where the cost of vertex x is the cost
to move from a to x added to the cost to move from x to b.

10. S10: Select the midpoint vertex taken from a list of all vertices sorted by
cost. Cost is defined as the cost to move from this vertex to the next plus
the cost to move to it from another prior vertex. This can be considered as
a− x− b where the cost of vertex x is the cost to move from a to x added
to the cost to move from x to b.

11. S11: Select the vertex that is farthest from the depot.
12. S12: Select the non-depot vertex that is closest to the depot.
13. S13: Select the vertex which has the largest depot loop value. A depot loop

is a cost to move from the depot to the vertex and back to the depot again.
14. S14: Select the vertex which has the smallest depot loop value. A depot loop

is a cost to move from the depot to the vertex and back to the depot again.
15. S15: Select the vertex which has been selected most frequently in the per-

turbation process. A running total of the frequency of each vertex’s selection
should be maintained while the heuristic is being interpreted.

16. S16: Select the vertex which has been selected least frequently in the pertur-
bation process. A running total of the frequency of each vertex’s selection
should be maintained while the heuristic is being interpreted.

17. S17: Select the midpoint vertex which has been selected from a list of all ver-
tices sorted by their frequency of selection. A running total of the frequency
of each vertex’s selection should be maintained while the heuristic is being
interpreted.

8.5.1.2 MSSP The MSSP selectors are as follows.

1. S1: Select the scene with the most number of actors associated with it.
2. S2: Select the scene with the least number of actors associated with it.
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3. S3: Select the midpoint scene from a list of all scenes sorted by the number
of actors associated with it.

4. S4: Select the midpoint scene from a list of all scenes sorted by the scene
cost. The scene cost is given as the cost of paying all of the actors for that
scene plus the cost of transitioning to and from that scene in the scheduling
order.

5. S5: Select the listed first scene.
6. S6: Select the last scene.
7. S7: Select the midpoint scene from a list of all scenes.
8. S8: Select the scene with the highest scene cost. The scene cost is given as

the cost of paying all of the actors for that scene plus the cost of transitioning
to and from that scene in the scheduling order.

9. S9: Select the scene with the lowest scene cost. The scene cost is given as the
cost of paying all of the actors for that scene plus the cost of transitioning
to and from that scene in the scheduling order.

10. S10: Select the scene with the highest filming duration.
11. S11: Select the scene with the lowest filming duration.
12. S12: Select the midpoint scene from a list of all scenes sorted by scene du-

ration.
13. S13: Select the scene with the highest transfer time from its current location

in the scheduling order.
14. S14: Select the scene with the lowest transfer time from its current location

in the scheduling order.
15. S15: Select the midpoint scene from a list of all scenes sorted by the transfer

time from its current location in the scheduling order.
16. S16: Select the next scene from a persistent counter that will start at the

first scene and increment to the next one each time this selector is called.
This will continuously cycle through all of the scenes.

17. S17: Select the scene which has been selected most frequently in the per-
turbation process. A running total of the frequency of each scene’s selection
should be maintained while the heuristic is being interpreted.

18. S18: Select the scene which has been selected least frequently in the per-
turbation process. A running total of the frequency of each scene’s selection
should be maintained while the heuristic is being interpreted.

19. S19: Select the midpoint scene which has been selected from a list of all
scenes sorted by their frequency of selection. A running total of the frequency
of each scene’s selection should be maintained while the heuristic is being
interpreted.

8.5.2 Mutators

In this section, the mutators used for each of the problem domains are defined.
MX refers to mutator X. The inputs, in terms of selectors, are given in round
brackets next to the selector. For example, M1(A, B) is the first selector that
takes two arguments which are selectors A and B; any of the selectors can be
used as inputs.
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8.5.2.1 CVRP The CVRP mutators are as follows.

1. M1(A, B): Swap two vertices defined by selector A and B.
2. M2(A): Reverse the order of the route that contains the vertex selected by

selector A.
3. M3(A): Shuffle all vertices one position to the right in the route that contains

the vertex selected by selector A.
4. M4(A): Shuffle all vertices one position to the left in the route that contains

the vertex selected by selector A.
5. M5(A): Swap the vertex selected by selector A with the lowest cost swap

with any other vertex in its existing route. The cost is defined by the cost
of the route.

6. M6(A): Insert the vertex selected by selector A with the lowest cost insertion
with any other vertex in its existing route. The cost is defined by the cost
of the route.

7. M7(A): Sort the route that contains a vertex selected by selector A in as-
cending order of demand.

8. M8(A): Sort the route that contains a vertex selected by selector A in de-
scending order of demand.

9. M9(A): Send the vertex selected by selector A to the front of the route that
it is found in.

10. M10(A): Send the vertex selected by selector A to the back of the route that
it is found in.

11. M11(A, B, C, D): An if-then-else operation that will compare the vertex
cost of two vertices selected by selector A and B. If the first vertex’s cost is
less than or equal to the second’s cost, then evaluate and return the third
argument C otherwise evaluate and return the fourth argument D as the
return selector.
This can be considered as a − x − b where the cost of vertex x is the cost
to move from a to x added to the cost to move from x to b.

12. M12(A, B, C, D): An if-then-else operation that will compare the vertex
cost of two vertices selected by selector A and B. If the first vertex’s cost is
greater than the second’s cost, then evaluate and return the third argument C
otherwise evaluate and return the fourth argument D as the return selector.
This can be considered as a − x − b where the cost of vertex x is the cost
to move from a to x added to the cost to move from x to b.

13. M13(A): Remove the vertex selected by selector A and find the lowest cost
insertion point in all routes. The cost is defined by the cost of the route.

All of the mutators are protected in the sense that they will not consider the
depot vertices when making the mutations. A route’s integrity in terms of the
depot positions will always be maintained by the operations. Additionally, no
mutator will violate any of the CVRP constraints through its operation.

8.5.2.2 MSSP The MSSP mutators are as follows.

1. M1(A, B): Swap the two scenes selected by selectors A and B.
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2. M2(A, B, C): Interchange the positions of the scenes selected by selectors A,
B and C.

3. M3(A, B): Reverse the scene order of scenes from the position of the scene
selected by selector A to selector B.

4. M4(A, B, C, D): An if-then-else operation that will compare the scene cost of
two scenes selected by selectors A and B. If the first scene’s cost is less than
or equal to the second’s cost, then evaluate and return the third argument C
otherwise evaluate and return the fourth argument D as the return selector.
The scene cost is given as the cost of paying all of the actors for that scene
plus the cost of transitioning to and from that scene in the scheduling order.

5. M5(A, B, C, D): An if-then-else operation that will compare the scene cost
of two scenes selected by selectors A and B. If the first scene’s cost is greater
than the second’s cost, then evaluate and return the third argument C other-
wise evaluate and return the fourth argument D as the return selector. The
scene cost is given as the cost of paying all of the actors for that scene plus
the cost of transitioning to and from that scene in the scheduling order.

6. M6(A, B): Create a hash list of all of the scenes between the scene selected
by selector A and B. Sort this list in ascending order and then transplant
all the scenes in this new order back into their original positions. The hash
sorting guarantees that the list will be sorted deterministically.

7. M7(A, B): Create a hash list of all of the scenes between the scene selected
by selector A and B. Sort this list in descending order and then transplant
all the scenes in this new order back into their original positions. The hash
sorting guarantees that the list will be sorted deterministically.

8. M8(A): Send the scene selected by selector A to the front of the scene order.
9. M9(A): Send the scene selected by selector A to the back of the scene order.
10. M10(A): Swap the scene selected by selector A with the scene in the scene

order that results in the best improvement in solution quality.

All of the mutators are protected in the sense that the integrity of the schedule
cannot be removed through any of the mutator operations.

8.5.3 Application of the Heuristic

The application of the heuristic is a simple one. An initial solution will be gener-
ated, based on the same guidelines as the HACO-SP, Section 6.3.2. The CVRP
makes use of the Clarke-Wright Saving algorithm as the construction heuristic to
produce the initial solution [107]. The generated heuristic will then be applied to
the initial solution in its totality and the fitness of the solution after the process
will be assessed.

8.6 Comparison Heuristics

A number of perturbative heuristics are needed for comparison against the
HACO-GP in the CVRP domain. These heuristics are taken from existing liter-
ature [45]. The perturbative heuristics are as follows:
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– P1: Select one node randomly and move it into any random route.

– P2: Select two random nodes and swap their routes.

– P3: Select a random route and reverse a tour between two nodes.

– P4: Select three random nodes and exchange their routes randomly.

– P5: Perform the 2-opt procedure on a random route.

– P6: Do the 2-opt procedure to all routes.

– P7: Select two random distinct routes and swap the first portion of the route
with the first portion of the second route.

– P8: Select two distinct random routes and swap the adjacent node of a ran-
domly selected node in each route.

– P9: Select two random distinct routes and swap the first portion of the first
route with the end portion of the last route.

– P10: Pick a random route and move a randomly selected node in that route
to a new random position in that same route.

The comparison heuristics for the MSSP domain are taken from Section 6.3.2.

8.7 Experiments and Parameter Tuning

Figures 8.2 and 8.3 present the result of the process as described in Section
3.5.3. Pearson’s Correlation Coefficient [93] is also calculated for the relationship
between fitness and nk and the number of iterations respectively. A legend is
provided at the top of each graph which indicates the number of iterations for
each entry.

Fig. 8.2: Fitness Comparison between nk and Number of Iterations
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Figure 8.2 shows the difference in fitness values for the HACO-GP algorithm
as the number of ants, nk, and the number of iterations are changed. Correla-
tion coefficients are calculated from this data to determine the strength of the
relationship between the variable configurations and the fitness value. The cor-
relation coefficients for the comparison between nk and fitness, and the number
of iterations and fitness, are -0.70 and -0.61 respectively.

The results, Figure 8.2 show strong negative correlations between the pa-
rameters and the fitness value of the HACO-GP algorithm. These results are
consistent with the HACO-GC results with the higher-valued configurations do-
ing better than lower ones in general, although again, the margins between the
500 and 1000 iterations are quite narrow.

Fig. 8.3: Runtime Comparison between nk and Number of Iterations

The runtimes shown in Figure 8.3, continue the trends observed in the prior
Figures 6.2,6.4 and 7.3. Namely the 1000 iteration configuration produces the
highest runtime values for any configuration of ants. Given the relative com-
putational costs, and the fact that Figure 8.2 indicates that the performance
between the 500 and 1000 iteration configuration is not that large, opting for
the less computationally intensive configuration is preferable.

Based on the outcome of these results, the parameters for these experiments
are nk, the number of ants, the number of runs and the number of iterations are:

– nk: 20

– Number of Runs: 30

– pl: 50

– Number of Iterations: 750
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The size of the path, pl, determines the number of perturbative operations,
mutators, that are allowed in a single heuristic. In theory, more operations would
result in more chances to improve the solution, but in practice, during devel-
opment, it was found that a limit needs to be imposed to prevent excessive
replication of components that do little to improve the actual quality of the
heuristics. During the development of the HACO-GP algorithm, testing found
that increasing the path limit would result in improved fitness results but also
increase the computational costs of the algorithm. The limit of 50 provided the
best performance for a reasonable computational cost.

The experiments here are meant to assess the overall methodology and a
limit of 50 is used as a value large enough to allow for many operations but
also small enough to not take up excessive amounts of computational time and
resources, considering the size of the problem instances in the problem domains.

These values offer a compromise in terms of nk and the number of iterations.
The nk value is near the midpoint of the range of ant colony sizes and 750 is
between the generally better performing but computationally costly 1000 iter-
ations and the weaker but computationally more efficient 500 iterations. The
algorithm will be applied to the CVRP and MSSP domains.

8.8 Summary

This chapter presented a detailed breakdown of the functioning of the HACO-
GP, the ant-based generation perturbative hyper-heuristic algorithm. It detailed
how the HACO-GP differs from the HACO-GC in its operation and explained
the overall methodology of the generation perturbative hyper-heuristic. The next
chapter will present how three HACO algorithms, each with a distinct pheromone
map, can be hybridised.
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CHAPTER 9

Hybridising Ant-Based Hyper-Heuristics

9.1 Introduction

Developing a hybridisation method that allows for utilising multiple pheromone
maps at once, through the use of the HACO algorithm, is one of the goals of this
research. This chapter presents the HACOH algorithm, a meta-optimisation al-
gorithm that makes use of three separate HACO algorithms, each with one of the
three pheromone map types. This hybrid algorithm is used for the four types of
hyper-heuristics considered in this research. The rest of this chapter is organised
as follows. Section 9.2 presents the hybridisation method used to combine the
effects of the different pheromone maps in separate HACO algorithms. Section
9.3 discusses the application of meta-optimisation to the hybrid algorithm. Sec-
tion 9.4 presents the method by which the meta-optimisation can be achieved.
Section 9.5 presents the control parameters for the hybrid algorithm. Section 9.6
discusses how the input requirements for the hybrid can be generated. Section
9.7 presents the experiments that will be done with the HACOH algorithm and
finally a summary of the chapter is given in Section 9.8.

9.2 Hybridisation Method

The general idea for the HACO algorithm hybridisation is to make use of sep-
arate ant colonies, each with a different pheromone map. So there is a separate
ant algorithm with a 1D, 2D and 3D pheromone map respectively for three
colonies in total. The HACOH algorithm operates at a meta-heuristic layer and
provides how each of the separate algorithms can be executed. Subsequently, it
also enables how the pheromone information produced by each of the HACO
algorithms can be shared with the other algorithms. Rather than hybridising
all of the pheromone maps into a single map, the HACOH algorithm creates a
hybridisation of separate HACO algorithms that combines the search potential
of all the pheromone maps but with each remaining separated from the others.

A list is used to decide, during a run, when to execute an iteration with which
type of ant algorithm (and therefore using which type of pheromone map). The
size of the list is equal to the number of iterations allowed for the problem in
totality. Each element of the list is a number from 1 to 3 indicating to perform
an iteration with the respective ant algorithm at that iteration.

An example of a small list, for five iterations, is given below:
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<2,2,2,3,3,1>

In the example, the first three iterations of the run are performed with the
2D pheromone map (2D HACO), the next two are done with the 3D iteration
map (3D HACO) and the final iteration is done with the 1D pheromone map
(1D HACO). This could be compared to a non-hybrid HACO algorithm that
executed six iterations with just a single type of pheromone map.

The important aspect of the hybridisation process is that after every itera-
tion, regardless of the pheromone type, the best path found by the ant which
finished its iteration is used to deposit pheromone values in the corresponding
pheromone map of the other ant. In this way, the ant algorithms share informa-
tion about the results of their searches in their respective spaces with each type
contributing to an overall search of the entire space.

This process of sharing information across algorithms is similar to the pro-
cess of the ants within an algorithm sharing information about their respective
searches. In theory, this meta-optimisation algorithm could make use of any
combination of HACO algorithms with any combination of pheromone maps
(such as using all 1D pheromone maps) but testing if using the three distinct
types in concert would confer any benefit over a non-hybrid approach is the
objective of this part of the research. The hybrid algorithm, therefore, makes
use of separate but parallel searches of the same heuristic space. These different
pheromone maps represent the same heuristic space but are delineated by their
dimensionality (1D, 2D or 3D).

This hybrid process also means that every iteration in the hybrid algorithm
is analogous to an iteration in one of the separate algorithms with the difference
being that the information of that iteration is shared amongst the algorithms
that did not execute for that iteration. The size of the list is given as the num-
ber of iterations allowed for a given run of the hybrid algorithm. This would
be equivalent to the number of iterations for the non-hybrid algorithms. The
hybrid model is therefore called hyper-heuristic ant colony optimisation hybrid
or HACOH.

9.3 Meta-Optimisation

Some kind of optimisation is needed to determine the optimal configuration of
1D, 2D and 3D iterations to produce the best hybrid model for a given problem.
To that end, an iterated local search (ILS) algorithm is employed on top of the
heuristic optimisation. In this way, there is a meta-optimisation process whose
output is a solver (represented by the list) representing a combination of three
HACO algorithms that can be used for the four kinds of hyper-heuristics. This
process is depicted in Figure 9.1.

In the model, the fitness information from the problem is passed upwards
to every precursor layer, enabling optimisations that drive further improve-
ments in the fitness. The development of the appropriate list for hybridising
the three HACO algorithms with their pheromone maps is therefore a meta-
optimisation layer, to the underlying heuristic layer. Each HACO algorithm (and
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Fig. 9.1: Model of Hybridisation

its pheromone map) interfaces with the underlying heuristic layer but shares its
information with the other algorithms. This strategy is generalised across any
kind of hyper-heuristic so this general model can be employed by all four of the
hyper-heuristics considered in the course of this research.

9.4 Optimisation Strategy

The iterated local search optimisation strategy is given by Algorithm 16. In this
algorithm, a list is initialised through random generation, Line 1. It is then eval-
uated by the hybrid ant system. This evaluation consists of using the specified
list in a run of the hybrid ant system. The fitness at the end of the run is taken
as the fitness of the list.

The moveAccept function is used to update the prior fitness value, priorF it
and the prior list, tmpP , before starting the iteration process at Line 6. The
algorithm will perform some specified iterations, returning the best list as the
solver. A memory of the generated lists is used to prevent reusing previously
generated lists.
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Algorithm 16: Iterated Local Search

Input: h the hybrid ant system, max the max iterations, mp the rate of
perturbation

Result: bestList the best list for the hybrid ant system
1 init(tmpS);
2 memory = ∅;
3 bestF it = inf;
4 bestList = ∅;
5 fit = h.eval(tmpS);
6 priorF it = fit;
7 moveAccept(tmpS, tmpP, fit, priorF it, bestF it, bestList,mp);
8 it = 0;
9 while it < max do

10 tmpP =perturb(tmpS,memory, bestList);
11 fit = h.eval(tmpS);
12 moveAccept(tmpS, tmpP, fit, priorF it, bestF it, bestList,mp);
13 it+ = 1;

In this way, the search algorithm will gradually refine an optimal list con-
figuration although, because of the nature of the evaluation, this process is far
more computationally intensive than the non-hybrid version of the algorithm.
The biggest cost to this is the entire execution of the specific ant algorithm.

9.4.1 Perturbative Function

The perturbative function, given in Algorithm 17, is used to produce a new list
from an existing one.

Algorithm 17: Perturbation Function

Input: tmpS the current list, memory the list of known lists, bestList
the best list

Result: tmpP a new unique list
1 tmp = tmpS;
2 while memory.contains(tmp) do
3 tmp =pOperator(tmpS, bestList);

4 tmpP = tmp

This function will return a unique list not seen in the memory thus far. If the
size of the list is under 10, all of the unique lists could be determined relatively
quickly as the number of possibilities is relatively small (210). In this case, an
additional condition can be applied to end the loop if all possible lists have
already been generated where the new list is chosen randomly from the memory.
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9.4.2 Perturbation Operator

The perturbation operator, the mechanism by which a list is modified, Line 3
of Algorithm 17, is given by Algorithm 18. This operator is the mechanism that
produces the new list from the existing one.

The perturbation operator starts by calculating the numIndices variable.
This variable is calculated using the mp variable and indicates the number of
indices in the list that needs to be modified. On Line 7, modList is initialised to
hold all the indices of the current list and this is randomly shuffled.

ThemtList vector is then populated by some indices based on the numIndices
variable. This has created two sets of indices. The mtList vector contains all of
the indices in the list that need to be mutated and thus shifted around, Lines
13–19. The modList vector on the other hand determines which elements in the
list need to be taken from the bestList, (Lines 20–21). By combining these two
operations, a new unique list will be generated and returned by the operator.

Initially, the list generation process favours new permutations of the existing
list. Over time, the mtList vector will shrink in size because the mp variable will
decrease, thus increasing the proportion of the new list that is taken from the
bestList and applying an exploitative effect to the list as the iterations progress.

After this process, any of the remaining indices in modtList are used to
transfer over the values at the indices in the bestList to newList. The effect
of this is to transfer over elements from the best list into the current one. The
process will terminate when a unique list is generated.

The effect of this operator is heavily tied to the mp variable. The mp variable
controls the degree to which the generated list will be mutated by the operator.
When mp is high, there will be a lot of mutation, that is modification, in the
newList variable as most of the indices will shift to something else, facilitating
exploration. This mutation enables exploration as the list changes to incorporate
new elements.

However as time goes on, and mp decreases, increasingly the newList will
resemble the best-known list, facilitating exploitation as this best-known list in-
creasingly comes to be represented in the generated lists. This process is not total
however as some degree of exploration is needed to prevent a total stagnation of
the list.

An example of a list is given below

1,2,3,3,2,1

In this example, the list is made up of six elements. If the first element was in the
mtList, then it would be converted to the value 2. Otherwise, its value would
be taken from the bestList.
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Algorithm 18: Perturbation Operator

Input: tmp the current list, mp the rate of perturbation, bestList the
best list

Result: newList a new unique list
1 numIndices=mp*size(tmp);
2 newList=∅;
3 do
4 modList= ∅;
5 mtList= ∅;
6 newList=∅;
7 for i<size(tmp) do
8 modList.add(i);

9 shuffle(modList);
10 for i<numIndices do
11 mtList.add(modList.removeFirst());

12 newList=tmp;
13 for i<size(mtList) do
14 if newList[mtList[i]]==1 then
15 newList[i]=2;

16 if newList[mtList[i]]==2 then
17 newList[i]=3;

18 if newList[mtList[i]]==3 then
19 newList[i]=1;

20 for i<size(modList) do
21 newList[modList[i]]=bestList[[modList[i]];

22 while memory.find(newList)==false;

9.4.2.1 Move Acceptance The moveAccept function from Algorithm 16 is
used to determine whether to update the list and thus whether or not the new list
is accepted in the search. It is a type of move acceptance technique that is similar
to a simulated annealing move acceptance strategy [31] but with modifications.
It is given by Algorithm 19.

The move acceptance technique makes use of a parameter called mp which
refers to the rate of perturbation in determining whether to accept the current
state. If the fitness is a total improvement over the best fitness, then the solution
is accepted. If it is not better than the best fitness but it does improve on the
prior fitness, that is the fitness of the last meta iteration, then it is accepted.

In the part of the conditional logical, Lines 10–13, a random value r is gener-
ated in the range (0, 1) and then if r is less than mp, the move will be accepted.
Finally, line 14, adds one additional check to incorporate novel lists into the
memory.
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Algorithm 19: Move Acceptance

Input: tmpP the prior list, tmpS the current list, fit the current
fitness, priorF it the prior fitness, bestF it the best
fitness,bestList the best list, mp the rate of perturbation

Result: The current list and fitness are updated or not
1 if fit < bestF it then
2 bestF it = fit;
3 bestList = tmpS;
4 tmpS = tmpP ;
5 priorF it = fit;

6 else if fit < priorF it then
7 priorF it = fit;
8 tmpS = tmpP ;

9 else
10 r ∼ U(0, 1);
11 if r < mp then
12 tmpS = tmpP ;
13 priorF it = fit;

14 if memory.contains(tmpP ) == false then
15 memory.add(tmpP );

9.4.3 List Approximation

One of the issues regarding applying a meta-optimisation layer to an existing
hyper-heuristic algorithm is the high cost of evaluating a given list. The cost of
this evaluation scales with either larger lists. This would take the form of larger
lists that take longer to evaluate.

A solution to this is to develop a smaller list at less computational cost and
then expand that list as needed for larger iterations of the hyper-heuristic. This
is referred to as list approximation. More specifically, a smaller list is generated
by the ILS algorithm and then this list is expanded into a new, larger size that
can be used by the HACOH algorithm without incurring the larger costs of
development.

The approximation technique is one of circular addition. Once the initial list
is generated, elements from it are repeatedly added to the end of the initial list,
starting from the beginning again if the end is reached, until the list of the right
size is created.

For example, consider a list of size 5 < 2, 2, 3, 3, 2 > that is being expanded
to size 13. That new list would look like < 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3 >. The
initial list is repeatedly added to itself, element by element, until the correct
size is reached. This is not a perfect solution, as the larger the list being ap-
proximated, the less representative the approximation will be of a good list, but
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this method does enable large lists to be created from smaller lists, that are less
computationally intensive to generate.

9.5 Hybrid Control Parameters

The HACOH algorithm makes use of the same parameters as the HACO algo-
rithm, Section 5.7, with the exception that an additional parameter mp is needed
for the ILS algorithm operating in the meta layer.

This parameter is the rate of perturbation and it is used to decide to what
degree the perturbation operator can modify a list from one iteration to the
next. For these experiments, the value of mp will have an initial value of 0.9
with a final value of 0.1. The parameter will be modified using a decay function
like those of Equations 5.5 and 5.4.

The reason for this choice is to facilitate a strategy in the ILS that initially
favours producing diverse solutions before transitioning towards intensifying the
search around a single solution. More specifically, with these parameters, the
search process will initially favour generating widely unique lists but over linear
time, it will transition towards favouring making slight modifications to the best
solution found thus far. Hence, the search behaviour should be general enough
to provide a good solution for all problems without requiring specific parameter
tuning for each one.

9.6 Meta-Optimisation Parameters

To conduct the experiments described in Section 9.7, it will be necessary to
generate the input lists that will be required by the hybrid algorithms. This is
the meta-optimisation process required for the HACOH. This generation process
is necessary as generating the lists for each instance will be a costly and time-
consuming endeavour across all instances and domains.

The parameters listed below will be used for the creation of the initial lists. As
stated, an initial smaller list has to be generated first before it can be expanded
into the approximation of the larger list for other experimentation. Hence the
use of the reduced parameters here. These parameters are nk, the number of
ants, the number of runs, the number of iterations per run and the path limit.
The values are:

– nk: 10
– Number of Runs: 30
– Number of Iterations (ILS): 100
– Number of Iterations (AS): 100

The number of iterations (ILS) refers to the maximum number of iterations
allowed for the ILS to operate with. Given that operating the hybrid algorithm
is significantly more computationally expensive to run than the non-hybrid ver-
sions, a lower number of iterations is required to ensure the algorithm still ex-
ecutes within a reasonable time, with the given computational resources. The
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number of iterations (AS) refers to the number of iterations allowed for the hy-
brid algorithm to operate in the heuristic space. The choice of 100 iterations for
both the ILS and AS is reflective of the time-consuming and intensive process re-
quired to generate a list. The choice of 100 iterations for the AS is a large enough
set of iterations that can be expanded to meet the requirements for comparing
the HACOH algorithm to the HACO without the computational cost required
to generate an initial list with an equal amount of iterations to that used by the
HACO algorithm.

For the path limit pl the limit is either taken as the size of the problem
for the selection hyper-heuristics or 10/50 for the generation constructive and
generation perturbative hyper-heuristics respectively. The reason for this split
is the generation constructive hyper-heuristic is building a control function that
is applied to the problem whereas the generation perturbative hyper-heuristic
builds heuristics that must directly manipulate the problem to modify them and
thus merits a larger limit.

The choice of the number of ants nk is based on the number of ants chosen for
the prior HACO algorithms. The intent here is to establish parity between the
operating conditions of the HACO algorithms used by the HACOH algorithm
and the HACO algorithms that operate outside of this context.

These lists are generated with a single large instance from each of the datasets
for each of the domains. The idea is to generate a single list that can be used
for all of the instances in the benchmark set. As the list is generated before
the testing process, this saves enormously on computational effort as opposed
to generating a new list for each instance. It also means that the experimental
procedure will be the same as a non-hybrid algorithm as the hybrid will use
the list to determine which type of HACO algorithm (with which pheromone
map) as it executes its iterations in the same way as the non-hybrid algorithm.
The difference is that the non-hybrid algorithm only uses a singular type of
pheromone map during its execution whereas the HACOH can draw upon HACO
algorithms with all the types of pheromone maps. This is how the HACOH can
be compared to the non-hybrid HACO algorithms.

The instances for each of the domains are as follows:

– CVRP: A-n80-k10
– 1BPP: u250 00
– MSSP: C S2 I2
– QAP: sko64

In the case of the MSSP domain, the same instance is used across all of the
hyper-heuristics. To introduce additional robustness, each evaluation of a list
will take the average fitness of several runs (three in this case) to minimise the
effect of randomness on the results. That is, each list’s fitness will be the average
of three runs of that list instead of the normal single run.

Of course, the more computational resources that are used during the meta-
optimisation process, the greater the potential for improved results. However,
this will come with an increased computational cost. If the costs of the meta-
optimisation are too large, it becomes more efficient to simply test for the best
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pheromone map type to use in a non-hybrid HACO algorithm and this process
is designed with that in mind.

9.7 Experiments and Parameter Tuning

As the lists for the HACOH are generated before the experiments, the HACOH
then functions like another HACO algorithm for experimentation. The exception
of course is that during each iteration, the HACOH will execute one of three
HACO algorithms (each with a different pheromone map) instead of using the
same pheromone map as the non-hybrid HACO algorithms.

In terms of experiments, the HACOH algorithms are going to be subject
to several simulations for each type of hyper-heuristic. These experiments are
going to use the lists generated by Section 9.6. The parameters for these experi-
ments are the same as the ones for their respective non-hybrid hyper-heuristics.
Thus the HACOH can use the same experimental parameters as its non-hybrid
counterpart for each experimental trial. For example, the HACOH-SC algorithm
will use the same parameters as the HACO-SC algorithm and so on. Refer to
Sections 6.4, 7.9 and 8.7 for more details.

These values were chosen to provide a large enough sample of data for
the analysis. The number of iterations afforded to the HACO-GC algorithm is
smaller than the HACO-SC and HACO-SP due to the increased computational
effort required by the HACO-GC process. The choice of the number of ants is
based on available computing resources. The algorithm will be applied to all of
the domains of their respective non-hybrid counterparts.

9.8 Summary

This chapter presented the implementation details related to the hybridisation
method used to hybridise the different pheromone maps into a single algorithm,
the HACOH algorithm. It discussed various details related to the operation of
this algorithm from its basic operational structure, to optimisation strategies
and experiments. The next chapter will present the results of the experiments
conducted for this research.
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CHAPTER 10

Results and Discussion

10.1 Introduction

This chapter presents the results of the experiments conducted for this research.
Assessment criteria defined in Section 3.5.1 are used to report the results with
methods of analysis used to analyse and interpret their meaning. The rest of
the chapter is organised as follows. Section 10.2 presents the comparison of the
hyper-heuristics in terms of optimality. This comparison is made against the
algorithms using the 1D, 2D and 3D pheromone maps as well as the hybrid
algorithm. Statistical tests discussed in this section are presented in Appendix
A. Section 10.3 provides the comparison of the ant-based hyper-heuristics with
their different pheromone maps (including the hybrid algorithm) in terms of the
generality metric, the SDD score. Section 10.4 presents an analysis and com-
parison of the hyper-heuristics in terms of their runtimes. Section 10.5 provides
an analysis of the pheromone maps produced by the different algorithms in the
different domains. Section 10.6 presents a comparison of the HACO and HA-
COH algorithms against existing heuristics in the appropriate domain. Finally
the Section is concluded in Section 10.7.

10.2 Optimality Assessment of Different Pheromone
Maps

This section presents an assessment of the different ant-based hyper-heuristics
using different pheromone maps (1D, 2D and 3D) and the hybrid HACOH
algorithm. The purpose of this analysis is to determine whether the type of
pheromone map played a significant role in improving the performance of the
hyper-heuristic in question.

In terms of the assessment criteria for this section, the process makes use of
the methods presented in Section 3.5. The best and worst values, average and
standard deviation for each algorithm over 30 runs are presented.

This section will primarily consider the effectiveness of the different pheromone
maps in terms of their optimality. Additional analysis will be presented in later
sections. For reference, Avg and Std Dev refer to average and standard devia-
tion, which are additional metrics added to help contextualise the performance
of the different algorithms.
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Given the scale and scope of this section, some terms need to be clarified.
Firstly, reference to the ant-based hyper-heuristics will be prefaced by the type
of pheromone map that the algorithm uses. 1D, 2D and 3D refer to 1D, 2D
and 3D pheromone maps respectively. Therefore 1D HACO refers to the HACO
algorithm that makes use of a 1D pheromone map. The hybrid algorithm which
makes use of separate HACO algorithms with their pheromone map will be
referred to as the HACOH. Secondly, when a hyper-heuristic is used in a specific
domain, it can be useful to condense the type of hyper-heuristic. For example,
GP-CVRP is a generation perturbative hyper-heuristic in the CVRP domain.

10.2.1 SC-QAP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the SC-QAP domain. This analysis
will consist of two parts. The first is an assessment of the results breakdown per
each instance, followed by the statistical testing procedure outlined in section
3.5.4. For each instance, the average result (over the number of runs) is given,
as well as the best and worst value recorded in the run (min and max) and the
standard deviation (Std Dev). The best average values are indicated in bold.
Where applicable, the best fitness value is included as well.

10.2.1.1 Results Comparison Table 10.1 provides a breakdown of the re-
sults by instance for the ant-based hyper-heuristics and their pheromone maps
in the SC-QAP domain. The 3D HACO has the best result in the most number
of instances as indicated in Table 10.1.

In terms of the broad strokes, this seems to indicate that the 3D HACO
is superior to the other types but there are some things to consider. Firstly,
the 3D HACO is not universally superior in all instances. While its aggregate
performance is good, there are several instances where the results show that
another type of pheromone map is preferable.

For example, els19 is the instance with the largest objective value by magni-
tude. This instance is an outlier in terms of the range and magnitude of its fitness
values in comparison to the problem size. The instance is one of the smaller ones
but has the largest fitness range of any of the instances which can be more dif-
ficult to solve. In this case, the 1D HACO on average produces a result that
is much better than any of the other algorithms. Similarly, for kra30a, kra32,
scr12, chr15c and chr18b. All of these problems are relatively medium-sized in
the benchmark and the 1D HACO does better on them.

By contrast, the 2D HACO has a more variable spread with regards to where
it excels in the benchmark. Of note is the fact that the three largest problems are
where the 2D HACO has the best average value, although the margins between
the algorithms are much smaller.

The hybrid, HACOH, only has the best value on three instances, chr20c,
had20 and sko49. So it seems that the hybrid method is suboptimal here in
comparison to using the 3D HACO. The HACOH is also worse than the 1D and
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2D HACO algorithms. Of course, relying purely on averages can be misleading,
hence the statistical testing performed in the next section.

Table 10.1: SC-QAP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance Best Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
chr12a 9552 14326 10826 17908 1966 12737 10786 15298 1156 11861 9552 14286 1378 12750 10786 14442 1104
chr12b 9742 17689 11464 23304 3269 13288 11176 15680 1370 13421 11260 15948 1313 14506 12172 15854 1128
chr12c 11156 16613 14332 20684 1814 13754 12308 16074 1159 14478 12446 15938 956 14375 11770 15898 1203
chr15a 9896 21276 12806 34368 6408 21410 18536 23412 1475 21018 16270 24338 1776 21093 18196 24584 2117
chr15b 7990 25639 21324 32094 3272 20312 14142 24566 2433 20064 15494 23890 2227 21005 16328 24554 1978
chr15c 9504 18635 13444 28774 5079 19050 15798 21882 1650 19852 17268 22720 1610 20360 16074 23004 2257
chr18a 11098 31156 22572 43866 5360 31256 24988 34928 2899 29742 27422 32758 1577 31585 26020 34786 2578
chr18b 1534 1619 1534 2034 163 2099 1952 2364 124 2105 1984 2258 71 2142 1870 2316 125
chr20a 2912 5896 4324 6974 693 5141 4344 5442 330 5195 4484 5678 400 5363 4982 5930 272
chr20b 2298 5240 4282 6880 745 4927 3664 5584 494 4944 4308 5502 333 5165 4098 5928 407
chr20c 14142 53675 26304 68086 12188 50687 41252 55078 3518 51789 45132 58178 3855 49824 42698 55414 4269
chr22a 6156 8433 7646 10128 630 8393 7914 8878 279 7997 7554 8428 261 8372 7860 8708 223
chr22b 6194 8767 7546 9824 552 8727 8366 9194 247 8427 8008 8862 239 8525 7942 9092 335
chr25a 3796 11060 8812 13274 1153 10289 9522 11272 483 10047 9362 10782 441 10496 9970 10990 378
els19 17212548 18905494 17667270 21352158 1105618 20027870 19166704 21078192 600243 20297673 19071250 21346422 664365 20354413 19486438 21243018 573449
had12 1652 1705 1682 1734 13 1692 1680 1704 8 1692 1676 1708 9 1695 1684 1710 7
had14 2724 2841 2794 2884 24 2808 2766 2846 21 2815 2790 2848 18 2810 2786 2830 15
had16 3720 3914 3862 3988 32 3866 3838 3894 17 3852 3808 3888 24 3862 3832 3898 18
had18 5358 5619 5570 5672 32 5563 5524 5602 22 5561 5524 5588 17 5566 5522 5596 20
had20 6922 7300 7190 7384 54 7244 7216 7264 15 7243 7186 7278 25 7240 7190 7278 24
kra30a 88900 108663 103280 114170 2753 109320 106390 111060 1296 109721 108060 110960 1001 109325 106730 111410 1417
kra30b 91420 111617 108290 115830 2067 111623 109530 113750 1106 110908 107750 113170 1440 111439 107490 113300 1401
kra32 88700 110745 104250 121270 4028 115934 113130 118540 1344 115797 112740 118290 1488 115763 112580 117370 1552
scr12 31410 34952 32662 39370 2077 35003 33406 36398 771 35003 33620 35776 611 35064 33512 36382 842
sko42 15812 18257 17776 18550 206 18151 17974 18258 87 18161 17924 18318 104 18163 17888 18324 127
sko49 23386 26909 26630 27146 178 26659 26464 26804 117 26647 26534 26760 55 26626 26306 26836 164
sko56 34458 39769 38632 40278 408 39448 39152 39634 138 39408 39008 39748 190 39505 39094 39754 170
sko64 48498 55420 54650 55862 374 55039 54816 55242 115 55050 54718 55228 158 55053 54814 55250 126
sko72 66256 75378 74630 75828 384 74940 74654 75272 169 75029 74490 75356 247 75083 74758 75414 206
sko81 90998 103494 102694 104462 459 102934 102388 103340 276 103030 102590 103514 220 103065 102568 103354 260

10.2.1.2 Friedman Test The first part of the statistical testing procedure
outlined in section 3.5.4 is to conduct a Friedman test. The purpose of this test
is to determine the statistical significance of the comparison between the differ-
ent results. As this is a study of algorithm optimality, the tests are conducted
between the instances to determine where the exact differences lie.

Table A.3 provides the outcome of the Friedman Test as applied to the QAP
benchmark. In terms of the results, a total of 19 of the total 30 instances were
statistically significant. In this case, this test has shown that for the majority of
the QAP instances, the choice of which pheromone map to use has a meaningful
effect on the quality of the results.

In terms of the instances which failed to reach significance, as indicated by
the Do no Reject H0 outcome, the majority of these instances are on the smaller
side such as chr15a, chr15c, chr18a and so on. Sko42 and kra30a and kra30b are
the larger exceptions but it is apparent that in general, for some of the smaller
instances, the choice of pheromone map is less meaningful.

Els19 is one of the smaller problems with 19 elements, but it also has the
largest fitness value by magnitude. So partially, the significance of the differences
also relates to the complexity of the problem beyond simply the number of
elements considered. Nevertheless, the majority of the instances show meaningful
differences between the different pheromone maps in terms of their performance.
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10.2.1.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison Ta-
ble A.1 provides the post-hoc testing for the instances where significant differ-
ences were found via the Friedman Test.

The first comparison compares the 2D HACO to the 1D HACO. The results
show that H0 was rejected in the majority of instances except for a few instances.
These are chr18b, chr22a, els19 and kra32. The rejection of H0 indicates that the
2D HACO produced lower (and thus better) fitness values for those instances
than the 1D HACO. For some of these instances like els19 and kra32, the 1D
HACO produced the best value of any of the methods. However, when examined
as a whole, the overwhelming trend indicates that the 2D HACO outperformed
the 1D HACO in the SC-QAP domain. The effect size, in this case, is also telling
as most comparisons are at least 1.0 in magnitude, indicating a relatively large
difference between the two pheromone maps.

The next comparison is made between the 2D and 3D HACO algorithms.
In this case, all of the tests did not reject H0, and thus, this indicates that the
2D HACO performed worse than the 3D HACO for all of the instances where
the differences were meaningful. The effect sizes here are relatively, especially
in comparison to the first case, which indicates the magnitudes of the difference
are smaller, although still significant.

The third comparison is made between the 1D and 3D HACO algorithms. For
this comparison, the majority outcome is not to reject H0. There are some cases
where H0 is rejected, however. These are chr18b, els19 and kra32. This is similar
to the first case where the 1D HACO produced some of the better results for
these instances. The majority of the cases result in H0 not being rejected which
strongly indicates that the 3D HACO performed better than the 1D HACO
based on the null hypothesis. For most of the instances, the magnitude of the
effect sizes is at least 1.0 indicating a significantly large difference between the
groups.

10.2.1.4 Post-Hoc Analysis: Hybrid Comparison Table A.2 provides the
post-hoc testing comparing the HACOH to the non-hybrid HACO algorithms
for instances where significant differences were found via the Friedman Test.

The first comparison made in this test is against the HACOH and 1D HACO.
In the majority of instances, H0 was rejected with only four cases where it was
not. These are chr18b, chr22a, els19 and kra32. Based on the overwhelming
rejection of H0, it is clear that the HACOH algorithm performed better than
the 1D HACO. This is further corroborated by the magnitude of the effect sizes
between the comparisons, as they are generally large.

The next comparison is made between the HACOH and the 2D HACO.
Across all instances, H0 is not rejected and thus, the outcome of this comparison
strongly indicates that the HACOH algorithm performed worse than the 2D
HACO.

The final comparison is made between the HACOH algorithm and the 3D
HACO. In this comparison, again, H0 was not rejected. The outcome here is
therefore that the HACOH algorithm performed worse than the 3D HACO based
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on not rejecting H0 in all compared instances. The effect sizes for this comparison
are smaller than in the first case, showing a closer difference between the HACOH
and the 2D HACO and 3D HACO.

10.2.1.5 Analysis and Discussion The results of this testing procedure
indicate that there are meaningful differences between the 4 types of pheromone
maps considered in this research with regards to their effect on the performance
of ant-based hyper-heuristics in the SC-QAP domain.

Based on these results, there is enough statistical evidence to indicate that the
best performing pheromone map for the selection constructive hyper-heuristic
and domain, is the 3D pheromone map. The 2D HACO performed second best
with the worst method being the 1D HACO. Part of the results are skewed by
the statistical outlier of els19, but in aggregate, the 3D HACO performs better
than the others with the 2D HACO being slightly worse.

These results are unusual because they contradict the hypothesis regard-
ing the utility of the 1D pheromone map and its use in selection constructive
hyper-heuristics. The assumption regarding the 1D pheromone map was that its
condensation of the heuristic space would be ideal for cases where the hyper-
heuristic was operating in an environment with stochastic heuristics making
precision heuristic selection more difficult.

What these results indicate is that the 3D HACO is capable of overcoming
the problem of non-deterministic construction heuristics and refining a heuristic
selection that performs better than the other pheromone maps by the hyper-
heuristics for this domain. With a sufficient number of iterations, for a run,
the ability to retain more information about the heuristic space could result
in a filtering effect that is capable of sifting through what would otherwise be
statistical noise due to the non-deterministic construction heuristics.

10.2.2 SC-MSSP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the SC-MSSP domain. This anal-
ysis will consist of two parts. The first is an assessment of the results breakdown
per each instance, followed by the statistical testing procedure outlined in sec-
tion 3.5.4. For each instance, the average result (over the number of runs) is
given, as well as the best and worst value recorded in the run (min and max)
and the standard deviation (Std Dev). The best average values are indicated in
bold. Where applicable, the best fitness value is included as well.

10.2.2.1 Results Comparison In terms of the results presented in Table
10.2, there are several interesting outcomes. Firstly, the 2D HACO and 3D
HACO achieve the best result of the algorithms on a number of the smaller
problem classes. Specifically, between them, they get the best value for instances
in the first and second problem class of the MSSP benchmark. The distribution
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of these outcomes would suggest some parity between the algorithms when the
problem instances are small.

The second major insight is that the 1D HACO has the best result in all
instances starting from the last instance from the second class through all the
remaining classes. This carries with it an interesting implication about the nature
of the effect that the type of pheromone map has on the results. Namely, when
the problem classes are small, either a 2D or 3D pheromone map is generally
capable of producing good results when used in the hyper-heuristic. However
as soon as the problems grow in scale, then the 1D pheromone map becomes
overwhelmingly dominant in the hyper-heuristic for those types of instances.

In general, the 1D HACO produces the best results if viewed over the MSSP
benchmark as a whole, but it does better on the larger problems for this selection
constructive hyper-heuristic and domain. These results will be inspected more
deeply via statistical testing in the next section.

Table 10.2: SC-MSSP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance Best Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
C S 0 I0 25905 27468 26373 29221 824 26724 25905 27182 352 26792 26247 27538 317 26635 25905 27333 386
C S 0 I1 19829 21867 21074 23136 558 21479 20720 22070 333 21199 20191 21728 389 21460 20191 21836 480
C S 0 I2 22224 23370 22340 24977 751 22625 22224 23504 415 22632 22289 23017 236 22780 22224 23374 381
C S 0 I3 25531 26813 25531 28180 591 26699 26246 26995 252 27015 26119 27595 334 26734 26238 27565 346
C S 0 I4 19240 20595 19773 21638 550 20101 19799 20692 224 20028 19588 20409 215 20183 19831 20611 204
C S 1 I0 88856 99844 93444 105570 3261.5789 99716 96154 101558 1442 100093 96517 104001 1779 100691 98942 103676 1182
C S 1 I1 116974 130007 121366 135726 4007 128357 123634 131108 2141 128586 124144 131956 2515 129672 126769 131804 1625
C S 1 I2 66375 77499 74974 82514 2004 75781 73330 78202 1276 74799 72032 77141 1726 75270 71021 78197 1840
C S 1 I3 56796 66501 61913 69841 2473 63568 61138 65708 1542 63049.4 60395 65927 1404 63944 58760 66182 2115
C S 1 I4 82323 93868 88355 99363 3178 94952 91858 97528 1670 94017 91156 96094 1293 94829 89903 97942 2221
C S 2 I0 613810 760780 678420 814588 34344 766461 755417 778735 6358 766660 746132 778081 9617 771648 751923 781077 7400
C S 2 I1 511921 656832 590466 706732 43644 678719 655977 690827 8921 677368 653338 695634 11574 679943 659483 692178 10421
C S 2 I2 660073 791406 683718 884958 64683 832518 817300 841749 6656 829073 808214 843909 9949 832449 816975 844509 6674
C S 2 I3 668031 792233 715597 909702 58244 894537 876299 902355 7262 888342 853259 905444 12962 896210 887801 903989 5623
C S 2 I4 547405 688152 595529 741850 47026 714653 695966 725523 9067 720940 708394 735133 7655 712937 702060 727171 7388
C S 3 I0 2291111 3019516 2712995 3244447 157889.8715 3136898.733 3106890 3163746 15668 3139648 3092194 3167214 18569 3138025 3100799 3165635 16360
C S 3 I1 2442290 3165580 2778004 3454147 242104 3353435 3324246 3379732 17506 3361643.8 3322998 3397361 23729 3350548 3286919 3389557 30088
C S 3 I2 2325007 2979895 2663189 3160975 153791 3103248 3076596 3118292 14047 3089887 3033328 3142434 29853 3098779 3035000 3122538 24712
C S 3 I3 2537219 3279478 2854790 3476158 198376 3389864 3322181 3436963 26833 3394192 3360224 3425603 16416 3393305 3355733 3431294 23584
C S 3 I4 2340895 3116319 2737901 3306174 183675 3186347 3151536 3216700 17104 3188119 3106744 3243935 36379 3187066 3134330 3217456 24656

10.2.2.2 Friedman Test The results of the Friedman Test are shown in Table
A.4. These results are very different from those presented in Table A.3 as only
8 instances show meaningful statistical significance based on the results of the
Friedman Test. Therefore, only 8 of the 20 instances are meaningful enough to
perform post-hoc analysis on.

While this is an unusual result, most of the meaningful results are found in
the smaller problem classes (class 0 and 1). This would seem to indicate that for
larger problems, the difference between the pheromone maps is largely irrelevant
and that only for the smaller problems, should the choice of pheromone map be
an important decision.

10.2.2.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison The
results of the post-hoc analysis for the SC-MSSP domain are presented in Ta-
ble A.5. For the first comparison, between the 2D HACO and 1D HACO, the
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majority of instances reject H0, indicating that the 2D HACO has better results
than the 1D HACO. However, as noted in the prior section, these instances are
primarily in the smaller classes. For the larger problems, C S 2 I3 and C S 3 I2,
H0 is not rejected showing the utility of the 1D pheromone map over the 2D. The
effect sizes in this comparison also tend to be at least around 1.0 in magnitude,
demonstrating large differences between the two groups.

The second comparison is made between the 2D HACO and 3D HACO. In
this case, H0 is not rejected in all instances which very clearly indicates that is
worse than the 3D HACO. The magnitudes of the effect sizes are closer to the
medium level as well, which shows a weaker but still present distinction between
the two pheromone maps used in the hyper-heuristics.

The final comparison is made between the 1D HACO and 3D HACO. In this
case, H0 is not rejected for all the instances except for the last two, both of which
are from the larger classes. This indicates that the 1D pheromone map has worse
results on the smaller problems, but for larger problems, the 3D pheromone map
is better. The effect sizes are also similarly large.

10.2.2.4 Post-Hoc Analysis: Hybrid Comparison The results of the
post-hoc analysis for the SC-MSSP domain, in terms of comparing the hybrid
to the non-hybrid methods, are presented in Table A.6.

The first comparison is made between the HACOH and the 1D HACO. These
comparisons result in varied outcomes. Half of the outcomes were to reject H0
and the other half resulted in not rejecting H0. In this case, the majority of the
rejections of H0 are centred around the smaller problem classes. These results
indicate that the differences between the 1D HACO and the HACOH are highly
variable. In some cases, the 1D HACO will do better but in other cases, it will
not.

In the second comparison, between the HACOH and 2D HACO, H0 is not
rejected in all cases which indicates that the HACOH performed worse than the
2D HACO. The effect sizes are again around the medium level for most of the
instances.

The third comparison between the HACOH and the 3D HACO also has a
similar outcome in that all of the outcomes were to not reject H0 in all instances.
This indicates that the hybrid failed to beat the results of the 3D HACO. The
effect sizes for this comparison are also larger than in the previous case increasing
the magnitude of the differences between the two methods.

10.2.2.5 Analysis and Discussion The outcomes of this experiment are
complicated in terms of their implications. The most obvious issue is that in this
domain and for this hyper-heuristic, most of the comparisons failed to reach sta-
tistical significance which indicates that in this domain, the choice of pheromone
map is largely irrelevant.

However, that being said, there were still differences between the pheromone
maps when used in the hyper-heuristics and these trends are at least partially
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instructive in terms of how the pheromone maps should be used for hyper-
heuristics in this domain. Firstly, the use of the 1D pheromone map did produce
better results, albeit by a small margin, on the larger problems and so when
trying to solve larger SC-MSSP instances, using the 1D pheromone map should
be the first consideration.

For the smaller problems, the 2D or 3D pheromone have approximately equal
capacities when used in hyper-heuristics across a wide array of these instances
with the 3D pheromone map having a slight advantage. So in practice, any
type of pheromone map may be used although the 1D pheromone map is the
simplest to deploy out of the four types presented here. The 1D pheromone map
is also less computationally expensive in comparison to the other pheromone
maps when used in the ant-based selection perturbative hyper-heuristic.

10.2.3 SP-QAP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the SP-QAP domain. This analysis
will consist of two parts. The first is an assessment of the results breakdown per
each instance, followed by the statistical testing procedure outlined in section
3.5.4. For each instance, the average result (over the number of runs) is given,
as well as the best and worst value recorded in the run (min and max) and the
standard deviation (Std Dev). The best average values are indicated in bold.
Where applicable, the best fitness value is included as well.

10.2.3.1 Results Comparison Table 10.3 presents the results of the exper-
iments with hyper-heuristics using different pheromone maps in the SP-QAP
domain. The most immediate implication of the results is that the 2D and 3D
HACO algorithms generally both can produce the most optimal solution but for
different instances. The 1D HACO and the HACOH are rarely able to compete
in terms of producing the best solutions, with the HACOH only having the best
result for the sko81 instance.

In terms of the grouping of these results, the 2D HACO tends to produce
the best result on the smaller problems like chr15–ch22. It is certainly capable
of producing the best result in larger problems like kra30b but generally, the
smaller problems are where it does better.

The 3D HACO, by comparison, does do better on the larger problems. For the
sko instances, it has the best solution for three out of the five instances. It also
finds the best solution on the els19 instance which is one of the more complicated
ones in the benchmark. While the 3D HACO can produce good solutions for
smaller instances like chr12b, it seems better suited for larger instances.
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Table 10.3: SP-QAP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance Best Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
chr12a 9552 13351.8667 11566 15864 1078.631 11760.9333 9948 12606 762.1004 11822.2667 9938 12764 822.7719 12446.1333 11190 13258 588.1115
chr12b 9742 14293.6 12220 18276 1548.8101 12256.9333 11048 13986 787.1612 12119.2 10102 12978 755.7826 12383.4667 10692 13512 911.3856
chr12c 11156 13383.6 11856 14658 878.6373 12969.7333 12396 13884 427.0543 13185.7333 12048 14376 730.683 13328.8 12584 14232 461.7036
chr15a 9896 18855.0667 15860 24488 2005.8645 16326.8 13672 17688 1013.1904 16016.1333 14866 17778 807.1967 16285.7333 14934 18096 863.1351
chr15b 7990 18250.5333 14860 21794 2064.172 15510.2667 13326 17028 1078.571 15577.3333 13330 16868 870.0698 16097.8667 13586 18062 1400.4106
chr15c 9504 19475.2 14342 23538 2352.5249 16426.5333 14978 19230 984.4605 16514.6667 14768 18050 1096.9716 17168.2667 15426 18688 975.3818
chr18a 11098 29251.4667 24874 32436 2127.3975 23853.4667 21904 26018 1251.8588 22998.6667 19232 26590 1957.8059 24286.8 20174 27628 2145.4518
chr18b 1534 2169.2 1944 2362 105.9482 2017.7333 1880 2074 66.3018 2036 1936 2136 53.4362 2080.5333 2010 2148 45.0109
chr20a 2912 4677.2 4262 5146 257.0801 4169.8667 3704 4572 285.7526 4354.5333 4060 4672 172.9087 4348 3984 4734 225.8976
chr20b 2298 4763.4667 4168 5420 347.4828 4115.4667 3390 4444 276.9688 4168.6667 3694 4582 272.6271 4365.2 3910 4820 253.9998
chr20c 14142 44532.9333 36228 49874 3833.7586 37269.3333 33444 40414 2121.8478 37558.8 28996 41434 3057.8935 38427.6 34756 41812 2027.6274
chr22a 6156 8593.6 8004 9346 374.0406 8017.2 7666 8240 156.402 8074.1333 7800 8312 142.6674 8095.6 7668 8392 184.0407
chr22b 6194 8371.7333 7878 8820 253.5867 7996.4 7642 8280 180.9107 8006.9333 7778 8282 157.7772 8136.5333 7710 8348 175.1366
chr25a 3796 10481.6 9116 11286 558.8014 9405.4667 7938 10104 506.8646 9618 8450 10212 402.9605 9634.2667 8506 10288 502.3931
els19 17212548 21578297.87 20023460 22843744 776643.6208 20082429.47 18846466 21131534 663977.339 19695913.87 18877874 20234732 382723.1288 20504867.33 18190174 21911252 873611.6546
had12 1652 1685.6 1668 1706 10.6422 1672.8 1662 1682 6.4498 1670.8 1656 1680 6.6676 1673.3333 1662 1688 7.1979
had14 2724 2804.1333 2770 2864 27.2813 2769.7333 2756 2780 8.94 2770.9333 2748 2794 15.4155 2778.6667 2758 2792 9.4617
had16 3720 3838.1333 3802 3866 19.9924 3804 3768 3830 16.2129 3804 3766 3826 17.8406 3818.1333 3780 3840 18.2751
had18 5358 5537.7333 5482 5594 34.7799 5502.8 5458 5524 18.5287 5501.2 5456 5538 23.3214 5504.6667 5460 5542 22.9492
had20 6922 7208 7124 7254 31.6047 7145.3333 7082 7182 32.2638 7138 7086 7180 27.1504 7159.4667 7094 7202 30.4956
kra30a 88900 113349.3333 111210 116110 1224.0534 110398 107730 112060 1117.4346 110149.3333 107450 111610 1578.1475 110405.3333 107440 111780 1169.6389
kra30b 91420 114261.3333 109970 117460 1785.7366 111251.3333 107690 113730 1507.8597 111992.6667 109860 114010 1036.0189 112551.3333 110710 113580 873.0559
kra32 88700 109326.6667 107760 111380 1000.7902 107829.3333 106360 109160 889.6827 107772.6667 105260 109360 1109.0824 108130.6667 105060 109660 1436.2176
scr12 31410 34472.6667 33252 35806 721.0039 33252.4 32596 34238 494.1765 33586.9333 32662 34232 495.2984 33295.0667 31410 34288 824.9931
sko42 15812 18411.2 18234 18526 94.1543 18221.0667 18160 18306 47.7485 18230 18038 18328 81.6368 18278.6667 18108 18370 73.117
sko49 23386 26935.8667 26730 27084 107.4948 26738 26532 26888 121.479 26742.1333 26574 26886 92.048 26783.2 26572 26964 116.0167
sko56 34458 39848.8 39260 40172 234.7446 39661.6 39418 39866 106.4631 39606 39430 39792 105.6463 39666.2667 39230 39898 195.3149
sko64 48498 55568.9333 55124 55786 190.4564 55313.4667 54984 55478 168.0586 55238 54990 55430 124.3957 55287.4667 55096 55508 140.5712
sko72 66256 75718.2667 75422 76090 175.0508 75381.8667 75002 75736 192.6514 75322.8 74982 75564 170.0887 75414.4 74994 75764 236.927
sko81 90998 103565.8667 103012 104010 307.356 103099.7333 102612 103396 220.5912 103126.2667 102668 103440 239.036 103080 102694 103498 255.4548

10.2.3.2 Friedman Test The results of the Friedman Test in the SP-QAP
domain are presented in Table A.7. In terms of the results, the testing has
demonstrated statistically significant differences, the rejection of H0, in all in-
stances save chr12c which is one of the smallest problems. The instance stands
out as unusual as H0 was rejected in the other two ch12 instances. However, the
overwhelming majority of the instances showed significant statistical differences.

In general, the p values for these tests are large, well below 0.05. This indicates
a very strong rejection of H0 and gives strong evidence for there being differences
between the effectiveness of applying the different pheromone maps. The post-
hoc analysis presented in the next section will clarify those differences.

10.2.3.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison The
results of the post-hoc analysis for the SP-QAP domain are presented in Table
A.8. The first comparison is made between the 2D HACO and 1D HACO. There
is a conclusive rejection of H0 across all instances in the comparison. This in-
dicates that the 2D pheromone map performed better than the 1D pheromone
map when used in hyper-heuristics across essentially the entire QAP benchmark.
Furthermore, the effect sizes also indicate very large magnitudes of differences
between the two groups most of the effect sizes are at least larger than 1.0 which
is a large effect size for this comparison.

In the second comparison, between the 2D HACO and 3D HACO, all of
the outcomes are to not reject H0. This would indicate that the use of the 2D
pheromone map is either greater than or equal to the 3D pheromone map when
used in hyper-heuristics in the majority of the instances in the dataset. The
effect sizes here are very useful because they are generally much smaller than in
the first case. This would indicate that while there are some stronger differences,
such as chr20a, where the differences between the 2D and 3D pheromone maps
are more pronounced, in general, they are far more equivalent than apart.
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Finally, the third comparison is made between the 1D HACO and 3D HACO.
In this comparison, H0 is not rejected in all instances as it was in the previous
case. Unlike the prior case, the effect sizes here are much larger, all being at least
larger than 1.0. Therefore this gives strong evidence to the notion that the 1D
pheromone map is much worse, in terms of optimality than the 3D pheromone
map when used in hyper-heuristics in the majority of instances in the SP-QAP
benchmark.

10.2.3.4 Post-Hoc Analysis: Hybrid Comparison Table A.9 presents the
results of the post-hoc analysis of the hybrid compared to the non-hybrid algo-
rithms for the SP-QAP domain. In terms of the outcomes, the results closely
mirror that of the prior testing. Firstly, between the hybrid and 1D HACO, the
rejection of H0 in all instances indicates (in conjunction with the generally large
effect sizes) that the HACOH performed better than the 1D HACO.

Secondly, in the comparison between the HACOH and the 2D HACO, H0
was not rejected for any instance. The effect sizes are smaller than in the first
case but still generally large and so the HACOH algorithm failed to beat the 2D
HACO in terms of optimality in the SP-QAP benchmark.

Finally, the third comparison between the HACOH and 3D HACO shows a
similar outcome to the second comparison with no rejection of H0 occurring for
any instance. The effect sizes are generally also substantive indicating as well
that the HACOH failed to outperform the 3D HACO in the SP-QAP domain.

10.2.3.5 Analysis and Discussion The results of the SP-QAP experiments
are interesting for several reasons. Firstly, the 1D pheromone map is the worst
performing of the pheromone maps when used in hyper-heuristics for this do-
main. This is followed by the HACOH delivering the next worst performance in
terms of optimality.

One of the assumptions regarding the 1D pheromone map was that it would
be better able to manage in an environment where stochastic heuristics make
feedback information from heuristic selections unreliable. However, the data has
not borne this out and instead the opposite is true. The 2D and 3D HACO algo-
rithms generally perform better in this domain than the 1D HACO or HACOH.

Rather it seems to be the case that the additional information-carrying ca-
pacity of the 2D and 3D HACO algorithms can help deal with the potentially
stochastic perturbative heuristics. However, the difference between these two
pheromone map types when used in hyper-heuristics is much more marginal.

For smaller problems generally using the 2D HACO seems to deliver good
results whereas the 3D HACO tends to do better on the larger problems. On
pure aggregate, the 3D HACO does deliver better results across the entire bench-
mark but this is offset by strong 2D HACO performances amongst the smaller
instances. This has demonstrated that there are suboptimal choices for the
pheromone maps in the SP-QAP domain, but that the choice of the optimal
pheromone map is much more difficult to discern.
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10.2.4 SP-MSSP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the SP-MSSP domain. This anal-
ysis will consist of two parts. The first is an assessment of the results breakdown
per each instance, followed by the statistical testing procedure outlined in sec-
tion 3.5.4. For each instance, the average result (over the number of runs) is
given, as well as the best and worst value recorded in the run (min and max)
and the standard deviation (Std Dev). The best average values are indicated in
bold. Where applicable, the best fitness value is included as well.

10.2.4.1 Results Comparison Table 10.4 presents the results of the exper-
iments with ant-based hyper-heuristics using different pheromone maps in the
SP-MSSP domain. These results show that generally, the 1D HACO and HA-
COH are on the worse side of optimality as they rarely produce the best result
for the majority of instances. The HACOH did get the best results on the two
largest instances C S 3 I3 and C S 3 I4 as well as the smallest instance C S 0 I0
but in general, it struggles in this domain.

Therefore the two strong contenders are the 2D HACO and 3D HACO, as was
previously the case in the SP-QAP domain. The 3D HACO does particularly well
on the third class of problems while the 2D HACO does better on the first two
problem classes. In general, the two methods are relatively close in performance
against one another.

Table 10.4: SP-MSSP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance BEST Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
C S 0 I0 25905 27189.8667 26325 28045 509.2921 26348.7333 25967 26753 238.7307 26377.6 25905 26828 261.6961 26348.6667 25905 27080 397.5719
C S 0 I1 19829 21120.1333 19829 21751 553.877 20369.8 20080 21060 316.6213 20441.6 19829 20971 321.6075 20444.4 19829 21052 404.7284
C S 0 I2 22224 22718.2667 22224 23528 418.5711 22296.2 22224 22388 47.8856 22308.9333 22224 22388 52.9966 22321.9333 22224 22388 61.6516
C S 0 I3 25531 26314.8 25664 26564 275.5001 25747.7333 25531 25862 105.3616 25686.4 25531 25933 129.6885 25835.6667 25531 26239 199.6013
C S 0 I4 19240 20272.8 19836 20770 252.1143 19483.8667 19240 19833 198.7838 19583.2 19240 19836 219.8074 19557.5333 19240 19898 211.7926
C S 1 I0 88856 98926.8 96816 101781 1206.4319 96470 94602 97796 1032.9478 96007.4667 94130 98676 1214.0065 95977.6667 92287 98379 1783.4201
C S 1 I1 116974 131052.5333 129335 132869 1148.703 127328.4 122997 129763 1882.3003 127423.3333 123652 129332 1568.8867 128162.4 126430 129259 810.948
C S 1 I2 66375 72224.7333 68634 74715 1928.8483 69672.1333 68121 71626 1064.182 69757.8667 67992 70965 967.5343 69988.6667 66741 71644 1394.8741
C S 1 I3 56796 63258.3333 59872 67611 2234.5733 60960.4 58515 62654 999.5871 60582.3333 59540 61147 470.1492 61243.8 58996 63496 1397.5288
C S 1 I4 82323 92565.6 88307 95599 1695.0915 89496.1333 87716 90839 985.988 88827.8 86720 90807 1109.4062 90187.2667 88450 91278 852.0984
C S 2 I0 613810 707042.8 687561 719453 8761.8527 696522.4667 686315 702720 4273.1914 697855.1333 688880 705280 5001.8518 698776.8 686059 705435 5215.428
C S 2 I1 511921 605827.2667 591522 618470 7178.4845 597074.1333 589672 601974 3411.4673 596519.2 588543 599518 2892.451 598139.2667 592867 602429 2825.4484
C S 2 I2 660073 721929 709968 736437 8048.4206 712042.1333 709202 714288 1335.1474 711546.6667 702987 716708 4010.5049 712056.6667 707988 715942 1967.3728
C S 2 I3 668031 786377 772943 795017 5283.6429 781158.8667 777880 784474 2161.3576 779075 767328 785193 5421.4623 782992.8 770096 786849 4477.7584
C S 2 I4 547405 640455.9333 625325 646744 7099.7889 631578.9333 624338 637732 3947.8064 630153.8667 622031 636522 4165.7064 632086.3333 626255 638429 3938.1288
C S 3 I0 2291111 2663579.4 2645406 2681691 11114.3934 2639328.733 2628154 2651694 6090.2983 2639427.867 2624951 2657156 9907.8482 2645072.467 2611426 2656844 10375.4233
C S 3 I1 2442290 2813953.667 2789793 2830957 10828.2258 2788534.733 2777686 2798679 5869.8223 2790204.933 2780452 2800301 5030.1331 2790025.4 2782182 2796155 4006.0438
C S 3 I2 2325007 2633621.333 2538317 2695693 36624.2042 2639906.2 2597360 2660539 15956.5951 2639216.2 2614590 2657273 13445.5966 2643642.2 2628116 2655992 9487.5216
C S 3 I3 2537219 2907968.733 2891167 2920026 8695.004 2887622.6 2864390 2902078 9932.1433 2890120.533 2883021 2895284 4339.3175 2887228.733 2873013 2902870 8048.1733
C S 3 I4 2340895 2626296.4 2617731 2636589 5214.3936 2612074.6 2597719 2622755 5495.6773 2614917 2606230 2622665 4311.7584 2611502.933 2597719 2624122 9166.7474

10.2.4.2 Friedman Test The results of the Friedman Test for the SP-MSSP
domain are given in Table A.10. The results show a consistent trend of rejecting
H0, except for the C S 3 I2 instance where H0 is not rejected. However, for all
other instances, H0 is solidly rejected with low p values. This indicates that in the
majority of the SP-MSSP benchmark instances, there is a significant difference
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between the different pheromone maps when used in hyper-heuristics for this
domain.

10.2.4.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison Ta-
ble A.11 presents the results of the post-hoc analysis for the SP-MSSP domain
between the non-hybrid HACO algorithms. The post-hoc analysis in this domain
is very similar to the one conducted in the previous SP-QAP domain in several
ways.

Firstly, H0 is rejected in all instances in the comparison between the 2D
and 1D HACO. This, coupled with the very large effect sizes, strongly indicates
that the 2D HACO is better than the 1D HACO in this domain. Secondly, H0
is not rejected in any instance in the comparison between the 2D HACO and
3D HACO. Correspondingly, the effect sizes are much smaller and this more
strongly indicates that the difference between the 2D and 3D pheromone maps,
when used in hyper-heuristics for the SP-MSSP domain, is relatively minimal.
Finally, in the case of the comparison between the 1D and 3D HACO, H0 is
again not rejected in any of the instances. However, in this case, the effect sizes
are much larger as was the case for the first comparison, and this indicates that
the 1D pheromone map is worse than the 3D pheromone map when used in
hyper-heuristics for the SP-MSSP domain.

10.2.4.4 Post-Hoc Analysis: Hybrid Comparison Table A.12 presents
the results of the post-hoc analysis of the hybrid compared to the non-hybrid
algorithms for the SP-QAP domain. The results of the post-hoc analysis are very
similar to the prior SP-QAP domain in terms of the outcomes and implications.

The rejection of H0 in all cases in the comparison between the HACOH
and 1D HACO, coupled with the large effect sizes, indicates that the HACOH
performed better than the 1D HACO. In the comparison with the HACOH and
the 2D HACO, however, H0 is not rejected for any instance. The effect sizes
in this comparison are also generally medium to strong in their magnitude and
indicate that the HACOH is generally (but not massively) worse than the 2D
HACO. Finally, H0 is again not rejected for any instance in the comparison
between the HACOH and the 3D HACO. The effect sizes are somewhat more
variable in this comparison, especially in the first two instances, but large enough
to indicate that the HACOH is worse than the 3D HACO for the SP-MSSP
domain.

10.2.4.5 Analysis and Discussion The HACO and HACOH algorithms
have proven remarkably consistent when applied to the SP-QAP and SP-MSSP
domains in terms of their results. In both sets of experiments, the outcomes
whilst not identical, are extremely similar. That is, in both experiments, the 1D
HACO was the worst-performing method with the HACOH being the second-
worst and the difference between the 2D and 3D HACO being relatively close,
with a slight edge towards the 3D HACO that is offset by the larger computa-
tional requirements for using a 3D pheromone map in the hyper-heuristic.
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It was hypothesised during the design of the 1D HACO that the compressed
heuristic space would be better able to navigate the selection space because it
would be easier to search by its reduced size. Furthermore, the non-deterministic
behaviour of many of the heuristics (constructive or perturbative) would hamper
the abilities of the 2D and especially 3D HACO algorithms to refine a good
heuristic selection as one set of selections would not necessarily be consistent
from execution to execution.

In practice, however, these results demonstrate that in fact, the 1D pheromone
map is unsuited for this type of hyper-heuristic, consistently demonstrating poor
performance regardless of the domain. While the 1D pheromone map could be
employed by hyper-heuristics in the SC-MSSP domain, in both selective hyper-
heuristic domains, it proved suboptimal, along with the HACOH.

2D and 3D pheromone maps have been demonstrated to be optimal for this
type of hyper-heuristic. A large part of this can be attributed to the larger ca-
pacities of both (but especially the 3D) pheromone maps to retain and structure
heuristic information. With sufficient iterations, these pheromone maps will be
able to filter out enough information to derive better more optimal structures
of heuristic information. While the 1D HACO and HACOH are not optimal for
this type of hyper-heuristic, it may also be true that the real limits between the
2D and 3D pheromone maps are less meaningful as well.

10.2.5 GC-1BPP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the GC-1BPP domain. This anal-
ysis will consist of two parts. The first is an assessment of the results breakdown
per each instance, followed by the statistical testing procedure outlined in sec-
tion 3.5.4. For each instance, the average result (over the number of runs) is
given, as well as the best and worst value recorded in the run (min and max)
and the standard deviation (Std Dev). The best average values are indicated in
bold. Due to a large number of instances, some of the results have been further
subdivided by the specific subsets in the 1BPP benchmark for the sake of clarity.

10.2.5.1 Results Comparison Table 10.5 presents the results of the exper-
iments with ant-based hyper-heuristics using different pheromone maps in the
GC-1BPP domain.

The results in Table 10.5 that the best performing hyper-heuristic is the
HACOH. It achieves the best average fitness over all of the instances in the
sub-benchmarks (u120, u250, u500, u1000 and HARD) when compared to the
1D, 2D and 3D pheromone map. The 1D HACO performs the worst across all of
the sub-benchmarks with the 3D HACO doing better and the 2D HACO being
second. The average value represented in Table 10.5 represents the aggregate
fitness value for every instance in the given sub-benchmark so this strongly
indicates that the HACOH was the most algorithm for the GC-1BPP domain.
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Table 10.5: HACO-GC 1BPP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
u120 1.135 1.037 1.200 0.048 1.028 1.012 1.087 0.022 1.059 1.014 1.121 0.033 1.022 1.011 1.074 0.018
u250 1.136 1.022 1.194 0.054 1.029 1.013 1.082 0.020 1.049 1.019 1.109 0.028 1.022 1.012 1.059 0.013
u500 1.140 1.027 1.203 0.057 1.026 1.014 1.070 0.015 1.041 1.016 1.099 0.022 1.020 1.011 1.043 0.009
u1000 1.127 1.020 1.202 0.066 1.025 1.012 1.072 0.016 1.035 1.014 1.074 0.017 1.017 1.007 1.033 0.007
HARD 1.098 1.070 1.142 0.021 1.064 1.041 1.091 0.013 1.078 1.052 1.103 0.017 1.063 1.036 1.093 0.015

10.2.5.2 Friedman Test The results of the Friedman Test for the GC-1BPP
domain are given in Tables A.13–A.16. Despite the number of instances that
comprise the benchmark set for the 1BPP problem, the outcome of the Friedman
Test in all results was to reject H0. This heavily indicates that the type of
pheromone map is statistically significant when considering which pheromone
map to use in hyper-heuristics for the GC-1BPP domain. The post-hoc analysis
in the next section provides additional clarity on the nature of the differences
between the pheromone maps as they pertain to the GC-1BPP domain.

10.2.5.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison Ta-
bles A.17–A.18 presents the results of the post-hoc analysis for the GC-1BPP
domain between the non-hybrid HACO algorithms.

Despite a large number of instances being compared, when it comes to the
comparison between the 2D HACO and 1D HACO, there is only a single instance
that results in H0 not being rejected. That is the HARD0 instance, the first
instance of the HARD sub-benchmark set. In all other cases, H0 is rejected.
This would indicate that the HARD0 instance is more of an outlier to the general
statistical trend of the 2D HACO performing better than the 1D HACO across
the entirety of the 1BPP benchmark set. This is further corroborated by the
large effect sizes showing which highlight the differences further.

In the second comparison, between the 2D and 3D HACO, the results are
much more mixed. In this case, there are 60 rejections of H0 and 30 instances
where H0 is not rejected. The majority of instances across the benchmark still
result in a rejection of H0. In this case, the rejections of H0 are primarily clus-
tered in the u120 and u500 sub-benchmarks whereas in the u500, u1000 and the
HARD sub-benchmarks, it is more common to find H0 not being rejected. This
implies that for the smaller 1BPP problems, the difference, when used in hyper-
heuristics, between the 2D and 3D pheromone map is much more in favour of the
2D pheromone whereas, when used in hyper-heuristics for the larger problems,
the 3D pheromone map is more likely to succeed. Although in totality, the 2D
pheromone map is better when used in hyper-heuristics when viewed across the
entire benchmark.

In the final comparison between the 1D HACO and 3D HACO, H0 is not
rejected for all instances in the 1BPP benchmark. This indicates that the 1D
pheromone map is worse than the 3D pheromone map when used in hyper-
heuristics for all instances in the benchmark. The effect sizes are also generally

113



large enough to further indicate that the 1D pheromone map performed poorly
in comparison to the 3D pheromone map when used in hyper-heuristics for the
GC-1BPP domain.

10.2.5.4 Post-Hoc Analysis: Hybrid Comparison Tables A.19–A.20 present
the results of the post-hoc analysis of the hybrid compared to the non-hybrid
algorithms for the GC-1BPP domain. As in the prior section, the results are
split into multiple tables for clarity.

In the first comparison between the HACOH and the 1D HACO, H0 is re-
jected for all 90 instances. Therefore it is apparent that the HACOH algorithm
outperformed the 1D HACO as H0 was rejected in all instances and the magni-
tudes of the effect sizes are all quite large. This indicates that the hybrid algo-
rithm was preferable to using a hyper-heuristic with the 1D pheromone map.

For the second comparison, between the HACOH and the 2D HACO, the
differences are more pronounced and less one-sided. Specifically, there are 22
instances where H0 is rejected and 68 instances where H0 is not rejected. In
totality then, H0 is not rejected in the majority of instances. The implication is
that the HACOH is either worse than or equal to the 2D HACOH in the major-
ity of instances. Broadly speaking, the cases where H0 is rejected are distributed
throughout the entire benchmark so the effects are not localised entirely to a
single sub-benchmark. The effect sizes are generally moderate, especially con-
cerning the other comparisons. Therefore is more likely that the 2D HACO and
the HACOH are closer in parity rather than that one is better than the other as
in purely aggregate terms, the HACOH achieves the best results on 75 instances
out of the entire benchmark. Therefore the 2D HACO comes much closer in
performance to the HACOH but the HACOH holds a slight advantage.

For the final comparison between the HACOH and the 3D HACO, H0 is not
rejected for 5 instances with the other 85 instances being a rejection of H0. One
of these instances is u500 04, which stands as an outlier as no other instances fail
to reject H0 in that sub-benchmark. However, in the HARD sub-benchmark, the
remaining cases of H0 not being rejected are found. This would indicate that in
the HARD sub-benchmark, the 3D HACO is better than, or at least more equal
to the HACOH in performance. In all other instances, H0 was rejected and the
large effect sizes indicate that the HACOH is better than the 3D HACO by a
wide margin.

10.2.5.5 Analysis and Discussion The GC-1BPP domain is in many ways,
the most complicated domain that is considered in this research. It has the most
number of instances and some of the most complicated (especially in terms of
size) problems. Therefore, the task of generating new construction heuristics for
this domain is not an easy one. In this case, the 1D HACO proves that it is
the least suited of the hyper-heuristics in this domain, with the worst results on
average across the entire benchmark, followed by the 3D HACO.

Surprisingly, the 2D HACO is the next best performing hyper-heuristic with
the HACOH taking the best position amongst the various algorithms. This is
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a surprising result because it was hypothesised that the larger, 3D pheromone
map would be able to do better in this domain. After all, it is larger and a more
expanded pheromone map would be able to retain (and thus refine) heuristic
information. While it does outperform the 1D HACO by a wide margin, which
indicates that some information capacity is good, the 2D HACO outperforms
it. This indicates that there is a limit to how useful that additional heuristic
information is before it becomes more akin to noise than useful information.
The 2D pheromone map has more heuristic information capacity than the 1D
pheromone map, but less than the 3D pheromone map. Therefore with enough
iterations, it can also explore the space as well as the 3D but not be as bogged
down searching in the larger space that comes with using the third dimension.

This also contextualises the relative success of the hybrid. As the HACOH
makes use of all three pheromone maps in separate HACO algorithms, though
not in equal proportions, it can benefit from all three map types. The best input
list combination made use of the 2D pheromone map the most, followed by a
smaller proportion of the 3D pheromone map with the minority pheromone map
used being the 1D pheromone map. While the HACOH does produce the best
results out of the given hyper-heuristics, it is highly dependent on the input list.
Therefore this also means that in cases where it would be impractical to use the
HACOH, the 2D HACO could be used instead.

10.2.6 GC-MSSP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the GC-MSSP domain. This anal-
ysis will consist of two parts. The first is an assessment of the results breakdown
per each instance, followed by the statistical testing procedure outlined in sec-
tion 3.5.4. For each instance, the average result (over the number of runs) is
given, as well as the best and worst value recorded in the run (min and max)
and the standard deviation (Std Dev). The best average values are indicated in
bold. Where applicable, the best fitness value is included as well.

10.2.6.1 Results Comparison Table 10.6 provides a breakdown of the re-
sults by instance for the hyper-heuristics with different pheromone maps in the
GC-MSSP domain. The results demonstrate that the 2D HACO can find the
most optimal value in the majority of the instances in the benchmark. There
are some instances where the best value is achieved by the 3D HACO such as
C S 0 I1, C S 1 I4 and C S 2 I2. These are however in a minority in comparison
to the 2D HACO. It is apparent that, from these results, the best pheromone
map for hyper-heuristics in this domain, is the 2D pheromone map, in contrast
to the 1D and 3D pheromone maps or the hybrid algorithm.
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Table 10.6: GC-MSSP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance BEST Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
C S 0 I0 25905 26680.4667 25967 27334 260.0266 26256.6667 25905 26677 234.4634 26369.5333 25905 26677 255.4922 26350.6667 25905 26677 303.2909
C S 0 I1 19829 22020.3333 21358 22917 348.1222 21805.0667 21358 22056 253.7224 21763.0667 21074 22056 350.7228 21804.7333 21358 22056 301.0625
C S 0 I2 22224 23744.2667 23149 24132 301.1927 23117.8667 22224 23492 337.9913 23229.1333 22766 23592 236.3127 23237.9333 22572 23746 360.1161
C S 0 I3 25531 27649.5333 26778 28283 389.3364 27045.4 26333 27161 204.3879 27090.0667 26778 27223 102.9448 27110.9333 26622 27670 227.7271
C S 0 I4 19240 20840.8 19853 21228 467.3141 20105.5333 19853 20266 171.2103 20140.6 19853 20631 242.3934 20198 19853 20467 140.5393
C S 1 I0 88856 94150.2667 89847 98535 2333.2572 92286.8667 91044 93406 786.0308 92313.0667 88856 93406 1174.8298 92411.1333 89738 93406 1054.5081
C S 1 I1 116974 121810.4667 117254 125617 2494.2018 119249.6 117815 120589 854.8347 119553.9333 116974 121297 1161.527 120047.3333 119078 121905 759.1042
C S 1 I2 66375 69340.7333 67246 70982 1134.9651 67888.5333 66375 68700 822.4993 68520.5333 68080 69258 344.6325 68616.6667 67610 69786 720.6681
C S 1 I3 56796 62299.0667 57879 64947 1887.5394 58886.6 56796 61095 1084.1706 59670.3333 57879 61471 1074.7823 59510.5333 57329 61548 1377.8875
C S 1 I4 82323 86501.6 83836 89423 1963.275 84244.2 82694 85944 1069.2345 84057.5333 82323 85989 934.4482 84417.6667 83445 86963 1087.6191
C S 2 I0 613810 637598.3333 617950 688305 17415.01 617786.3333 613810 621619 1651.0543 621622.8 617424 634095 5602.9701 621564.8667 615746 640923 6813.5889
C S 2 I1 511921 532996 516213 565822 14692.151 517635.7333 511921 519819 2041.155 520339.2 515365 527409 3371.4849 520856.0667 514327 526172 2983.7447
C S 2 I2 660073 674383.2 668605 691199 7284.3009 668643.7333 665961 669596 1465.4432 668345.8 660073 671271 2799.0793 668792.3333 663051 669596 1645.2237
C S 2 I3 668031 706593.7333 702510 721503 6343.0282 691919 668031 703244 10251.8942 699395.8667 682231 704395 5737.6299 697253.8667 674069 703534 7262.2397
C S 2 I4 547405 578172.4667 564511 588640 6290.528 560945.0667 547405 570352 6436.0639 565989.4667 553893 574781 5003.2251 566892.2667 561721 574781 4589.5141
C S 3 I0 2291111 2407406.067 2313557 2502957 49628.9761 2339189.733 2291111 2373461 23678.4968 2368548.267 2341365 2415969 23673.8451 2351415.733 2316792 2407256 25619.0845
C S 3 I1 2442290 2598316.333 2520637 2695320 48812.5384 2545334.533 2450292 2572696 37513.5713 2559232.467 2506401 2588690 24745.3924 2548325.667 2442290 2588949 42644.7945
C S 3 I2 2325007 2454397 2383548 2528276 49563.1226 2393725.667 2325007 2470537 38089.3975 2423113.133 2348127 2471258 30783.9334 2408199.267 2363368 2448739 30473.7859
C S 3 I3 2537219 2661066.867 2578059 2739867 47642.7365 2610334.933 2537219 2664494 30460.3419 2627694.8 2591355 2680545 25372.5341 2625107.333 2568275 2681568 35103.6389
C S 3 I4 2340895 2470545.733 2410438 2527182 36133.5745 2423950.8 2387066 2453341 22349.9809 2429020.467 2340895 2466993 36435.7411 2425415.933 2382867 2453920 22478.2951

10.2.6.2 Friedman Test The results of the Friedman Test for the GC-MSSP
domain are given in Table A.21. The results of the testing indicate that H0 is
rejected in the majority of instances with two exceptions. In the case of the
C S 2 I2 and C S 3 I3, H0 is not rejected but these are the only exceptions to
the general trend. The implication of this is that the choice of pheromone map
is meaningful for the ant-based generation constructive hyper-heuristic applied
to this domain. Further analysis of these differences is presented in the next
section.

10.2.6.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison The
post-hoc analysis comparing hyper-heuristics with the 1D, 2D and 3D pheromone
maps is presented in Table A.22. The first comparison is between the 2D HACO
and 1D HACO. The outcome of this comparison is the rejection of H0 in all
instances. The effect size, in conjunction with the rejection of H0 strongly in-
dicates that the 2D pheromone map outperforms the 1D pheromone map when
used in hyper-heuristics for this domain.

The second comparison, made between the 2D HACO and 3D HACO, is
more different. H0 is not rejected in the majority of instances. However, there
are several particular rejections of H0. These are specified in the third problem
class, although there is a single rejection of H0 in the second class and fourth
class each. The implication of this is that in general, the 2D pheromone map is
better than the 3D pheromone map when used in hyper-heuristics for most of
the problem classes except for the third class, where the 3D pheromone map is
better suited. The effect sizes associated with the third problem class are also
generally the largest indicating the further gap between the two pheromone maps
for that class specifically.

Finally, in terms of the comparison between the 1D HACO and 3D HACO,
H0 is not rejected in all of the instances. With the large effect sizes, there is a
strong indication that the 1D pheromone map is inferior to the 3D pheromone
map by a significant degree when used in hyper-heuristics for this domain.
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10.2.6.4 Post-Hoc Analysis: Hybrid Comparison The post-hoc analysis
comparing hyper-heuristics with the 1D, 2D and 3D pheromone maps is pre-
sented in Table A.23. In the first comparison between the HACOH and the 1D
HACO, H0 is rejected in all instances except for C S 1 I1 and C S 1 I2. Except
for these two cases, the majority of instances result in the strong rejection of
H0 and coupled with the large effect sizes, heavily indicates that the HACOH
algorithm performed better than the 1D HACO.

With the second comparison, between the HACOH and the 2D HACO, the
results are less promising for the hybrid. H0 is not rejected for all instances
and this indicates that the HACOH algorithm performed worse than the 2D
HACO. The effect sizes are generally medium to strong indicating that while
the difference is meaningful, it is not overly predominant.

Finally with the last comparison between the HACOH and the 3D HACO,
again H0 is not rejected in all instances and this coupled with similar effect
sizes indicates that the HACOH is not better than the 3D HACO although the
difference is again not predominantly massive although meaningful in most cases.
While the HACOH is worse than the 2D HACO and 3D HACO, it is much closer
to the 3D HACO in performance than the 2D HACO.

10.2.6.5 Analysis and Discussion The analysis of this experiment is rela-
tively straightforward but unusual in some respects. Firstly, the best performing
pheromone map when used in a hyper-heuristic is the 2D pheromone map for
this domain. The next best, although still worse than the 2D pheromone map, is
the hybrid algorithm, HACOH. The 1D and 3D pheromone maps fared relatively
poorly in comparison when used in hyper-heuristics in the domain.

When it comes to generation constructive hyper-heuristics, the heuristic
space is relatively large and complicated because the hyper-heuristic has to build
a heuristic from low-level components. This process necessarily places great em-
phasis on how precisely heuristics can be constructed and evaluated and the
larger heuristics theoretically require more heuristic space to represent. For that
reason, it makes sense that the 1D pheromone map fared poorly when used in
this domain. The capacity to represent specific information about the heuristics
does not exist in a 1D pheromone map and thus the 1D HACO fares relatively
poorly.

However, the relative success of the 2D HACO indicates that the information
storage capacity of the 2D pheromone map is more than sufficient for this do-
main. The native capacity of the 2D pheromone map is more than sufficient for
the problem without incurring the additional overheads that would be associated
with the larger 3D pheromone map. The 3D pheromone map does perform some-
what comparably when used in a hyper-heuristic, but evidently, the additional
capacity is not required for the most optimal outcomes. However, the fact that
the HACOH performed the second-best indicates that the combination of the
pheromone maps can be useful. While the HACOH does depend on configuring
the list for the algorithm, these results show that the hybrid algorithm could
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be used in cases where choosing between the various pheromone maps would be
infeasible.

10.2.7 GP-CVRP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the GP-CVRP domain. This anal-
ysis will consist of two parts. The first is an assessment of the results breakdown
per each instance, followed by the statistical testing procedure outlined in sec-
tion 3.5.4. For each instance, the average result (over the number of runs) is
given, as well as the best and worst value recorded in the run (min and max)
and the standard deviation (Std Dev). The best average values are indicated in
bold. Where applicable, the best fitness value is included as well.

10.2.7.1 Results Comparison Table 10.7 provides a breakdown of the re-
sults by instance for the hyper-heuristics with different pheromone maps used in
the GP-CVRP domain. With the exceptions of A-n33-k6, A-n37-k6, A-n46-k7,
A-n60k9, A-n63-k9, A-n64-k9, the best value for all instances is found by the 1D
HACO. The 2D HACO produces the best value in five instances with the 3D
HACO only doing so in a single instance, A-n60-k9.

For the larger problems, in the M sub-dataset, the 1D HACO has the best
results on aggregate, with the only exceptions to this being found in the smaller
instances in the A sub-dataset. However, these instances are broadly distributed
and do not conform to specific patterns or clusters and so can be assumed to
be outliers rather than a general performance trend for the other pheromone
maps. From this, it is apparent that the 1D HACO performs extremely well in
the GP-CVRP domain, far better than the other algorithms.
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Table 10.7: GP-CVRP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance Best Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
A-n32-k5 784 920 859 1097 62 964 906 1020 27 967 919 1001 26 965 897 1011 35
A-n33-k5 661 724 675 772 31 754 744 762 5 753 729 768 10 749 690 765 18
A-n33-k6 742 827 789 896 33 827 800 842 11 828 802 853 15 829 802 853 16
A-n34-k5 778 814 789 861 21 838 820 856 11 842 822 859 11 831 797 853 17
A-n36-k5 799 862 820 941 41 886 839 914 18 885 855 916 17 888 841 919 22
A-n37-k5 669 741 693 871 62 806 750 843 25 802 752 836 22 773 703 849 36
A-n37-k6 949 1063 1013 1152 41 1055 1017 1079 16 1061 1036 1094 16 1065 1027 1115 23
A-n38-k5 730 823 806 874 18 854 818 869 14 857 835 871 10 843 807 865 19
A-n39-k5 822 918 875 980 33 953 931 981 12 953 933 965 9 951 931 968 11
A-n39-k6 831 967 907 1097 58 1026 989 1052 19 1035 991 1063 19 1034 971 1066 23
A-n44-k6 937 1033 972 1122 51 1106 1051 1154 27 1106 1060 1136 25 1102 1055 1152 28
A-n45-k6 944 1083 1015 1278 76 1150 1095 1202 30 1163 1103 1196 25 1122 1057 1199 49
A-n45-k7 1146 1351 1254 1520 74 1398 1352 1439 25 1406 1346 1449 30 1407 1346 1429 23
A-n46-k7 914 1055 987 1143 49 1041 1010 1059 14 1045 1015 1062 15 1042 1024 1058 10
A-n48-k7 1073 1235 1122 1372 77 1283 1201 1321 30 1288 1240 1336 26 1290 1249 1330 21
A-n53-k7 1010 1111 1037 1304 69 1157 1126 1190 21 1156 1092 1199 36 1143 1053 1198 40
A-n54-k7 1167 1380 1264 1507 72 1459 1389 1497 29 1464 1431 1495 20 1464 1396 1505 31
A-n55-k9 1073 1225 1175 1350 46 1269 1247 1290 11 1270 1234 1302 21 1260 1204 1293 22
A-n60-k9 1354 1594 1530 1651 34 1571 1540 1591 14 1566 1495 1610 30 1570 1535 1596 17
A-n61-k9 1034 1163 1076 1298 63 1192 1169 1212 13 1199 1128 1229 25 1186 1158 1215 17
A-n62-k8 1288 1429 1351 1490 42 1540 1503 1588 27 1554 1510 1605 27 1535 1483 1582 33
A-n63-k9 1616 1919 1766 2139 105 1898 1808 1947 36 1908 1849 1949 28 1916 1857 1961 35
A-n63-k10 1314 1555 1411 1661 69 1571 1534 1610 26 1570 1492 1606 33 1572 1433 1614 51
A-n64-k9 1401 1696 1562 1785 67 1694 1656 1718 20 1696 1671 1721 15 1699 1633 1724 23
A-n65-k9 1174 1413 1303 1516 69 1484 1459 1510 17 1487 1420 1517 28 1489 1437 1530 28
A-n69-k9 1159 1382 1245 1596 91 1521 1464 1570 32 1525 1450 1564 28 1506 1401 1580 55
A-n80-k10 1763 2136 1908 2398 159 2201 2069 2271 52 2205 2023 2288 68 2226 2078 2289 51
M-n101-k10 820 977 931 1029 28 999 979 1011 8 995 982 1006 8 991 970 1004 10
M-n121-k7 1034 1370 1273 1447 60 1551 1449 1611 48 1575 1525 1621 24 1494 1291 1629 95
M-n151-k12 1015 1536 1383 1686 91 1645 1575 1695 34 1655 1582 1688 26 1625 1548 1662 36
M-n200-k16 1274 1821 1517 2113 157 2000 1871 2055 54 2001 1917 2062 41 1974 1861 2044 51
M-n200-k17 1275 1828 1613 2040 145 1999 1909 2060 41 2029 1971 2056 24 1965 1852 2074 61

10.2.7.2 Friedman Test The results of the Friedman Test for the GP-CVRP
domain are given in Table A.24. The results indicate that 22 of the 32 statistical
comparisons are significant with 10 instances resulting in not rejecting H0, thus
indicating that the differences between the pheromone maps are not significant
for those instances.

The cases where H0 is not rejected are distributed throughout the bench-
mark with little in the way of consistent distribution. It appears that some of
the instances are not sufficient to produce a meaningful difference between the
pheromone maps used by the hyper-heuristics but since the majority of instances
are meaningful, and H0 is not rejected on the largest problems, the differences be-
tween the pheromone maps are meaningful overall when used in hyper-heuristics
for the GP-CVRP domain.

10.2.7.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison The
post-hoc analysis comparing the hyper-heuristics using the 1D, 2D and 3D
pheromone maps is presented in Table A.25. For the comparison between the 2D
HACO and 1D HACO, H0 is not rejected in all instances. As the effect sizes are
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quite large, this is a solid indication that the 2D HACO performed worse than
the 1D HACO in this domain.

In the second comparison, H0 was again not rejected in any instance. Here,
the effect sizes are smaller than in the first case. It more likely indicates that the
2D HACO and 3D HACO are comparable in their performance.

Finally, in the comparison between the 1D HACO and 3D HACO, H0 is
rejected in all cases. This, coupled with the large effect sizes, solidly indicates
that the 1D pheromone map is better than the 3D pheromone map when used
by hyper-heuristics in the GP-CVRP domain.

10.2.7.4 Post-Hoc Analysis: Hybrid Comparison The post-hoc analysis
comparing the HACOH to the 1D, 2D and 3D HACO is presented in Table A.26.
H0 is not rejected in any instance for the comparison between the HACOH and
the 1D HACO in the GP-CVRP domain. Factoring in the large effect sizes
strongly indicates that the HACOH algorithm performed worse than the 1D
HACO in this domain.

In the second case, H0 was rejected in the overwhelming majority of cases
except for the A-n37-k5 instance where H0 was rejected. The effect sizes are also
relatively smaller except for the case of A-n37-k5 where it is quite large. From
this, it is apparent that the HACOH algorithm is slightly better than the 2D
HACO in most instances except for the singular instance where the 2D HACO
is better. Given the single outlier, the general trend is for the HACOH to be
slightly better than the 2D HACO.

Finally, between the HACOH and the 3D HACO, these results are more of a
mixed bag. H0 is rejected seven times although this is dispersed throughout the
22 instances. The general trend is for H0 to not be rejected which indicates that
the HACOH can do better than the 3D HACO, although for a sizeable number
of instances, the trend is reversed and the 3D HACO outperforms the HACOH.

10.2.7.5 Analysis and Discussion The results for this experiment are con-
trary to the initial expectations of performance for the various pheromone maps
and their usage in the given hyper-heuristics. Primarily, the hypothesis re-
garding the use of the different pheromone maps in a generation perturba-
tive hyper-heuristic was that more information-heavy (and therefore descriptive)
pheromone maps like the 2D and especially 3D pheromone map would be better
suited for a generation task given the nature of constructing a heuristic from
low-level components.

The results, however, paint a different picture. The 1D pheromone map is
the most optimal for this type of hyper-heuristic based on the performance of
the 1D HACO in this domain. The 2D and 3D pheromone maps fair generally
much worse when used in the hyper-heuristics, although their performance is
quite close when the two are compared. The HACOH algorithm is capable of
outperforming the 2D HACO and 3D HACO but not the 1D HACO which
consistently produces the best results in the overwhelming majority of instances.
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A generation perturbative hyper-heuristic, in this case, differs from the gener-
ation constructive hyper-heuristic in that its low-level components are essentially
contained operations that are being executed on a single solution that changes
states. In theory, different chains of perturbation could end up producing the
same final solution since the perturbation process will start with the same solu-
tion each time. The reduced heuristic space encapsulated in the 1D pheromone
map, therefore, makes it easier to search that space for the perturbative opera-
tors that best modify the solution.

In the case of the CVRP, optimisations can occur both inside a route and
between routes, and the 1D pheromone map, when used in the hyper-heuristic,
determines a distribution of perturbative operators that when applied, produce
an ideal version of the original solution.

10.2.8 GP-MSSP

This section discusses the optimality results of 1D, 2D and 3D HACO algorithms
and the HACOH as they have been applied to the GP-MSSP domain. This anal-
ysis will consist of two parts. The first is an assessment of the results breakdown
per each instance, followed by the statistical testing procedure outlined in sec-
tion 3.5.4. For each instance, the average result (over the number of runs) is
given, as well as the best and worst value recorded in the run (min and max)
and the standard deviation (Std Dev). The best average values are indicated in
bold. Where applicable, the best fitness value is included as well.

10.2.8.1 Results Comparison Table 10.8, provides a breakdown of the re-
sults by instance for the hyper-heuristics with different pheromone maps used in
the GP-MSSP domain. The results indicate that the HACOH has generally the
best results of any of the algorithms in this domain. In particular, the HACOH
has the best result for ten instances out of the twenty total.

This is a relatively wide margin in terms of the entire benchmark but there
are several considerations. Firstly, the 3D HACO has the best results for most
of the first (and therefore smallest) problem class. It also finds the best result in
four additional instances (in the other problem classes) after its first three. The
2D HACO also has the best results for three of the instances. The 1D HACO
fails to have the best results for even a single instance.

In its totality, the HACOH seems to have the best results out of all of the
algorithms in most of the problem classes except for the first one where the 3D
HACO does better than it.
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Table 10.8: GP-MSSP Results by Pheromone Map Type

1D HACO 2D HACO 3D HACO HACOH
Instance BEST Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev Avg Min Max Std Dev
C S 0 I0 25905 28504.5333 27481 28911 449.5687 27552.4667 26534 28370 540.9407 27685 26677 28266 490.2727 27781.2 27182 28355 395.3259
C S 0 I1 19829 22440.9333 21156 23077 483.7888 21589.4 20791 22144 355.6932 21267.5333 20080 22156 536.1969 21346.2 20453 22501 595.9744
C S 0 I2 22224 23599 22388 24600 588.6667 22947.6 22388 23412 404.4912 22720.5333 22340 23377 399.5665 22948.6 22340 23412 442.1693
C S 0 I3 25531 26224.8 25664 27986 575.4873 25822.4 25664 25862 81.9798 25756.4 25664 25862 102.2468 25835.6 25664 25862 69.6694
C S 0 I4 19240 21769.4 19588 23142 998.7664 20616.8 20039 21408 397.5982 20897.8667 20248 21587 415.1401 20603.4667 19670 21581 562.3325
C S 1 I0 88856 100005.5333 98389 103363 1480.5612 97378.8667 94491 99220 1266.0239 97173.3333 94500 99422 1439.9276 96916.6667 93797 99891 1617.3109
C S 1 I1 116974 132940.4667 127645 136212 2606.3755 132303.8667 130732 133819 886.7535 131368.0667 129592 133072 1164.988 132673 130235 134946 1247.0487
C S 1 I2 66375 72689.7333 70058 74159 926.7692 71203.1333 68155 72490 1146.7445 71134.5333 66559 72825 1724.972 70990.5333 69335 72209 748.7499
C S 1 I3 56796 70285.6 61622 73818 2989.5752 67008.2667 63102 69738 1928.0504 68397.2667 65610 70883 1442.0376 67463.5333 64971 69502 1331.4476
C S 1 I4 82323 93276.7333 89335 94651 1318.8786 92526.0667 89775 94131 1601.8068 92928.6667 89904 94269 1316.1782 92442.1333 89775 93942 1664.2
C S 2 I0 613810 724502.1333 716152 730226 4026.2414 718973.5333 699590 730226 8408.8298 718957.6 700392 729661 7862.0177 724892.2667 717524 730345 3142.5742
C S 2 I1 511921 611387.2 596809 632495 9433.8417 606915.5333 596795 610674 3646.2979 610295.6667 604239 618894 3336.3194 604470.6 593175 608817 5123.9824
C S 2 I2 660073 716712.5333 707760 721737 6176.3604 708958.1333 707359 717138 2955.6109 708055.7333 699155 715207 3310.3294 709411.1333 707463 715207 2807.9008
C S 2 I3 668031 777567.6667 755284 803996 17701.7833 764866.9333 758868 766640 2791.4409 763517.6 749162 766640 4888.4447 761532.4 751942 766640 4767.9299
C S 2 I4 547405 636129.3333 620379 644985 8742.3995 629694 616943 636005 5161.9089 633034.9333 623091 641333 5517.2823 630858.5333 615715 641158 8068.5857
C S 3 I0 2291111 2694416.733 2672859 2707540 11965.0767 2685043.667 2670116 2687854 5152.4215 2689390.333 2678608 2697870 6486.4311 2678393.067 2638868 2687854 12844.2467
C S 3 I1 2442290 2811577.4 2754935 2843688 28628.7196 2777791.2 2770922 2788076 4650.19 2776524.267 2754935 2788127 7458.1314 2766965.2 2725297 2776186 14059.1487
C S 3 I2 2325007 2698004.133 2637982 2730621 24737.0005 2677984.733 2644009 2694862 14112.9282 2677484.467 2647013 2706361 16282.3371 2682885.2 2658482 2694801 10750.722
C S 3 I3 2537219 2916434.933 2859700 2963156 25942.5791 2924928.467 2898220 2929212 8615.4982 2931169.8 2918873 2941896 6453.8977 2906191.533 2827939 2929212 25760.1152
C S 3 I4 2340895 2637987.333 2594996 2658259 19138.9029 2636380.4 2619957 2644369 8379.478 2642963 2639144 2647651 2217.7869 2629768.667 2582340 2644369 15094.8186

10.2.8.2 Friedman Test The results of the Friedman Test for the GP-MSSP
domain are given in Table A.27. The results indicate that H0 is rejected in
all comparisons except for C S 1 I4. This is the only instance where H0 is not
rejected.

This strongly indicates that the type of pheromone map is meaningful across
the vast majority of instances in the benchmark set and that the choice of
pheromone map is meaningful for the GP-MSSP domain as a whole. These dif-
ferences are analysed further in the next section.

10.2.8.3 Post-Hoc Analysis: 1D, 2D and 3D HACO Comparison The
post-hoc analysis comparing the hyper-heuristics that use 1D, 2D and 3D pheromone
maps is presented in Table A.28. There are three comparisons made in Table
A.28. The first is made between the 2D HACO and 1D HACO. In this compar-
ison, six instances result in H0 not being rejected but for all other instances,
H0 is rejected. In particular, H0 tends to not be rejected in the larger and more
complicated instances like C S 3 I3 and C S 3 I4. for the smaller instances, in
the first and second problem class, it is much less likely to happen.

These results imply that generally, the 2D HACO performs better than the
1D HACO over the totality of the benchmark, but there are specific instances
where this is not the case. The effect sizes associated with the instances where
H0 is not rejected are typically moderate to strong in magnitude and therefore
more readily indicate that the 1D HACO is better than the 2D HACO for those
cases. Otherwise, the magnitude of effect sizes is large in the instances where H0
is rejected, strongly suggesting that the 2D HACO outperforms the 1D HACO.

In the second comparison, H0 is only rejected in two instances, C S 2 I1 and
C S 3 I3. The minimal quantity of rejections, in comparison to the majority of
instances where H0 is not rejected, suggests those rejections are more outliers
than representative of serious differences. In particular, the effect sizes range from
fairly minimal (0.00184) to fairly large (1.0095) with most being of moderate
magnitude. This indicates that generally, the 2D and 3D HACO are closely
aligned in terms of their performance.
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Finally, for the third comparison between the 1D HACO and 3D HACO, H0
is only rejected once in the C S 3 I3 instance. All other instances result in not
rejecting H0. The effect sizes here are generally large, indicating that there is
sufficient evidence to accept that the 1D pheromone map is worse than the 3D
pheromone map when used in hyper-heuristics for this problem domain.

10.2.8.4 Post-Hoc Analysis: Hybrid Comparison The post-hoc analysis
comparing the HACOH against the 1D, 2D and 3D HACO algorithms is pre-
sented in Table A.29. For the first comparison between the HACOH and the 1D
HACO, there are six instances where H0 is not rejected. For the rest of the in-
stances, H0 is rejected. Largely, H0 is not rejected in the larger problem classes
like C S 2 I1. The implication of this is that for the most part, the HACOH
algorithm is better than the 1D HACO but there are some cases in the larger
problem classes where the difference is less meaningful. The effect sizes in the
cases where H0 is rejected are large and they diminish when H0 is not rejected,
further supporting this class. Since the majority of instances favour the HACOH
algorithm it is reasonable that it performs better than the 1D HACO.

In the second comparison between the HACOH and the 2D HACO algorithm,
H0 is only rejected three times, in the two larger problem classes. In all other
cases, H0 is not rejected. For the majority of instances, therefore, the HACOH
algorithm is worse than or equal to the 2D HACO. Given that the effect sizes in
this comparison tend to be moderate size, it is likely that the performances of
these algorithms are roughly equivalent.

This trend continues in the third comparison between the HACOH algorithm
and the 3D HACO. H0 is rejected five times in the benchmark with the majority
of instances resulting in not rejecting H0. The effect sizes associated with reject-
ing H0 are particularly large, which shows that for the larger problem classes,
the HACOH algorithm generally performs better than the 3D HACO. However,
for the smaller problem classes, the differences between the HACOH and the 3D
HACO are much less meaningful.

10.2.8.5 Analysis and Discussion The analysis of this experiment is not
as straightforward as in the case of the GP-CVRP domain. Firstly, the 1D
pheromone map is the worst performing pheromone map, when used in the
hyper-heuristics, by a relatively wide margin. This is contrary to the GP-CVRP
domain where the 1D pheromone map performed the best. This indicates that
the 1D pheromone map is not universally optimal for all the ant-based gener-
ation perturbative hyper-heuristics. The MSSP is very structurally different to
the CVRP and as it is a problem with fewer feasibility constraints, this makes
the heuristic space more difficult to optimally traverse.

So in this case, a higher dimensional pheromone map is better because it
enables the hyper-heuristic to refine the operator combination in a more precise
way. However, in terms of optimality, the margins between the 2D HACO, 3D
HACO and HACOH are much more narrow. In absolute terms, the HACOH
does produce the best results on aggregate for the most number of instances,
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but in relative terms, the margins between it and the 2D and 3D pheromone
maps are not so large as to be truly comprehensive.

A generation perturbative is one of the more complicated types of hyper-
heuristic, especially given the form presented here. The nature of the problem
seems to influence the performance of the pheromone maps and that should be
considered when choosing the right pheromone map for the task at hand.

10.2.9 Optimality Implications and Discussion

While optimality is not the only metric with which to assess the HACO and
HACOH algorithms, it is nevertheless an important metric with wide-reaching
implications for the use of the ant-based hyper-heuristics that are defined in
this research. Optimality in the context of hyper-heuristics generally means the
examination of the hyper-heuristics in a very granular way. Hence the comparison
of hyper-heuristics on a per-instance basis. Wider statistical trends can still be
gleaned from this type of analysis but it also enables the close study of a hyper-
heuristic’s performance inside of a problem domain.

The first major insight from these experiments is that no universally optimal
pheromone map configuration works equally well for every type of hyper-heuristic
and every problem domain. The four types of hyper-heuristics, while broadly re-
lated in that they work in the heuristic space, are distinct enough that the
pheromone maps that work well for one hyper-heuristic in a domain, do not nec-
essarily translate to a different hyper-heuristic or even the same hyper-heuristic
in a different domain.

In terms of the selection constructive hyper-heuristics, the 3D pheromone
map was the most optimal for the hyper-heuristics in the QAP domain, but
the 1D pheromone map is most optimal for the hyper-heuristics in the MSSP
domain. The SC-MSSP domain in particular suffered from most of its instances
not resulting in statistically significant results when the pheromone maps were
compared so that tempers the value of the result in that case.

However, looking across both domains, the 3D pheromone did the best optimality-
wise when considering how well the pheromone map did when used by hyper-
heuristics in both domains. The 3D pheromone map did the best in hyper-
heuristics for the SC-QAP domain and second-best in the SC-MSSP domain.
Contrary to expectations, the 3D HACO was able to handle the challenge of the
non-deterministic construction heuristics and succeeded at this task, whereas
the 1D HACO failed in the QAP domain being the worst method. Selection
constructive hyper-heuristics are amongst the simplest form of hyper-heuristics
given that they assemble full solutions piece-by-piece, so providing the hyper-
heuristic with the 3D pheromone map and this type of problem allows it to
minimise the impact of the non-deterministic heuristics by greatly refining the
placement of the heuristics in the selection process.

For the selection perturbative hyper-heuristics, the worst-performing method
in both the QAP and MSSP domains is the 1D HACO, and by extension the
1D pheromone map. The best performing method shifts between the 2D HACO
(better in the QAP domain) and 3D HACO (better in the MSSP domain) so the
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overall implication is that while the 1D HACO and HACOH are suboptimal for
this hyper-heuristic, the choice between 2D and 3D pheromone maps is much
more problem-dependent.

The generation constructive hyper-heuristic experiments also revealed inter-
esting results with regard to optimality. Namely, that the 2D pheromone map
was the best for hyper-heuristics in the GC-MSSP domain, but that the HA-
COH performed the best for the hyper-heuristics in the GC-1BPP domain. This
domain has generally revealed something of the success of the HACOH in the
ant-based generation constructive hyper-heuristic as it did the second-best in
the GC-MSSP domain. Considering its performance in both domains, the hy-
brid performed, on average, as well as the other best performing pheromone
map, the 2D one.

In relative terms, the 1D and 3D pheromone map delivered a poor perfor-
mance for this hyper-heuristic and this can be attributed to the nature of the
extremes. The 1D pheromone map cannot encapsulate information well enough
to properly construct a good heuristic because its heuristic space is too com-
pressed. The 3D pheromone, rather than being emboldened by the additional
information capacity, struggles to sift through it all and ends up suffering in
performance as a result. By contrast, the 2D pheromone map strikes the balance
between these two methods and delivers great performance in the GC-MSSP
domain, and good performance in the GC-1BPP domain. By also representing a
compromise, of a different nature, the HACOH also benefits from this and does
similarly well.

Finally, in the case of the generation perturbative hyper-heuristic, a similar
outcome is observed except it is between the 1D pheromone map, 2D pheromone
and the hybrid. For the GP-CVRP, the best method is the 1D HACO and the
second best is the HACOH, showing the primacy of the 1D pheromone map
followed by the hybrid algorithm approach. For the GP-MSSP, the best method
is the HACOH with the 2D HACO being the second best. Considering both
domains, the HACOH does the best in totality, but there is a valid enough case
to be made that choosing the most optimal pheromone map for the specific
domain in the problem is also viable, given the differences in optimality.

So it is the case then, that from the perspective of optimality, the type of
pheromone map used has a meaningful impact on the performance of the ant-
based hyper-heuristic. There are cases where the wrong choice results in very
suboptimal performance and other cases where the most optimal pheromone map
would depend on the exact nature of the problem and its circumstances. Nev-
ertheless, making the choice is an important decision that has to be considered
when using these ant-based hyper-heuristics.

10.3 Generality Assessment

The results of the SDD score calculation for the hyper-heuristics by pheromone
map type and problem domain are presented in Table 10.9. The scores listed
quantify the ability of each algorithm type to generalise in that domain and
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hyper-heuristic. The average across all of the domains and hyper-heuristics and
the corresponding standard deviation are provided as well. The best values are
indicated in bold.

Table 10.9: SDD Scores for each Hyper-Heuristic by Domain

SDD Score 1D 2D 3D Hybrid
SC-QAP 34.75 31.96 31.79 32.51
SC-MSSP 4.30 5.32 5.71 5.36
SP-QAP 29.69 24.97 25.06 25.85
SP-MSSP 2.43 2.61 2.77 2.59
GC-BPP 1.68 1.32 1.47 1.49
GC-MSSP 1.11 1.04 1.03 0.93
GP-CVRP 8.19 10.04 10.24 9.63
GP-MSSP 2.24 2.34 2.55 2.29

Avg 10.55 9.95 10.08 10.08
Std Dev 13.62 11.93 11.84 12.24

The SDD scores given in Table 10.9 are an important metric to consider when
assessing the effect that different pheromone maps will have on the underlying
ant-based hyper-heuristic. In particular, the 1D pheromone map is associated
with the best SDD score in the most number of cases out of the assessments (four
out of eight). It is also more associated with perturbative hyper-heuristics than
constructive ones, although the SC-MSSP is the stand out exception. However,
in terms of aggregate SDD score, the 2D pheromone map results in the best
result over all of the experiments.

The 3D pheromone map and hybrid algorithm only produce the best SDD
score in a single experiment each, SC-QAP and GC-MSSP respectively. Al-
though, in aggregate, they still produce a better SDD score than the 1D pheromone
map.

There are several implications from these results. The first is that if general-
ity is a prime consideration for the hyper-heuristic, then the choice of pheromone
map will influence this factor. The 1D pheromone map will result in better gen-
erality but only in specific domains and only for specific (usually perturbative)
hyper-heuristics.

However, if an ant-based hyper-heuristic is to be used without necessarily
considering generality as a paramount concern, then the 2D pheromone map is
likely to result in the best compromise choice as it will generally produce a good
SDD score on a wide variety of domains. The 3D and HACOH SDD scores do
not differ by a significant enough margin to indicate that they are that different
in terms of generality over the experiments that were conducted.

126



10.4 Comparison of Algorithm Runtimes

The runtimes of the different hyper-heuristic algorithms in their domains are
presented in this section. Runtimes are a complicated matter because so many
variables and factors can influence their values. These can range from minor
changes to code to the type of hardware that the code executes on. These dif-
ferences make comparisons with runtimes a complicated matter. However, run-
times can also be indicative of the different algorithm computational costs with
a runtime providing a rough measure of the costs of running an algorithm. In
particular, as the results are delineated by the pheromone map type used by the
hyper-heuristic, these results can be indicative of how the choice of pheromone
map influences the runtimes of the HACO and HACOH algorithms. The runtime
analysis presented here should be considered a secondary aspect of the analysis
alongside the studies of optimality and generality presented in sections 10.2 and
10.3.

To that end, the runtimes presented here are aggregated over the instances in
the benchmark sets for the different domains and hyper-heuristics. For example,
the runtime presented for a 1D HACO in the QAP domain is the average runtime
for a single run of the 1D HACO over all of the instances in the QAP domain. All
times are given in minutes. In this way, the runtimes of the different pheromone
maps and their usage in the HACO and HACOH algorithms can be compared.

10.4.1 Selection Constructive Hyper-Heuristics

The runtimes for the different pheromone maps used in the HACO-SC and
HACOH-SC are given by Table 10.10. The best results are indicated in bold.

Table 10.10: Runtimes for the SC on the QAP and MSSP Domains

SC 1D 2D 3D Hybrid
QAP 0.01 0.03 0.03 0.05
MSSP 0.01 0.04 0.04 0.10

In terms of the results, the use of the 1D pheromone map results in the fastest
computational times for a single run in both domains. The use of 2D and 3D
pheromone maps do not differ significantly for this type of hyper-heuristic, in
these domains, with the use of the hybrid algorithm producing the worst times
in both domains.

10.4.2 Selection Perturbative Hyper-Heuristics

The runtimes for the different pheromone maps used in the HACO-SP and
HACOH-SP are given by Table 10.11. The best results are indicated in bold.
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Table 10.11: Runtimes for the SP on the QAP and MSSP Domains

SP 1D 2D 3D Hybrid
QAP 1.25 2.54 2.65 1.75
MSSP 2.70 3.81 3.62 3.39

In contrast to the runtimes in Table 10.10, all of the times in Table 10.11 are
at least a minute. This indicates that the selection perturbative hyper-heuristic is
a more computationally intensive process than the selection constructive hyper-
heuristic as both hyper-heuristics operate in the same domain.

In terms of the results, the usage of the 1D pheromone again produces the
best runtimes of any of the pheromone map types in the QAP and MSSP domain.
However this time, the worst-performing algorithms are the 2D HACO and 3D
HACO respectively. The HACOH ran faster than the prior two algorithms in
both domains. Part of this may be attributed to the usage of a combination
of the prior map types as the usage of the 1D pheromone map in the hybrid
can counterbalance the cost of the more computationally expensive 2D and 3D
pheromone maps.

10.4.3 Generation Constructive Hyper-Heuristics

The runtimes for the different pheromone maps used in the HACO-GC and
HACOH-GC are given by Table 10.12. The best results are indicated in bold.

Table 10.12: Runtimes for the GC on the 1BDPP and MSSP Domains

GC 1D 2D 3D Hybrid
1BPP 3.24 6.22 5.18 6.88
MSSP 0.04 0.11 0.10 0.09

Table 10.12 highlights a stark difference between the choice of domain and its
effect on runtimes. In particular, the 1BPP domain has the largest runtimes of
any domain amongst the experiments with the fastest pheromone map type (1D)
taking at least three minutes for a single run on aggregate over the benchmark.

However, the runtimes of the HACO-GC and HACOH-GC are very compa-
rable to the HACO-SC and HACOH-SC in the MSSP domain, taking well under
a minute regardless of the pheromone map type used in the hyper-heuristic.

While the use of the 1D pheromone map results in the best runtimes for
hyper-heuristics in either domain, the use of the remaining maps in the hyper-
heuristics results in runtimes of approximately twice as long. With the HACOH
being the worst in the 1BPP domain, and the 2D HACO being the worst in the
MSSP domain.
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10.4.4 Generation Perturbative Hyper-Heuristics

The runtimes for the different pheromone maps used in the HACO-GP and
HACOH-GP are given by Table 10.13. The best results are indicated in bold.

Table 10.13: Runtimes for the GP on the CVRP and MSSP Domains

GP 1D 2D 3D Hybrid
CVRP 0.16 1.11 1.10 0.98
MSSP 0.01 0.12 0.17 0.14

The runtimes in Table 10.13 paint an interesting picture with regards to
the effect of the different pheromone maps in the domains. The use of the 1D
pheromone map results in a significantly faster runtime than the other types of
maps which are around the 1 minute mark per run on average. This is similarly
repeated in the MSSP domain where the use of the 1D pheromone map produces
a runtime an order of magnitude faster than the other types of pheromone maps.

10.4.5 Analysis and Discussion

Due to the number of ways runtimes can be influenced, they are of tertiary
importance in the wider context of this research. Nevertheless, they suggest
some interesting trends with regards to how HACO and HACOH algorithms
respond to the different problem domains and pheromone maps.

As the HACO and HACOH algorithms are modified versions of the AS al-
gorithm, the majority of the computational considerations should be the same
or similar to the baseline AS algorithm. That is, the HACO and HACOH al-
gorithms do not meaningfully alter the operation of the AS except for how the
AS algorithm interacts with the problem domain as it is shifted to the heuris-
tic space instead of the solution space. There are computational considerations
that might occur as a result of these modifications but they will be primarily
determined by the specific problem domains and not the underlying algorithm.
These would include solution construction and solution evaluation for instance.

However, that being said, there are several important points to consider con-
cerning how the different pheromone maps affect the hyper-heuristics that make
use of them.

The first point to consider is the effect of the 1D pheromone map. In all ex-
periments, the use of the 1D pheromone map showed a consistently low runtime
in comparison to all other types of pheromone maps. This held regardless of the
domain or the type of hyper-heuristic.

This behaviour, the quick runtimes, is most definitely a product of the nature
of the 1D pheromone map and its application. It has several benefits in terms of
improving the runtimes of the algorithm. Namely, it has a much-reduced heuristic
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space that it needs to search, having compressed the nominally 2D pheromone
map into a single 1D representation. This is an easier structure to traverse and
one that is less costly to traverse in general by taking up less memory than the
other types of pheromone maps.

The other aspect behind the improved runtimes would then be the use of
only a single ant. As in the FANT [5], the use of a single ant comes with several
potential drawbacks but one of the major advantages is the reduced computa-
tional cost of using a single ant. The combination of the single ant on the reduced
heuristic space, therefore, leads to major improvements in runtimes.

Therefore, the 1D pheromone map should be used in applications where
speed is of paramount importance. This creates an ant-based hyper-heuristic
with the ability to produce quick solutions, often in half the time than the
other when using other types of pheromone maps. It strongly indicates that the
1D pheromone map has an advantage over the other pheromone maps when
considering the relationship between the pheromone map and runtime for ant-
based hyper-heuristics.

The next point to consider is the runtime performance of the hybrid. As the
HACOH algorithm makes use of a list to determine the order of execution for
each type of pheromone map in its overall execution, the nature of the list will
be the primary determinant of the computational costs of running the HACOH
algorithm. There were several different outcomes.

In the HACOH-SC, the hybrid was the worst-performing algorithm in terms
of runtimes whereas, for the SP and GP, the hybrid was not the worst performer,
with runtimes slower than the 1D pheromone map but faster than at least one
of the other two remaining pheromone maps.

The final point to consider is the difference in runtimes between the uses of
the 2D and 3D pheromone maps. Initially, it was assumed that, because of the
increased size of the 3D pheromone map, using the 2D pheromone map in an
ant-based hyper-heuristic would always perform faster than the 3D pheromone
map. However, these results indicate that this is not the case.

For the HACO-SC, the use of 2D and 3D pheromone maps result in approx-
imately identical runtimes and the difference is marginal for the HACO-GP as
well. Only in the HACO-SP and HACO-GC (specifically in the 1BPP domain)
are the differences more pronounced where the use of the 3D pheromone map
takes longer in the SP-QAP domain and is faster in the other cases.

This suggests that the differences between the two pheromone maps are not
as significant as originally hypothesized when it comes to the effect of the map
on the runtime of the hyper-heuristic that makes use of it.

10.5 Pheromone Map Analysis

Any discussion of the results would be incomplete without talking about how
the pheromone maps are used and modified by the ant-based hyper-heuristics.
To that end, this section presents examples of each of the maps in all dimensions
and for all of the hyper-heuristics, as a way of analysing the behaviour of the
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different pheromone maps in relation to the hyper-heuristic. These maps were
taken from the best runs from the main experiments presented in Section 10.2.
Furthermore, the maps have been subject to a normalising transformation such
that every pheromone value at cell (i, j) is converted to the range [0,1] where 0
represents no pheromone and 1 represents the maximum pheromone found on
that map in terms of intensity. This allows for comparison in a scale neutral way
as all pheromones will be normalised into the given range. All maps have been
subject to this transformation with a key indicating the pheromone intensity
provided for each one.

This is not an exhaustive presentation due to the number of maps generated
in the course of this research but the examples, presented as heatmaps, should
be illustrative of the wider point. More specifically, presenting a pheromone map
to analyse the pheromone concentrations, is equivalent to plotting the evolution
of a GA. In this way, the pheromone map provides a visual representation of the
results of the execution of the ant-based hyper-heuristic as it will show where
the ants travelled in the heuristic space as they searched it. The different types
of maps also provide different levels of information, from general distributions in
the 1D map to specific heuristic paths in the case of 3D maps and this section
helps to clarify these differences.

Furthermore, the first few layers of the 3D pheromone map are presented to
illustrate the progression of the pheromone through the layers; a full presentation
of all of the layers would be both cumbersome and unnecessary for the wider
point. Not all domains are represented. The reason for this is that the pheromone
map itself is largely going to behave in similar ways across a different domain
for the same type of hyper-heuristic so only a single domain is presented per
hyper-heuristic.

Finally, the purpose of these heatmaps is to illustrate distributions of pheromone
in the different dimensions. Sections 6.3, 7.6 and 8.5 provide the descriptions of
the heuristics and components that make up the heuristic spaces represented on
these heatmaps.

10.5.1 Selection Constructive Hyper-Heuristics

Figure 10.3 gives the two 1D pheromone maps produced by the HACO-SC and
HACOH-SC for the QAP problem.

In terms of the distributions, Figure 10.3 indicates a stark difference in the
normal HACO-SC as compared to the HACOH-SC. Whereas only one heuristic
dominates in the case of the HACO-SC, several heuristics are highly prevalent
in the HACOH-SC. As the HACOH-SC receives information from other types of
pheromone maps, this would result in pheromone accumulations happening in
other areas dictated by factors outside of the scope of the 1D pheromone map.

Figure 10.6 gives the 2D pheromone maps for the QAP domain. In contrast
to the prior case, the 2D HACO-SC pheromone map has a broad dispersion of
pheromone across its surface with only a few regions that stand out as predom-
inant. Also, much more of the map has pheromone distributed across itself. By
contrast, the 2D HACOH-SC pheromone map has a much sparser distribution of
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Fig. 10.1: HACO-SC Fig. 10.2: HACOH-SC

Fig. 10.3: QAP 1D HACO Pheromone Maps

pheromone with only a handful of regions even accumulating some pheromone
at the end.

Figure 10.10 provides the first three layers of a 3D HACO-SC’s pheromone
map. In this map, large segments of it are devoid of pheromone with clusters
in each layer indicating where concentrations of pheromone accumulated during
the algorithm’s execution. In general, the pheromone concentration decreases
from each layer and this is expected behaviour.

The heuristic space for the HACO-SC consists of heuristics and so as the
layers progress, the number of heuristics that get selected will invariably decrease
as some heuristics become favoured over others.

Figure 10.14 represents the first three layers of the 3D pheromone map of the
HACOH-SC. In terms of these maps, the HACOH-SC behaves similarly to the
HACOH-SC with an initial concentration of pheromone on the first layer that
somewhat tapers off. Unlike the HACO-SC, there is more pheromone distributed
in the map on the various layers and this reflects the influence of the other maps
that share information.

The HACO-SC and HACOH-SC algorithms were incredibly close together
in terms of their optimality and so it is not too surprising to see that the 3D
versions of the algorithm have a similar pheromone distribution.

10.5.2 Selection Perturbative Hyper-Heuristics

Figure 10.17 gives the two 1D pheromone maps produced by the HACO-SC and
HACOH-SC for the QAP problem.

In terms of the pheromone concentrations for the 1D pheromone maps for
the HACO-SP and HACOH-SP in the MSSP domain, Figure 10.17, indicates a
very similar trend to the prior HACO-SC and HACOH-SC 1D pheromone maps.
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Fig. 10.4: HACO-SC Fig. 10.5: HACOH-SC

Fig. 10.6: QAP 2D HACO Pheromone Maps

Fig. 10.7: Layer 0 Fig. 10.8: Layer 1 Fig. 10.9: Layer 2

Fig. 10.10: QAP 3D HACO Pheromone Map Layers

Specifically, in the case of the HACO-SP, only a single heuristic has emerged with
most of the pheromone concentrating in that heuristic whereas the HACOH-SP
has a much wider distribution of pheromone because it receives information
from the other maps. As the 1D pheromone map cannot store much information
about the path structure, this pheromone concentration serves to add additional
heuristics to the selection potential whereas the 1D HACO-SP tends to fixate
on a specific heuristic to the detriment of all others.

In Figure 10.20 both 2D pheromone maps of the HACO-SP and HACOH-SP
for the MSSP domain are given. Similar to the comparison with the HACO-SC
and HACOH-SC in the QAP domain, the 2D pheromone map for the HACO-SP
shows a generally sparse map with a few regions of higher pheromone concentra-
tion. The 2D pheromone map for the HACOH-SP by contrast has a much wider
distribution of pheromone that represents information from the other maps. Im-
portantly, this distribution allows for the greater exploration of the space as
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Fig. 10.11: Layer 0 Fig. 10.12: Layer 1 Fig. 10.13: Layer 2

Fig. 10.14: QAP 3D HACOH Pheromone Map Layers

Fig. 10.15: HACO-SP Fig. 10.16: HACOH-SP

Fig. 10.17: MSSP 1D HACO Pheromone Maps

more heuristics are likely to be included but to the detriment of exploitative
potential.

In Figure 10.24, the first three layers of the HACO-SP in the MSSP are rep-
resented. Characteristically, most of the pheromone map is devoid of pheromone
except for some specific regions. The first layer in particular has a very tight
cluster of high pheromone regions in a row. This gives way to more dispersed
clusters of pheromone in layers 1 and 2. By layer 2, most of the high pheromone
areas are giving way to regions with much less pheromone.

Figure 10.28 represents the first three layers of the HACOH-SP’s 3D pheromone
map. In contrast to the HACO-SP, the layers of this pheromone map have their
pheromone in a wider dispersal pattern and are generally of lower concentra-
tions. There is more pheromone coverage, but this also means less concentration
in specific areas.
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Fig. 10.18: HACO-SP Fig. 10.19: HACOH-SP

Fig. 10.20: MSSP 2D HACO Pheromone Maps

Fig. 10.21: Layer 0 Fig. 10.22: Layer 1 Fig. 10.23: Layer 2

Fig. 10.24: MSSP 3D HACO Pheromone Map Layers

10.5.3 Generation Constructive Hyper-Heuristics

Figure 10.31 gives the two 1D pheromone maps produced by the HACO-GC and
HACOH-GC for the QAP problem.

The 1D pheromone maps for the HACO-GC and HACOH-GC are given in
Figure 10.31 paints a different picture with regards to pheromone distribution
than the prior selection hyper-heuristics. In the case of the HACO-GC, multi-
ple components have large concentrations of pheromone whereas, in the case of
HACOH-GC, the pheromone is distributed less broadly. The process of generat-
ing a constructive heuristic, as described previously, is certainly a difficult one
and the 1D pheromone map has little ability to represent anything beyond the
most basic information about how to assemble a heuristic and so, this distri-
bution represents the distribution of a component’s frequency in the heuristic
generation.
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Fig. 10.25: Layer 0 Fig. 10.26: Layer 1 Fig. 10.27: Layer 2

Fig. 10.28: MSSP 3D HACOH Pheromone Map Layers

Fig. 10.29: HACO-GC Fig. 10.30: HACOH-GC

Fig. 10.31: 1BPP 1D HACO Pheromone Maps

The HACO-GC is better able to assemble something more precisely and so
has wider separations between components, whereas the HACOH-GC receives
additional information from other sources that disrupts this fine-tuned process
and so the pheromone distribution is broader.

This trend continues for the 2D pheromone maps for the HACO-GC and
HACOH-GC given in Figure 10.34. The HACO-GC has a much more sparse
distribution of pheromone in its 2D map which represents a better ability to
capture the specific useful components whereas the HACO-H 2D pheromone
map is much more broadly variable in its pheromone concentrations.

Figure 10.38 contains the first three layers of the HACO-GC for the 1BPP
domain. This domain in particular brings the differences between pheromone
maps into stark relief. Whereas the 1D and 2D pheromone maps in this section
had some wider distribution of pheromone, pheromone in the 3D pheromone map
is tightly clustered to specific areas. This is a strong indicator of the algorithm’s
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Fig. 10.32: HACO-GC Fig. 10.33: HACOH-GC

Fig. 10.34: 1BPP 2D HACO Pheromone Maps

Fig. 10.35: Layer 0 Fig. 10.36: Layer 1 Fig. 10.37: Layer 2

Fig. 10.38: 1BPP 3D HACO Pheromone Map Layers

ability to leverage the information capacity of the 3D pheromone to precisely
order the heuristic component selections into a few structured heuristics and is
one of the reasons why the 3D HACO-GC did so well in this problem domain.

In Figure 10.42, three layers of the 3D pheromone map of the HACOH-GC
are presented. The hybrid has a similar degree of pheromone concentration to
the non-hybrid which does indicate to some degree that the hybrid algorithm
was able to mitigate the information coming from the other pheromone maps
and prevent the pheromone crowding that was observed in other maps. However,
where the HACO-GC has relatively tightly clustered high pheromone regions,
this is not the case for the HACOH-GC. Possibly the dispersal pattern reflects
the influence of the other pheromone maps but this could also be the process of
generating an alternative heuristic.
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Fig. 10.39: Layer 0 Fig. 10.40: Layer 1 Fig. 10.41: Layer 2

Fig. 10.42: 1BPP 3D HACOH Pheromone Map Layers

10.5.3.1 Comparison of Generated Heuristics It can also be illustrative
to examine some of the heuristics that are generated by the heuristic to see how
they compare to when different pheromone maps are used in their creation. To
that end, this section will discuss the best heuristics for a single instance, the
first one in the 1BPP benchmark, to examine some of the differences between the
different pheromone maps. The sheer number of heuristics makes the comparison
of everyone impractical, but a few key examples are considered. These heuristics
are presented in Appendix B.1.

One thing to note with regards to the comparisons is that the best heuristic
does not necessarily completely map onto the pheromone perfectly. The best
heuristic represents a snapshot of one potential state of the map during the
algorithm’s execution and the map can change as the search executes, especially
as it explores the heuristic space such that it never quite gets to the exact state
by the end of the execution. Nevertheless, examining some of the heuristics can
be illustrative and this is discussed below.

With regards to the heuristic represented by Figure B.1, the most represented
component is the domain attribute C. In contrast to the map, which showed C
as being of low significance, with F and S being the most important attributes.
In terms of the operators, Minus and divide were the most represented which
does track with regards to the heuristic as those were the majority operators.
Of course, the 1D pheromone map cannot provide more information other than
the pheromone distribution so the heuristic does stand in isolation.

Figure B.2 shows a heuristic generated with a 2D pheromone map. In this
regard, the heuristic has the S and F domain attributes as the most represented
with the divide and absolute value operators being most prevalent. The heuristic
is also smaller than the 1D pheromone map in terms of the number of operators.

Finally, Figure B.3 shows the heuristic generated with the 3D pheromone
map. In this case, the heuristic has more diversity in terms of its components
as all of the operators and domain attributes are represented but not in equal
measure. This heuristic is similar to the one in Figure B.1 in terms of length but
differs by having a more nested composition of components, which is especially
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evident by the nesting of four operators at the beginning, something the other
heuristics lack. Importantly, the multiply to divide link is represented on the
first layer in the corresponding pheromone although the subsequent layers differ.

10.5.4 Generation Perturbative Hyper-Heuristics

Figure 10.45 gives the two 1D pheromone maps produced by the HACO-GP and
HACOH-GP for the CVRP problem.

Fig. 10.43: HACO-GP Fig. 10.44: HACOH-GP

Fig. 10.45: CVRP 1D HACO Pheromone Maps

Figure 10.45 represents the 1D pheromone maps for the HACO-GP and
HACOH-GP for the CVRP domain. The trends observed for other 1D pheromone
maps do not necessarily persist in this case. Specifically, the pheromone concen-
tration in the HACO-GP shows two areas with large concentrations of pheromone
whereas the HACOH-GP only has one region. The larger volume of components
in this domain makes it a more difficult heuristic space to operate in but the 1D
pheromone map was able to produce some concentrated regions.

Figure 10.48 provides the 2D pheromone maps for the HACO-GP and HACOH-
GP. In terms of the distribution of pheromone, the HACO-GP has a much sparser
distribution of pheromone in terms of the overall amount on the map, but this
distribution is more spread out around the map. By contrast, the HACOH-GP
has more pheromone around the map in general, but the largest areas of con-
centration are much closer together.

The first three layers of the HACO-GP in the CVRP domain are given in
Figure 10.52. The large size of the pheromone map highlights the disparities in
pheromone. Whereas the 2D pheromone maps for this problem were somewhat
covered in pheromone, the concentrations in the layers of the 3D pheromone
map are incredibly minimal. Outside of a few specific regions that represent

139



Fig. 10.46: HACO-GP Fig. 10.47: HACOH-GP

Fig. 10.48: CVRP 2D HACO Pheromone Maps

Fig. 10.49: Layer 0 Fig. 10.50: Layer 1 Fig. 10.51: Layer 2

Fig. 10.52: CVRP 3D HACO Pheromone Map Layers

high pheromone concentrations, most of the map layers are largely empty and
the areas of high pheromone concentration are relatively tightly packed together.

By contrast, the pheromone concentrations for the first three layers of the 3D
pheromone map of the HACOH-GP are much more widely dispersed throughout
the layers, and as a consequence, there are far fewer areas of high pheromone
concentration. This dispersal pattern is much more similar to the behaviour of
a 2D pheromone map than the behaviour of a 3D pheromone map amongst the
generation hyper-heuristics seen thus far.

10.5.4.1 Comparison of Generated Heuristics It can also be illustrative
to examine some of the heuristics that are generated by the heuristic to see how
they compare to when different pheromone maps are used in their creation. To
that end, this section will discuss the best heuristics for a single instance, the
first one in the 1BPP benchmark, to examine some of the differences between the
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Fig. 10.53: Layer 0 Fig. 10.54: Layer 1 Fig. 10.55: Layer 2

Fig. 10.56: CVRP 3D HACOH Pheromone Map Layers

different pheromone maps. The sheer number of heuristics makes the comparison
of everyone impractical, but a few key examples are considered. These heuristics
are presented in Appendix B.2.

One thing to note with regards to the comparisons is that the best heuristic
does not necessarily completely map onto the pheromone perfectly. The best
heuristic represents a snapshot of one potential state of the map during the
algorithm’s execution and the map can change as the search executes, especially
as it explores the heuristic space such that it never quite gets to the exact state
by the end of the execution. Nevertheless, examining some of the heuristics can
be illustrative and this is discussed below.

Figure B.4 provides a heuristic generated with the 1D pheromone map. The
size of these heuristics is much larger than in the HACO-GC case but several fac-
tors influence that. Firstly, perturbative heuristics must manipulate an already
created solution to function. This generally means they will need more operators
and components to function properly than a heuristic that is used to create a
solution from scratch as only meaningful changes to the solution will improve it.

With that in mind, M13 is the most represented mutator which does not
necessarily track to the pheromone map. The selectors, S8 and S9, however, are
quite prevalent in the heuristic.

Figure B.5 represents a heuristic constructed with a 2D pheromone map.
Like the heuristic before it, this heuristic is also generally large although it
only has 17 mutators as opposed to the 23 in the prior case. This repeats the
trend observed in the prior HACO-GC comparison for the 2D pheromone map
to result in heuristics that are smaller than the 1D pheromone. M13 is not as
heavily represented both on the map and in the heuristic. Some of the linkages
can be seen, like that between S1 and S17 but others are less explicit.

Figure B.6 gives the heuristic generated with a 3D pheromone map. This
heuristic only has 18 operators in contrast to the prior two. So in general it
seems as if the 2D pheromone map produces smaller heuristics than the 1D and
3D.
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10.5.5 Analysis and Discussion

This section brings to light a number of the different capacities that the different
types of pheromone maps are meant to represent. Firstly, between the 1D, 2D
and 3D pheromone map, each map has a different information-carrying capac-
ity and that limit is represented, at least partially, in how that map ends up
concentrating pheromone.

For the non-hybrid maps, the 1D pheromone map has the propensity to
concentrate pheromone into a few of the available regions of its already limited
heuristic space. The 3D pheromone map by contrast can represent a long chain
of information and thus, pheromone tends to be concentrated in a few areas per
layer, with the totality of the concentrations representing the entire heuristic
path.

The 2D pheromone strikes a balance between these two extremes with some
ability to represent information and a smaller heuristic space and so these maps
tend to produce specific clusters of high pheromone but also are not as empty
as their 3D counterparts.

The type of hyper-heuristic does play a role in this behaviour. Pheromone
maps used in generation hyper-heuristics, constructive or perturbative, have a
greater tendency to form a few regions of high pheromone, which in these maps
represents some optimal combination of heuristic components, than pheromone
maps used in selective hyper-heuristics, constructive or perturbative. By con-
trast, these maps tend to retain more pheromone over a wider area in general.

The different nature of working with heuristic components over low-level
heuristics does influence the way the algorithms distribute their pheromone on
the maps. Choosing low-level heuristics is much less restrictive than choosing
heuristic components and so that would naturally mean more of the heuristics
can be chosen, leading to wider distributions of pheromone in the map.

The other aspect to consider is the effect of hybridisation. The HACOH
algorithm operates by sharing information between three different pheromone
maps (1D, 2D and 3D). This means that at any point in the algorithm’s exe-
cution two pheromone maps are receiving pheromone update information from
the other map currently being used. However as the maps are different in their
construction, and in what heuristic space they are searching, there is a tendency
in the algorithm to allow more pheromone to remain in every map than what is
normally filtered out by a non-hybrid algorithm.

This capacity means that the algorithm will always struggle to produce the
fine refinements that the other non-hybrid algorithms could produce in terms of
their pheromone maps (cluster the pheromone on only the most important parts
of the map) but it does provide a benefit in that the wider dispersion pattern of
pheromone encourages exploration. As there is more pheromone around the maps
made by the hybrid algorithm, better exploration can be facilitated through ants
using that pheromone to explore more.
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10.6 Comparison with Heuristics

While not the primary focus of this research, it is nevertheless important to
contextualise the performance of the HACO and HACOH algorithms in a wider
context to understand how well the hyper-heuristics function. In particular, the
focus of this comparison is against existing heuristics. In the case of the genera-
tion hyper-heuristics, this is also an especially fair comparison as the generated
heuristics can be compared against others in the domain. The focus, in this case,
is to examine the differences between the hyper-heuristics and existing heuristics
although this is not necessarily a primary objective of this research.

The values presented are based on the ratio calculation specified in Section
3.5. The FR is used for all the domains as it makes the comparisons domain
neutral and also simplifies the presentation across multiple heuristics. The best
value will be indicated in bold. In addition to the FR value, the standard de-
viation and rank of the method are presented. The rank simply indicates the
ranked position of the method, heuristic or hyper-heuristic, when compared to
all others with 1.00 indicating the best position. The rank evaluation is a simple
and convenient metric for examining the different methods in relation to each
other.

10.6.1 Selection Constructive Hyper-Heuristics

In terms of the results present in Table 10.14, the best performing methods
are the HACO and HACO algorithms by a fairly large margin based on the
FR values. The best performing method, by a narrow margin, is the HACO
making use of the 3D pheromone map although the 2D HACO is only 0.01
larger. Nevertheless, the gap between the construction heuristics and the hyper-
heuristics is a significant enough gap to indicate the value of the hyper-heuristics.
The heuristics for the QAP and MSSP domains are defined in Section 6.3.1.

Table 10.14: Comparison of SC Hyper-Heuristics with QAP Constructive Heuris-
tics

SC-QAP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6
FR 1.59 1.53 1.52 1.55 3.13 3.61 3.10 2.31 2.88 3.05

Std Dev 0.74 0.65 0.65 0.66 2.42 2.92 2.20 1.39 2.07 2.19
Rank 4.00 2.00 1.00 3.00 9.00 10.00 8.00 5.00 6.00 7.00

In Table 10.15, the best performing method is the HACO making use of the
1D pheromone map. The next best methods are the other HACO and HACOH
algorithms, although a single construction heuristic (H8) can offer a competitive
result in comparison to the hyper-heuristics. The remaining construction heuris-
tics are all significantly worse than the best hyper-heuristic in terms of their FR

values.
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Table 10.15: Comparison of SC Hyper-Heuristics with MSSP Constructive
Heuristics

SC-MSSP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6 H7 H8
FR 1.187 1.206 1.204 1.207 1.465 1.369 1.376 1.467 1.447 1.393 1.521 1.222

Std Dev 0.096 0.131 0.131 0.130 0.059 0.082 0.058 0.079 0.081 0.098 0.073 0.080
Rank 1.00 3.00 2.00 4.00 10.00 6.00 7.00 11.00 9.00 8.00 12.00 5.00

10.6.2 Selection Perturbative Hyper-Heuristics

The heuristics for the QAP and MSSP domains are defined in Section 6.3.2.
These heuristics are used for comparison against the HACO and HACOH algo-
rithms. Table 10.16 indicates that the best performing method in for SC-QAP
domain, is the 2D HACO, followed closely by the 3D HACO and then the HA-
COH. The 1D HACO lags behind these methods but is still largely better than
any of the extant perturbative heuristics. Only H5 and H6 come reasonably close
to the performance of the hyper-heuristics in this case although the margin is
still large.

Table 10.16: Comparison of SP Hyper-Heuristics with QAP Perturbative Heuris-
tics

SP-QAP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
FR 1.50 1.37 1.38 1.40 2.17 2.39 2.44 2.47 1.73 2.52 1.79 3.00 2.39 2.42 2.42 2.43

Std Dev 0.57 0.43 0.43 0.45 1.25 1.54 1.54 1.76 0.78 1.66 0.83 2.24 1.47 1.60 1.60 1.56
Rank 4.00 1.00 2.00 3.00 7.00 8.00 13.00 14.00 5.00 15.00 6.00 16.00 9.00 10.00 10.00 12.00

In Table 10.17, the best performing method, by a narrow margin, is the 3D
HACO followed again, closely by the 2D HACO and HACOH. The 1D HACOH
did the worst in this domain but still better than any of the existing perturba-
tive heuristics. The difference between the heuristics and the hyper-heuristics is
smaller in this domain than in Table 10.16 with H8, H9 and H1 coming closer
to matching the performance of the hyper-heuristics but still being behind.

Table 10.17: Comparison of SP Hyper-Heuristics with MSSP Perturbative
Heuristics

SP-MSSP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6 H7 H8 H9
FR 1.114 1.092 1.091 1.094 1.195 1.212 1.224 1.212 1.207 1.208 1.201 1.178 1.178

Std Dev 0.049 0.057 0.056 0.056 0.038 0.072 0.089 0.069 0.065 0.073 0.077 0.047 0.047
Rank 4.000 2.000 1.000 3.000 7.000 12.000 13.000 11.000 9.000 10.000 8.000 5.000 5.000
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10.6.3 Generation Constructive Hyper-Heuristics

A comparison of the construction heuristics and hyper-heuristics for the 1BPP
domain is presented in Table 10.18. The 1BPP heuristics are defined in Section
7.8 and the MSSP heuristics are defined in Section 6.3.1.

This domain is the first domain where the hyper-heuristics (all four of them)
are not predominant. Specifically, the best hyper-heuristic, the hybrid (HACOH-
GC), is the second-best method behind H4 and H5 although the difference is
very slight. The 1D HACO and 3D HACO algorithms lag significantly behind in
performance at rank 9 and 7 respectively with the 2D HACO taking 4th place.

Table 10.18: Comparison of GC Hyper-Heuristics with 1BPP Constructive
Heuristics

GC-1BPP 1D 2D 3D Hybrid H0 H1 H2 H3 H4 H5 H6
FR 1.116 1.045 1.062 1.042 1.060 1.058 1.234 1.104 1.037 1.037 1.279

Std Dev 0.026 0.026 0.022 0.031 0.001 0.004 0.110 0.062 0.034 0.034 0.173
Rank 9.000 4.000 7.000 3.000 6.000 5.000 10.000 8.000 1.000 1.000 11.000

The 1BPP domain is, in the context of this research, the most expansive of
the domains and in terms of scale, the most difficult. However, despite this, a
hyper-heuristic was able to produce a solution that was almost as good as the
best heuristics with a relatively small computational budget (750 iterations).
Given the results seen in this research, it is well within reason that with a larger
computational budget, one more in line with GP computational budgets, the
performance of the algorithms would improve. However the same could be said
for the 2D HACO which is behind the HACOH but not by a wide margin.

Table 10.19: Comparison of GC Hyper-Heuristics with MSSP Constructive
Heuristics

GC-MSSP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6 H7 H8
FR 1.058 1.032 1.038 1.037 1.465 1.369 1.376 1.467 1.447 1.393 1.521 1.222

Std Dev 0.022 0.021 0.020 0.020 0.059 0.082 0.058 0.079 0.081 0.098 0.073 0.080
Rank 4.00 1.00 3.00 2.00 10.00 6.00 7.00 11.00 9.00 8.00 12.00 5.00

The comparison of construction heuristics and hyper-heuristics in Table 10.19
indicates that the best-performing methods are all hyper-heuristics, with the 2D
HACO showing the best performance with the 3D HACO and HACOH having
a slightly worse but similar performance. The 1D HACO proves the worst in
this situation but it is better by an order of magnitude in comparison to the
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best heuristic, H8. This result mirrors the performance of the hyper-heuristics
in other prior domains except for the 1BPP domain.

10.6.4 Generation Perturbative Hyper-Heuristics

A comparison of the construction heuristics and hyper-heuristics for the 1BPP
domain is presented in Table 10.18. The CVRP heuristics are defined in Section
8.6 and the MSSP heuristics are defined in Section 6.3.2. Table 10.20 presents
the comparison of perturbative heuristics and hyper-heuristics for the CVRP
domain. Based on the results, the 1D HACO performed the best in this do-
main, with the H5 heuristic following as a relatively close second. The next
best methods are the hyper-heuristics, which improve upon the heuristics by a
wider margin. This is an unusual result because, in the other generation hyper-
heuristic, the 2D HACO or HACOH performed better. The relative success of
the 1D HACO over the 2D HACO and 3D HACO is therefore unusual for this
type of problem.

Table 10.20: Comparison of GP Hyper-Heuristics with CVRP Perturbative
Heuristics

GP-CVRP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6 H7 H8 H9
FR 1.1810 1.2335 1.2378 1.2269 1.4815 1.4811 1.4427 1.4815 1.1821 1.4813 1.4815 1.4804 1.4436

Std Dev 0.10 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.06 0.14 0.14 0.14 0.14
Rank 1.00 4.00 5.00 3.00 12.00 9.00 6.00 11.00 2.00 10.00 12.00 8.00 7.00

In Table 10.21, the best performing method is the HACOH, followed by the
2D HACO, although the difference is relatively small. Despite this, the hyper-
heuristics manage to outperform all of the heuristics by a relatively wide margin.
The performance of the 2D HACO, 3D HACO and HACOH are much more
closely aligned than the 1D HACO which is the reverse of the situation in the
CVRP domain.

Table 10.21: Comparison of GP Hyper-Heuristics with MSSP Perturbative
Heuristics

GP-MSSP 1D 2D 3D Hybrid H1 H2 H3 H4 H5 H6 H7 H8 H9
FR 1.137 1.117 1.118 1.116 1.195 1.212 1.224 1.212 1.207 1.208 1.201 1.178 1.178

Std Dev 0.047 0.050 0.054 0.051 0.038 0.072 0.089 0.069 0.065 0.073 0.077 0.047 0.047
Rank 4.00 2.00 3.00 1.00 7.00 12.00 13.00 11.00 9.00 10.00 8.00 5.00 5.00
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10.6.5 Comparison with Other Hyper-Heuristics

The purpose of this research is not to compare the ant-based hyper-heuristics
with the state of the art. However, in terms of rounding out the comparison,
as well as contextualising the performance of the hyper-heuristics, it can be in-
teresting to compare the ant-based hyper-heuristic with another hyper-heuristic
used in a similar domain.

There are, however, some issues with full comparison. Firstly, two of the
problem domains (QAP and MSSP) have not been well studied in terms of
hyper-heuristics so existing research is lacking. Secondly, the different methods
and experimental conditions make a full comparison between them and these
ant-based hyper-heuristics, difficult as the operating conditions are not the same.

To that end, this comparison will focus primarily on the BPP domain which
has existing GP-based hyper-heuristics that can be readily compared to the
HACO-GC.

Table 10.22: Comparison of HACO-GC with GP for 1BPP Datasets

Method Uniform Hard
1D HACO 1.1345 1.09785
2D HACO 1.0269 1.06405
3D HACO 1.0461 1.07769
HACOH 1.0201 1.06349
GP [106] 1.0000 1.0004

Table 10.22 provides a comparison between the HACO-GC algorithm (using
different pheromone maps) and a GP-based hyper-heuristic operating in the
1BPP domain. The comparison presents the fitness ratios, FR, calculated as per
Equation 3.1, for the Uniform and Hard datasets in the 1BPP benchmark. The
best result is indicated in bold.

In terms of the comparison, the GP method is the clear winner by a margin
that grows or shrinks depending on the pheromone map used in the HACO-GC.
The HACOH comes the closest in performance to the GP but the margin is still
relatively large, even if the results only deviate from the best-known value by 2%.
Ultimately a large part of this disparity can be attributed to the fact that GP
is a mature technique whereas ant-based hyper-heuristics are much more recent.
While they show promising results, especially in comparison to state-of-the-art,
more work is needed to improve them.

10.6.6 Analysis and Discussion

Comparing the HACO and HACOH algorithms to existing heuristics is a good
comparison to establish the relative capacities of the hyper-heuristics presented
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in this research. Firstly, it establishes, in the case of generation hyper-heuristics,
whether or not the hyper-heuristic can produce competitive heuristics to those
that are already in use. Secondly, in the case of selection hyper-heuristics, it
also determines how effective the existing heuristics can be combined to be more
effective together than alone. However, in the context of this research, this type
of comparison is also useful for examining where the different types of pheromone
maps used in the ant-based hyper-heuristics are most effective.

In terms of the first point, the HACO and HACOH algorithms were very
effective as generation constructive and generation perturbative hyper-heuristics,
specifically in the MSSP and CVRP domains. In those domains, these algorithms
produced the best results of any of the methods. The 1BPP domain proved
slightly more difficult but at least one type of hyper-heuristic (HACOH) was
competitive with the best heuristics.

In the case of the selection constructive and selection perturbative hyper-
heuristics, across the QAP and MSSP domains, the hyper-heuristics were able
to outperform the existing heuristics in all cases. The difference in performance
is especially notable given that existing heuristics tend to produce solutions
that are, in most cases, twice as worse as the solutions produced by the hyper-
heuristics.

So in this sense, the ant-based hyper-heuristics can provide sufficiently good
quality solutions in all the types of heuristics when compared to existing heuris-
tics in each domain. However, this comparison has also reinforced the idea that
the type of pheromone map used in the ant-based hyper-heuristic can signifi-
cantly change its performance in relation to the others.

10.7 Summary

This chapter presented the results of the experiments conducted in this re-
search. These results included a comparison of optimality, generality, runtimes,
pheromone maps and comparisons with existing heuristics. The next chapter
concludes the thesis which also includes a discussion of future work.
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CHAPTER 11

Conclusion and Future Work

11.1 Introduction

This chapter presents the conclusions of this thesis as well as directions for ex-
panding upon the current research in future. The rest of this chapter is organised
as follows. Section 11.2 provides an overview of the thesis in its totality. Section
11.3 demonstrates how the research objectives were met. Section 11.4 details
the major conclusions drawn from the research. Section 11.5 details possible re-
search directions for future research. Finally, a summary of the chapter is given
in Section 11.6.

11.2 An Overview of the Thesis

The research presented in this thesis is part of a wider initiative aimed at improv-
ing the use of ant algorithms in hyper-heuristics and extending the application
of ant algorithms in hyper-heuristics. This thesis presented the HACO algorithm
which is a general ant-based hyper-heuristic algorithm (HACO). This was em-
ployed for selection constructive, selection perturbative, generation constructive
and generation perturbative hyper-heuristics, extending the general HACO al-
gorithm to all four types of hyper-heuristics.

The thesis also provided a comprehensive study of how different pheromone
maps, the principal operating mechanism of ant algorithms, could be used in
these hyper-heuristics. This process entailed the use of three different pheromone
map types (1D, 2D and 3D) in the four types of ant-based hyper-heuristics for
different problem domains to empirically assess how each pheromone map type
affected the performance of the underlying ant-based hyper-heuristic.

Furthermore, the research presented the HACOH algorithm which is a hy-
brid algorithm that makes use of three separate HACO algorithms, each with
its distinct pheromone map. The goal of the HACOH algorithm is to test if
the hybridisation of multiple distinct HACO algorithms (each with its distinct
pheromone map) would perform better than non-hybridised HACO algorithms
on their own.

To evaluate these algorithms, four different combinatorial optimisation prob-
lem domains were considered. The one-dimensional bin packing problem (1BPP),
quadratic assignment problem (QAP), capacitated vehicle routing problem (CVRP)
and the movie scene scheduling problem (MSSP). The first three are well-known
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problem domains within the field of combinatorial optimisation and the last
represents a new combinatorial problem to demonstrate the effectiveness of ant-
based hyper-heuristics on a completely new problem domain.

A comprehensive analysis was performed on the results to ascertain the rel-
ative merits of the different pheromone maps in the different hyper-heuristics
and problem domains. For most cases, it was found that there were distinct ad-
vantages for using specific types of pheromone maps for different problems and
hyper-heuristics, with the algorithms that used 1D and 3D pheromone maps
doing better than their counterparts. In other cases, the 2D pheromone map
enabled the best hyper-heuristic performance. The HACOH algorithm did out-
perform the non-hybrid HACO algorithms in the GC-1BPP and GP-MSSP do-
mains, signifying that there is some utility to be gained through the hybridisation
process. The hybridisation process was found to have some improvements over
some of the pheromone maps but not sufficiently to compete with the best type.

11.3 Thesis Objectives

There are several objectives put forward in Section 1.2 regarding the objectives
that this research aimed to reach. This section details how the course of the
research met these research objectives. The objectives are as follows.

11.3.1 Objectives One to Four

The first five objectives are as follows.

1. To design and implement an ant-based selection constructive hyper-
heuristic with 1D, 2D and 3D pheromone maps.

2. To design and implement an ant-based selection perturbative hyper-
heuristic with 1D, 2D and 3D pheromone maps.

3. To design and implement an ant-based generation constructive
hyper-heuristic with 1D, 2D and 3D pheromone maps.

4. To design and implement an ant-based generation perturbative
hyper-heuristic with 1D, 2D and 3D pheromone maps.

The first four objectives concern themselves with the development of an ant-
based hyper-heuristic for one of the four types of hyper-heuristics. Throughout
this research, four successful implementations of the HACO algorithm were de-
veloped and presented. These are the HACO-SC, HACO-SP, HACO-GC and
HACO-GP. Each of these is capable of being used with one of the three pheromone
maps (1D, 2D and 3D) that are also defined in this work. Therefore this work
serves as a successful demonstration that hyper-heuristics can employ ant algo-
rithms to drive their search in the heuristic space. These developments open the
way for additional research to be done with ant-based hyper-heuristics as ant
algorithms have not been used by generation hyper-heuristics until now.

Finally, there are two additional consequences of achieving this objective.
The first is that ACO has been extended to generation hyper-heuristics which
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is a novel application by itself. Secondly, however, the generality of the ACO
technique itself has been extended in terms of its applicability to use in optimi-
sation. One of the major limitations of the ACO has been its reliance on problems
conforming to a graph-based representation. Problems that did not have this rep-
resentation could not be solved in their native form without transformation. By
moving the ACO to search a heuristic space, instead of a solution space, ACO
can now be used by a hyper-heuristic to solve any problem that can be solved by
heuristics. The approaches here can be extended to apply to any combinatorial
optimisation problem for which the appropriate heuristic information exists or
could be developed.

11.3.2 Objective Five

Objective Five is given as:

5. To design and implement a hybridisation method such that all
three pheromone maps can be used together in a hyper-heuristic.

This objective concerns itself with the development of a hybridisation method
to leverage the capacities of all three types of pheromone maps into a single al-
gorithm. The HACOH algorithm has achieved this goal by incorporating three
separate HACO algorithms (each with its distinct pheromone map) with a hy-
bridisation framework to connect the HACO algorithms’ search efforts. There
are several implications of reaching this objective. Firstly, it shows that it is
possible to leverage all three of the pheromone maps by a single algorithm.

Secondly, the HACOH algorithm also provides an alternative to the existing
HACO algorithms by not requiring any selection of the pheromone map to use in
the ant-based hyper-heuristic. As it makes use of all three, in their algorithms,
it can provide an alternative to the non-hybrid HACO algorithms which are
dependent on the choice of a single pheromone map.

11.3.3 Objective Six

The final objective is given as:

6. To assess the effect of 1D, 2D and 3D pheromone maps have on
the four types of ant-based hyper-heuristics as well as to compare
the hybrid algorithm against the non-hybrid algorithms

The sixth and final objective concerns itself with the empirical assessment
of the effect of the different pheromone maps when used in the various hyper-
heuristic (HACO and HAOCH) algorithms. It is the most important objective
around which most of this research revolves. Based on the results of Chapter 10,
several implications arise from meeting this objective.

Firstly, the results have confirmed that there is no free lunch regarding the
choice of pheromone map for use in a HACO algorithm. The results demonstrated
that different pheromone maps are meaningful in most of the experiments, but
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that no singular map type is truly optimal for all hyper-heuristics or domains.
There is a certain degree of granularity to this as well. For some domains like the
SC-MSSP, the observed differences between the effects of the pheromone maps
when used in the hyper-heuristics is relatively narrow. However, for others like
the GC-1BPP, the margins are much more significant.

Secondly, the HACOH was not a unilateral success in terms of being able
to outperform the non-hybrid HACO algorithms. Rather, it was only able to
outperform the HACO algorithms in two domains. Notwithstanding the possi-
bility of improving the hybridisation process, what these results indicate is that
hybrid algorithms have something to offer ant-based hyper-heuristics without
necessarily supplanting non-hybrid ant-based hyper-heuristics. The HACOH can
be used in cases where choosing which pheromone map to use in the ant-based
hyper-heuristic would be untenable, and it would be able to provide reasonable
performance.

Thirdly, there are several implications from the results regarding the nature
of the pheromone maps and their use in the ant-based hyper-heuristics. One of
the hypotheses of this research was that the 3D pheromone map would be better
suited for the generation hyper-heuristics as it has the information-carrying ca-
pacity to allow the hyper-heuristic to precisely refine (and therefore structure) its
pheromone map to produce better heuristics. However, in practice, the 1D and
2D pheromone maps have proven more than sufficient for use in ant-based gener-
ation hyper-heuristics. Conversely, it was theorised that the 1D pheromone map
would be preferable for the selection hyper-heuristics because of the stochastic
nature of the low-level heuristics but in practice, 2D and 3D pheromone maps
are capable of being used with great success in selection hyper-heuristics.

Finally, some implications follow from the above statements. The 1D pheromone
map has faster performance and requires less computing resources, but it also
has the least interpretability as a consequence of compressing the heuristic space
into 1D. The 3D pheromone map is the opposite, offering high levels of inter-
pretability but at a greater cost. The 2D pheromone map generally falls between
the two although there are cases where this is not true. The performance of
the maps in relation to the ant-based hyper-heuristic, however, is much more
dependent on the type of hyper-heuristic and the problem domain.

This further exemplifies the fact that the choice of the optimal pheromone
map for an ant-based hyper-heuristic is highly dependent on the nature of the
problem domain, and which hyper-heuristic is being used. That is clear delin-
eations of which type of pheromone map should be used for which ant-based
hyper-heuristics are not easy determinations.

11.4 Conclusion

This research has demonstrated that the type of pheromone map used by an
ant-based hyper-heuristic does have a significant impact on the performance of
that ant-based hyper-heuristic across a variety of problem domains and hyper-
heuristic types. Furthermore, in the course of performing this study, the applica-
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tion of ant algorithms to hyper-heuristics was greatly increased by the successful
application of ant algorithms to generation constructive and generation pertur-
bative hyper-heuristics through the HACO-GC and HACO-GP algorithms.

The hybridisation method, HACOH, did not universally outperform its non-
hybrid HACO counterparts in the experiments. Rather, what it demonstrated
was that the hybridisation attempt was only able to partially outperform the
non-hybrid algorithms in some of the domains, instead of all of them. The
HACOH, therefore, does provide an alternative to needing to select a specific
pheromone map for a given ant-based hyper-heuristic, but this choice trades off
potentially much better performance. That is, there are domains where the HA-
COH algorithm would be the optimal choice but it does not predominate over
the non-hybrid HACO algorithms.

Furthermore, the limitations of ACOs in terms of working on graph-based
problems have been removed and generation hyper-heuristics have been extended
by applying ACO to them where previously they had been ignored. One goal of
future research, amongst others, is to expand on this foundation and begin to
refine and optimise the algorithms to create the most optimal form of ant-based
hyper-heuristics.

11.5 Future Work

Hyper-heuristics employing ant algorithms to drive the search of heuristic spaces
is still largely unexplored in terms of hyper-heuristics research. While this re-
search has been comprehensive, there are still several areas for additional re-
search and room for improvement. These are discussed below.

– Pheromone Map Selection: One of the insights gained from this research
is that the choice of using which pheromone map can significantly impact
the performance of the underlying ant-based hyper-heuristic. However, there
are less clear indications of when the different pheromone maps should be
used for which hyper-heuristics or even problem domains. Hence there is a
need to investigate the task of choosing the type of pheromone map when
using ant-based hyper-heuristics as the problem of pheromone map selection,
similar to the task of algorithm selection for other optimisation problems.

– Alternative Ant Algorithms: The ant algorithms used in this research
have largely focused on the ant system and an adaptation of the fast ant sys-
tem. There are many more ant algorithms that have expanded and developed
upon the most basic types of ant algorithms. Investigating the applicability
and effectiveness of ant colony algorithms like the MIN-MAX Ant System
[108] for use in hyper-heuristics is an open question for future work.

– Hybridising Multiple Ant-Based Hyper-Heuristics: The hybridisa-
tion strategy used in this research focused on hybridising different HACO
algorithms with different pheromone maps together. However, this leaves
room for an ant algorithm that attempts to hybridise different types of ant-
based hyper-heuristics into a hybrid ant colony hyper-heuristic. There is an
existing body of work to demonstrate that hybridising hyper-heuristics can
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be effective [2], therefore investigating the possibility of using hybrid ant-
based hyper-heuristics remains an interesting direction for future research.

– Algorithm Selection Optimisation: One of the key points demonstrated
by this research is that there can be niches for which specific HACO algo-
rithms, and therefore pheromone map types, would be useful. Investigating
algorithm selection algorithms, or algorithms that decide when to use other
algorithms would be a good potential research direction for expanding the
utility of ant-based hyper-heuristics.

– Expanded Domain Application: The HACO-GC and HACO-GP algo-
rithms, are novel generation constructive and generation perturbative ant-
based hyper-heuristics. Their potential for application in domains beyond
those explored here remains an interesting possibility for future research
given the relative paucity of ant-based generation hyper-heuristics and espe-
cially the lack of many generation perturbative hyper-heuristics in general.

11.6 Summary

This chapter has presented a comparison of different pheromone maps and their
use and effect in the four types of hyper-heuristics as per the results of the study.
A discussion of how the research objectives were achieved is provided as well.
The study is concluded and a discussion of possible future directions for the
research is given as well.
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[22] J. Drake, A. Kheiri, E. Özcan, and E. Burke, “Recent advances in selection

hyper-heuristics,” European Journal of Operational Research, vol. 285, pp.

405–428, 09 2020.

[23] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,

methodological variations, and system approaches,” AI Communications,

vol. 7, no. 1, p. 39–59, 1994.

[24] E. K. Burke, B. L. Maccarthy, S. Petrovic, and R. Qu, “Knowledge discov-

ery in a hyper-heuristic for course timetabling using case-based reasoning,”

Practice and Theory of Automated Timetabling IV Lecture Notes in Com-

puter Science, p. 276–287, 2003.

[25] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for

timetabling problems,” Journal of Scheduling, vol. 9, no. 2, p. 115–132,

2006.

[26] F. Glover and M. Laguna, Tabu Search. Boston, MA: Springer

US, 1998, pp. 2093–2229. [Online]. Available: https://doi.org/10.1007/

978-1-4613-0303-9 33
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Appendix A

Statistical Testing

This appendix contains the results of the statistical tests that are consulted in
Section 10.2.

Table A.1: SC-QAP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
chr12a 45.5 0.00289 Reject H0 0.92640 154.5 0.96113 Do not Reject H0 0.64706 197 0.99979 Do not Reject H0 1.36489
chr12b 20 0.00007 Reject H0 1.65058 98 0.28070 Do not Reject H0 0.09284 208 0.99997 Do not Reject H0 1.61064
chr12c 15 0.00003 Reject H0 1.76567 70.5 0.04254 Do not Reject H0 0.64064 195 0.99971 Do not Reject H0 1.38419
chr15b 19 0.00006 Reject H0 1.73667 125 0.70513 Do not Reject H0 0.10012 208 0.99997 Do not Reject H0 1.87263
chr18b 217 0.99999 Do not Reject H0 3.12445 98.5 0.28773 Do not Reject H0 -0.05473 2 0.00000 Reject H0 3.64660
chr20a 33 0.00053 Reject H0 1.30710 99.5 0.30204 Do not Reject H0 0.13720 188 0.99919 Do not Reject H0 1.16509
chr22a 124.5 0.69796 Do not Reject H0 0.07592 189 0.99930 Do not Reject H0 1.37601 168 0.98991 Do not Reject H0 0.84839
els19 181 0.99790 Do not Reject H0 1.18598 85 0.13138 Do not Reject H0 0.40057 36 0.00081 Reject H0 1.43477
had12 42.5 0.00191 Reject H0 1.18798 122 0.66156 Do not Reject H0 0.01470 181.5 0.99809 Do not Reject H0 1.13567
had14 35 0.00068 Reject H0 1.37793 98 0.28022 Do not Reject H0 0.34602 181.5 0.99805 Do not Reject H0 1.14566
had16 17 0.00004 Reject H0 1.76483 142.5 0.89741 Do not Reject H0 0.60079 217 0.99999 Do not Reject H0 2.05219
had18 18 0.00005 Reject H0 1.93110 123 0.67612 Do not Reject H0 0.08157 214.5 0.99999 Do not Reject H0 2.12939
had20 40 0.00140 Reject H0 1.32997 113.5 0.52484 Do not Reject H0 0.04782 185 0.99878 Do not Reject H0 1.27698
kra32 209 0.99997 Do not Reject H0 1.62469 119 0.61422 Do not Reject H0 0.09060 18 0.00005 Reject H0 1.56437
sko49 33.5 0.00056 Reject H0 1.55873 126 0.71936 Do not Reject H0 0.12179 208.5 0.99997 Do not Reject H0 1.86860
sko56 41 0.00161 Reject H0 0.98992 132 0.79666 Do not Reject H0 0.22954 189.5 0.99935 Do not Reject H0 1.06701
sko64 35 0.00070 Reject H0 1.29390 96 0.25343 Do not Reject H0 0.07692 188 0.99919 Do not Reject H0 1.20954
sko72 41 0.00162 Reject H0 1.38835 78 0.07923 Do not Reject H0 0.39729 177.5 0.99671 Do not Reject H0 1.01436
sko81 34 0.00061 Reject H0 1.39011 91 0.19184 Do not Reject H0 0.36282 178 0.99692 Do not Reject H0 1.21106

167



Table A.2: SC-QAP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
chr12a 52 0.00638 Reject H0 0.92920 122.5 0.66853 Do not Reject H0 0.01131 157.5 0.97054 Do not Reject H0 0.66958
chr12b 32 0.00045 Reject H0 1.22369 170.5 0.99239 Do not Reject H0 0.91225 167.5 0.98935 Do not Reject H0 0.83331
chr12c 35 0.00070 Reject H0 1.36671 148.5 0.93509 Do not Reject H0 0.49452 115.5 0.55773 Do not Reject H0 0.08881
chr15b 23 0.00011 Reject H0 1.61119 135 0.82996 Do not Reject H0 0.29358 141.5 0.88947 Do not Reject H0 0.41994
chr18b 220 1.00000 Do not Reject H0 3.39784 140 0.87726 Do not Reject H0 0.32695 150 0.94251 Do not Reject H0 0.34669
chr20a 44 0.00240 Reject H0 0.95201 149 0.93757 Do not Reject H0 0.68815 135.5 0.83518 Do not Reject H0 0.46158
chr22a 126.5 0.72627 Do not Reject H0 0.12100 107.5 0.42595 Do not Reject H0 0.07988 195 0.99971 Do not Reject H0 1.44824
els19 191 0.99947 Do not Reject H0 1.54646 148 0.93231 Do not Reject H0 0.52290 117 0.58215 Do not Reject H0 0.08594
had12 52.5 0.00667 Reject H0 0.95650 130 0.77443 Do not Reject H0 0.35370 136.5 0.84637 Do not Reject H0 0.33418
had14 30 0.00033 Reject H0 1.45623 119 0.61477 Do not Reject H0 0.09072 91 0.19152 Do not Reject H0 0.30579
had16 14.5 0.00003 Reject H0 1.88173 95.5 0.24641 Do not Reject H0 0.19645 137 0.85042 Do not Reject H0 0.42753
had18 18 0.00005 Reject H0 1.89754 122.5 0.66862 Do not Reject H0 0.12491 128.5 0.75345 Do not Reject H0 0.22764
had20 37.5 0.00099 Reject H0 1.35207 104.5 0.37770 Do not Reject H0 0.18057 103.5 0.36203 Do not Reject H0 0.10688
kra32 205 0.99994 Do not Reject H0 1.54571 118.5 0.60629 Do not Reject H0 0.11050 119.5 0.62216 Do not Reject H0 0.02102
sko49 26 0.00018 Reject H0 1.55582 102 0.33912 Do not Reject H0 0.22065 112.5 0.50828 Do not Reject H0 0.16590
sko56 46 0.00309 Reject H0 0.79531 149 0.93757 Do not Reject H0 0.34271 149 0.93757 Do not Reject H0 0.50574
sko64 37 0.00093 Reject H0 1.23617 122.5 0.66844 Do not Reject H0 0.10917 106.5 0.40976 Do not Reject H0 0.01753
sko72 53.5 0.00761 Reject H0 0.89882 159.5 0.97562 Do not Reject H0 0.71404 119.5 0.62216 Do not Reject H0 0.22174
sko81 46 0.00309 Reject H0 1.07904 146 0.92079 Do not Reject H0 0.46125 128 0.74659 Do not Reject H0 0.13781
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Table A.3: SC-QAP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
chr12a 9.563758389 0.02266266289 Reject H0
chr12b 20.15436242 0.0001576866564 Reject H0
chr12c 17.72 0.0005023774168 Reject H0
chr15a 0.76 0.8590085913 Do not Reject H0
chr15b 19.24 0.0002438703059 Reject H0
chr15c 4.68 0.1967857498 Do not Reject H0
chr18a 4.68 0.1967857498 Do not Reject H0
chr18b 23.16 3.74E-05 Reject H0
chr20a 11.4 0.009748366062 Reject H0
chr20b 2.718120805 0.4371566318 Do not Reject H0
chr20c 3.72 0.2933296062 Do not Reject H0
chr22a 14.91946309 0.001886782836 Reject H0
chr22b 6.76 0.07995381606 Do not Reject H0
chr25a 7.8 0.05033109786 Do not Reject H0
els19 10.44 0.01517348465 Reject H0
had12 12.02040816 0.007313576719 Reject H0
had14 18.18120805 0.000403573518 Reject H0
had16 17.31081081 0.0006099720579 Reject H0
had18 21.56375839 8.04E-05 Reject H0
had20 13.07432432 0.004478600818 Reject H0
kra30a 1.64 0.6503544781 Do not Reject H0
kra30b 2.44 0.4862320712 Do not Reject H0
kra32 20.36 0.000142940359 Reject H0
scr12 1.16 0.7626130659 Do not Reject H0
sko42 6.92 0.07449183186 Do not Reject H0
sko49 13.99328859 0.002914302398 Reject H0
sko56 15.16107383 0.001684047678 Reject H0
sko64 13.24 0.004145317909 Reject H0
sko72 10.76 0.01309702323 Reject H0
sko81 12.04 0.007247385935 Reject H0
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Table A.4: SC-MSSP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
C S 0 I0 11.81756757 0.008034954695 Reject H0
C S 0 I1 9.75 0.02081525311 Reject H0
C S 0 I2 13.89041096 0.003058181519 Reject H0
C S 0 I3 7.630872483 0.05428943305 Do not Reject H0
C S 0 I4 10.5704698 0.01429040106 Reject H0
C S 1 I0 0.68 0.877897762 Do not Reject H0
C S 1 I1 4.52 0.2105132556 Do not Reject H0
C S 1 I2 8.04 0.0451922194 Reject H0
C S 1 I3 12.2 0.00672852293 Reject H0
C S 1 I4 3 0.3916251763 Do not Reject H0
C S 2 I0 3.08 0.3794544638 Do not Reject H0
C S 2 I1 1.8 0.6149349358 Do not Reject H0
C S 2 I2 3.88 0.2747169155 Do not Reject H0
C S 2 I3 21.24 9.39E-05 Reject H0
C S 2 I4 6.92 0.07449183186 Do not Reject H0
C S 3 I0 7.24 0.06462909894 Do not Reject H0
C S 3 I1 5.16 0.160449136 Do not Reject H0
C S 3 I2 12.36 0.006246400552 Reject H0
C S 3 I3 7.16 0.06696915638 Do not Reject H0
C S 3 I4 0.68 0.877897762 Do not Reject H0

Table A.5: SC-MSSP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 51.5 0.00600 Reject H0 1.10251 105 0.38548 Do not Reject H0 0.19061 176 0.99616 Do not Reject H0 1.01646
C S 0 I1 67 0.03094 Do not Reject H0 0.79268 164 0.98456 Do not Reject H0 0.72827 189 0.99930 Do not Reject H0 1.30539
C S 0 I2 38.5 0.00113 Reject H0 1.15372 104 0.36868 Do not Reject H0 0.01892 194 0.99967 Do not Reject H0 1.24606
C S 0 I4 44 0.00237 Reject H0 1.10496 129.5 0.76644 Do not Reject H0 0.31144 191 0.99949 Do not Reject H0 1.27545
C S 1 I2 51 0.00570 Reject H0 0.96097 147 0.92671 Do not Reject H0 0.60773 192 0.99955 Do not Reject H0 1.35638
C S 1 I3 41 0.00161 Reject H0 1.33777 134 0.81925 Do not Reject H0 0.33049 196 0.99975 Do not Reject H0 1.61314
C S 2 I3 210 0.99998 Do not Reject H0 2.31698 149 0.93757 Do not Reject H0 0.55424 18 0.00005 Reject H0 2.14116
C S 3 I2 192 0.99955 Do not Reject H0 1.06181 142 0.89331 Do not Reject H0 0.53835 55 0.00903 Reject H0 0.93332

Table A.6: SC-MSSP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 37.5 0.00098 Reject H0 1.21510 94 0.22717 Do not Reject H0 0.22598 79 0.08465 Do not Reject H0 0.41677
C S 0 I1 80.5 0.09563 Do not Reject H0 0.73446 146 0.92077 Do not Reject H0 0.04424 166.5 0.98815 Do not Reject H0 0.56116
C S 0 I2 60 0.01545 Reject H0 0.93146 144.5 0.91197 Do not Reject H0 0.36439 142.5 0.89771 Do not Reject H0 0.43780
C S 0 I4 62 0.01894 Do not Reject H0 0.93365 143 0.90130 Do not Reject H0 0.35836 159 0.97487 Do not Reject H0 0.69325
C S 1 I2 47 0.00351 Reject H0 1.08860 89 0.17004 Do not Reject H0 0.30305 127 0.73309 Do not Reject H0 0.24813
C S 1 I3 50 0.00506 Reject H0 1.04463 137 0.85012 Do not Reject H0 0.19091 156 0.96600 Do not Reject H0 0.46832
C S 2 I3 210 0.99998 Do not Reject H0 2.36213 123 0.67590 Do not Reject H0 0.24219 157 0.96902 Do not Reject H0 0.74025
C S 3 I2 187 0.99907 Do not Reject H0 1.01458 115 0.54951 Do not Reject H0 0.20902 136 0.84025 Do not Reject H0 0.30500
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Table A.7: SP-QAP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
chr12a 18.76 0.0003064826283 Reject H0
chr12b 18.44 0.0003568663042 Reject H0
chr12c 5.16 0.160449136 Do not Reject H0
chr15a 20.28 0.000148506523 Reject H0
chr15b 14.2 0.002645179989 Reject H0
chr15c 20.68 0.0001226773353 Reject H0
chr18a 25.96 9.72E-06 Reject H0
chr18b 16.5704698 0.0008660483451 Reject H0
chr20a 17.48 0.0005629556077 Reject H0
chr20b 15.8 0.001246226177 Reject H0
chr20c 17 0.0007067423923 Reject H0
chr22a 15.08 0.001749544034 Reject H0
chr22b 26.6 7.14E-06 Reject H0
chr25a 21.8 7.18E-05 Reject H0
els19 26.76 6.61E-06 Reject H0
had12 13.60416667 0.003496595429 Reject H0
had14 14.31081081 0.002511210003 Reject H0
had16 16.42857143 0.0009261487597 Reject H0
had18 7.993288591 0.04615061412 Reject H0
had20 17.64 0.0005218132672 Reject H0
kra30a 22.44 5.28E-05 Reject H0
kra30b 22.84 4.36E-05 Reject H0
kra32 14.39597315 0.002412839803 Reject H0
scr12 16.2 0.00103178681 Reject H0
sko42 24.9527027 1.58E-05 Reject H0
sko49 21.24 9.39E-05 Reject H0
sko56 13.8 0.003190421908 Reject H0
sko64 19.64 0.0002015427626 Reject H0
sko72 19.64 0.0002015427626 Reject H0
sko81 15.56 0.001395557823 Reject H0
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Table A.8: SP-QAP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
chr12a 23 0.00011 Reject H0 1.60134 103.5 0.36219 Do not Reject H0 0.07270 197 0.99979 Do not Reject H0 1.49884
chr12b 21 0.00008 Reject H0 1.55834 114 0.53306 Do not Reject H0 0.16778 214 0.99999 Do not Reject H0 1.67723
chr15a 23 0.00011 Reject H0 1.49558 145 0.91447 Do not Reject H0 0.31880 210 0.99998 Do not Reject H0 1.74540
chr15b 28 0.00025 Reject H0 1.56409 115 0.54951 Do not Reject H0 0.06434 199 0.99985 Do not Reject H0 1.58638
chr15c 23 0.00011 Reject H0 1.58917 97 0.26691 Do not Reject H0 0.07949 200 0.99987 Do not Reject H0 1.51617
chr18a 3 0.00000 Reject H0 2.90705 138 0.85958 Do not Reject H0 0.48899 223 1.00000 Do not Reject H0 2.87499
chr18b 20.5 0.00007 Reject H0 1.61101 109 0.45044 Do not Reject H0 0.28516 199 0.99985 Do not Reject H0 1.49221
chr20a 23 0.00011 Reject H0 1.75457 70 0.04075 Do not Reject H0 0.73499 189 0.99930 Do not Reject H0 1.38446
chr20b 11 0.00001 Reject H0 1.93854 103.5 0.36218 Do not Reject H0 0.18197 205.5 0.99995 Do not Reject H0 1.79024
chr20c 12 0.00002 Reject H0 2.20362 101 0.32410 Do not Reject H0 0.10339 209 0.99997 Do not Reject H0 1.89052
chr22a 13 0.00002 Reject H0 1.88995 87 0.14983 Do not Reject H0 0.35751 209 0.99997 Do not Reject H0 1.72496
chr22b 25 0.00015 Reject H0 1.60172 117.5 0.59024 Do not Reject H0 0.05833 201 0.99989 Do not Reject H0 1.62370
chr25a 15 0.00003 Reject H0 1.89618 74 0.05749 Do not Reject H0 0.43632 207 0.99996 Do not Reject H0 1.66635
els19 15 0.00003 Reject H0 1.94612 152 0.95145 Do not Reject H0 0.67043 222 1.00000 Do not Reject H0 2.89010
had12 34 0.00058 Reject H0 1.36735 131 0.78678 Do not Reject H0 0.28660 200 0.99988 Do not Reject H0 1.56661
had14 20 0.00006 Reject H0 1.59286 112 0.50000 Do not Reject H0 0.08952 196.5 0.99977 Do not Reject H0 1.40844
had16 26 0.00018 Reject H0 1.76280 109.5 0.45859 Do not Reject H0 0.00000 199.5 0.99986 Do not Reject H0 1.69339
had18 46.5 0.00325 Reject H0 1.17841 119.5 0.62233 Do not Reject H0 0.07141 177 0.99651 Do not Reject H0 1.15976
had20 15.5 0.00003 Reject H0 1.84449 132.5 0.80261 Do not Reject H0 0.23118 212 0.99998 Do not Reject H0 2.23335
kra30a 5 0.00000 Reject H0 2.36715 111 0.48346 Do not Reject H0 0.17095 219 1.00000 Do not Reject H0 2.12990
kra30b 20 0.00007 Reject H0 1.71201 74 0.05749 Do not Reject H0 0.53867 200.5 0.99988 Do not Reject H0 1.46079
kra32 31.5 0.00041 Reject H0 1.48644 109 0.45023 Do not Reject H0 0.05298 191 0.99950 Do not Reject H0 1.38284
scr12 15 0.00003 Reject H0 1.85578 67 0.03096 Do not Reject H0 0.63560 195 0.99971 Do not Reject H0 1.34604
sko42 10 0.00001 Reject H0 2.39416 92.5 0.20913 Do not Reject H0 0.12557 205.5 0.99995 Do not Reject H0 1.93291
sko49 26 0.00018 Reject H0 1.62154 113.5 0.52481 Do not Reject H0 0.03605 202.5 0.99991 Do not Reject H0 1.81979
sko56 41 0.00162 Reject H0 0.96544 153.5 0.95744 Do not Reject H0 0.49279 193 0.99961 Do not Reject H0 1.25382
sko64 26 0.00018 Reject H0 1.33700 150.5 0.94490 Do not Reject H0 0.47980 203 0.99992 Do not Reject H0 1.93387
sko72 19.5 0.00006 Reject H0 1.71796 130.5 0.77861 Do not Reject H0 0.30553 215 0.99999 Do not Reject H0 2.15387
sko81 24 0.00013 Reject H0 1.63788 99.5 0.30202 Do not Reject H0 0.10844 195.5 0.99973 Do not Reject H0 1.50084

Table A.9: SP-QAP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
chr12a 50 0.00506 Reject H0 0.98004 173 0.99430 Do not Reject H0 0.94621 163 0.98280 Do not Reject H0 0.82002
chr12b 26 0.00018 Reject H0 1.41298 132 0.79661 Do not Reject H0 0.13967 139.5 0.87302 Do not Reject H0 0.29671
chr15a 23 0.00011 Reject H0 1.56410 103 0.35446 Do not Reject H0 0.04102 134 0.81925 Do not Reject H0 0.30327
chr15b 46 0.00309 Reject H0 1.14722 139 0.86862 Do not Reject H0 0.44190 140 0.87726 Do not Reject H0 0.41971
chr15c 32 0.00045 Reject H0 1.20417 165 0.98604 Do not Reject H0 0.71149 151 0.94713 Do not Reject H0 0.59190
chr18a 10 0.00001 Reject H0 2.18433 131 0.78468 Do not Reject H0 0.23190 152 0.95145 Do not Reject H0 0.58956
chr18b 46 0.00309 Reject H0 1.02393 177 0.99653 Do not Reject H0 1.04175 171 0.99283 Do not Reject H0 0.84732
chr20a 39 0.00123 Reject H0 1.27873 153.5 0.95742 Do not Reject H0 0.65008 109 0.45049 Do not Reject H0 0.03053
chr20b 41 0.00162 Reject H0 1.23003 168 0.98991 Do not Reject H0 0.88339 157 0.96902 Do not Reject H0 0.70115
chr20c 19 0.00006 Reject H0 1.87138 143 0.90075 Do not Reject H0 0.52463 131 0.78468 Do not Reject H0 0.31477
chr22a 22 0.00009 Reject H0 1.58806 138 0.85963 Do not Reject H0 0.43151 122 0.66088 Do not Reject H0 0.12255
chr22b 44 0.00240 Reject H0 1.01451 165 0.98607 Do not Reject H0 0.73982 165 0.98606 Do not Reject H0 0.73086
chr25a 22 0.00009 Reject H0 1.49898 146.5 0.92381 Do not Reject H0 0.42619 123.5 0.68334 Do not Reject H0 0.03358
els19 36 0.00081 Reject H0 1.22074 155 0.96275 Do not Reject H0 0.51177 192 0.99955 Do not Reject H0 1.12750
had12 39 0.00119 Reject H0 1.26920 116.5 0.57466 Do not Reject H0 0.07336 133 0.80976 Do not Reject H0 0.34323
had14 41.5 0.00170 Reject H0 1.17241 167.5 0.98958 Do not Reject H0 0.91228 146 0.92118 Do not Reject H0 0.56835
had16 53 0.00714 Reject H0 0.98155 162 0.98108 Do not Reject H0 0.76904 158 0.97205 Do not Reject H0 0.73564
had18 52 0.00637 Reject H0 1.05490 121.5 0.65348 Do not Reject H0 0.08413 126 0.71941 Do not Reject H0 0.14085
had20 24 0.00013 Reject H0 1.46902 144 0.90816 Do not Reject H0 0.42320 164 0.98457 Do not Reject H0 0.69890
kra30a 2.5 0.00000 Reject H0 2.31157 120 0.62999 Do not Reject H0 0.00603 107 0.41785 Do not Reject H0 0.17324
kra30b 42 0.00185 Reject H0 1.14360 174.5 0.99524 Do not Reject H0 0.99183 152 0.95145 Do not Reject H0 0.54815
kra32 54.5 0.00843 Reject H0 0.90824 142 0.89359 Do not Reject H0 0.23710 140 0.87797 Do not Reject H0 0.26226
scr12 29 0.00029 Reject H0 1.42876 120.5 0.63781 Do not Reject H0 0.05898 96 0.25346 Do not Reject H0 0.40321
sko42 33.5 0.00056 Reject H0 1.47790 172.5 0.99397 Do not Reject H0 0.87681 154.5 0.96108 Do not Reject H0 0.59031
sko49 37 0.00093 Reject H0 1.28315 136.5 0.84529 Do not Reject H0 0.35770 137.5 0.85493 Do not Reject H0 0.36862
sko56 55 0.00903 Reject H0 0.79459 138 0.85966 Do not Reject H0 0.02789 157 0.96904 Do not Reject H0 0.36078
sko64 24.5 0.00014 Reject H0 1.58065 95.5 0.24682 Do not Reject H0 0.15775 132.5 0.80245 Do not Reject H0 0.35032
sko72 32 0.00045 Reject H0 1.37124 125.5 0.71229 Do not Reject H0 0.14163 144 0.90779 Do not Reject H0 0.41750
sko81 24 0.00013 Reject H0 1.61609 111.5 0.49173 Do not Reject H0 0.07772 102 0.33912 Do not Reject H0 0.17580
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Table A.10: SP-MSSP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
C S 0 I0 21.20134228 9.56E-05 Reject H0
C S 0 I1 11.20945946 0.01064552744 Reject H0
C S 0 I2 14.52517986 0.002270843076 Reject H0
C S 0 I3 27.99280576 3.64E-06 Reject H0
C S 0 I4 27.87755102 3.85E-06 Reject H0
C S 1 I0 25.48 1.23E-05 Reject H0
C S 1 I1 28.68 2.61E-06 Reject H0
C S 1 I2 12.36 0.006246400552 Reject H0
C S 1 I3 13.56 0.003569571998 Reject H0
C S 1 I4 24.76 1.73E-05 Reject H0
C S 2 I0 11.72 0.008406539411 Reject H0
C S 2 I1 17 0.0007067423923 Reject H0
C S 2 I2 13.5 0.003671131797 Reject H0
C S 2 I3 19.4 0.000225970331 Reject H0
C S 2 I4 17.72 0.0005023774168 Reject H0
C S 3 I0 27.96 3.70E-06 Reject H0
C S 3 I1 25.96 9.72E-06 Reject H0
C S 3 I2 1.16 0.7626130659 Do not Reject H0
C S 3 I3 22.76 4.53E-05 Reject H0
C S 3 I4 29 2.24E-06 Reject H0

Table A.11: SP-MSSP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 15 0.00003 Reject H0 1.98793 100 0.30829 Do not Reject H0 0.10833 207.5 0.99996 Do not Reject H0 1.88576
C S 0 I1 29 0.00028 Reject H0 1.56342 90 0.18000 Do not Reject H0 0.21149 189.5 0.99935 Do not Reject H0 1.40832
C S 0 I2 26.5 0.00016 Reject H0 1.33175 92 0.19305 Do not Reject H0 0.23698 194.5 0.99972 Do not Reject H0 1.28970
C S 0 I3 14 0.00002 Reject H0 2.55567 148.5 0.94109 Do not Reject H0 0.48795 215 0.99999 Do not Reject H0 2.74337
C S 0 I4 0 0.00000 Reject H0 3.26659 78.5 0.08180 Do not Reject H0 0.44556 224.5 1.00000 Do not Reject H0 2.74070
C S 1 I0 10 0.00001 Reject H0 2.05633 143 0.90075 Do not Reject H0 0.38574 215 0.99999 Do not Reject H0 2.26744
C S 1 I1 2 0.00000 Reject H0 2.24505 113.5 0.52481 Do not Reject H0 0.05150 225 1.00000 Do not Reject H0 2.48111
C S 1 I2 32 0.00045 Reject H0 1.54033 104 0.37000 Do not Reject H0 0.07924 193 0.99961 Do not Reject H0 1.51966
C S 1 I3 49 0.00448 Reject H0 1.24787 149 0.93759 Do not Reject H0 0.45497 189 0.99930 Do not Reject H0 1.55783
C S 1 I4 12 0.00002 Reject H0 2.08075 158 0.97180 Do not Reject H0 0.59858 214 0.99999 Do not Reject H0 2.45268
C S 2 I0 33 0.00053 Reject H0 1.43461 95 0.24037 Do not Reject H0 0.26929 185 0.99877 Do not Reject H0 1.21057
C S 2 I1 29 0.00029 Reject H0 1.46402 130 0.77235 Do not Reject H0 0.16493 201 0.99989 Do not Reject H0 1.59879
C S 2 I2 29.5 0.00031 Reject H0 1.61097 99.5 0.30186 Do not Reject H0 0.15582 194 0.99967 Do not Reject H0 1.53483
C S 2 I3 32 0.00045 Reject H0 1.21512 123 0.67592 Do not Reject H0 0.47463 191 0.99948 Do not Reject H0 1.28222
C S 2 I4 34 0.00061 Reject H0 1.45263 134 0.81925 Do not Reject H0 0.33008 193 0.99961 Do not Reject H0 1.66369
C S 3 I0 5 0.00000 Reject H0 2.54364 116 0.56589 Do not Reject H0 0.01133 215 0.99999 Do not Reject H0 2.15626
C S 3 I1 9 0.00001 Reject H0 2.74341 102 0.33915 Do not Reject H0 0.28722 214 0.99999 Do not Reject H0 2.64415
C S 3 I3 12 0.00002 Reject H0 2.04894 105 0.38578 Do not Reject H0 0.30636 214 0.99999 Do not Reject H0 2.44156
C S 3 I4 2 0.00000 Reject H0 2.49552 71 0.04430 Do not Reject H0 0.54093 219 1.00000 Do not Reject H0 2.23568
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Table A.12: SP-MSSP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 20 0.00007 Reject H0 1.73075 109.5 0.45853 Do not Reject H0 0.00019 104.5 0.37743 Do not Reject H0 0.08081
C S 0 I1 36 0.00080 Reject H0 1.30945 127.5 0.74042 Do not Reject H0 0.19299 111.5 0.49171 Do not Reject H0 0.00720
C S 0 I2 37.5 0.00090 Reject H0 1.24527 146 0.92728 Do not Reject H0 0.43821 132 0.80210 Do not Reject H0 0.21256
C S 0 I3 20.5 0.00006 Reject H0 1.87218 138.5 0.87214 Do not Reject H0 0.51791 165 0.98795 Do not Reject H0 0.83360
C S 0 I4 1 0.00000 Reject H0 2.88770 136 0.84136 Do not Reject H0 0.33714 101.5 0.33120 Do not Reject H0 0.11178
C S 1 I0 11 0.00001 Reject H0 1.82076 98 0.28072 Do not Reject H0 0.31756 127 0.73309 Do not Reject H0 0.01836
C S 1 I1 0 0.00000 Reject H0 2.73232 151 0.94713 Do not Reject H0 0.54093 144 0.90779 Do not Reject H0 0.55630
C S 1 I2 35 0.00070 Reject H0 1.24875 144 0.90782 Do not Reject H0 0.23983 136.5 0.84526 Do not Reject H0 0.18073
C S 1 I3 56 0.01010 Reject H0 1.01608 136 0.84027 Do not Reject H0 0.21926 160 0.97676 Do not Reject H0 0.59635
C S 1 I4 19 0.00006 Reject H0 1.66645 153 0.95549 Do not Reject H0 0.70501 191 0.99947 Do not Reject H0 1.29188
C S 2 I0 42 0.00185 Reject H0 1.07764 148 0.93231 Do not Reject H0 0.44446 127 0.73309 Do not Reject H0 0.16955
C S 2 I1 32 0.00045 Reject H0 1.32476 134 0.81925 Do not Reject H0 0.31965 148 0.93231 Do not Reject H0 0.53262
C S 2 I2 31.5 0.00040 Reject H0 1.58395 112.5 0.50835 Do not Reject H0 0.00813 100.5 0.31602 Do not Reject H0 0.15177
C S 2 I3 58 0.01244 Reject H0 0.64956 166 0.98754 Do not Reject H0 0.49032 173 0.99435 Do not Reject H0 0.74067
C S 2 I4 42 0.00185 Reject H0 1.37039 117 0.58215 Do not Reject H0 0.12096 134.5 0.82468 Do not Reject H0 0.44813
C S 3 I0 23 0.00011 Reject H0 1.61806 180 0.99760 Do not Reject H0 0.63465 157 0.96902 Do not Reject H0 0.52303
C S 3 I1 9 0.00001 Reject H0 2.75507 130 0.77247 Do not Reject H0 0.27884 112.5 0.50828 Do not Reject H0 0.03711
C S 3 I3 8 0.00001 Reject H0 2.32700 102 0.33913 Do not Reject H0 0.04096 81 0.09923 Do not Reject H0 0.42043
C S 3 I4 10 0.00001 Reject H0 1.86472 119 0.61426 Do not Reject H0 0.07110 92.5 0.20926 Do not Reject H0 0.44801

Table A.13: GC-1BPP Friedman Test Results (u120)

Friedman Test
Instance χ2 P Value Outcome
u120 00 29.7890625 1.53E-06 Reject H0
u120 01 33.30215827 2.78E-07 Reject H0
u120 02 31.08461538 8.16E-07 Reject H0
u120 03 38.44615385 2.27E-08 Reject H0
u120 04 33.67391304 2.32E-07 Reject H0
u120 05 26.38636364 7.92E-06 Reject H0
u120 06 20.80147059 0.00011575807 Reject H0
u120 07 35.15217391 1.13E-07 Reject H0
u120 08 29.4 1.85E-06 Reject H0
u120 09 23.63414634 2.98E-05 Reject H0
u120 10 33.24390244 2.86E-07 Reject H0
u120 11 26.84782609 6.34E-06 Reject H0
u120 12 36.58695652 5.63E-08 Reject H0
u120 13 30.38059701 1.15E-06 Reject H0
u120 14 32.32835821 4.46E-07 Reject H0
u120 15 29.67768595 1.61E-06 Reject H0
u120 16 35.55 9.32E-08 Reject H0
u120 17 22.45238095 5.25E-05 Reject H0
u120 18 31.58955224 6.39E-07 Reject H0
u120 19 35 1.22E-07 Reject H0
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Table A.14: GC-1BPP Friedman Test Results (u250)

Friedman Test
Instance χ2 P Value Outcome
u250 00 31.22142857 7.64E-07 Reject H0
u250 01 22.64028777 4.80E-05 Reject H0
u250 02 28.08088235 3.49E-06 Reject H0
u250 03 25.09285714 1.48E-05 Reject H0
u250 04 28.13868613 3.40E-06 Reject H0
u250 05 27.48175182 4.67E-06 Reject H0
u250 06 32.86861314 3.43E-07 Reject H0
u250 07 25.2919708 1.34E-05 Reject H0
u250 08 31.20967742 7.68E-07 Reject H0
u250 09 28.87769784 2.38E-06 Reject H0
u250 10 29.32867133 1.91E-06 Reject H0
u250 11 25.10526316 1.47E-05 Reject H0
u250 12 18.97058824 0.0002772540178 Reject H0
u250 13 28.06666667 3.52E-06 Reject H0
u250 14 29.56551724 1.70E-06 Reject H0
u250 15 24.94285714 1.59E-05 Reject H0
u250 16 24.3 2.16E-05 Reject H0
u250 17 27.59558824 4.42E-06 Reject H0
u250 18 33.4379562 2.60E-07 Reject H0
u250 19 33.64285714 2.36E-07 Reject H0
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Table A.15: GC-1BPP Friedman Test Results (u500)

Friedman Test
Instance χ2 P Value Outcome
u500 00 27.28767123 5.12E-06 Reject H0
u500 01 32.31428571 4.49E-07 Reject H0
u500 02 37 4.60E-08 Reject H0
u500 03 30.20833333 1.25E-06 Reject H0
u500 04 34.93006993 1.26E-07 Reject H0
u500 05 30.23239437 1.23E-06 Reject H0
u500 06 33.19014085 2.94E-07 Reject H0
u500 07 31.35 7.17E-07 Reject H0
u500 08 32.5 4.11E-07 Reject H0
u500 09 29.14583333 2.09E-06 Reject H0
u500 10 27.53424658 4.55E-06 Reject H0
u500 11 34.65 1.44E-07 Reject H0
u500 12 35.97857143 7.57E-08 Reject H0
u500 13 21.27464789 9.23E-05 Reject H0
u500 14 29.34246575 1.90E-06 Reject H0
u500 15 25.60416667 1.15E-05 Reject H0
u500 16 21.35036496 8.90E-05 Reject H0
u500 17 35.89655172 7.88E-08 Reject H0
u500 18 34.39583333 1.63E-07 Reject H0
u500 19 35.15172414 1.13E-07 Reject H0
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Table A.16: GC-1BPP Friedman Test Results (u1000 & HARD)

Friedman Test
Instance χ2 P Value Outcome
u1000 00 24.52447552 1.94E-05 Reject H0
u1000 01 28.11724138 3.43E-06 Reject H0
u1000 02 24.65413534 1.82E-05 Reject H0
u1000 03 34.15862069 1.83E-07 Reject H0
u1000 04 16.07913669 0.001092396967 Reject H0
u1000 05 30.26174497 1.22E-06 Reject H0
u1000 06 30.97241379 8.61E-07 Reject H0
u1000 07 36.53191489 5.78E-08 Reject H0
u1000 08 34.13286713 1.86E-07 Reject H0
u1000 09 32.05479452 5.10E-07 Reject H0
u1000 10 22.24647887 5.80E-05 Reject H0
u1000 11 24.45 2.01E-05 Reject H0
u1000 12 31.84137931 5.65E-07 Reject H0
u1000 13 22.76223776 4.53E-05 Reject H0
u1000 14 34.14285714 1.85E-07 Reject H0
u1000 15 32.25 4.64E-07 Reject H0
u1000 16 31.43571429 6.88E-07 Reject H0
u1000 17 29.52739726 1.73E-06 Reject H0
u1000 18 35.52413793 9.44E-08 Reject H0
u1000 19 32.93835616 3.32E-07 Reject H0
HARD0 16.975 0.0007151588344 Reject H0
HARD1 30.61363636 1.03E-06 Reject H0
HARD2 19.44736842 0.0002209263387 Reject H0
HARD3 26.57480315 7.23E-06 Reject H0
HARD4 22.30434783 5.64E-05 Reject H0
HARD5 33.13740458 3.01E-07 Reject H0
HARD6 10.84615385 0.01258754317 Reject H0
HARD7 19.91803279 0.0001765126392 Reject H0
HARD8 23.70247934 2.88E-05 Reject H0
HARD9 24.87401575 1.64E-05 Reject H0
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Table A.17: GC-1BPP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
u120 00 15 0.000004 Reject H0 1.97136 15 0.000004 Reject H0 1.72659 180 0.99787 Do not Reject H0 1.18679
u120 01 8 0.000006 Reject H0 2.98235 53 0.006032 Reject H0 0.96597 197.5 0.99983 Do not Reject H0 1.54245
u120 02 11 0.000006 Reject H0 2.38211 35.5 0.000301 Reject H0 1.48096 192.5 0.99965 Do not Reject H0 1.52648
u120 03 0 0.000001 Reject H0 4.51974 56 0.005693 Reject H0 0.79322 219 1.00000 Do not Reject H0 2.60857
u120 04 0 0.000001 Reject H0 4.51807 67.5 0.028319 Do not Reject H0 0.77241 224 1.00000 Do not Reject H0 3.25968
u120 05 16.5 0.000026 Reject H0 2.08401 99 0.283988 Do not Reject H0 0.16363 203 0.99994 Do not Reject H0 1.86800
u120 06 28 0.000177 Reject H0 1.74838 54 0.006266 Reject H0 0.64849 181.5 0.99829 Do not Reject H0 1.30657
u120 07 2.5 0.000001 Reject H0 3.00855 25 0.000072 Reject H0 1.52294 208 0.99997 Do not Reject H0 1.75888
u120 08 3 0.000001 Reject H0 2.73192 22 0.000037 Reject H0 1.94640 173.5 0.99517 Do not Reject H0 1.13120
u120 09 23.5 0.000068 Reject H0 2.16984 66.5 0.021377 Do not Reject H0 0.64412 190.5 0.99953 Do not Reject H0 1.91449
u120 10 11.5 0.000006 Reject H0 2.13674 55.5 0.004599 Reject H0 1.07086 197 0.99985 Do not Reject H0 1.49862
u120 11 33 0.000310 Reject H0 1.81386 39 0.000978 Reject H0 0.94054 182.5 0.99870 Do not Reject H0 1.03390
u120 12 1 0.000001 Reject H0 3.86206 29.5 0.000188 Reject H0 1.55695 216 1.00000 Do not Reject H0 2.14488
u120 13 12 0.000010 Reject H0 2.91901 56 0.007967 Reject H0 0.86374 200.5 0.99991 Do not Reject H0 1.74198
u120 14 18 0.000037 Reject H0 2.28609 40 0.001067 Reject H0 1.28792 189.5 0.99946 Do not Reject H0 1.61303
u120 15 18 0.000016 Reject H0 2.91647 45.5 0.001324 Reject H0 1.08697 191 0.99958 Do not Reject H0 1.63002
u120 16 1.5 0.000001 Reject H0 4.19914 41.5 0.001292 Reject H0 1.18042 214.5 0.99999 Do not Reject H0 2.74305
u120 17 27 0.000103 Reject H0 1.78054 37.5 0.000565 Reject H0 0.98787 170.5 0.99376 Do not Reject H0 1.14948
u120 18 14.5 0.000015 Reject H0 2.38840 54.5 0.005934 Reject H0 0.81324 201 0.99991 Do not Reject H0 1.85638
u120 19 1.5 0.000001 Reject H0 3.43355 43.5 0.001768 Reject H0 1.08789 211 0.99998 Do not Reject H0 2.01129
u250 00 6 0.000005 Reject H0 2.63473 43.5 0.001962 Reject H0 0.89959 213 0.99999 Do not Reject H0 2.28479
u250 01 35.5 0.000601 Reject H0 1.59106 12 0.000010 Reject H0 1.91757 145 0.91636 Do not Reject H0 1.11812
u250 02 11.5 0.000011 Reject H0 3.24108 48 0.003278 Reject H0 1.03175 208.5 0.99997 Do not Reject H0 2.58201
u250 03 13 0.000015 Reject H0 2.11854 99.5 0.293948 Do not Reject H0 0.07646 212.5 0.99999 Do not Reject H0 2.49876
u250 04 17.5 0.000037 Reject H0 2.69455 47.5 0.003056 Reject H0 1.12064 200 0.99988 Do not Reject H0 2.17466
u250 05 33 0.000476 Reject H0 1.87098 59 0.012948 Reject H0 0.97287 176 0.99614 Do not Reject H0 1.13926
u250 06 7.5 0.000006 Reject H0 2.49334 49 0.003676 Reject H0 1.05580 201 0.99990 Do not Reject H0 1.93911
u250 07 14 0.000011 Reject H0 3.25696 51 0.003342 Reject H0 0.95965 204.5 0.99996 Do not Reject H0 2.18250
u250 08 5.5 0.000004 Reject H0 3.14794 90.5 0.177514 Do not Reject H0 0.41532 204.5 0.99995 Do not Reject H0 2.10898
u250 09 7 0.000005 Reject H0 2.46134 66.5 0.023665 Do not Reject H0 0.59848 204 0.99994 Do not Reject H0 1.88082
u250 10 9 0.000006 Reject H0 2.25248 9 0.000007 Reject H0 2.03679 187 0.99919 Do not Reject H0 1.48675
u250 11 12 0.000010 Reject H0 2.73927 45 0.001821 Reject H0 1.09514 197.5 0.99982 Do not Reject H0 1.63067
u250 12 20 0.000051 Reject H0 2.00646 67 0.026375 Do not Reject H0 0.53586 186 0.99902 Do not Reject H0 1.76172
u250 13 24 0.000093 Reject H0 2.28266 72 0.035764 Do not Reject H0 0.58124 193 0.99967 Do not Reject H0 1.85608
u250 14 22.5 0.000083 Reject H0 1.76517 63.5 0.020512 Do not Reject H0 0.47124 193 0.99965 Do not Reject H0 1.55576
u250 15 12 0.000006 Reject H0 2.78062 38.5 0.000825 Reject H0 1.12413 195.5 0.99980 Do not Reject H0 1.77250
u250 16 17 0.000023 Reject H0 2.02864 78 0.064962 Do not Reject H0 0.26365 204.5 0.99995 Do not Reject H0 1.90183
u250 17 19 0.000041 Reject H0 2.08077 48 0.002688 Reject H0 0.67121 190 0.99949 Do not Reject H0 1.65513
u250 18 5 0.000004 Reject H0 2.78455 56.5 0.008868 Reject H0 0.49298 213.5 0.99999 Do not Reject H0 2.36282
u250 19 3 0.000003 Reject H0 3.10204 51.5 0.005264 Reject H0 1.01102 206.5 0.99996 Do not Reject H0 2.23179
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Table A.18: GC-1BPP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
u500 00 10 0.000010 Reject H0 2.128618 72.5 0.048291 Do not Reject H0 0.527127 200.5 0.999883 Do not Reject H0 1.789599
u500 01 11.5 0.000012 Reject H0 3.516355 66.5 0.024046 Do not Reject H0 0.728428 211.5 0.999983 Do not Reject H0 3.225706
u500 02 4.5 0.000003 Reject H0 2.680490 53 0.005521 Reject H0 0.591677 213 0.999987 Do not Reject H0 2.260154
u500 03 7 0.000004 Reject H0 2.684319 15 0.000022 Reject H0 1.900843 184.5 0.998849 Do not Reject H0 2.008999
u500 04 10.5 0.000011 Reject H0 2.374916 83.5 0.115654 Do not Reject H0 0.090179 221.5 0.999998 Do not Reject H0 2.992402
u500 05 3.5 0.000003 Reject H0 3.678997 91 0.187686 Do not Reject H0 0.301829 220 0.999997 Do not Reject H0 3.314998
u500 06 15.5 0.000023 Reject H0 2.161327 21 0.000055 Reject H0 1.216354 190.5 0.999480 Do not Reject H0 1.507833
u500 07 10.5 0.000010 Reject H0 3.020784 62 0.018234 Do not Reject H0 0.687582 208.5 0.999974 Do not Reject H0 2.430497
u500 08 17 0.000036 Reject H0 1.856970 43 0.001829 Reject H0 0.655224 187 0.999118 Do not Reject H0 1.568740
u500 09 11 0.000013 Reject H0 2.006001 72.5 0.048425 Do not Reject H0 0.383256 204 0.999935 Do not Reject H0 1.752855
u500 10 16 0.000030 Reject H0 2.103211 31 0.000342 Reject H0 1.317486 180 0.997705 Do not Reject H0 1.649755
u500 11 0.5 0.000002 Reject H0 2.716142 71 0.038551 Do not Reject H0 0.836732 209 0.999973 Do not Reject H0 2.023776
u500 12 10.5 0.000010 Reject H0 3.780688 50 0.004390 Reject H0 0.846917 211.5 0.999983 Do not Reject H0 2.825608
u500 13 7.5 0.000006 Reject H0 1.876911 51 0.005160 Reject H0 0.884540 193.5 0.999654 Do not Reject H0 1.494700
u500 14 12.5 0.000016 Reject H0 2.286906 54.5 0.007796 Reject H0 0.382386 203 0.999931 Do not Reject H0 2.253067
u500 15 15.5 0.000027 Reject H0 2.533421 95.5 0.245117 Do not Reject H0 0.064465 210 0.999979 Do not Reject H0 2.564090
u500 16 22.5 0.000072 Reject H0 2.067152 38.5 0.000980 Reject H0 0.778627 177.5 0.996923 Do not Reject H0 1.690178
u500 17 3 0.000002 Reject H0 2.688082 22 0.000077 Reject H0 0.964551 213.5 0.999989 Do not Reject H0 2.060397
u500 18 12 0.000013 Reject H0 2.663884 37.5 0.000882 Reject H0 1.122056 198 0.999840 Do not Reject H0 2.161339
u500 19 0 0.000001 Reject H0 3.604593 53 0.006239 Reject H0 0.920516 217.5 0.999994 Do not Reject H0 2.793224
u1000 00 12 0.000015 Reject H0 2.197582 91.5 0.193505 Do not Reject H0 0.148209 207.5 0.999965 Do not Reject H0 2.173052
u1000 01 12.5 0.000018 Reject H0 2.794577 106.5 0.408235 Do not Reject H0 0.349778 209.5 0.999977 Do not Reject H0 2.597393
u1000 02 23.5 0.000096 Reject H0 1.640641 69 0.033469 Do not Reject H0 0.084709 192 0.999576 Do not Reject H0 1.696990
u1000 03 30 0.000324 Reject H0 1.473053 89 0.167902 Do not Reject H0 0.094474 186 0.998978 Do not Reject H0 1.490068
u1000 04 33.5 0.000524 Reject H0 1.541328 64 0.022081 Do not Reject H0 0.574183 178.5 0.997125 Do not Reject H0 1.388634
u1000 05 16 0.000030 Reject H0 1.861949 59 0.013272 Reject H0 0.851431 189.5 0.999369 Do not Reject H0 1.638601
u1000 06 27.5 0.000192 Reject H0 1.533356 61 0.016166 Reject H0 0.718530 176.5 0.996310 Do not Reject H0 1.322535
u1000 07 12 0.000008 Reject H0 1.901486 14 0.000013 Reject H0 1.791450 174 0.995051 Do not Reject H0 1.451556
u1000 08 14 0.000020 Reject H0 1.974853 52 0.005654 Reject H0 0.692564 186.5 0.999044 Do not Reject H0 1.730348
u1000 09 20.5 0.000058 Reject H0 1.595195 31 0.000320 Reject H0 1.036164 161 0.979389 Do not Reject H0 1.287768
u1000 10 20.5 0.000065 Reject H0 1.871652 70.5 0.040216 Do not Reject H0 0.549523 196 0.999762 Do not Reject H0 1.725597
u1000 11 17 0.000037 Reject H0 1.939606 65 0.024114 Do not Reject H0 0.058107 200.5 0.999883 Do not Reject H0 2.068546
u1000 12 18 0.000043 Reject H0 1.682263 58 0.011847 Reject H0 0.926263 182 0.998193 Do not Reject H0 1.472959
u1000 13 19 0.000050 Reject H0 2.025497 31 0.000347 Reject H0 0.767622 186.5 0.999025 Do not Reject H0 1.525024
u1000 14 8 0.000008 Reject H0 1.939013 52.5 0.006348 Reject H0 0.818435 203 0.999924 Do not Reject H0 1.771223
u1000 15 5 0.000004 Reject H0 2.884246 53 0.006918 Reject H0 0.752130 207.5 0.999965 Do not Reject H0 2.201898
u1000 16 11.5 0.000013 Reject H0 3.049221 66.5 0.027569 Do not Reject H0 0.702493 205 0.999945 Do not Reject H0 2.821565
u1000 17 14.5 0.000022 Reject H0 1.874430 70.5 0.040528 Do not Reject H0 0.369264 201.5 0.999903 Do not Reject H0 1.791240
u1000 18 14 0.000020 Reject H0 2.285342 37.5 0.000912 Reject H0 1.006121 186.5 0.999010 Do not Reject H0 1.639426
u1000 19 5.5 0.000004 Reject H0 2.367570 43 0.001701 Reject H0 0.190402 210 0.999979 Do not Reject H0 2.592763
HARD0 72.5 0.043051 Do not Reject H0 0.629156 71 0.034052 Do not Reject H0 0.682415 108.5 0.439230 Do not Reject H0 0.000000
HARD1 6 0.000002 Reject H0 2.935449 64 0.013942 Reject H0 0.796463 197.5 0.999879 Do not Reject H0 1.642213
HARD2 27.5 0.000109 Reject H0 1.572889 61.5 0.010662 Reject H0 0.805551 178.5 0.997907 Do not Reject H0 1.090175
HARD3 10 0.000004 Reject H0 2.466900 49 0.002510 Reject H0 1.090603 190 0.999833 Do not Reject H0 1.409657
HARD4 18 0.000014 Reject H0 2.054814 78.5 0.047914 Do not Reject H0 0.656469 180 0.998110 Do not Reject H0 1.151509
HARD5 3.5 0.000001 Reject H0 2.710530 44.5 0.000863 Reject H0 1.234846 204 0.999968 Do not Reject H0 1.648189
HARD6 46.5 0.001746 Reject H0 1.129458 54.5 0.004599 Reject H0 1.031127 125.5 0.721286 Do not Reject H0 0.305486
HARD7 20 0.000028 Reject H0 1.880515 61.5 0.008909 Reject H0 0.890473 182 0.998781 Do not Reject H0 1.184028
HARD8 21.5 0.000040 Reject H0 1.880515 73 0.035141 Do not Reject H0 0.683421 179 0.997907 Do not Reject H0 1.145192
HARD9 25 0.000040 Reject H0 1.513281 64.5 0.011796 Reject H0 0.429414 155 0.972881 Do not Reject H0 0.725200
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Table A.19: GC-1BPP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
u120 00 25 0.0000887 Reject H0 1.6752380 150 0.9925324 Do not Reject H0 0.6687850 44 0.0014574 Reject H0 0.9359661
u120 01 4.5 0.0000025 Reject H0 3.3567473 91.5 0.1760707 Do not Reject H0 0.2138057 41 0.0011295 Reject H0 1.1733629
u120 02 10.5 0.0000042 Reject H0 2.4162581 106 0.3503752 Do not Reject H0 0.0877901 33.5 0.0001743 Reject H0 1.5501257
u120 03 0 0.0000003 Reject H0 -9.5708272 90 0.0398626 Do not Reject H0 0.6260334 30 0.0000398 Reject H0 1.4291798
u120 04 0 0.0000008 Reject H0 -5.0521065 78 0.0624145 Do not Reject H0 0.5270487 40.5 0.0010177 Reject H0 1.2160583
u120 05 10.5 0.0000048 Reject H0 2.6664303 74 0.0299831 Do not Reject H0 0.4847899 61 0.0084058 Reject H0 0.6396663
u120 06 19 0.0000206 Reject H0 2.2462483 75.5 0.0379476 Do not Reject H0 0.5388630 28.5 0.0001140 Reject H0 1.3817182
u120 07 2.5 0.0000012 Reject H0 2.7607364 102.5 0.3052143 Do not Reject H0 0.1444904 29.5 0.0001587 Reject H0 1.2290617
u120 08 5.5 0.0000031 Reject H0 2.4799939 125 0.7565821 Do not Reject H0 0.2071265 29.5 0.0001900 Reject H0 1.6250356
u120 09 22 0.0000380 Reject H0 2.0543069 100 0.2608660 Do not Reject H0 0.0000000 57.5 0.0065038 Reject H0 0.5011171
u120 10 6.5 0.0000033 Reject H0 2.2893309 64 0.0114074 Reject H0 0.6421294 31 0.0002048 Reject H0 1.3690245
u120 11 17.5 0.0000183 Reject H0 2.5364218 99 0.2721488 Do not Reject H0 0.3711156 22 0.0000595 Reject H0 1.6884019
u120 12 6.5 0.0000032 Reject H0 3.0100116 123 0.6971090 Do not Reject H0 0.2708659 43.5 0.0016726 Reject H0 1.0208474
u120 13 8 0.0000016 Reject H0 3.4818035 69 0.0107240 Reject H0 0.6907423 29 0.0000626 Reject H0 1.3255954
u120 14 12 0.0000054 Reject H0 2.7941788 90 0.1494297 Do not Reject H0 0.5445246 12 0.0000051 Reject H0 2.5592138
u120 15 16 0.0000061 Reject H0 2.9643463 99 0.1807073 Do not Reject H0 0.1671963 37.5 0.0002353 Reject H0 1.1540929
u120 16 1 0.0000006 Reject H0 4.3802411 137.5 0.8867457 Do not Reject H0 0.2621482 42.5 0.0012324 Reject H0 1.1200058
u120 17 25 0.0000642 Reject H0 1.8866689 105 0.3588476 Do not Reject H0 0.1057442 32 0.0002310 Reject H0 1.1649701
u120 18 13 0.0000096 Reject H0 2.5609520 106.5 0.3890146 Do not Reject H0 0.0951956 49.5 0.0029470 Reject H0 0.9937893
u120 19 0 0.0000006 Reject H0 4.3001018 75.5 0.0379476 Do not Reject H0 0.5573921 24 0.0000551 Reject H0 1.6358412
u250 00 4 0.0000027 Reject H0 2.7897573 97 0.2504273 Do not Reject H0 0.2068948 27 0.0001435 Reject H0 1.2295051
u250 01 47 0.0030367 Reject H0 1.4746905 140.5 0.8941827 Do not Reject H0 0.4799335 31.5 0.0002647 Reject H0 1.2587049
u250 02 8 0.0000032 Reject H0 3.6088675 71 0.0211687 Do not Reject H0 0.5247429 24 0.0000568 Reject H0 1.6335472
u250 03 4 0.0000027 Reject H0 3.1025493 70.5 0.0330913 Do not Reject H0 0.5162915 62.5 0.0159208 Reject H0 0.6175320
u250 04 13.5 0.0000170 Reject H0 2.7734926 67 0.0255973 Do not Reject H0 0.3959540 28 0.0002000 Reject H0 1.2997865
u250 05 12 0.0000058 Reject H0 2.1918806 50.5 0.0019464 Reject H0 0.9939615 28.5 0.0000841 Reject H0 1.5105034
u250 06 0.5 0.0000005 Reject H0 2.7826697 58.5 0.0029503 Reject H0 0.9218473 17.5 0.0000100 Reject H0 1.7955073
u250 07 12 0.0000080 Reject H0 3.2189226 78.5 0.0626395 Do not Reject H0 0.1570437 37 0.0006561 Reject H0 0.9940839
u250 08 2.5 0.0000015 Reject H0 3.3649801 79.5 0.0636210 Do not Reject H0 0.3663086 59.5 0.0089256 Reject H0 0.6389591
u250 09 1.5 0.0000017 Reject H0 2.9081155 64 0.0162814 Reject H0 0.7166836 30.5 0.0002311 Reject H0 1.1611174
u250 10 14 0.0000196 Reject H0 2.0410486 120.5 0.6475800 Do not Reject H0 0.3103396 32.5 0.0004204 Reject H0 1.2842588
u250 11 13 0.0000147 Reject H0 2.6003002 118 0.6111184 Do not Reject H0 0.0972353 48 0.0031479 Reject H0 0.9701432
u250 12 17 0.0000217 Reject H0 2.2806063 94.5 0.1999097 Do not Reject H0 0.3294656 52 0.0036125 Reject H0 1.0408188
u250 13 15.5 0.0000193 Reject H0 2.7173954 59 0.0067451 Reject H0 0.7956988 28 0.0000880 Reject H0 1.3025530
u250 14 9.5 0.0000051 Reject H0 2.8708643 72.5 0.0311097 Do not Reject H0 0.7906512 8 0.0000038 Reject H0 1.8356964
u250 15 14 0.0000127 Reject H0 2.6025948 116 0.5739672 Do not Reject H0 0.1783091 45.5 0.0024371 Reject H0 0.9255110
u250 16 10 0.0000062 Reject H0 2.7973476 96 0.2137720 Do not Reject H0 0.4331962 57.5 0.0074587 Reject H0 0.8619381
u250 17 10.5 0.0000065 Reject H0 2.4997248 81 0.0670132 Do not Reject H0 0.5135767 15.5 0.0000144 Reject H0 1.3729304
u250 18 0 0.0000006 Reject H0 3.3546180 86 0.0909656 Do not Reject H0 0.5249805 22 0.0000290 Reject H0 1.0903751
u250 19 1 0.0000009 Reject H0 3.3558279 76.5 0.0438471 Do not Reject H0 0.4762159 29.5 0.0001490 Reject H0 1.3725630

180



Table A.20: GC-1BPP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
u500 00 2.5 0.000002 Reject H0 2.521001 57.5 0.008511 Reject H0 0.585789 42.5 0.001722 Reject H0 1.179432
u500 01 5.5 0.000004 Reject H0 3.782786 47.5 0.002423 Reject H0 0.954266 24 0.000093 Reject H0 1.580211
u500 02 0.5 0.000001 Reject H0 3.003179 38 0.000539 Reject H0 0.783512 14.5 0.000017 Reject H0 1.196198
u500 03 11 0.000010 Reject H0 2.514444 105 0.380276 Do not Reject H0 0.326171 33 0.000440 Reject H0 1.250234
u500 04 0 0.000001 Reject H0 3.569843 48 0.002560 Reject H0 0.718623 16.5 0.000026 Reject H0 1.725534
u500 05 3.5 0.000003 Reject H0 3.773887 95.5 0.242250 Do not Reject H0 0.154676 75.5 0.061365 Do not Reject H0 0.435460
u500 06 11.5 0.000012 Reject H0 2.240724 80 0.078690 Do not Reject H0 0.344713 10 0.000009 Reject H0 1.405495
u500 07 5 0.000003 Reject H0 3.430363 53.5 0.005208 Reject H0 0.832850 30.5 0.000268 Reject H0 1.311110
u500 08 6.5 0.000005 Reject H0 2.157790 63 0.017390 Do not Reject H0 0.539156 14.5 0.000021 Reject H0 1.506167
u500 09 0.5 0.000002 Reject H0 2.389559 84.5 0.119775 Do not Reject H0 0.539714 42 0.001580 Reject H0 0.985290
u500 10 13 0.000016 Reject H0 2.138391 86 0.134987 Do not Reject H0 0.263950 25.5 0.000149 Reject H0 1.403637
u500 11 0 0.000001 Reject H0 2.826154 57 0.007160 Reject H0 0.911278 34 0.000370 Reject H0 1.040162
u500 12 4.5 0.000003 Reject H0 4.176322 48.5 0.002713 Reject H0 0.818680 17.5 0.000032 Reject H0 1.313395
u500 13 9.5 0.000009 Reject H0 1.898174 109 0.448792 Do not Reject H0 0.025978 48 0.003574 Reject H0 0.953955
u500 14 9 0.000008 Reject H0 2.432021 74.5 0.055696 Do not Reject H0 0.282922 42.5 0.001748 Reject H0 0.747961
u500 15 12.5 0.000014 Reject H0 2.955023 64.5 0.021788 Do not Reject H0 0.617884 50 0.004394 Reject H0 0.798422
u500 16 25 0.000130 Reject H0 2.020812 115.5 0.559641 Do not Reject H0 0.086536 42 0.001654 Reject H0 0.669489
u500 17 0 0.000001 Reject H0 2.839260 71 0.032432 Do not Reject H0 0.633956 2.5 0.000002 Reject H0 1.279322
u500 18 6.5 0.000004 Reject H0 2.830841 76.5 0.061061 Do not Reject H0 0.623528 8 0.000006 Reject H0 1.613405
u500 19 0 0.000001 Reject H0 3.718234 65.5 0.022604 Do not Reject H0 0.594748 35.5 0.000673 Reject H0 1.136165
u1000 00 7.5 0.000007 Reject H0 2.412417 69 0.034736 Do not Reject H0 0.499613 58.5 0.012394 Reject H0 0.783416
u1000 01 5 0.000004 Reject H0 2.986602 52.5 0.005828 Reject H0 0.665572 42 0.001412 Reject H0 0.870432
u1000 02 10.5 0.000011 Reject H0 1.929505 71.5 0.040043 Do not Reject H0 0.488104 34 0.000505 Reject H0 1.291841
u1000 03 3 0.000002 Reject H0 2.015554 33.5 0.000403 Reject H0 1.142390 7.5 0.000005 Reject H0 1.880089
u1000 04 26.5 0.000179 Reject H0 1.637511 84.5 0.119441 Do not Reject H0 0.383109 44.5 0.002376 Reject H0 1.029604
u1000 05 4 0.000003 Reject H0 2.002100 68.5 0.032318 Do not Reject H0 0.756059 22 0.000087 Reject H0 1.594399
u1000 06 16.5 0.000034 Reject H0 1.679109 55.5 0.007850 Reject H0 0.741187 27.5 0.000209 Reject H0 1.371482
u1000 07 7 0.000006 Reject H0 1.990725 65 0.015358 Reject H0 0.641031 4 0.000003 Reject H0 2.138047
u1000 08 4 0.000003 Reject H0 2.091543 46 0.002530 Reject H0 0.696743 19.5 0.000056 Reject H0 1.109112
u1000 09 7.5 0.000006 Reject H0 1.712965 49.5 0.003795 Reject H0 0.473547 12.5 0.000016 Reject H0 1.537669
u1000 10 9 0.000009 Reject H0 2.076972 59.5 0.012863 Reject H0 0.730275 31 0.000344 Reject H0 1.464735
u1000 11 7 0.000005 Reject H0 2.309775 82 0.090652 Do not Reject H0 0.460759 34 0.000460 Reject H0 1.404760
u1000 12 7 0.000006 Reject H0 1.778531 63 0.018278 Do not Reject H0 0.792471 31.5 0.000387 Reject H0 1.397553
u1000 13 11.5 0.000013 Reject H0 2.248563 83 0.102229 Do not Reject H0 0.448446 15 0.000023 Reject H0 1.193448
u1000 14 0.5 0.000002 Reject H0 2.111717 69 0.033485 Do not Reject H0 0.792270 16 0.000030 Reject H0 2.033644
u1000 15 0 0.000001 Reject H0 3.018290 91 0.182705 Do not Reject H0 0.544543 29.5 0.000255 Reject H0 0.968741
u1000 16 3.5 0.000003 Reject H0 3.273002 60.5 0.011992 Reject H0 0.778123 25.5 0.000134 Reject H0 1.530162
u1000 17 0.5 0.000001 Reject H0 2.095790 44 0.001395 Reject H0 0.814370 16 0.000027 Reject H0 1.607774
u1000 18 3.5 0.000003 Reject H0 2.541887 64.5 0.017474 Do not Reject H0 0.705830 11 0.000010 Reject H0 1.524401
u1000 19 2 0.000002 Reject H0 3.091136 84 0.111616 Do not Reject H0 0.432446 19.5 0.000050 Reject H0 1.428616
HARD0 26 0.000037 Reject H0 1.683081 79 0.038799 Do not Reject H0 0.789715 25 0.000027 Reject H0 2.000563
HARD1 1 0.000001 Reject H0 2.931067 85.5 0.078215 Do not Reject H0 0.561863 43.5 0.000903 Reject H0 1.157115
HARD2 35.5 0.000336 Reject H0 1.415600 132 0.847453 Do not Reject H0 0.409546 78 0.056901 Do not Reject H0 0.497391
HARD3 15 0.000012 Reject H0 2.036960 130.5 0.803124 Do not Reject H0 0.269997 66.5 0.023434 Do not Reject H0 0.742491
HARD4 20 0.000015 Reject H0 1.981839 106 0.316293 Do not Reject H0 0.000000 75.5 0.030670 Do not Reject H0 0.626838
HARD5 10.5 0.000006 Reject H0 2.231012 122 0.712492 Do not Reject H0 0.248696 62.5 0.013605 Reject H0 0.789715
HARD6 53 0.004278 Reject H0 0.960362 115 0.558999 Do not Reject H0 0.152294 61.5 0.011110 Reject H0 0.817361
HARD7 29 0.000161 Reject H0 1.587970 128.5 0.794723 Do not Reject H0 0.351160 79 0.065977 Do not Reject H0 0.526741
HARD8 20.5 0.000022 Reject H0 1.900505 100 0.237896 Do not Reject H0 0.112637 66 0.013251 Reject H0 0.739946
HARD9 30 0.000188 Reject H0 1.335453 95 0.205621 Do not Reject H0 0.400593 63 0.016066 Reject H0 0.609177
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Table A.21: GC-MSSP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
C S 0 I0 14.68888889 0.002102772925 Reject H0
C S 0 I1 8.634146341 0.03457213776 Reject H0
C S 0 I2 20.875 0.0001117599264 Reject H0
C S 0 I3 11.65957447 0.008645123995 Reject H0
C S 0 I4 17.59285714 0.0005336147049 Reject H0
C S 1 I0 9.653061224 0.02175757746 Reject H0
C S 1 I1 12.84 0.004995706044 Reject H0
C S 1 I2 14.08029197 0.002797873977 Reject H0
C S 1 I3 18.18243243 0.0004033388184 Reject H0
C S 1 I4 13.6122449 0.00348340853 Reject H0
C S 2 I0 20.05714286 0.0001651761692 Reject H0
C S 2 I1 17.23448276 0.0006324413461 Reject H0
C S 2 I2 5.612903226 0.1320395572 Do not Reject H0
C S 2 I3 25.53061224 1.20E-05 Reject H0
C S 2 I4 27.12244898 5.55E-06 Reject H0
C S 3 I0 18.26174497 0.0003884211849 Reject H0
C S 3 I1 11.16326531 0.01087501632 Reject H0
C S 3 I2 11.96 0.007521447233 Reject H0
C S 3 I3 5.16 0.160449136 Do not Reject H0
C S 3 I4 14.35135135 0.002463895888 Reject H0

Table A.22: GC-MSSP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 18 0.00002 Reject H0 1.60906 94 0.21414 Do not Reject H0 0.43267 181.5 0.99931 Do not Reject H0 1.13385
C S 0 I1 51 0.00291 Reject H0 0.66430 105 0.38180 Do not Reject H0 0.12898 165 0.99376 Do not Reject H0 0.69207
C S 0 I2 15.5 0.00003 Reject H0 1.83932 93 0.21377 Do not Reject H0 0.35865 204.5 0.99994 Do not Reject H0 1.78873
C S 0 I3 34 0.00054 Reject H0 1.82636 102 0.33217 Do not Reject H0 0.25946 189 0.99935 Do not Reject H0 1.84675
C S 0 I4 13.5 0.00002 Reject H0 1.96390 106.5 0.40657 Do not Reject H0 0.15708 204.5 0.99995 Do not Reject H0 1.76811
C S 1 I0 44.5 0.00254 Reject H0 1.00608 100 0.30906 Do not Reject H0 0.02464 178 0.99692 Do not Reject H0 0.93489
C S 1 I1 46 0.00308 Reject H0 1.29114 90.5 0.18548 Do not Reject H0 0.28052 170.5 0.99245 Do not Reject H0 1.09024
C S 1 I2 30 0.00026 Reject H0 1.37727 52 0.00411 Reject H0 0.94209 174 0.99618 Do not Reject H0 0.91922
C S 1 I3 17 0.00004 Reject H0 2.08398 67.5 0.03230 Do not Reject H0 0.68245 198.5 0.99983 Do not Reject H0 1.60881
C S 1 I4 35.5 0.00072 Reject H0 1.34232 114 0.53353 Do not Reject H0 0.17475 200 0.99988 Do not Reject H0 1.49426
C S 2 I0 8.5 0.00001 Reject H0 1.50555 56.5 0.00912 Reject H0 0.87310 196 0.99977 Do not Reject H0 1.16085
C S 2 I1 18 0.00004 Reject H0 1.37656 61 0.01362 Reject H0 0.91185 181.5 0.99821 Do not Reject H0 1.11617
C S 2 I3 6 0.00000 Reject H0 1.61815 48.5 0.00417 Reject H0 0.84602 196 0.99979 Do not Reject H0 1.11871
C S 2 I4 4 0.00000 Reject H0 2.54465 56 0.00971 Reject H0 0.82258 212.5 0.99999 Do not Reject H0 2.01494
C S 3 I0 27 0.00021 Reject H0 1.64912 42 0.00184 Reject H0 1.16558 169.5 0.99148 Do not Reject H0 0.93942
C S 3 I1 35 0.00065 Reject H0 1.14405 86.5 0.14054 Do not Reject H0 0.41110 174 0.99517 Do not Reject H0 0.94937
C S 3 I2 39 0.00123 Reject H0 1.29027 62 0.01904 Do not Reject H0 0.79768 148 0.93231 Do not Reject H0 0.71277
C S 3 I4 34.5 0.00065 Reject H0 1.45786 91 0.19181 Do not Reject H0 0.15766 172.5 0.99396 Do not Reject H0 1.07573
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Table A.23: GC-MSSP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 42.5 0.00070 Reject H0 1.09741 129.5 0.77506 Do not Reject H0 0.32596 107 0.41521 Do not Reject H0 0.06324
C S 0 I1 62 0.00930 Reject H0 0.62272 120 0.63377 Do not Reject H0 0.00113 117 0.58606 Do not Reject H0 0.11983
C S 0 I2 29 0.00028 Reject H0 1.43372 137 0.85180 Do not Reject H0 0.32317 119 0.61475 Do not Reject H0 0.02716
C S 0 I3 36.5 0.00077 Reject H0 1.58738 133.5 0.82638 Do not Reject H0 0.28469 125.5 0.72062 Do not Reject H0 0.11099
C S 0 I4 19.5 0.00005 Reject H0 1.75105 142.5 0.90937 Do not Reject H0 0.55493 127 0.74298 Do not Reject H0 0.27233
C S 1 I0 50 0.00504 Reject H0 0.90291 130 0.77260 Do not Reject H0 0.12560 118 0.59842 Do not Reject H0 0.08258
C S 1 I1 69.5 0.03872 Do not Reject H0 0.89898 168 0.99008 Do not Reject H0 0.92759 135.5 0.83752 Do not Reject H0 0.47269
C S 1 I2 65.5 0.02557 Do not Reject H0 0.71593 156.5 0.97349 Do not Reject H0 0.88512 114 0.53438 Do not Reject H0 0.15998
C S 1 I3 29 0.00028 Reject H0 1.58620 144.5 0.91166 Do not Reject H0 0.47306 109 0.45028 Do not Reject H0 0.12156
C S 1 I4 35.5 0.00072 Reject H0 1.23429 123 0.67702 Do not Reject H0 0.15119 122.5 0.67081 Do not Reject H0 0.33387
C S 2 I0 28.5 0.00024 Reject H0 1.13975 157 0.97223 Do not Reject H0 0.71646 103.5 0.35772 Do not Reject H0 0.00873
C S 2 I1 54.5 0.00795 Reject H0 1.07644 187.5 0.99929 Do not Reject H0 1.18417 136.5 0.85215 Do not Reject H0 0.15261
C S 2 I3 15.5 0.00003 Reject H0 1.28764 158 0.97190 Do not Reject H0 0.56448 84 0.12245 Do not Reject H0 0.30765
C S 2 I4 14 0.00002 Reject H0 1.92571 179 0.99750 Do not Reject H0 1.00012 119.5 0.62518 Do not Reject H0 0.17676
C S 3 I0 37 0.00093 Reject H0 1.33264 138.5 0.86421 Do not Reject H0 0.46588 67 0.03097 Do not Reject H0 0.65290
C S 3 I1 51 0.00554 Reject H0 1.02526 127.5 0.74272 Do not Reject H0 0.07001 107 0.41675 Do not Reject H0 0.29407
C S 3 I2 53 0.00720 Reject H0 1.05552 139 0.86862 Do not Reject H0 0.39443 81.5 0.10290 Do not Reject H0 0.45769
C S 3 I4 39.5 0.00130 Reject H0 1.40977 122.5 0.66858 Do not Reject H0 0.06144 91.5 0.19732 Do not Reject H0 0.11192
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Table A.24: GP-CVRP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
A-n32-k5 11.53691275 0.009150185697 Reject H0
A-n33-k5 7.979591837 0.04643536921 Reject H0
A-n33-k6 5.093959732 0.1650448337 Do not Reject H0
A-n34-k5 11.61486486 0.008825946623 Reject H0
A-n36-k5 7.714285714 0.05230077986 Do not Reject H0
A-n37-k5 19.06711409 0.0002648004892 Reject H0
A-n37-k6 0.6891891892 0.8757437673 Do not Reject H0
A-n38-k5 15.14189189 0.001699320833 Reject H0
A-n39-k5 9.604026846 0.02225005654 Reject H0
A-n39-k6 14.83892617 0.00195960171 Reject H0
A-n44-k6 16.84 0.0007623585042 Reject H0
A-n45-k6 15.40268456 0.001502944888 Reject H0
A-n45-k7 11.24 0.01049643382 Reject H0
A-n46-k7 3.32 0.3448687036 Do not Reject H0
A-n48-k7 5.32 0.1498098733 Do not Reject H0
A-n53-k7 8.12 0.04359568836 Reject H0
A-n54-k7 16.93288591 0.0007295626648 Reject H0
A-n55-k9 15.76510067 0.001266912498 Reject H0
A-n60-k9 6.2 0.1022750265 Do not Reject H0
A-n61-k9 9.608108108 0.02220865215 Reject H0
A-n62-k8 30.84 9.19E-07 Reject H0
A-n63-k9 0.2214765101 0.9740499804 Do not Reject H0
A-n63-k10 3.222972973 0.3585080532 Do not Reject H0
A-n64-k9 3.926174497 0.2695470909 Do not Reject H0
A-n65-k9 12.48648649 0.005889572533 Reject H0
A-n69-k9 20.52 0.0001324235234 Reject H0
A-n80-k10 1.8 0.6149349358 Do not Reject H0
M-n101-k10 10.36 0.01574130184 Reject H0
M-n121-k7 29.48 1.78E-06 Reject H0
M-n151-k12 15.28187919 0.001590941152 Reject H0
M-n200-k16 17.32 0.0006073210476 Reject H0
M-n200-k17 17.2147651 0.0006383782806 Reject H0
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Table A.25: GP-CVRP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
A-n32-k5 184 0.99859 Do not Reject H0 0.86485 97 0.26685 Do not Reject H0 0.10339 38.5 0.00115 Reject H0 0.92580
A-n33-k5 176.5 0.99640 Do not Reject H0 1.25783 122 0.66314 Do not Reject H0 0.14293 52.5 0.00665 Reject H0 1.16818
A-n34-k5 191.5 0.99952 Do not Reject H0 1.41443 92 0.20311 Do not Reject H0 0.31487 27 0.00021 Reject H0 1.61762
A-n37-k5 187 0.99909 Do not Reject H0 1.30141 127.5 0.74044 Do not Reject H0 0.16765 38 0.00104 Reject H0 1.23381
A-n38-k5 202 0.99991 Do not Reject H0 1.82251 104 0.36977 Do not Reject H0 0.22082 17.5 0.00004 Reject H0 2.20126
A-n39-k5 183.5 0.99849 Do not Reject H0 1.31673 103.5 0.36205 Do not Reject H0 0.01733 44 0.00239 Reject H0 1.36051
A-n39-k6 192 0.99955 Do not Reject H0 1.29710 83 0.11436 Do not Reject H0 0.39877 31 0.00039 Reject H0 1.46958
A-n44-k6 194.5 0.99969 Do not Reject H0 1.65695 112.5 0.50827 Do not Reject H0 0.01425 26.5 0.00019 Reject H0 1.69630
A-n45-k6 179.5 0.99745 Do not Reject H0 1.10421 79.5 0.08851 Do not Reject H0 0.42956 30 0.00033 Reject H0 1.33611
A-n45-k7 173.5 0.99465 Do not Reject H0 0.81010 91 0.19173 Do not Reject H0 0.28089 48 0.00396 Reject H0 0.92819
A-n53-k7 181 0.99790 Do not Reject H0 0.83600 96.5 0.25998 Do not Reject H0 0.01923 49 0.00447 Reject H0 0.76395
A-n54-k7 188.5 0.99925 Do not Reject H0 1.35159 107 0.41782 Do not Reject H0 0.17271 29 0.00029 Reject H0 1.48795
A-n55-k9 194 0.99967 Do not Reject H0 1.26485 105.5 0.39365 Do not Reject H0 0.05323 35.5 0.00075 Reject H0 1.20954
A-n61-k9 157 0.96912 Do not Reject H0 0.60586 76 0.06736 Do not Reject H0 0.32108 58 0.01250 Reject H0 0.70990
A-n62-k8 225 1.00000 Do not Reject H0 2.98833 83.5 0.11840 Do not Reject H0 0.50040 0 0.00000 Reject H0 3.35084
A-n65-k9 178.5 0.99711 Do not Reject H0 1.32966 92 0.20321 Do not Reject H0 0.10925 41.5 0.00172 Reject H0 1.31712
A-n69-k9 206 0.99995 Do not Reject H0 1.90986 105 0.38569 Do not Reject H0 0.12150 17 0.00004 Reject H0 1.98985

M-n101-k10 176.5 0.99628 Do not Reject H0 1.02158 151 0.94744 Do not Reject H0 0.52521 51 0.00569 Reject H0 0.82511
M-n121-k7 225 1.00000 Do not Reject H0 3.12680 82 0.10664 Do not Reject H0 0.59918 0 0.00000 Reject H0 4.22138
M-n151-k12 193 0.99961 Do not Reject H0 1.49731 105 0.38566 Do not Reject H0 0.30972 27 0.00021 Reject H0 1.67371
M-n200-k16 195 0.99971 Do not Reject H0 1.43216 124 0.69076 Do not Reject H0 0.02741 26 0.00018 Reject H0 1.47875
M-n200-k17 192.5 0.99958 Do not Reject H0 1.50743 63.5 0.02209 Do not Reject H0 0.84424 14.5 0.00003 Reject H0 1.81949

Table A.26: GP-CVRP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
A-n32-k5 180 0.99761 Do not Reject H0 0.84853 122.5 0.66848 Do not Reject H0 0.04584 110.5 0.47518 Do not Reject H0 0.04224
A-n33-k5 167 0.98876 Do not Reject H0 0.91276 102.5 0.34598 Do not Reject H0 0.35660 108.5 0.44209 Do not Reject H0 0.25040
A-n34-k5 169.5 0.99151 Do not Reject H0 0.85011 84.5 0.12659 Do not Reject H0 0.49868 69 0.03710 Do not Reject H0 0.73293
A-n37-k5 169 0.99114 Do not Reject H0 0.60287 44.5 0.00254 Reject H0 0.98845 49 0.00433 Reject H0 0.88843
A-n38-k5 175.5 0.99582 Do not Reject H0 1.01970 65.5 0.02666 Do not Reject H0 0.64891 56.5 0.01052 Reject H0 0.89405
A-n39-k5 178.5 0.99711 Do not Reject H0 1.24854 107 0.41767 Do not Reject H0 0.18438 95 0.24015 Do not Reject H0 0.23105
A-n39-k6 193 0.99961 Do not Reject H0 1.42773 144.5 0.91132 Do not Reject H0 0.33973 115.5 0.55774 Do not Reject H0 0.01759
A-n44-k6 190 0.99939 Do not Reject H0 1.58188 102 0.33908 Do not Reject H0 0.10910 97.5 0.27371 Do not Reject H0 0.12788
A-n45-k6 166 0.98746 Do not Reject H0 0.58385 73.5 0.05508 Do not Reject H0 0.64594 58 0.01251 Reject H0 0.97598
A-n45-k7 184.5 0.99869 Do not Reject H0 0.97096 149 0.93763 Do not Reject H0 0.35568 123.5 0.68341 Do not Reject H0 0.02599
A-n53-k7 161 0.97900 Do not Reject H0 0.52163 91 0.19163 Do not Reject H0 0.41144 87 0.14974 Do not Reject H0 0.33012
A-n54-k7 191 0.99947 Do not Reject H0 1.41164 126.5 0.72629 Do not Reject H0 0.13602 124 0.69070 Do not Reject H0 0.00715
A-n55-k9 180.5 0.99777 Do not Reject H0 0.91257 78.5 0.08213 Do not Reject H0 0.53839 84.5 0.12682 Do not Reject H0 0.47820
A-n61-k9 142 0.89344 Do not Reject H0 0.47206 85.5 0.13531 Do not Reject H0 0.37110 58 0.01245 Reject H0 0.56729
A-n62-k8 224 1.00000 Do not Reject H0 2.65221 103.5 0.36212 Do not Reject H0 0.14971 76 0.06763 Do not Reject H0 0.59152
A-n65-k9 184.5 0.99868 Do not Reject H0 1.35170 124.5 0.69800 Do not Reject H0 0.17913 112 0.50000 Do not Reject H0 0.05598
A-n69-k9 199 0.99985 Do not Reject H0 1.55134 102 0.33905 Do not Reject H0 0.30077 102 0.33907 Do not Reject H0 0.39374

M-n101-k10 164 0.98456 Do not Reject H0 0.63848 62 0.01888 Do not Reject H0 0.81180 90.5 0.18567 Do not Reject H0 0.38096
M-n121-k7 197.5 0.99981 Do not Reject H0 1.47086 74 0.05745 Do not Reject H0 0.70547 55.5 0.00954 Reject H0 1.09447
M-n151-k12 180 0.99760 Do not Reject H0 1.20880 71.5 0.04646 Do not Reject H0 0.54428 53 0.00715 Reject H0 0.89969
M-n200-k16 184 0.99859 Do not Reject H0 1.22825 72.5 0.05063 Do not Reject H0 0.47054 73 0.05275 Do not Reject H0 0.56594
M-n200-k17 177 0.99650 Do not Reject H0 1.15346 76.5 0.07040 Do not Reject H0 0.61739 31.5 0.00042 Reject H0 1.30395
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Table A.27: GP-MSSP Friedman Test Results

Friedman Test
Instance χ2 P Value Outcome
C S 0 I0 19.64 0.0002015427626 Reject H0
C S 0 I1 20.28 0.000148506523 Reject H0
C S 0 I2 21.21582734 9.50E-05 Reject H0
C S 0 I3 17.18181818 0.0006484223631 Reject H0
C S 0 I4 15.56 0.001395557823 Reject H0
C S 1 I0 21.32 9.03E-05 Reject H0
C S 1 I1 8.154362416 0.04292693149 Reject H0
C S 1 I2 20.68 0.0001226773353 Reject H0
C S 1 I3 18.36 0.0003706995932 Reject H0
C S 1 I4 4.30952381 0.2299226788 Do not Reject H0
C S 2 I0 9.805369128 0.02029512609 Reject H0
C S 2 I1 17.93283582 0.0004541037107 Reject H0
C S 2 I2 16.96240602 0.0007194363456 Reject H0
C S 2 I3 17.23943662 0.0006309583976 Reject H0
C S 2 I4 8.04 0.0451922194 Reject H0
C S 3 I0 10.45652174 0.01505875444 Reject H0
C S 3 I1 17.93233083 0.0004542126054 Reject H0
C S 3 I2 8.355704698 0.03920487491 Reject H0
C S 3 I3 16.97916667 0.0007137492093 Reject H0
C S 3 I4 8.310810811 0.04000649308 Reject H0

Table A.28: GP-MSSP Mann-Whitney U Tests with 1D, 2D and 3D Pheromone
Maps

Mann-Whitney U Test: 2D–1D Mann-Whitney U Test: 2D–3D Mann-Whitney U Test: 1D–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 19 0.00006 Reject H0 1.79936 84 0.12264 Do not Reject H0 0.24132 202 0.99991 Do not Reject H0 1.63778
C S 0 I1 16 0.00003 Reject H0 1.88513 160 0.97677 Do not Reject H0 0.66496 213 0.99999 Do not Reject H0 2.15988
C S 0 I2 26 0.00016 Reject H0 1.21237 149 0.94241 Do not Reject H0 0.53089 210.5 0.99998 Do not Reject H0 1.64137
C S 0 I3 55.5 0.00316 Reject H0 0.92022 150 0.97044 Do not Reject H0 0.66947 189.5 0.99973 Do not Reject H0 1.06529
C S 0 I4 34 0.00061 Reject H0 1.42530 71 0.04449 Do not Reject H0 0.64999 179 0.99727 Do not Reject H0 1.07115
C S 1 I0 11.5 0.00002 Reject H0 1.79242 119.5 0.62216 Do not Reject H0 0.14250 213 0.99999 Do not Reject H0 1.82295
C S 1 I1 72.5 0.05065 Do not Reject H0 0.30738 164.5 0.98529 Do not Reject H0 0.84967 168 0.98990 Do not Reject H0 0.73216
C S 1 I2 20 0.00007 Reject H0 1.34031 101 0.32408 Do not Reject H0 0.04403 187 0.99907 Do not Reject H0 1.05577
C S 1 I3 30 0.00034 Reject H0 1.22469 64 0.02324 Do not Reject H0 0.76690 183 0.99838 Do not Reject H0 0.75628
C S 2 I0 64.5 0.02434 Do not Reject H0 0.78830 109.5 0.45864 Do not Reject H0 0.00184 165 0.98608 Do not Reject H0 0.83443
C S 2 I1 74 0.05003 Do not Reject H0 0.58773 49 0.00317 Reject H0 0.90915 100.5 0.31278 Do not Reject H0 0.14501
C S 2 I2 29.5 0.00021 Reject H0 1.50548 142.5 0.90751 Do not Reject H0 0.27031 201.5 0.99991 Do not Reject H0 1.64220
C S 2 I3 59.5 0.01220 Reject H0 0.94213 132 0.80467 Do not Reject H0 0.31864 173.5 0.99534 Do not Reject H0 1.01704
C S 2 I4 59 0.01393 Reject H0 0.84261 74.5 0.05990 Do not Reject H0 0.58781 144 0.90789 Do not Reject H0 0.39791
C S 3 I0 62 0.01718 Do not Reject H0 0.95645 79 0.06854 Do not Reject H0 0.69753 147.5 0.93077 Do not Reject H0 0.49094
C S 3 I1 53.5 0.00597 Reject H0 1.54852 112.5 0.50934 Do not Reject H0 0.19162 176 0.99639 Do not Reject H0 1.57507
C S 3 I2 55.5 0.00954 Reject H0 0.93444 122 0.66087 Do not Reject H0 0.03086 172.5 0.99396 Do not Reject H0 0.92108
C S 3 I3 135.5 0.84314 Do not Reject H0 0.41304 48 0.00304 Reject H0 0.77074 56.5 0.01041 Reject H0 0.73270
C S 3 I4 99 0.29433 Do not Reject H0 0.10224 64.5 0.02222 Do not Reject H0 1.00951 101 0.32283 Do not Reject H0 0.34330
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Table A.29: GP-MSSP Mann-Whitney U Tests with 1D, 2D, 3D and HACOH

Mann-Whitney U Test: H-1D Mann-Whitney U Test: H–2D Mann-Whitney U Test: H–3D
Instance U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size U Value P Value Outcome Effect Size
C S 0 I0 27 0.00021 Reject H0 1.60617 135 0.83004 Do not Reject H0 0.45383 127 0.73334 Do not Reject H0 0.20305
C S 0 I1 21 0.00008 Reject H0 1.89582 80.5 0.09558 Do not Reject H0 0.46581 119 0.61425 Do not Reject H0 0.13044
C S 0 I2 25 0.00014 Reject H0 1.17435 113.5 0.52509 Do not Reject H0 0.00222 146 0.92602 Do not Reject H0 0.50872
C S 0 I3 59.5 0.00451 Reject H0 0.89251 120 0.69630 Do not Reject H0 0.16310 157.5 0.98956 Do not Reject H0 0.85094
C S 0 I4 35 0.00070 Reject H0 1.35223 113.5 0.52481 Do not Reject H0 0.02574 77.5 0.07619 Do not Reject H0 0.55990
C S 1 I0 12 0.00002 Reject H0 1.87267 87 0.14977 Do not Reject H0 0.29915 100 0.30920 Do not Reject H0 0.15756
C S 1 I1 91.5 0.19732 Do not Reject H0 0.12306 136.5 0.84551 Do not Reject H0 0.32068 181 0.99790 Do not Reject H0 1.01649
C S 1 I2 16 0.00003 Reject H0 1.89586 79 0.08549 Do not Reject H0 0.20636 89.5 0.17529 Do not Reject H0 0.10180
C S 1 I3 29 0.00029 Reject H0 1.14631 122 0.66085 Do not Reject H0 0.25829 70.5 0.04258 Do not Reject H0 0.63241
C S 2 I0 114 0.53308 Do not Reject H0 0.10154 171.5 0.99326 Do not Reject H0 0.87647 171.5 0.99327 Do not Reject H0 0.93177
C S 2 I1 50.5 0.00467 Reject H0 0.85645 73.5 0.04782 Do not Reject H0 0.51680 27.5 0.00017 Reject H0 1.26642
C S 2 I2 39.5 0.00105 Reject H0 1.43058 137 0.87450 Do not Reject H0 0.14771 158 0.97585 Do not Reject H0 0.41508
C S 2 I3 30 0.00032 Reject H0 1.16275 55.5 0.00893 Reject H0 0.80230 77.5 0.07523 Do not Reject H0 0.38646
C S 2 I4 67 0.03093 Do not Reject H0 0.58896 138 0.85958 Do not Reject H0 0.16162 104.5 0.37785 Do not Reject H0 0.29599
C S 3 I0 43 0.00203 Reject H0 1.21345 67.5 0.02422 Do not Reject H0 0.63883 46.5 0.00265 Reject H0 1.01597
C S 3 I1 28 0.00022 Reject H0 1.85939 41 0.00057 Reject H0 0.97185 48 0.00281 Reject H0 0.79845
C S 3 I2 61.5 0.01788 Do not Reject H0 0.74514 129.5 0.76656 Do not Reject H0 0.36719 140 0.87763 Do not Reject H0 0.36796
C S 3 I3 85.5 0.13488 Do not Reject H0 0.37246 46.5 0.00249 Reject H0 0.91698 17 0.00004 Reject H0 1.25034
C S 3 I4 82 0.10633 Do not Reject H0 0.44822 83.5 0.11792 Do not Reject H0 0.50909 26 0.00016 Reject H0 1.14962
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Appendix B

Generated Heuristics

This appendix contains the results of the statistical tests that are consulted in
Section 10.5.

B.1 HACO-GC

[-:{-:C,C}|{-:{-:C,{A:{-:C,{/:C,{-:S,{A:{-:F,C}}}}}}}|C}]

Fig. B.1: Heuristic Generated with 1D Pheromone Map

[/:{/:S,F}|{-:{-:{A:{A:{A:C}}}|{A:S}}|F}]

Fig. B.2: Heuristic Generated with 2D Pheromone Map

[*:{/:{/:{/:F,C}|{-:{*:F,S}|{*:{A:F}|S}}}|{-:C,{+:F,S}}}|C]

Fig. B.3: Heuristic Generated with 3D Pheromone Map
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B.2 HACO-GP

[M12:S3,S9,{M6:{M12:{M9:S13,{M13:S10,S11}}|

S11,S5,S12,S5}|S9}|{M13:{M3:S8,S9}|{M11:S17,S4,S9,

{M2:S7,S13}|{M6:{M12:S11,S2,{M12:S9,S4,S3,S2,S9}|

{M11:S3,S8,{M13:{M12:{M11:S3,{M13:S5,

{M13:S8,S10}}|{M9:S9,S15}|S2,S7}|S2,{M10:S12,S9}|

{M13:{M3:{M13:S9,{M4:{M13:{M6:S4,{M8:S14,S9}}|S2}|

{M13:S12,S8}}}|{M13:S17,S8}}|S3}|{M12:S7,S5,

{M13:S2,S12}|S9,S6}}|{M13:S3,S8}}|S2,S10}|S3}|

{M13:S16,S2}}}}|S3]

Fig. B.4: Heuristic Generated with 1D Pheromone Map

[M6:{M11:{M4:{M13:{M1:{M13:{M4:S10,{M7:S1,{M8:S14,

{M1:{M7:S1,S3}|S12,S16}}}}|S2}|{M6:S14,S1}|{M2:S9,

{M7:S10,{M7:S8,{M5:{M2:S6,S11}|{M10:{M10:{M8:S6,

{M3:{M10:S2,S5}|{M4:{M13:S16,S7}|S1}}}|S17}|

S8}}}}}}|S12}|S4}|S9,S16,{M8:S3,S5}|{M2:S3,

{M12:S7,S4,S15,{M13:S10,S11}|{M6:S15,S8}}}}|S5]

Fig. B.5: Heuristic Generated with 2D Pheromone Map
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[M12:{M9:{M8:{M7:S6,{M2:S9,S3}}|{M4:S6,S4}}|S4}|

{M13:{M9:S1,S3}|S10}|{M10:S10,{M8:{M3:{M10:S12,

{M9:S15,{M3:S13,S14}}}|{M6:S8,S17}}|{M2:

{M12:S5,S5,S8,{M11:{M7:S8,{M7:{M13:{M11:{M5:S2,

{M5:S10,S1}}|S6,S3,{M5:S4,S16}|{M4:{M6:S16,S14}|

{M3:S3,S8}}}|S15}|S16}}|S12,{M3:S2,S3}|S1,S3}|

{M10:S12,S2}}|S13}}}|S2,S3]

Fig. B.6: Heuristic Generated with 3D Pheromone Map
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