
Tracking Object Positions in Real-time Video using
Genetic Programming

W. Smart and M. Zhang

School of Mathematics, Statistics and Computer Science,

Victoria University of Wellington,

P. O. Box 600, Wellington, New Zealand

{smartwill, mengjie}@mcs.vuw.ac.nz

Abstract
This paper describes a new approach to the use of Genetic Programming (GP) to evolve programs for
tracking objects quickly in streaming video. A small number of images, with located objects, are used
as training data and GP automatically performs feature-selection on these images at the pixel level.
The use of feature functions is introduced, taking a single offset argument, in contrast to the standard
feature terminal approach. The features include both “directionless” intensity features and “directional”
edge detection features. The fitness function rewards evolved programs that can move training points,
located on a grid around an object, closer to the object. As such, a good program will also be able to
update an object position from frame to frame for tracking. Two video sequences are examined, with
evolved programs tracking the left-eye and forehead of a person successfully. The method is very fast,
tracking a frame in six or seven milliseconds on a 2.6GHz PC.

Keywords: Artificial Intelligence, Genetic Programming, Object Tracking, Computer Vision

1 Introduction

Many object tracking tasks arise in computer vi-
sion, whether it be for surveillance [1], video com-
pression, novel human-to-computer interfaces [2] or
human head tracking [3, 4, 5]. A wide variety of
innovative methods have been used to solve this
problem. However, many of these methods are
either very specialized to the type of object that
is being tracked [3, 4] or very complex, requiring
powerful computers or specialist hardware to run
in real-time [2, 6, 5]. In this paper we present a very
fast method of tracking objects which makes no
assumptions about the properties, such as shape, of
the object to be tracked. Rather, a genetic search
system is used to find such knowledge, given only
a few training images with known object locations.

Genetic Programming (GP) [7, 8] is a fast devel-
oping search method with origins in Genetic Al-
gorithms (GAs) and Automatic Programming. In
GP, as in GAs, a population of individuals (called
evolved programs in GP) is created, then evolved
stepwise from generation to generation, using a
fitness heuristic. From one generation to the next,
the individuals in the population are updated by
genetic operators which aim to keep material from,
swap material between, and add random material
to selected individuals. As individuals that have
better fitness are more likely to be selected to be

updated by the genetic operators, the method has
parallels with individuals in species’ populations
and Darwinian natural selection.

The main goal of this paper is to develop a method
to evolve programs using GP that can successfully
track objects from frame to frame in a video se-
quence, given the frame images, and the position
of the object in the first frame of the sequence. The
training system will not require user-specified ob-
ject properties, but only a small number of training
images with objects at known locations.

This paper is organized as follows: In section 2
the new primitive set and feature representation
are presented. In section 3 the fitness function is
presented. In section 4 the tracking tasks are given,
and results are shown. In section 5 the conclusions
and future directions are presented.

2 Evolved Program Representation

In this paper we use the widely-used representation
for evolved programs, the Lisp S-expression [7]. In
this representation, the evolved programs can be
represented as trees, with functions at the internal
nodes, and terminals at the leaf nodes.

The information available to the tracking system
at any frame in the video-sequence is the frame
image, and the position of the tracked object in the



(automatically discovered)
Feature pixel positions

Frame 3Frame 2Frame 1

Program output vector

Object position in frame

Object position in previous
Frame

Figure 1: Tracking of an object position by adding output vectors to previous positions.

previous frame. In this approach, we find a vector
(called the update vector) that can be added to the
position of the object in the previous frame, mov-
ing it closer to the position in the present frame.
The method is shown in Figure 1.

In frame one, the position is initialized using prior
knowledge or a localization method. In frame two
and three, the evolved program used as a tracker
is evaluated using as features the values of pixels
situated around the previous position of the object
(outline circle). The evolved program outputs the
update vector, which is used to produce an esti-
mate of the object position in the current frame.

To do this, instead of the standard approach where
programs return a single real value, programs in
our representation return a two-valued vector, con-
taining x and y components. This vector may be
directly added to the previous position in order to
move it closer to the present object. The argument
types and return types of all terminals and func-
tions used in the system are therefore two-valued
vectors.

2.1 Terminal Set

In this approach, there is only one terminal
type: numeric terminals. Numeric terminals are
randomly generated two-valued vector constants.
Both the x and y components are randomly
generated from a standard normal distribution.

A major difference from the standard approach is
the use of a feature function, instead of the usual
use of a feature terminal. In standard GP the
features used as input from the environment come
in fixed-size feature vectors. The vector values are
included in the evolved program as terminals, each
returning a specific feature from the vector.

2.2 Function Set

The features of evolved programs in our system
are functions taking one vector argument which
specifies the position in the image to use for the
feature. The exact position is the value of the

vector argument added to the current estimate of
object position, or the position that the program
is “evaluated at”. There are two feature function
types, directionless and directional. The “direc-
tionless feature” function returns the pixel inten-
sity in the x component, and an omni-directional
edge detection value at the pixel location in the
y component. The “directional feature” function
returns an horizontal edge detection value in the x

component, and a vertical edge detection value in
the y component.

The functions used in experiments are listed In
Table 1.

In Table 1, ai is the i’th argument passed to the
function, which will have x and y components (ai.x

and ai.y). I(v) is the intensity of the pixel in
the current frame, at a position of v relative to
the current best estimate of the object position.
Ex(v) is I(v + {3, 0})− I(v − {3, 0}) and Ey(v) is
I(v + {0, 3})− I(v − {0, 3}).

The functions satisfy closure, that is all functions
can cope with all possible argument values. Also,
the functions aim to satisfy sufficiency, that is,
there exist programs using these functions that can
solve the task. In order to approach this, stan-
dard vector mathematics is included, such as ad-
dition, subtraction, dot product (multiplication),
cross product. Additionally, discontinuities are al-
lowed by a conditional function (if) and rotation
about the origin by any angle is also included.

3 Fitness Function and Training

In this approach an evolved program will output a
vector when evaluated at a position in an image.
When added to the position, the vector output
by a good program, will refine the position to be
closer to the true position of the object. As such
the training examples consist of a grid of positions
that are near the object (of known location) in an
image. These training positions are set at the start
of evolution, and do not change from one program
to the next. The goal of an evolved program is



Table 1: The functions used in experiments.

Function resultant x resultant y

Addition a1.x + a2.x a1.y + a2.y

Subtraction a1.x − a2.x a1.y − a2.y

Multiplication a1.x × a2.x a1.y × a2.y

Protected Division a1.x

a2.x
or 0 if a2.x = 0 a1.y

a2.y
or 0 if a2.y = 0

If a2.x if a1.x < 0 else a3.x a2.y if a1.y < 0 else a3.y

Determinant a1.x × a2.y − a1.y × a2.x a1.y × a2.x − a1.x × a2.y

Rotate by a2.x a1.x cos(a2.x) + a1.y sin(a2.x) a1.y cos(a2.x) − a1.x sin(a2.x)
Rotate by 90 / swap −a1.y a1.x

Combine a1, a2 a1.x a2.y

Directionless Feature I(a1)
√

(Ex(a1))2 + (Ey(a1))2

Directional Feature Ex(a1) Ey(a1)

d
s

p

fitness

q

q

q

q

q

v

vv

v
1

1

2
2

3

3

4

4

5

p

training
position

position
aim

final distance
for

(a) (b)

Figure 2: (a) A simplified drawing of a person’s head, with training positions arranged as a grid around
the target point p at the centre of the forehead. (b) The iteration process by which the evolved program
may refine its position estimate.

to, starting from each training position, move to a
point that is closer to the surrounded object.

Figure 2(a) shows a simplified image, with training
positions occupying points on a grid, with spacing
s, and a maximum of distance d from the desired
object position p for the image.

3.1 Fitness Function

In the case of Figure 2(a), the aim of the evolved
program is to move a given point closer to the
centre of the forehead (point p). The vector output
by the evolved program is added to the given point,
giving a new point estimate which is, hopefully,
closer to p. However, the programs evolved can be
somewhat roundabout in their attempts to get to
p, and this is allowed so long as the program moves
the training points close to p, after a few iterations.
This is shown diagrammatically in Figure 2(b).

The first point used is the training point, which
we call q1. When the program is evaluated at
point qi, it produces a vector oi. If the length
of oi is less than a maximum length l, then it is

used directly. Otherwise oi is shortened to length
l without changing its direction. The (possibly
shortened) oi vector is called vi. An updated po-
sition is found as qi+1 = qi + vi. The program
is then evaluated at position qi+1, producing vi+1

and then qi+2 by the same equation used for qi+1.
This process is repeated a set number of times for
each training point, finally producing the point r

(q5 in Figure 2(b))

The fitness function is shown in Equation 1, where
f is the fitness, p is the position of the desired
object, rj is the refined position of the j’th training
position around p. N is the number of training
positions around the object in the image.

f =

N
∑

j=1

√

(p.x − rj .x)2 + (p.y − rj .y)2 (1)

It can be seen that Equation 1 will be lower for pro-
grams that refine the training points to be closer
to p, while being higher for programs that refine
the training points to be further away.



(a) (b)

Figure 3: Tracking by evolved program trained to follow the left eye. (a) Paths taken by the program on
a sample face image. (b) Every 20th frame in the first video-sequence, showing tracked position as black
dot.

4 Experiments and Results

Experiments were run to evaluate how well this ap-
proach can track a human head in low bandwidth,
greyscale video sequences. In this section we will
discuss both the experiment setup and the results
gained using this approach.

4.1 Datasets

The video sequences were recorded to AVI format
files using a standard webcam in greyscale at 352×
288 resolution. Due to the use of a webcam, the
quality of the video is not very good, fast motion
causes a very blurry image. This makes the job of
a tracker much harder due to the low quality of the
still images it must work with.

Two sequences were used, each with a person’s
head moving at a fixed distance from the webcam.
In the first sequence the head moves relatively
slowly and there is no occlusion. The task here is
to track the left-eye of the person. In the second
sequence, the head moves quickly at times, and is
occluded at the end. The task here is to track the
forehead of the person. Clearly, the tracking task
in the second sequence is harder than in the first.

4.2 Experiment Configuration

For evolution, the population size was 500, the
number of generations was 150, the maximum
depth of the evolved programs was eight. The
initial population of programs was generated using
the ramped half-half method [7] with an initial
maximum depth of six. In each population 10%
came from reproduction, 30% came from mutation
and 60% from crossover. A 3-way tournament
selection mechanism was used.

All programs were trained on the same images,
15 frames from the second sequence selected for
their range of content (such as pose and motion
blur). The only differences in training between
programs that track different objects were the po-
sitions marked as the objects in the images. The
grid parameters were <s = 8, d = 40> for the
left-eye-tracker program, and <s = 10, d = 60>

for the forehead-tracker program. For the tracking
output, the value of l was 2.0 pixels, and the num-
ber of iterations of the position update process per
frame was 80. The computer used for processing
was a Pentium IV 2.6GHz PC.

4.3 Experiments

Figures 3.1 and 4 show results of programs evolved
to track the left-eye and forehead, respectively, in
the two video-sequences. Figures 3.1(a) and 4(a)
give details of a sample face image, showing only
the centre of the face. The white dots in the figures
show points from which the program was started,
and the black trails show the path by which the
program follows as it refines this position for a
few iterations. Figures 3.1(b) and 4(b) show every
20th frame in the first and second video sequences
respectively, with a black dot in every frame in-
dicating the tracked position of the object by the
evolved program. The frames go from top-left to
top-right, then bottom-left to bottom-right.

In Figure 3.1(a) the paths that are close to the left
eye are seen to generally move toward the centre
of the eye. In Figure 3.1(b) we can see that the
tracked position closely follows the path of the left
eye. In the bottom-left frame we can see that the
tracked position is slightly off the true position.
This is due to the eye being very near the edge
of the frame. However, as the eye moves back
into the field of view, the tracking position realigns



(a) (b)

Figure 4: Tracking by evolved program trained to follow the centre of the forehead. (a) Paths taken by
the program on a sample face image. (b) Every 20th frame in the second video-sequence, showing tracked
position as black dot.

itself. This suggests that this evolved program had
stong adaptability even when part of the eye was
occluded by the image border. Some other evolved
programs would get attracted to the edge of the
image at this part of the sequence. The tracking
process for each frame in this sequence took about
six milliseconds.

In Figure 4(a) the paths that are close to the fore-
head are seen to generally move inward, toward
the centre of the forehead. In Figure 4(b) we can
see that the black dot closely follows the path of
the forehead, even when the head is rotated in
the fourth frame and moved quickly in frames six
to eight. In the ninth and tenth shown frames
in Figure 4(b), we see that the tracked point is
still correct, even when the face was completely
occluded by the hand. This is a property of the
evolved program used for tracking. Some other
evolved programs would follow the hand, or move
erratically when faced with this occlusion. Simi-
larly, all evolved programs tested were different in
terms of maximum tracking speed, jitter, tolerance
to head pose and other properties. The tracking
process for each frame in this sequence took about
seven milliseconds.

5 Conclusions

The goal of this research was to develop a method
to evolve programs, using GP, that can track the
position of an object in a video sequence. This goal
was successfully achieved by the introduction of a
two-value vector program representation and the
use of feature functions in the system.

In this approach, each evolved program returns
a two-valued vector, rather that only a single
floating-point number as in standard GP. The
evolved programs do not use the standard method

of feature terminals, but rather feature functions
which take a single vector as an argument. The
position in the image that the feature describes
is the value of the vector argument, added to the
position that the evolved program is “evaluated
at”.

When evaluated at a starting position that is close
to an object in an image, an evolved program that
is trained to track the type of object returns a vec-
tor indicating the direction and distance to move
from the starting position in order to get closer
to the object. The fitness function uses the sum
of distances from the true object position to the
refined positions of a set of training positions near
the object.

In experiments using low-quality, greyscale video
sequences, the evolved programs did track the ob-
jects in the image very successfully. The evolved
programs were trained to either follow the centre
of the forehead, or the left eye. The only difference
in training for these very different objects was the
positions given for the objects in training images,
yet each of the evolved programs did track its ob-
ject successfully. The actual tracking process was
found to be very fast, which would use about 10%
of the power of a 2.6GHz PC if it were used for
real-time video. With optimization of the code this
could be lowered even further.

Note that each evolved program produced did dif-
fer in abilities such as speed, jitter and the range
from the object that could be successfully tracked.
As such, when applying this technique, it is im-
portant to choose an evolved program that has the
desired tracking properties.

For future work, we will investigate the use of more
than one evolved program for tracking an object in
video-sequences, with strengths combined from the



different programs. Each would track either the
same object or different ones (such as one each for
the left eye, right eye and centre of the forehead).
The method will also be compared to other track-
ing methods, and strengths and weaknesses of the
methods assessed.

References

[1] L. M. Fuentes and S. A. Velastin, “People
tracking in surveillance applications,” 2001.

[2] C. R. Wren, A. Azarbayejani, T. Darrell, and
A. Pentland, “Pfinder: Real-time tracking of
the human body,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 780–785, 1997.

[3] S. Birchfield, “Elliptical head tracking using in-
tensity gradients and color histograms,” 1998.

[4] P. Fieguth and D. Terzopoulos, “Color based
tracking of heads and other mobile objects at
video frame rates,” 1997.

[5] J. Denzler and H. Niemann, “Evaluating the
performance of active contour models for real–
time object tracking,” in Second Asian Confer-
ence on Computer Vision, vol. 2, (Singapore),
pp. II/341–II/345, 1995.

[6] J. Denzler and D. W. R. Paulus, “Active
motion detection and object tracking,” in ICIP
(3), pp. 635–639, 1994.

[7] J. R. Koza, Genetic Programming: on the
programming of computers by means of natural
selection. London, England: Cambridge, Mass.
: MIT Press, 1994.

[8] W. Banzhaf, P. Nordin, R. E. Keller, and
F. D. Francone, Genetic Programming: An
Introduction on the Automatic Evolution of
Computer Programs and its Applications. Mor-
gan Kaufmann Publishers, 1998.


