Skip to main content

Medical Applications of Cartesian Genetic Programming

  • Chapter
  • First Online:
Book cover Inspired by Nature

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 28))

Abstract

The application of machine learning techniques to problems in medicine are now becoming widespread, but the rational and advantages of using a particular approach is not always clear or justified. This chapter describes the application of a version of Cartesian Genetic Programming (CGP), termed Implicit Context Representation CGP, to two very different medical applications: diagnosis and monitoring of Parkinson’s disease, and the differential diagnosis of thyroid cancer. Importantly, the use of CGP brings two major benefits: one is the generation of high performing classifiers, and the second, an understanding of how the patient measurements are used to form these classifiers. The latter is typically difficult to achieve using alternative machine learning methods and also provides a unique understanding of the underlying clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, S.L., Cagnoni, S.: Genetic and Evolutionary Computation: Medical Applications. Wiley (2011)

    Google Scholar 

  2. Benamrane, N., Aribi, A., Kraoula, L.: Fuzzy neural networks and genetic algorithms for medical images interpretation. In: Geometric Modeling and Imaging–New Trends (GMAI’06), pp. 259–264. IEEE (2006)

    Google Scholar 

  3. Delibasis, K., Undrill, P.E., Cameron, G.G.: Designing texture filters with genetic algorithms: an application to medical images. Sig. Process. 57, 19–33 (1997)

    Article  MATH  Google Scholar 

  4. Delibasis, K., Undrill, P.E., Cameron, G.G.: Designing Fourier descriptor-based geometric models for object interpretation in medical images using genetic algorithms. Comput. Vis. Image Underst. 66, 286–300 (1997)

    Article  Google Scholar 

  5. Gudmundsson, M., El-Kwae, E.A., Kabuka, M.R.: Edge detection in medical images using a genetic algorithm. IEEE Trans. Med. Imaging 17, 469–474 (1998)

    Article  Google Scholar 

  6. Maulik, U.: Medical image segmentation using genetic algorithms. IEEE Trans. Inf. Technol. Biomed. 13, 166–173 (2009)

    Article  Google Scholar 

  7. Shih, F.Y., Wu, Y.-T.: Robust watermarking and compression for medical images based on genetic algorithms. Inf. Sci. 175, 200–216 (2005)

    Article  Google Scholar 

  8. Ding, S., Li, H., Su, C., Yu, J., Jin, F.: Evolutionary artificial neural networks: a review. Artif. Intell. Rev. 39, 251–260 (2013)

    Article  Google Scholar 

  9. Fister Jr, I., Yang, X.-S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms for optimization.arXiv:1307.4186 (2013)

  10. Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on evolutionary algorithms in Bayesian network learning and inference tasks. Inf. Sci. 233, 109–125 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tahmasian, M., Bettray, L.M., van Eimeren, T., Drzezga, A., Timmermann, L., Eickhoff, C.R., Eickhoff, S.B., Eggers, C.: A systematic review on the applications of resting-state fMRI in Parkinson’s disease: does dopamine replacement therapy play a role? Cortex 73, 80–105 (2015)

    Article  Google Scholar 

  12. Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, 232–237 (2010)

    Article  Google Scholar 

  13. Langdon, W.B.: Quadratic bloat in genetic programming. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 451–458. Morgan Kaufmann Publishers Inc. (2000)

    Google Scholar 

  14. Langdon, W.B., Poli, R.: Fitness causes bloat. Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer (1998)

    Google Scholar 

  15. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in Cartesian genetic programming. IEEE Trans. Evol. Comput. 10, 167–174 (2006)

    Article  Google Scholar 

  16. Cai, X., Smith, S.L., Tyrrell, A.M.: Positional independence and recombination in Cartesian genetic programming. In: European Conference on Genetic Programming, pp. 351–360. Springer (2006)

    Google Scholar 

  17. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1580–1587. ACM (2017)

    Google Scholar 

  18. Lones, M.A., Tyrrell, A.M.: Modelling biological evolvability: implicit context and variation filtering in enzyme genetic programming. BioSystems 76, 229–238 (2004)

    Article  Google Scholar 

  19. Smith, S.L., Leggett, S., Tyrrell, A.M.: An implicit context representation for evolving image processing filters. In: Workshops on Applications of Evolutionary Computation, pp. 407–416. Springer (2015)

    Google Scholar 

  20. Smith, S.L., Lones, M.A.: Implicit context representation Cartesian genetic programming for the assessment of visuo-spatial ability. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp. 1072–1078. IEEE (2009)

    Google Scholar 

  21. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  22. Parkinson’s, U.: Parkinson’s prevalence in the United Kingdom. 2009. London, Parkinson’s UK. 1–13 (2012)

    Google Scholar 

  23. Bajaj, N.P., Gontu, V., Birchall, J., Patterson, J., Grosset, D.G., Lees, A.J.: Accuracy of clinical diagnosis in tremulous Parkinsonian patients: a blinded video study. J. Neurol. Neurosurg. Psychiatry 81, 1223–1228 (2010)

    Article  Google Scholar 

  24. Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37, 1568–1572 (2010)

    Article  Google Scholar 

  25. NICE: Parkinson’s disease: national clinical guideline for diagnosis and management in primary and secondary care. Royal College of Physicians (2006)

    Google Scholar 

  26. Smith, S.L., Lones, M.A., Bedder, M., Alty, J.E., Cosgrove, J., Maguire, R.J., Pownall, M.E., Ivanoiu, D., Lyle, C., Cording, A.: Computational approaches for understanding the diagnosis and treatment of Parkinson’s disease. IET Syst. Biol. 9, 226–233 (2015)

    Article  Google Scholar 

  27. Lones, M.A., Smith, S.L., Alty, J.E., Lacy, S.E., Possin, K.L., Jamieson, D.S., Tyrrell, A.M.: Evolving Classifiers to recognize the movement characteristics of Parkinson’s disease patients. IEEE Trans. Evol. Comput. 18, 559–576 (2014)

    Article  Google Scholar 

  28. Lones, M.A., Alty, J.E., Lacy, S.E., Jamieson, D.S., Possin, K.L., Schuff, N., Smith, S.L.: Evolving classifiers to inform clinical assessment of Parkinson’s disease. In: IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE) 2013, pp. 76–82. IEEE (2013)

    Google Scholar 

  29. Lones, M.A., Alty, J.E., Duggan-Carter, P., Turner, A.J., Jamieson, D., Smith, S.L.: Classification and characterisation of movement patterns during levodopa therapy for parkinson’s disease. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, pp. 1321–1328. ACM (2014)

    Google Scholar 

  30. Shrivastava, J.P., Mangal, K., Woike, P., Marskole, P., Gaur, R.: Role of FNAC in diagnosing thyroid neoplasms-A retrospective study. IOSR J. Dent. Med. Sci. (IOSR-JDMS) 1, 13–16

    Google Scholar 

  31. Kendall, C., Isabelle, M., Bazant-Hegemark, F., Hutchings, J., Orr, L., Babrah, J., Baker, R., Stone, N.: Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134, 1029–1045 (2009)

    Article  Google Scholar 

  32. Lones, M., Smith, S.L., Harris, A.T., High, A.S., Fisher, S.E., Smith, D.A., Kirkham, J.: Discriminating normal and cancerous thyroid cell lines using implicit context representation cartesian genetic programming. In: IEEE Congress on Evolutionary Computation (CEC) 2010, pp. 1–6. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Smith, S.L., Lones, M.A. (2018). Medical Applications of Cartesian Genetic Programming. In: Stepney, S., Adamatzky, A. (eds) Inspired by Nature. Emergence, Complexity and Computation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-67997-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67997-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67996-9

  • Online ISBN: 978-3-319-67997-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics