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ABSTRACT

In this paper we investigated the use of Genetic Program-
ming (GP) to evolve programs which could detect moving
objects in videos. Two main approaches under the paradigm
were proposed and investigated, single-frame approach and
multi-frame approach. The former is based on analyzing in-
dividual video frames and treat them independently while
the latter approach consider a sequence of frames. In the
single-frame approach, three methods are investigated in-
cluding using pixel intensity, pixel hue value and feature
values. The experiments on Robosoccer field show that GP
could detect the target under different lighting conditions
and could even handle arbitrary camera positions. Although
there was no domain knowledge had been provided during
evolution, GP was able to produce moving object detectors
that were robust and fast.

Categories and Subject Descriptors

I.5.4 [Pattern Recognition]: Applications; I.2.10 [Vision
and Scene Understanding]: Video analysis

General Terms

Algorithms, Design, Experimentation

Keywords

Genetic Programming, Video Analysis, Object Detection,
Tracking, Motion Detection, Real Time, Robosoccer

1. INTRODUCTION
Automatic detection of moving object in video streams

has great importance for many vision applications such as
surveillance systems, robot vision systems, traffic control
systems and auto-pilot/driving systems. The need is grow-
ing fast with the increased affordability and popularity of
video capture devices. The goal of these vision systems are
usually recognizing objects on the scenes and following the
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moving objects. The core part of these systems is a flexible,
reliable and fast video image analysis methodology which
can process video signal in real-time.

The goal of our study is to utilise Genetic Programming
(GP) to address these tasks. We use the robot soccer en-
vironment as a testbed. The conventional robosoccer sys-
tems are sensitive to environment changes and require re-
calibration when change occurs. Also domain knowledge
such as colour of the ball, colour of the field need to be pro-
vided to the system. In contrast we are aiming to use GP
to create moving object detectors which require less spe-
cific domain knowledge and are able to handle variations.
Appropriate methodology of evolving such detectors is in-
vestigated, especially the suitable representations. The gen-
erated detector were tested on real-time video inputs.

2. BACKGROUND
Genetic Programming has been applied to still object de-

tection soon after Koza introduced it as a powerful prob-
lem solving method [11, 13]. It has used in detecting var-
ious objects such as tanks, coins and faces. GP has also
been used for multiple object detection [14]. These work
showed that GP could be used as a tool for developing
domain-independent learning/adaptive approaches for de-
tecting small objects of multiple classes in static images. [4]
used GP based object detection for mining vehicles based on
extracted features. The GP object classifiers in this study
was able to provide a certain degree of robustness. The
evolved object detectors that could handle different lighting
conditions. GP has also been extended to tracking faces in
videos based on image features [10].

2.1 Object Detection in Robot Soccer
RoboCup soccer is an active competition among enthusi-

astic AI researchers [8]. Players need to be able to locate
the ball in real-time. Thresholding for segmentation is the
most popular object detection technique for object detec-
tion and localisation in robot soccer. It is largely colour
based. Thresholds in hue histograms performs well on noise
and illumination variations [12]. However they are fragile
and need manual adjustment to suit its operational envi-
ronment. [2] created a system that segments objects based
on colour. It also required manual adjustment when condi-
tions change. To create more robust thresholding systems,
learning methods have been used provide solutions that can
handle changes in illumination and noise. [5] used a simple
EA to evolve a robust colour classifier for robot soccer by
chrominance space transformation. [1] used a neural net-
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work to determine the thresholds for object classes in a hue
histogram. [3] utilized decision trees to perform the same
task of thresholding for classification. The above methods
incorporated pre-processing of frames to filter out noise, il-
lumination and colour variations. Other techniques used
include active contours [7] and the use of laser range finders
for scan line matching [6]. These existing techniques almost
always rely heavily on specific domain knowledge.

3. METHODOLOGY

Figure 1: Overview of the Investigation

The overview of our investigation is shown in Figure 1. It
can be split into two halves known as the evolution phase
and the application phase. The evolution phase is the pro-
cess to evolve and evaluate GP programs. The application
phase is using the evolved classifier to process unseen videos
for detection of moving objects. Based on the same frame-
work for evolution and application, we propose and investi-
gate two approaches: single-frame approach and multi-frame
approach. Other than these two kinds of approaches, the
experiment procedure, the GP settings and the method of
detecting objects based on evolved programs are consistent
cross our investigation.

3.1 Data Generation
To train GP programs as an object detector, a set of exam-

ples with correct class labels should be provided. However a
single-frame from video is usually 384 x 288 pixels which is
too big to be used as inputs of GP programs. So small cut-
outs are sampled from frame images by a sweeping window.
The window size is 32 by 32 pixels. Cut-outs containing tar-
get object, soccer ball in our case, and cut-outs containing
only the background are marked as different classes. This
set of cutouts is split into two parts to be used for training
and evaluation respectively.

3.2 Image Representations
Four representations were investigated in this study: pixel

intensity value, pixel hue value, feature values and motion
plane. The first three (intensity, hue and feature) are under
the single-frame approach while the fourth is in the multi-
frame approach.

3.2.1 Pixel Intensity Value

This representation directly uses the intensity values of
each pixel in a cutout image, normalized to range of 0 to
100. Intensity was chosen because it is the most basic rep-
resentation and is readily available. The color information

is discharged so this representations would be insensitive to
colour changes. For one cutout image, the number of pixels
on that images is number of data points in this representa-
tion.

3.2.2 Pixel Hue Value

This representation records the hue value of each pixel.
The value is calculated by converting RGB values of the
pixel and then applying a sine function. So the values should
be between -1 and 1. The values of Hue = 0 and Hue = 359
would not far away since visually they are in similar color.
The choice of hue is due to its popular use in robosoccer
vision systems. In this representation the number of data
points for an image is also equal to the number of pixels on
that image.

3.2.3 Feature Based Representation

Unlike the above two pixel based representations, feature
representation is region based. An image is divided into
five regions as shown in Figure 2: the left-top quarter, the
left-bottom quarter, the right-top quarter, the right-bottom
quarter and the middle quarter. A set of twelve features can
be calculated from there five regions:

• Features 1-5: the average intensity values of the pixels
in each of the corresponding regions.

• Feature 6: the magnitude of the first four features mi-
nus four times the fifth feature.

• Features 7-12: are averages of different pairings of the
first four features.

Figure 2: Five Regions for Generating Features

This representation is similar to that in other GP-based
objection detection studies such as [14]. Image features
could more likely capture characteristics of an image. The
feature of an image containing a ball in the center might be
significantly different to that of not-ball images. It would
dramatically reduce the search space of GP. Furthermore
the data points are much less in this representation. In our
case, images always have 12 feature values despite their sizes.

3.2.4 Motion Plane

The above three representations are for single frame im-
ages. GP programs using these representation treat video
frames independently. To preserve the coherence of consec-
utive frames, we used a multiple frame approach by which
intensity values were combined from several frames into one
frame, called motion plane. The formula for calculating a
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motion plane is shown below:

MP (x) =

P

n−1

i=1
((xi − xi−1) × (n − i))

n

Where x is one position in the video. There are n consecutive
frames, frame 0 is the most current one and frame n − 1 is
the oldest in the queue. n−i acts as a weight so that changes
in more recent pairs of frame will have more influence on the
value of the motion plane. The sum of weighted differences
is divided by n to produce the average change value for one
pixel in the motion plane. By this representation the change
over a sequence of frames, or motion information, is stored.
This representation is suitable for catching moving objects
on a stationary background, not on moving background.

3.3 Evolution Phase
This part describes the details of evolution phase including

GP settings, runtime parameters, data generation, as well as
the process of selecting programs for the application phase.

3.3.1 Function Set

Function Return Type Arguments
+ Double Double, Double
- Double Double, Double
× Double Double, Double
/ Double Double, Double
= Boolean Double, Double
< Boolean Double, Double
> Boolean Double, Double
if Double Boolean, Double, Double

between Boolean Double, Double, Double

Table 1: Function Set

Functions are the internal nodes of a GP tree. The func-
tion set used (Table 1) includes four basic arithmetic op-
erators add, subtract, multiply and divide that return
doubles and three comparative operators equals, less than
and greater than which return booleans. Both of the
above functions take in two doubles as inputs. There are
two additional functions that takes three inputs if and be-
tween. The if function takes in a boolean and two doubles,
if the boolean is true then the first double is returned else
the second double is returned. The between function takes
in three doubles as input, if the second double is between
the first and the third then it will return true else it will
return false.

3.3.2 Terminal Set

Terminals are the leaf nodes of a GP tree. The terminal
set (Table 2) contains two different types of terminals, the
first(drand) being a random double that is generated by the
GP and the other is attributes. Attribute(Att) is the input
of a GP programs. It could be normalized intensity value,
sine of hue, some feature values or one point from the motion
plane, depends on which approach is being used.

Terminal Return Type
drand Double
Att[x] Double

Table 2: Terminal Set

Population Size 200
Maximum Depth 12
Minimum Depth 2
Generations 150
Mutation Rate 0%
Crossover Rate 90%
Elitism Rate 10%

Table 3: GP Runtime Parameters

3.3.3 Fitness Function, Termination Condition and
Run Time Parameters

We used the accuracy of a GP program as fitness measure
which is the percentage of small cutouts in training being
recognized correctly. There are two termination conditions.
The first one is when the training accuracy reaches 100%
while the second is when the number of specified generations
has been reached.

The GP runtime parameters are listed in Table 3. To gen-
erate the initial population the ramped half-and-half method
was chosen as it could provide a wide variety of initial pro-
gram trees [9]. The mutation rate was set to 0% as works
done on similar problems utilised mutation rates that were
either very low or zero. Such a parameters choice is based
on the parameter choices of our other related works such as
recognizing texture pictures, analyzing X-ray images. This
parameter choice is also consistent with that in image re-
lated GP works reported by other researchers.

3.3.4 Training/Evaluation

The cutouts generated were split into two folds for train-
ing and evaluation. There were always an equivalent number
of positive and negative cases in each fold. Positive cases are
all relatively similar: the ball located around the center of
the cutout with some variations of background. Negative
cases contain a large number of varieties such as the green
field, part of the goal, part of the boundary lines. The data
fold for training has two thirds of the cutouts while the fold
for evaluation has the rest. For each generation of the train-
ing, the best GP programs are passed to evaluation. When
the evolution process finishes, the best performing programs
during the evaluation are then selected for the next phase.

3.4 Application Phase
In this phase an evolved program is deployed to process

videos. The basic procedure is illustrated in Figure 3. The
main steps are: retrieving the current frame from video
input (Step 1), using a sweeping window to sample small
cutouts of which the size is consistent with that in evolu-
tion phase (Step 2), classifying these cutouts by evolved GP
program (Step 3), assembling the labeled cutouts back to a
frame (Step 4) and pushing the processed frames continu-
ously as video output (Step 5).

In Step 2 every pixel is sampled and most of the pixels
are sampled several times within windows at different loca-
tions because there are overlaps between adjacent window
positions. Similarly one pixel might be classified multiple
times within different cutouts. A voting strategy is used in
step 4 to deal with such situation. For example if a pixel
has been classified as “ball” more times than being classified
as “not-ball”, then this pixel is considered a not-ball pixel in
the final output.
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Figure 3: Object Detection Based on Evolved GP Program

The degree of overlap in Step 2 is adjustable. Larger over-
lap will generate smoother output, but result larger amount
of cutouts, hence requires more processing time. One can use
this parameter to balance the computation cost and output
quality. The overlap used in these experiments is always 4
pixel.

In the following experiments, the video input for test was
streamed at 25 frames per second. The frame size does not
have to be the same in the evolution phase. Two types of
tests were conducted, the first being variations in illumina-
tion while the second being variations in ball distance and
camera positions. The resulting accuracies and false positive
rates were recorded from the video output.

4. EXPERIMENTS
This section presents the results of evolving based on the

above GP settings according to four representations. The
three representations in single-frame approach were provided
with a total of 3106 cut-outs generated from 360 frames,
2070 used in training and 1036 used in evaluation. In multi-
frame approach 120 groups of frame sequence were collected
and produced 2652 cutouts, 1768 for training and the rest
884 for evaluation. All these frames were taken under the
same condition. The lighting conditions and the camera po-
sitions were consistent. There were three Halogen lights over
the robosoccer field.

4.1 Pixel Intensity Values
Figure 4 illustrates the evolutionary process based on in-

tensity representation. The training and evaluation accura-
cies in the graph are the average over five runs. It can be
seen that the evaluation accuracy curve is always close but
below the curve for training accuracy. That indicates that
GP was able to improve the accuracy from 70% to above
90%, and there was no significant overtraining observed.

Figure 5 shows the test results generating by the evolved
program under different lighting conditions. Some sample

Figure 4: Evolution Process (Pixel Intensity)

output frames are listed. The “Accuracy” column lists the
percentage of the pixels being correctly marked during the
test. The“FP Rate” is the false positive rate which indicates
the percentage of not-ball pixels being marked as ball. Ac-
curacies and FP rates in the figure are average values under
each lighting conditions.

It can be seen that the ball could always be found in the
videos despite the lighting changes. The accuracy of the GP
program was able to maintain around 95%. Light changes
only marginally affected the GP accuracy. There were some
false positives, especially along the edge. That is possibly
due to the lack of examples. There are much more cutouts of
fields, balls than the cutouts of edges. The drop of accuracy
caused by lighting changes might due to the increasing false
positives.

The false positives could be reduced by post-processing
such as analyzing the shape or size of the marked areas.
Post-processing was not introduced here because the aim of
this study is the GP methodology rather than improvement.
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Output Frame Accuracy FP Rate

Three Halogen Lights 96.15% 2.59%

Two Halogen Lights 95.33% 2.66%

One Halogen Light 94.92% 5.08%

Figure 5: Performance on Video (Pixel Intensity)

4.2 Pixel Hue Values
Similar to Figure 5, Figure 6 presents the performance of

using hue representation. The training accuracy was slightly
higher than that of intensity approach. However its perfor-
mance on video input was poor. Although the ball could
be marked under all runs, there were significant amount of
false positives. Actually they were the reason for majority
of the errors. According to Figure 5, the error rate under
three lights was 10.71% but the FP rate is 9.53%, count for
89% of errors.

Despite the poor performance, the GP program showed
its capability of handle variations. Its performance under
three lighting conditions were rather similar.

4.3 Feature Values
The performance of feature based approach is even worse.

The evaluation accuracy was just around 80%. During the
test on videos the program resulted even more false posi-
tives although the ball could always ben found. The poor
perfromance was not affected much by lighting changes ei-
ther. The accuracies under three light conditions were all
around 85% while the false positive rates were all around

Output Frame Accuracy FP Rate

Three Halogen Lights 89.29% 9.53%

Two Halogen Lights 91.31% 8.04%

One Halogen Light 88.48% 10.48%

Figure 6: Performance on Video (Pixel Hue)

14%. The output video frames are not presented since they
add little value.

4.4 Motion Plane

Output Frame Accuracy FP Rate
Three Halogen Lights 98.18% 0.28%
Two Halogen Lights 98.59% 0.16%
One Halogen Light 98.18% 0.83%

Figure 7: Performance on Video (Motion Plan)

The performance of multi-frame approach is stronger than
that of single-frame approaches. Its training and evaluation
accuracies were above 98%. It has little false positives when
applying on videos. The accuracies on video frames were
also 98%, as shown in Figure 7.

5. DISCUSSION
The observation from the experiments and further inves-

tigation are discussed in this section.
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5.1 Comparison
Comparing the performance of the four representations in

application phase, it can be seen that the motion plane and
intensity methods can achieve higher accuracy, or less false
positives. Feature approach seems be the last choice among
the four. This might due to the twelve features described
before are not very suitable for the task. However finding
more appropriate feature set itself is a search task. Other
three representations are all readily available.

Figure 8: Training and Evaluation Accuracies of
Four Approaches

The ranks are also reflected in the evolution phase. The
trend of training and evaluation accuracies of the four ap-
proaches during the evolution are shown in Figure 8. The
top lines are from motion plane approach and the bottom
lines are from feature approach.

5.2 Arbitrary Camera Positions
The evolved programs generated in experiments of last

section were applied on video taken from new camera posi-
tions to further test their robustness. Changes in camera po-
sitions would introduce dramatic variations including over-
all intensity, overall hue and background. Furthermore this
might bring in unknown scenes or new objects. Additionally
it causes size variation. In the above experiments, the cam-
era was always steadily hanging over the soccer field. The
size of the ball appeared roughly the same with this camera
position. However if the angle changes, then ball size would
be affected by its distance to the camera.

Figure 9 shows the test on the same program used in Fig-
ure 5. The ball can be found although the sizes are different
from these three frames. Note this GP program had never
seen the ball at a different distance. It still can pick up
the ball without prior knowledge. Never before seen objects
including the power cable and the chair were rightfully ig-
nored by the classifier as well as the new backgrounds of
carpet and wall. Surprisingly the number of false positives
that were detected were significantly lower than that of the
original camera position.

Figure 10 depicts the results of the hue based classifier.
Once again the classifier was able to find the ball indepen-
dent of camera angle or ball distance. Despite it having a
greater of false positives, the classifier was able to have bet-
ter coverage over the ball on the three new positions. It
was less successful in ignoring new backgrounds and objects
especially on the boundary between the carpet and the wall.

Figure 11 is the results of the classifier using motion plane
representation. It performed very well in alternate condi-
tions. Alternate camera angles and ball distance seemed

no impact on its performance. This is expected because it
works on motion information which should not affected by
stationary objects and background.

Due to its previous poor performance, classifier based on
features was not studied.

5.3 Speed Advantages
No matter under what lighting conditions or camera posi-

tions, all the above tests on video achieved real-time perfor-
mance. No delay was observed when running on an ordinary
Apple MacBook Pro 2.33G with 2G RAM. This is due to
the small size of evolved GP programs. In the above ap-
proaches the program varies from 58 nodes to 102 nodes.
They takes around 21 to 43 milliseconds to process a single
frame of size 384×288. So handling live video at a rate of 25
frames per second is achievable by these program. In many
vision applications, the scene does not change very rapidly,
so it is not necessary to process 25 frames each second. This
could release more resources for tasks like pre-processing or
post-precessing.

5.4 Intensity vs. Motion Plane
The above investigation shows that intensity and multi-

frame representations have good performance. Intensity ap-
proach can not only locating the moving object, but also
identify it by giving its class label e.g “ball” or “not ball”.
For example, the top image of Figure 12 was generated by
the same program used for Figure 5. It can only recognize
soccer balls, the baseball and the golfball were not detected.
In comparison the multi-frame approach can detect multi-
ple kind of moving objects as shown in the bottom image
of Figure12. Both moving soccerball and moving baseball
were marked. However it does not know what the mov-
ing object is . Furthermore it does not recognize stationary
objects. These two approaches have their own merits and
drawbacks. In the further study we would combine them.

By a GP Program using Pixel Intensity Representation

By a GP Program using Multi-frame Representation

Figure 12: Multiple Objects on Videos
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6. CONCLUSIONS
The overall goal of this work is to investigate how GP can

be used to produce robust moving object detectors in videos.
Four different methods for adapting GP in this domain are
studied. This includes two major approaches known as the
single-frame approach and multi-frame approach. Under the
single-frame approach three data representations were inves-
tigated. They included pixel intensity based, pixel hue based
and feature based methods. One representation, the motion
plane, is investigated under the multi-frame approach. All
these methods have been tested on unseen new frames and
they were able to find the ball from video frames.

In terms of the accuracy measurement, pixel classification
accuracy was used as the indicator although object detec-
tion usually does not require such precision. Despite the
strict measure of accuracy the evolved GP programs can
still achieve good performance. The pixel intensity based
approach is proved to be the best performer out of the single-
frame approaches with an accuracy rate of above 95% on
video inputs. The proposed multi-frame method performed
the best out of all the different methods on all the tests
with an accuracy of above 98%. Both methods were able
to produce real-time moving object detection solutions that
performed a rate of 25 frames per second.

The evolved GP moving object detectors were tested for
illumination invariance, shift invariance and size invariance.
They were only trained under one set of conditions, but were
still able to locate the ball under alien conditions. All single-
frame GP object detectors were able to handle changes in
illumination conditions at the cost in slightly increased false
positive rates. The multi-frame approach proved to be able
to achieve the same high levels of performance under differ-
ent lighting conditions. When the GP detectors were tested
under alternate camera positions they were all still able to
detect the ball despite the dramatic changes in the scene.
Ball size also changed with its distance from camera under
different positions. The programs were still able to locate
the ball.

In conclusion GP is suitable for this complex task and
can evolve moving object detectors which are robust and
fast. Furthermore developing such GP detectors does not
require much specific domain knowledge. The framework
can be easily transferred to detecting moving objects in other
scenes.

The errors in this investigation were mostly due to false
positives. Post-processing algorithms could be developed to
analyze output frames to eliminate false positives and to
determine the exact coordinates of the target object. These
will be addressed in our future work.

Moreover the methodology here is new in the field and it
requires further investigation such as how to cope with mov-
ing backgrounds and how to use texture information. Also
our methodology should be readily applicable for detecting
multiple moving objects. That will be another interesting
topic of our future study.
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Figure 9: Test with New Camera Positions (Pixel Intensity)

Figure 10: Test with New Camera Positions (Pixel Hue)

Figure 11: Test with New Camera Positions (Motion Plane)
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