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Abstract of initial states. We conclude that while GP has much to
Genetic programming (GP) is an automatic programming offer to Al planning research, more work must be done to
technique that has recently been applied to a wide range  determine exactly how it can be best applied.
of problems including blocks-world planning. This paper
describes a series of illustrative experiments in which GP . .
techniques are applied to traditionanIocks-world planning Genetic Programming
problems. We discuss genetic planning in the context of tra-  GP works with a large population of candidate programs
ditional Al planning systems, and comment on the costs and  and uses the Darwinian principle of “survival of the fittest”
benefits to be expected from further work. to produce successively better programs for a given prob-
lem. To use GP one must choose the primitive elements
. (functionsand terminalg out of which the programs will
Introduction be constructed Every terminal in the terminal set and ev-
ery value that may be returned by any function in the func-
tion set must be acceptable as an input for every argument
position of every function in the function set; this is called
theclosureproperty.
The programmer wishing to employ GP must also pro-
uce a problem-specific fitness function. This function

Genetic programming (GP) is an automatic programming
technique developed by Koza that extends the genetic algo-
rithm framework of Holland (Holland 1992). Whereas the
conventional genetic algorithm uses evolution-inspired
techniques to manipulate and produce fixed-length chro- d

mosome strings that encode solutions to problems, GP ma- st take a program as input, producing a number that in-
nipulates and produces computer programs. Koza showsgicates the “fitness” of the program as output. This de-
how programs can be “evolved” to solve a wide range of gqrihes “how good” the program is at solving the problem
otherwise unrelated problems (Koza 1992). _ under consideration, and determines the likelihood that the
Several of the problems that Koz_a describes are of inter- program and its offspring will survive to subsequent gener-
est to Al planning research. These include control programs atigns. In this paper all fitness values are “standardized
for artificial ants, box-moving robots, wall-following  fitness” values, for whictower fitness values indicateet-
robots, and block-stacking systems. The block-stacking ter programs (Koza 1992, p. 96).
problems are clqsest to the classic problems in the litera-  Fitness is normally assessed by running the program on
ture of Al planning systems, but Koza uses an unusual some number ditness casegach of which establishes in-
variant of blocks-world, making it difficult to relate his re-  puts to the program and describes the corresponding output
sults to those of mainstream Al planning research (Tate etthat the individual program should produce. One is often
al. 1990). interested in producing a program that works over a very
In this paper we apply GP to the block-stacking prob- large, perhaps infinite, set of inputs; but the fitness of indi-
lems that have been central in the literature of Al planning. vidual programs is assessed only with reference to a usual-
In particular, we describe experiments in using GP tech- ly small, finite set of fitness cases. A program is said to be
niques to 1) find a plan to achieve a single goal from a sin- robustif it produces proper results for inputs that were not
gle initial state, 2) find a “universal plan” for achieving a used in assessing fithess during the GP process.
single goal from a range of initial states, 3) find a domain-  The GP process starts by creating a random initial popula-
dependent planning program, capable of producing action tion of programs. The closure property ensures that each of
sequences to achieve different sets of goals from a varietythese programs, unfit though it may be, will execute without
signalling errors. Each of the programs is assessed for

" 1The author acknowledges the support of the Dorothy and fitness, and fithess-sensitigenetic operationare then used
Jerome Lemelson National Program in Invention, Innovation, and to produce the subsequent generation. These may include re-

Creativity. production, crossover, mutation, permutation, and others

2The description of genetic programming that follows covers (Koza 1992); we use only reproduction and crossover here.
only the simplest variant of the technique. See (Koza 1992) for The reproduction operator selects a highly fit individual and
more sophisticated variants. simply copies it into the next generation. Selection for repro-
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duction is andom lit biased teard highly fit programs.
The ciosswer opeation introduces driation by selecting
two highly fit parentsand ly producing fom them two off-
spring. The cosswer opedtion selectsandom fegments of
ead of the tvo paents and waps them; theasulting po-
grams ae copied to the ¢ geneetion.

If GP is “working” on a gven un then the\gerage fithess
of the populéion will tend to impove over subsequenteg
erations, as will the fitness of the best-argation individ-
ual from eab genestion. After a peestalished mumber of
genestions, or after the fithess ingues to some gesta-
lished level, the best-ofun indvidual is designied as the
result and is duced as the outpubfn the GP system.

GP @peas to be a pwerful tedinique with wide ppli-
cability. It is CPU intensie, but thee ae ample oppduni-
ties for paallelism (eg., in the assessment of fithessossr
a lage populéion). We beligre thd it has ged promise
but as Devdney wrote of genetic algrithms moe geneal-
ly, “The july is still out on a method thga) daims to
solve difficult problems and (b) is suspicioyspainless.
(Dewdney 1993, p. xiii) In oder to undestand the
strengths and eaknesses of the tatique ve rmust pply
it to aras in vhich piior reseath has mpped the compu
tational teritory. This stetegy is being pusued ly mary,
and is gident in (Koza 1992); in theemainder of this pa
per we endewor to lay the bunddions for sud work in
the mainsteam of Al planning

Genetic Planning

One can pply the tetiniques of GP to Al planning qio-
lems in a ariety of ways3 GP systems pduce pograms;
Al planning systems pduce plans. Insaf as a plan is a
program for an eecution moduleone can use a GP sys
tem as a planning system—one can use a GP system to
evolve a plan vich, when eecuted in the conk¢ of a gv-
en initial stae, acieves a gven set of gals.

A traditional Al planning system tak as input an initial
stae, a gal desdption, and a set of opapor shemada,
and poduces as output a sequence of apersthiemada,
along with ag necessarvarable bindings. One can use a
GP system in a similar ay; given an initial stee, a gal
desciption, and a desiption of the actions thahe eecu
tion module can peofm, one can mduce a pogram for
the execution module thawill achieve the @als fom the
initial stae. The first of the &peiments desébed belav
uses GP in this ay.

The paallel between the taditional planning system and
the genetic planning system need not bad; whereas
most planning systemequire thd the aailable actions be
descibed detaratively (using eg., STRIPS opetors

3Note, however, tha although Holland seminal wrk on ¢
netic algrithms (Holland 1992) containsuth of inteest to plan
ning reseachers, its use of the phse “gnetic plan” has noeta
tion to “planning” as used in the ligure of Al planning systems.

4Some “taditional” plannes use opetors thd include poce
dural components aseil, eg. NOAH (Sacedoti 1975).

(Fikes & Nilsson 1971)), pety procedual “opemtors”
will suffice for the gnetic planning systemThis is be
cause the gnetic planning system can assess the utility of
action sequencesylrunningthem in sinulation, rather
than ly analyzing detarative stuctures tha descibe oper
ator efects. The cost of simlation can be high, both in
runtime and in simlation development timebut the sinu-
lation gpproach obviates the needof dedarative action
representéion. Since ddarative action epresenttion is an
active reseach ara with mag outstanding psblems
(Ginsbeg 1990), the \ailability of a planning methodolo
gy tha does notequire sut representtions is inteesting
for this eason aloneln adlition, the vay tha simulation
is used in GP isleally pallelizable; the fitness of e&c
program can be assessed in an petalent siralation.

A more ambitious pproac to genetic planning is to
evolve contol programs th&acan abieve some tyen set of
goals flom a \ariety of initial conditions. If one augments
the function set to all® for decision-making and itation
in the olved plans, one can actuabivolve sut “univer-
sal plans” (in the sense of (8mppes 1987)). Kzas work
on Hocks-world planning taks this pproad, as does the
second of thexpeliments desébed belov.

A third goproad to genetic planning is towelve com
plete domain-dgendent planner The function set mst in
this case inlade functions thiaaccess the systesnCurent
goals; dven sub a function set one camwave pograms
tha can abieve a mange of gpal conditions fom a ange of
initial staes. The thid of the &peliments desdbed belav
uses GP in this ay.

A fourth gpproad to genetic planning is towelve com
plete domainindependentplannes. The function set
would in this case psumaly include functions thiahave
proven to be useful inxésting domain indpendent plan
ners; eg., functions ér constucting patial orders of plan
stgps. W& hare not \et conducted anexperiments using
this ambitious pproad.

Koza’'s Genetic Blo&s-World Planner

Koza has desilred the use of GPof a set of planning
problems in a arant of Hocks-world (Koza 1992, sec
18.1). In this domain theogl is alvays to poduce a single
stak of blocks. The domain neer contains mar than one
stak; every block is always either parof the stak or on
the tdle (and tear). He considerthe @ample of poduc
ing the 9-lhock stak tha spells UNIVERSAL” from a \ari-
ety of initial configuations. Note thathis is an instance of
the second @proadch to genetic planning outlinedbave;
we seek a single pgram tha transbrms a ange of initial
staes to stsfy a single prespecified gal condition.

Koza’s Hocks-world is urusual both because it is limit
ed to a single st&oof blocks and because it uses amusia
ally powerful set of functions and teiinals (defined ¥
(Nilsson 1989)). Te teminal set consists of thelfowing
“sensos”: cs, which dynamically specifies the toplack
of the stak; 7B (“Top Corect Blok”), which specifies the
highest lock on the stak sud tha it and all hocks belav
it are in the carect oder; andNN (“Next Needed”), wvhich



specifies the Ibck tha should be on top af8 in the final
stak. The functions a¥: Ms (“Move to the Stdc’), which

takes a lock as its agument andif it is on the taéle,

moves it to the stdcand etums T (otherwise it etums
NIL); MT (“Move to the &ble”), which tales a bock as its
argument andif it is anywhere in the stak, moves thetop

block of the stak to the thle and etums T (otherwise it
retums NIL); DU (“Do Until”), which is actual}y a maco

tha implements a condt structure—it takes two bodies of
code both of vhich are evaluaed repededly until the see
ond retums nonNiL; NOT, which is the nomal LISP
boolean ngation function; andeqQ, which is the nomal

LISP equality pedicde.

Note tha the function and teminal sets a caefully tai-
lored to the specialed naure of the domain (O'Reil &
Oppadier 1992).cs would not gnerlize in ary obvious
way to a domain with mltiple staks. T8, though de
sciibed as a “sensprdepends on the @pl and nust per
form computéion to mach several elements in the eovld
to components of theogl. Goal-sensitity in the function
and teminal sets is not necesigrto be &oided; indeegd
in some cases it is necesgaand ve use gal-sensitre
functions belw. But it is impotant to note thars is goal-
sensitve in a highy specializd domain-dpendent \ay.
TB also d@ends on theafct tha the domain can contain
only one stak. NN is domain-specific in och the vay tha
TB is. Ms andMT make sense omlin a single-stacworld.

Koza an his GP system on theNIVERSAL” problem for
51 ¢enestions with a populdon siz of 500 indiiduals. He
assessed fitness witbspect to 166 of the millions of possi
ble initial configuetions. Ftness ér an indvidual plogram
was calculeed as 166 mims the mmber of fitness casearf
which the stak spelled UNIVERSAL” after the pogram was
run. A 100% carect pogram emeged in geneetion 10. It
was:(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))

Although this pogram is corect, it is not parculady

efficient. It used 2,319lbck movements to handle the 166

fithess cases, hereas it is possib to use ont 1,641. By
factoing the umber of fock movements into the fitness
function Koza was dle to poduce a caect and maximal
ly efficient pogram. Tha program, havever, was longr
than it needed to bdy factoing the umber of symbols
in the pogram into the fitness function (a “pamory”
measue) he vas @le to pioduce a caect, maximaly
efficient, and maxima}l paisimonious pogram.

Blocks-World Experiment #1

We hare perbrmed seeral expeliments to assess thpmi-
cability of GP tediniques to mar traditional Al planning
domains. Te thee tha we desdbe hee ae all Hocks-
world expeiiments. Kozas GP code @as used in all caseés.
Our first expeiiment was to use GP to pduce a single
correct plan thaadieves a paticular (conjunctie) goal
condition flom a paticular initial stae. We chose the pb-
lem knavn as the Sussman Anorjiads a epresentéive

5Koza’s code can beofind in the ppendix to (Kza 1992),
and can also be obtaineg &norymous FTP

problem from the ocks-world domain. e gal in this
problem is to starwith a world in which c is ona, and in
which A andg are both on the tde, and to poduce a sta
in which A is onB, B is onc, andc is on the thle. We will
refer to the esulting stge as an ABcC} tower.

We huilt a simple ocks-world simulation ervironment
and wiote NEWTOWER andPUTON functions thaare pioce
dural versions of the dllowing STRIPS-Style opeators. In
these opetors distincty named waiiables nust bind to dis
tinct bocks:

Operator: (NEWT OWER ?X) ;; move X to the table if clear
Preconditions: (ON ?X ?Y) (CLEAR ?X)

Add List: ((ON ?X T ABLE) (CLEAR ?Y))

Delete List: ((ON ?X ?Y))

Operator: (PUT ON ?X ?Y) ;; put X on Y if both are clear
Preconditions: (ON ?X ?Z) (CLEAR ?X) (CLEAR ?Y)
Add List: ((ON ?X ?Y) (CLEAR ?Z))

Delete List: ((ON ?X ?Z) (CLEAR ?Y))

Our functions bed tha the equired peconditions hold
and hang the vorld accoding to the ad and delete lists
if they do. Eab function etums its fiist agument (the top
of the esulting stak) upon success, oiL if passedNIL or
if the preconditions do not holdMe used a function set
consisting ofNEWTOWER, PUTON, and tw sequence-
building functions,PROGN2 and PROGN3, which ae \er-
sions of LISPS PROGN tha take 2 and 3 gyuments espee
tively. The resulting pograms m& have a hiearchical

structure since the functions in the function set can be nest

ed in may ways. The teminals useddr this expeiment
were the names of thddeks: A, B andc.
We calculged fithess withespect to a single fithess case:

INITIAL: ((ON C A) (ON A T ABLE) (ON B TABLE) (CLEAR C)
(CLEAR B))
GOALS: ((ON A B) (ON B C) (ON C T ABLE))

Our fitness function had ke components: a gectness
component, an efficieygccomponent, and a pgimory
component. fie corectness componentaw calculted as
70 times the mmber of ahieved grals dvided Ly the total
number of @als (in this case 3).HIs pioduces a umber
between 0 and 70, with higheumbes indicding better
programs. e efficieng component w&s calculted from
the rumber ofNEWTOWER andPUTON actions actuayl exe-
cuted in unning the posgram. All executions vere counted
even if the action w&s not successful.hE rumber of ae
tions was scaled to pduce a obmber betwen 0 and 15,
with higher umbes indicding more efficient pograms.
The pasimory component &s calculted from the mmber
of symbols in the mgram, scaled to pduce a umber be
tween 0 and 15, with higheumbes indicding moe pasi-
monious pograms. he \alues of the coectness, efficien
¢y, and pasimory clauses were summed and sulbirted
from 100, poducing an eerall fitness alue betveen 0 and
100, with laver rumbes indicding better pograms.

Following a sugestion of Kza, we st@ed the intoduc
tion of the efficieng and pasimory components into the
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Figure 1. Best-of-gnegtion and &erage fitnessesar exp. #1.

fitness function. In gneations 0-14 onf the corectness
component of the fitness functiorasvusedThe efficieng
component ws intoduced ageneetion 15 and was used
thereafter The pasimory component \&s intoduced &
genesdtion 25 and \&s used theafter

We ran the GP systenoif 50 genegtions with a popula

tion siz of 200. he overall performance of the GP system

on this poblem is summaeed in Rgure 1. In the initial
genesrtion of random pograms the @erage fithess s
92.88. The best indiidual program of the popukon had a
fitness measur of 53.33. It &s: (PUTON (PROGN2 C B)
(NEWTOWER C)). This getsc on the tdle andB onc,
adhieving 2 of the 3 gals. The arerage fitness of the popu
lation improved over the subsequentgestions, t thee
was no impovement in the best-ofemestion program un
til geneetion 5, when the éllowing program was poduced
with a fithess measerof 30.0:

(PROGN3 (PROGN2 (NEWTOWER C)
(NEWTOWER (NEWTOWER A)))
(NEWTOWER (PROGN2 B B))
(PROGN3 (PUTON B C) (PUTON B C) (PUTON A B)))

This piogram solhes the Sussman Anorgahut it is nei
ther efficient nor egant. The average fitness of the popula
tion contirued to incease though the subsequentigea
tions, although no impwvement of best-of-gneation
individual was possite until genegation 15, when the
efficiengy component of the fithess function becanfecf
tive and alleved for differentigion among the coect plans.
At genestion 25 the paimory cdause became fefctive as
well, and ly genegtion 32 a maximajl efficient, pasimo-
nious, and caect plan hadwwlved with a fitness measur
of 3.15:(PROGN3 (NEWTOWER C) (PUTON B C) (PUTON A B)).

Blocks-World Experiment #2

The best-ofun plan fom epeliment #1 soles the Suss
man Anomay, but it is not useful in manother cases. In
our second xpeliment we wanted to golve a “unversal
plan” for adieving a single gal condition fom a eng of

initial staes. O adieve geaer geneality we cthanged the
teminal and function sets:

FUNCTION SET: (NEWTOWER PUTON PROGN2 PROGN3 TOP-
OVER DO-ON-GOALS)
TERMINAL SET: (TOP BOTTOM)

The TOPOVER function talkes one ajument, a lock, and
retums the top of the stlkof which tha block is a patr. It
retums its agument if it is something thés curently clear,
or NIL if it is NIL. DO-ON-GOALS is actualy a maco tha im-
plements a limited itation contol stucture. It takes one
argument, a bog of code tha it evaluaes oncedr eah of
the systens unabieved “ON” goals. Duing eat iteration
the \ariables ToP andBOTTOM are set to the @propriate
components of the cuant goal. Note thawe hare removed
A, B andc from the teminal set; pograms can efer to
blocks only via TOP and BOTTOM. TOP and BOTTOM are
bothNIL outside of an calls tobO-ON-GOALS, and calls to
DO-ON-GOALS can be nestedThe DO-ON-GOALS macio
was deeloped br expeiiment #3, bela, in which the need
for access to the systesypals is moe obvious.

We used 20 fitness cases amdraged their esults; thg
were constucted fom the bllowing lists ty paiing eaf
initial state with eab goal list:

INITIAL:
1. (ON A TABLE)(ON B TABLE)(ON C TABLE)
(CLEAR A)(CLEAR B)(CLEAR C))
2. (ON A B)(ON B C)(ON C TABLE)(CLEAR A))
3. ((ON B C)(ON C A)(ON A TABLE)(CLEAR B))
4. ((ON C A)(ON A B)(ON B TABLE)(CLEAR C))
5. ((ON C A)(ON A TABLE)(ON B TABLE)(CLEAR C)(CLEAR B))
6. ((ON A C)(ON C TABLE)(ON B TABLE)(CLEAR A)(CLEAR B))
7. ((ON B C)(ON C TABLE)(ON A TABLE)(CLEAR B)(CLEAR A))
8. ((ON C B)(ON B TABLE)(ON A TABLE)(CLEAR C)(CLEAR A))
9. ((ON A B)(ON B TABLE)(ON C TABLE)(CLEAR A)(CLEAR C))
10. ((ON B A)(ON A TABLE)(ON C TABLE)(CLEAR B)(CLEAR C))

GOALS:
1. ((ON A B)(ON B C)(ON C TABLE))
2. ((ON B C)(ON A B)(ON C TABLE))
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Figure 2. Best-of-gnegtion and a&erage fitnessesar exp. #2.



Note tha the 10 fithess cases usingaglist 2 ae dupli
cdes of the those usinggl list 1 lut with the oder of the
goal dauses bangd; sinceDO-ON-GOALS loops thpugh
the grals in the ader tha they are pesentedthis helps to
ensue thd the lesulting pogram is not gely dependent
on goal odeiing. All other GP paametes were set to the
values used inx@eliment #1. he oerall perbormance of
the GP system in thisxpeliment is summazed in Fgure
2. In the initial @neetion of andom pograms the gerage
fitness vas 71.20. fie best indiidual piogram of the popu
lation had a fitness measuof 53.33 and coectly handled
6 of the 20 fitness cases. lasv

(NEWTOWER (DO-ON-GOALS
(PROGN3 (PUTON TOP BOTTOM)
(PUTON BOTTOM BOTTOM)
(DO-ON-GOALS TOP))))

The best-of-un individual program for this un was
found on gneation 48. It had a fithess measuof 5.91
and corectly handled all 20 fitness cases. Hsw

(PROGN2
(DO-ON-GOALS
(DO-ON-GOALS
(PROGN3 (NEWTOWER (DO-ON-GOALS
(TOP-OVER TOPY)))

(PROGN2 (TOP-OVER TOP) TOP)
(PUTON TOP BOTTOM))))

(DO-ON-GOALS (PUTON TOP BOTTOM)))

Note tha the pogram is phust over initial stdes tha
were not in the set of fithess caseheTpopgram corectly
builds an {aBc} tower from all thiee of the possik
configuitions tha were not used as fithess cases: the to
ers {cBA}, {BAC}, and {AcB}. Because may problems
are isomophic, the use of function and temal sets thia
refer to Hocks only by their positions in gals, and notyp
their names, is helpful in heving this obustness.

The obustness of the solution ggram does not»@end
to changes in @al sets. Br example the pogram will not
achieve the unar goal list (ON B A)) from an initial stte
consisting of agcA} tower.

Blocks-World Experiment #3

Our thid expeliment was an #empt to &olve a bocks-
world planner cpable of adieving a mnge of gal condi
tions from a mnge of initial conditions. W used the same
temminal and function sets as ixpeiment #2. V@ in-
creased the popuian siz to 500 and theumber of gn
erations to 201, with efficiencintroduced into the fitness
function & genesgtion 33 and paimory introduced agen
eration 66. W used 40 fitness cases, candied ly pair
ing eat of the initial stées flom expeliment #2 with ede
of the bllowing goal lists:

1. (ON A B) (ON B C) (ON C TABLE))
2. (ON B C) (ON A B) (ON C TABLE))
3. (ON C B) (ON B TABLE))

4. (ON B A))

All other GP paaimetes were set to thealues used inxe
peliment #1. he perbrmance of the GP system in this e
peliment is summazed in Fgure 3. In the initial gneetion
of random pograms the gerage fithess \as 77.02. Tie best
individual piogram of the popultéon had a fitness of 59.17
and corectly handled 14 of the 40 fitness cases.dsw

(TOP-OVER
(PROGN3 (PUTON (NEWTOWER (DO-ON-GOALS BOTT OM))
(DO-ON-GOALS (PUTON TOP BOTTOM)))
(DO-ON-GOALS
(TOP-OVER (DO-ON-GOALS BOTT OM)))
(DO-ON-GOALS
(NEWTOWER (PROGN2 BOTTOM BOTTOM)))))

The first 100% caect solution emeed d genestion 25.
It had a fitness of 30.0, contained 49 symbols, and w
messy; v do not she it here. The efficieng and pasimo
ny components of the fitness function, dntuced tigenes-
tions 33 and 66espectiely, helped to impove the po-
grams considebly. The best-ofun indvidual pogram was
found on gneetion 168 and had a fitness of 6.54. #sv

(PROGN3
(TOP-OVER
(DO-ON-GOALS
(NEWTOWER (DO-ON-GOALS (TOP-OVER TOP)))))
(DO-ON-GOALS (NEWTOWER (TOP-OVER BOTTOM)))
(DO-ON-GOALS
(DO-ON-GOALS (PROGN2 (NEWTOWER (TOP-OVER TOP))
(PUTON TOP BOTTOM)))))

The planner wlved in peliment #3 is considably
more hust than thiaevolved in expeliment #2. In &ct, a
though it vas &olved with ony 40 fitness cases, it cectly
solves all 13x13=169 possi 3-dock problems. It een
solves some 4dbck problems: br example it will correctly
produce both anABcb} tower and a HCBA} tower from an
initial stae containing an ABc} tower and the aditional
block b on the tale. We hare not et fully analyzed the po-
gram’s robustnessdr 4-dock and lager pioblems.
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Figure 3. Best-of-gnertion and &erage fitnessesdr exp. #3.



Discussion

In expeiment #1 ve wanted to see owell a GP enipe
could function in place of additional plannerwhich is
geneally invoked to poduce a single plan thadieves a
paticular set of gals fom a paticular initial stde. While
we were @le to evolve a corect, efficient, and paimo-
nious plan, one is lead to askya genetic tebnique
should used in this caseadlitional Al planning algrithms
can sole sud problems moe reliably and moe efficient
ly. Futher, we should note thiasingle bocks-world prob-
lems, & least with our fitness function (based amiber of
goals abieved), ae not vell suited to solution Y genetic
programming This is because the cesaness of the fitness
function povides little guidance to thevelutionay pro-
cess. his can be seen in thedirl0 gnestions of kgure
1, in which the coaseness of the fithess metieads to
large jumps in the best-ofemeetion fitness. W succeeded
because the combitmics of a 3-bock world are mange-
able even with minimal guidanceespecialf with a po-
gram populéion sizz of 200. A moe compl& domain
would demand a merinformative fithess function. But GP
may nonetheless be agd doice Dr solving some single-
initial-state/single-gal planning poblems. In paticular, it
can be ppropriate when we hare troude representing the
systems actions ddaratively, or when the ginamics of the
domain ae best epresented via simation.

GP seems better suitesverall, to the constrction of uni
versal plannes of the sdrproduced in ourxpetiment #2, or
complete domain-gendent plannerof the sdrproduced in
our peiiment #3. here will always be poblems in abiev-
ing robustness, heever, and the gnetic pogramming of
universal plannes is necessiy an itegtive, expeiimental
process. Te success of a gimular un of GP is hight sen
sitive to seemingl minor dhanges of paametes. Populdion
size, crosswer paametes, details of the teminal and fune
tion sets, hoice of fitness cases, andriations in fitness
metics ma all have lage, difficult to predict efects. r
example we tied variations of Hocks-world expeiiment #3
with identical paametes except for minor \ariations in the
function and teninal sets (@., substituting ao-UNTIL for

DO-ON-BLOCKS, and poviding other functions to access the

goals). Mary of these wiations failed to poduce fit po-
grams. O'Reily and Oppadeer discuss the sensity of GP
to this kind of \aiation and sugest modificéions to the
technique tha they believe will lessen this sensitity
(O'Reilly & Oppadier 1992). But GP is an intesttly exper
imental tebinique and the eésulting oientaion may actualy
be quite velcome in some ggnents of the Al planning
commnunity; several planning eseachers have recenty
called br just the sdrof expeimental fameavork tha GP
allows, and indeecequires (Hanks et al. 1993).

Genetic methods myaalso povide so-called “ayptime”
behaior (Dean & Bog 1988), anotherefdure of inteest

to the planning commmity: As can be seen in the fitness

graphs in this pper, genetic pogramming stais by pro-
ducing poor pograms, and @dualy improves the quality

of its programs w@er time The pocess can be stoppet a

ary point to povide the curent best-ofun program.

Condusions

We condude tha GP has mch to ofer as an Al plan
ning tetinolagy: freedom fom dedarative represention
constaints, a methodolgy for building fast, domain-
specific systems, aeskcome &peimental orentaion, and
arytime behaior during evolution. It also has manshot-
comings: it is CPU-intensg, it is sensitve to minor
changs in paametes, and it does notey reliably produce
robust results. Futher work is deally indicaed
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