
Abstract
Genetic programming (GP) is an automatic programming
technique that has recently been applied to a wide range 
of problems including blocks-world planning. This paper
describes a series of illustrative experiments in which GP
techniques are applied to traditional blocks-world planning
problems. We discuss genetic planning in the context of tra-
ditional AI planning systems, and comment on the costs and
benefits to be expected from further work.

Introduction

Genetic programming (GP) is an automatic programming
technique developed by Koza that extends the genetic algo-
rithm framework of Holland (Holland 1992). Whereas the
conventional genetic algorithm uses evolution-inspired
techniques to manipulate and produce fixed-length chro-
mosome strings that encode solutions to problems, GP ma-
nipulates and produces computer programs. Koza shows
how programs can be “evolved” to solve a wide range of
otherwise unrelated problems (Koza 1992).

Several of the problems that Koza describes are of inter-
est to AI planning research. These include control programs
for artificial ants, box-moving robots, wall-following
robots, and block-stacking systems. The block-stacking
problems are closest to the classic problems in the litera-
ture of AI planning systems, but Koza uses an unusual
variant of blocks-world, making it difficult to relate his re-
sults to those of mainstream AI planning research (Tate et
al. 1990).

In this paper we apply GP to the block-stacking prob-
lems that have been central in the literature of AI planning.
In particular, we describe experiments in using GP tech-
niques to 1) find a plan to achieve a single goal from a sin-
gle initial state, 2) find a “universal plan” for achieving a
single goal from a range of initial states, 3) find a domain-
dependent planning program, capable of producing action
sequences to achieve different sets of goals from a variety

of initial states. We conclude that while GP has much to
offer to AI planning research, more work must be done to
determine exactly how it can be best applied.

Genetic Programming
GP works with a large population of candidate programs
and uses the Darwinian principle of “survival of the fittest”
to produce successively better programs for a given prob-
lem. To use GP one must choose the primitive elements
(functionsand terminals) out of which the programs will
be constructed.2 Every terminal in the terminal set and ev-
ery value that may be returned by any function in the func-
tion set must be acceptable as an input for every argument
position of every function in the function set; this is called
the closureproperty.

The programmer wishing to employ GP must also pro-
duce a problem-specific fitness function. This function
must take a program as input, producing a number that in-
dicates the “fitness” of the program as output. This de-
scribes “how good” the program is at solving the problem
under consideration, and determines the likelihood that the
program and its offspring will survive to subsequent gener-
ations. In this paper all fitness values are “standardized
fitness” values, for which lower fitness values indicate bet-
ter programs (Koza 1992, p. 96).

Fitness is normally assessed by running the program on
some number of fitness cases,each of which establishes in-
puts to the program and describes the corresponding output
that the individual program should produce. One is often
interested in producing a program that works over a very
large, perhaps infinite, set of inputs; but the fitness of indi-
vidual programs is assessed only with reference to a usual-
ly small, finite set of fitness cases. A program is said to be
robust if it produces proper results for inputs that were not
used in assessing fitness during the GP process.

The GP process starts by creating a random initial popula-
tion of programs. The closure property ensures that each of
these programs, unfit though it may be, will execute without
signalling errors. Each of the programs is assessed for
fitness, and fitness-sensitive genetic operationsare then used
to produce the subsequent generation. These may include re-
production, crossover, mutation, permutation, and others
(Koza 1992); we use only reproduction and crossover here.
The reproduction operator selects a highly fit individual and
simply copies it into the next generation. Selection for repro-

Genetic Programming and AI Planning Systems1

Lee Spector

School of Communications and Cognitive Science
Hampshire College, Amherst, MA 01002

lspector@hamp.hampshire.edu

__________
1The author acknowledges the support of the Dorothy and

Jerome Lemelson National Program in Invention, Innovation, and
Creativity.

2The description of genetic programming that follows covers
only the simplest variant of the technique. See (Koza 1992) for
more sophisticated variants.

Full citation:

Spector, L. 1994. Genetic Programming and AI Planning Systems. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, AAAI-94,1329-1334. Menlo Park, CA and Cambridge, MA: AAAI Press/The MIT Press.



duction is random but biased toward highly fit programs.
The crossover operation introduces variation by selecting
two highly fit parentsand by producing from them two off-
spring. The crossover operation selects random fragments of
each of the two parents and swaps them; the resulting pro-
grams are copied to the next generation.

If GP is “working” on a given run then the average fitness
of the population will tend to improve over subsequent gen-
erations, as will the fitness of the best-of-generation individ-
ual from each generation. After a preestablished number of
generations, or after the fitness improves to some preestab-
lished level, the best-of-run individual is designated as the
result and is produced as the output from the GP system.

GP appears to be a powerful technique with wide appli-
cability. It is CPU intensive, but there are ample opportuni-
ties for parallelism (e.g., in the assessment of fitness across
a large population). We believe that it has great promise,
but as Dewdney wrote of genetic algorithms more general-
ly, “The jury is still out on a method that (a) claims to
solve difficult problems and (b) is suspiciously painless.”
(Dewdney 1993, p. xiii) In order to understand the
strengths and weaknesses of the technique we must apply
it to areas in which prior research has mapped the compu-
tational territory. This strategy is being pursued by many,
and is evident in (Koza 1992); in the remainder of this pa-
per we endeavor to lay the foundations for such work in
the mainstream of AI planning.

Genetic Planning
One can apply the techniques of GP to AI planning prob-
lems in a variety of ways.3 GP systems produce programs;
AI planning systems produce plans. Insofar as a plan is a
program for an execution module, one can use a GP sys-
tem as a planning system—one can use a GP system to
evolve a plan which, when executed in the context of a giv-
en initial state, achieves a given set of goals.

A traditional AI planning system takes as input an initial
state, a goal description, and a set of operator schemata,
and produces as output a sequence of operator schemata,
along with any necessary variable bindings. One can use a
GP system in a similar way; given an initial state, a goal
description, and a description of the actions that the execu-
tion module can perform, one can produce a program for
the execution module that will achieve the goals from the
initial state. The first of the experiments described below
uses GP in this way.

The parallel between the traditional planning system and
the genetic planning system need not be exact; whereas
most planning systems require that the available actions be
described declaratively (using, e.g., STRIPS operators

(Fikes & Nilsson 1971)), purely procedural “operators”
will suffice for the genetic planning system.4 This is be-
cause the genetic planning system can assess the utility of
action sequences by running them in simulation, rather
than by analyzing declarative structures that describe oper-
ator effects. The cost of simulation can be high, both in
runtime and in simulation development time, but the simu-
lation approach obviates the need for declarative action
representation. Since declarative action representation is an
active research area with many outstanding problems
(Ginsberg 1990), the availability of a planning methodolo-
gy that does not require such representations is interesting
for this reason alone. In addition, the way that simulation
is used in GP is clearly parallelizable; the fitness of each
program can be assessed in an independent simulation.

A more ambitious approach to genetic planning is to
evolve control programs that can achieve some given set of
goals from a variety of initial conditions. If one augments
the function set to allow for decision-making and iteration
in the evolved plans, one can actually evolve such “univer-
sal plans” (in the sense of (Schoppers 1987)). Koza’s work
on blocks-world planning takes this approach, as does the
second of the experiments described below.

A third approach to genetic planning is to evolve com-
plete domain-dependent planners. The function set must in
this case include functions that access the system’s current
goals; given such a function set one can evolve programs
that can achieve a range of goal conditions from a range of
initial states. The third of the experiments described below
uses GP in this way.

A fourth approach to genetic planning is to evolve com-
plete domain-independent planners. The function set
would in this case presumably include functions that have
proven to be useful in existing domain independent plan-
ners; e.g., functions for constructing partial orders of plan
steps. We have not yet conducted any experiments using
this ambitious approach.

Koza’s Genetic Blocks-World Planner
Koza has described the use of GP for a set of planning
problems in a variant of blocks-world (Koza 1992, sec.
18.1). In this domain the goal is always to produce a single
stack of blocks. The domain never contains more than one
stack; every block is always either part of the stack or on
the table (and clear). He considers the example of produc-
ing the 9-block stack that spells “UNIVERSAL” fr om a vari-
ety of initial configurations. Note that this is an instance of
the second approach to genetic planning outlined above;
we seek a single program that transforms a range of initial
states to satisfy a single, prespecified goal condition.

Koza’s blocks-world is unusual both because it is limit-
ed to a single stack of blocks and because it uses an unusu-
ally powerful set of functions and terminals (defined by
(Nilsson 1989)). The terminal set consists of the following
“sensors”: CS, which dynamically specifies the top block
of the stack; TB (“Top Correct Block”), which specifies the
highest block on the stack such that it and all blocks below
it are in the correct order; and NN (“Next Needed”), which

__________
3Note, however, that although Holland’s seminal work on ge-

netic algorithms (Holland 1992) contains much of interest to plan-
ning researchers, its use of the phrase “genetic plan” has no rela-
tion to “planning” as used in the literature of AI planning systems.

4Some “traditional” planners use operators that include proce-
dural components as well, e.g. NOAH (Sacerdoti 1975).



specifies the block that should be on top of TB in the final
stack. The functions are: MS (“Move to the Stack”), which
takes a block as its argument and, if it is on the table,
moves it to the stack and returns T (otherwise it returns
NIL); MT (“Move to the Table”), which takes a block as its
argument and, if it is anywhere in the stack, moves the top
block of the stack to the table and returns T (otherwise it
returns NIL); DU (“Do Until”), w hich is actually a macro
that implements a control structure—it takes two bodies of
code, both of which are evaluated repeatedly until the sec-
ond returns non-NIL ; NOT, which is the normal LISP
boolean negation function; and EQ, which is the normal
LISP equality predicate.

Note that the function and terminal sets are carefully tai-
lored to the specialized nature of the domain (O’Reilly &
Oppacher 1992). CS would not generalize in any obvious
way to a domain with multiple stacks. TB, though de-
scribed as a “sensor,” depends on the goal and must per-
form computation to match several elements in the world
to components of the goal. Goal-sensitivity in the function
and terminal sets is not necessarily to be avoided; indeed,
in some cases it is necessary, and we use goal-sensitive
functions below. But it is important to note that TB is goal-
sensitive in a highly specialized, domain-dependent way.
TB also depends on the fact that the domain can contain
only one stack. NN is domain-specific in much the way that
TB is. MS and MT make sense only in a single-stack world.

Koza ran his GP system on the “UNIVERSAL” problem for
51 generations with a population size of 500 individuals. He
assessed fitness with respect to 166 of the millions of possi-
ble initial configurations. Fitness for an individual program
was calculated as 166 minus the number of fitness cases for
which the stack spelled “UNIVERSAL” after the program was
run. A 100% correct program emerged in generation 10. It
was: (EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))

Although this program is correct, it is not particularly
efficient. It used 2,319 block movements to handle the 166
fitness cases, whereas it is possible to use only 1,641. By
factoring the number of block movements into the fitness
function Koza was able to produce a correct and maximal-
ly efficient program. That program, however, was longer
than it needed to be. By factoring the number of symbols
in the program into the fitness function (a “parsimony”
measure) he was able to produce a correct, maximally
efficient, and maximally parsimonious program.

Blocks-World Experiment #1
We have performed several experiments to assess the appli-
cability of GP techniques to more traditional AI planning
domains. The three that we describe here are all blocks-
world experiments. Koza’s GP code was used in all cases.5

Our first experiment was to use GP to produce a single
correct plan that achieves a particular (conjunctive) goal
condition from a particular initial state. We chose the prob-
lem known as the Sussman Anomaly as a representative

problem from the blocks-world domain. The goal in this
problem is to start with a world in which C is on A, and in
which A and B are both on the table, and to produce a state
in which A is on B, B is on C, and C is on the table. We will
refer to the resulting state as an {ABC} tower.

We built a simple blocks-world simulation environment
and wrote NEWTOWER and PUTON functions that are proce-
dural versions of the following STRIPS-style operators. In
these operators distinctly named variables must bind to dis-
tinct blocks:

Operator: (NEWT OWER ?X) ;; move X to the table if clear
Preconditions: (ON ?X ?Y) (CLEAR ?X)
Add List: ((ON ?X T ABLE) (CLEAR ?Y))
Delete List: ((ON ?X ?Y))

Operator: (PUT ON ?X ?Y) ;; put X on Y if both are clear
Preconditions: (ON ?X ?Z) (CLEAR ?X) (CLEAR ?Y)
Add List: ((ON ?X ?Y) (CLEAR ?Z))
Delete List: ((ON ?X ?Z) (CLEAR ?Y))

Our functions check that the required preconditions hold
and change the world according to the add and delete lists
if they do. Each function returns its first argument (the top
of the resulting stack) upon success, or NIL if passed NIL or
if the preconditions do not hold. We used a function set
consisting of NEWTOWER, PUTON, and two sequence-
building functions, PROGN2 and PROGN3, which are ver-
sions of LISP’s PROGN that take 2 and 3 arguments respec-
tively. The resulting programs may have a hierarchical
structure since the functions in the function set can be nest-
ed in many ways. The terminals used for this experiment
were the names of the blocks: A, B and C. 

We calculated fitness with respect to a single fitness case:

INITIAL: ((ON C A) (ON A T ABLE) (ON B T ABLE) (CLEAR C) 
(CLEAR B))

GOALS: ((ON A B) (ON B C) (ON C T ABLE))

Our fitness function had three components: a correctness
component, an efficiency component, and a parsimony
component. The correctness component was calculated as
70 times the number of achieved goals divided by the total
number of goals (in this case 3). This produces a number
between 0 and 70, with higher numbers indicating better
programs. The efficiency component was calculated from
the number of NEWTOWER and PUTON actions actually exe-
cuted in running the program. All executions were counted,
even if the action was not successful. The number of ac-
tions was scaled to produce a number between 0 and 15,
with higher numbers indicating more efficient programs.
The parsimony component was calculated from the number
of symbols in the program, scaled to produce a number be-
tween 0 and 15, with higher numbers indicating more parsi-
monious programs. The values of the correctness, efficien-
cy, and parsimony clauses were summed and subtracted
from 100, producing an overall fitness value between 0 and
100, with lower numbers indicating better programs.

Following a suggestion of Koza, we staged the introduc-
tion of the efficiency and parsimony components into the

__________
5Koza’s code can be found in the appendix to (Koza 1992),

and can also be obtained by anonymous FTP.



fitness function. In generations 0–14 only the correctness
component of the fitness function was used. The efficiency
component was introduced at generation 15 and was used
thereafter. The parsimony component was introduced at
generation 25 and was used thereafter.

We ran the GP system for 50 generations with a popula-
tion size of 200. The overall performance of the GP system
on this problem is summarized in Figure 1. In the initial
generation of random programs the average fitness was
92.88. The best individual program of the population had a
fitness measure of 53.33. It was: (PUTON (PROGN2 C B)
(NEWTOWER C)). This gets C on the table and B on C,
achieving 2 of the 3 goals. The average fitness of the popu-
lation improved over the subsequent generations, but there
was no improvement in the best-of-generation program un-
til generation 5, when the following program was produced
with a fitness measure of 30.0:

(PROGN3 (PROGN2 (NEWTOWER C) 
(NEWTOWER (NEWTOWER A)))

(NEWTOWER (PROGN2 B B)) 
(PROGN3 (PUTON B C) (PUTON B C) (PUTON A B)))

This program solves the Sussman Anomaly, but it is nei-
ther efficient nor elegant. The average fitness of the popula-
tion continued to increase through the subsequent genera-
tions, although no improvement of best-of-generation
individual was possible until generation 15, when the
efficiency component of the fitness function became effec-
tive and allowed for differentiation among the correct plans.
At generation 25 the parsimony clause became effective as
well, and by generation 32 a maximally efficient, parsimo-
nious, and correct plan had evolved with a fitness measure
of 3.15: (PROGN3 (NEWTOWER C) (PUTON B C) (PUTON A B)).

Blocks-World Experiment #2
The best-of-run plan from experiment #1 solves the Suss-
man Anomaly, but it is not useful in many other cases. In
our second experiment we wanted to evolve a “universal
plan” for achieving a single goal condition from a range of

initial states. To achieve greater generality we changed the
terminal and function sets:

FUNCTION SET: (NEWTOWER PUTON PROGN2 PROGN3 TOP-
OVER DO-ON-GOALS)

TERMINAL SET: (TOP BOTTOM)

The TOPOVER function takes one argument, a block, and
returns the top of the stack of which that block is a part. It
returns its argument if it is something that is currently clear,
or NIL if it is NIL. DO-ON-GOALS is actually a macro that im-
plements a limited iteration control structure. It takes one
argument, a body of code, that it evaluates once for each of
the system’s unachieved “ON” goals. During each iteration
the variables TOP and BOTTOM are set to the appropriate
components of the current goal. Note that we have removed
A, B and C from the terminal set; programs can refer to
blocks only via TOP and BOTTOM. TOP and BOTTOM are
both NIL outside of any calls to DO-ON-GOALS , and calls to
DO-ON-GOALS can be nested. The DO-ON-GOALS macro
was developed for experiment #3, below, in which the need
for access to the system’s goals is more obvious.

We used 20 fitness cases and averaged their results; they
were constructed from the following lists by pairing each
initial state with each goal list: 

INITIAL:
1. ((ON A TABLE)(ON B T ABLE)(ON C TABLE)

(CLEAR A)(CLEAR B)(CLEAR C))
2. ((ON A B)(ON B C)(ON C TABLE)(CLEAR A))
3. ((ON B C)(ON C A)(ON A TABLE)(CLEAR B))
4. ((ON C A)(ON A B)(ON B T ABLE)(CLEAR C))
5. ((ON C A)(ON A TABLE)(ON B T ABLE)(CLEAR C)(CLEAR B))
6. ((ON A C)(ON C TABLE)(ON B T ABLE)(CLEAR A)(CLEAR B))
7. ((ON B C)(ON C TABLE)(ON A T ABLE)(CLEAR B)(CLEAR A))
8. ((ON C B)(ON B TABLE)(ON A T ABLE)(CLEAR C)(CLEAR A))
9. ((ON A B)(ON B TABLE)(ON C TABLE)(CLEAR A)(CLEAR C))
10. ((ON B A)(ON A TABLE)(ON C TABLE)(CLEAR B)(CLEAR C))

GOALS:
1. ((ON A B)(ON B C)(ON C TABLE))
2. ((ON B C)(ON A B)(ON C TABLE))

0 10 20 30 40 50
0

20

40

60

80

100
Best of Gen
Average

GGeenneerraatt iioonn

FFii
ttnn

eess
ss

Figure 1. Best-of-generation and average fitnesses for exp. #1.

0 10 20 30 40 50
0

20

40

60

80
Best of Gen
Average

GGeenneerraatt iioonn

FFii
ttnn

eess
ss

Figure 2. Best-of-generation and average fitnesses for exp. #2.



Note that the 10 fitness cases using goal list 2 are dupli-
cates of the those using goal list 1 but with the order of the
goal clauses changed; since DO-ON-GOALS loops through
the goals in the order that they are presented, this helps to
ensure that the resulting program is not overly dependent
on goal ordering. All other GP parameters were set to the
values used in experiment #1. The overall performance of
the GP system in this experiment is summarized in Figure
2. In the initial generation of random programs the average
fitness was 71.20. The best individual program of the popu-
lation had a fitness measure of 53.33 and correctly handled
6 of the 20 fitness cases. It was: 

(NEWTOWER (DO-ON-GOALS 
(PROGN3 (PUTON TOP BOTTOM) 

(PUTON BOTTOM BOTTOM) 
(DO-ON-GOALS TOP))))

The best-of-run individual program for this run was
found on generation 48. It had a fitness measure of 5.91
and correctly handled all 20 fitness cases. It was:

(PROGN2 
(DO-ON-GOALS 

(DO-ON-GOALS 
(PROGN3 (NEWTOWER (DO-ON-GOALS 

(TOP-OVER TOP)))
(PROGN2 (TOP-OVER TOP) TOP)
(PUTON TOP BOTTOM))))

(DO-ON-GOALS (PUTON TOP BOTTOM)))

Note that the program is robust over initial states that
were not in the set of fitness cases. The program correctly
builds an {ABC } tower from all three of the possible
configurations that were not used as fitness cases: the tow-
ers {CBA}, { BAC}, and {ACB}. Because many problems
are isomorphic, the use of function and terminal sets that
refer to blocks only by their positions in goals, and not by
their names, is helpful in achieving this robustness.

The robustness of the solution program does not extend
to changes in goal sets. For example, the program will not
achieve the unary goal list ((ON B A)) from an initial state
consisting of a {BCA} tower.

Blocks-World Experiment #3
Our third experiment was an attempt to evolve a blocks-
world planner capable of achieving a range of goal condi-
tions from a range of initial conditions. We used the same
terminal and function sets as in experiment #2. We in-
creased the population size to 500 and the number of gen-
erations to 201, with efficiency introduced into the fitness
function at generation 33 and parsimony introduced at gen-
eration 66. We used 40 fitness cases, constructed by pair-
ing each of the initial states from experiment #2 with each
of the following goal lists: 

1. ((ON A B) (ON B C) (ON C TABLE))
2. ((ON B C) (ON A B) (ON C TABLE))
3. ((ON C B) (ON B TABLE))
4. ((ON B A))

All other GP parameters were set to the values used in ex-
periment #1. The performance of the GP system in this ex-
periment is summarized in Figure 3. In the initial generation
of random programs the average fitness was 77.02. The best
individual program of the population had a fitness of 59.17
and correctly handled 14 of the 40 fitness cases. It was:

(TOP-OVER
(PROGN3 (PUTON (NEWTOWER (DO-ON-GOALS BOTT OM))

(DO-ON-GOALS (PUTON TOP BOTTOM)))
(DO-ON-GOALS

(TOP-OVER (DO-ON-GOALS BOTT OM)))
(DO-ON-GOALS

(NEWTOWER (PROGN2 BOTTOM BOTTOM)))))

The first 100% correct solution emerged at generation 25.
It had a fitness of 30.0, contained 49 symbols, and was
messy; we do not show it here. The efficiency and parsimo-
ny components of the fitness function, introduced at genera-
tions 33 and 66 respectively, helped to improve the pro-
grams considerably. The best-of-run individual program was
found on generation 168 and had a fitness of 6.54. It was:

(PROGN3
(TOP-OVER

(DO-ON-GOALS
(NEWTOWER (DO-ON-GOALS (TOP-OVER TOP)))))

(DO-ON-GOALS (NEWTOWER (TOP-OVER BOTTOM)))
(DO-ON-GOALS

(DO-ON-GOALS (PROGN2 (NEWTOWER (TOP-OVER TOP))
(PUTON TOP BOTTOM)))))

The planner evolved in experiment #3 is considerably
more robust than that evolved in experiment #2. In fact, al-
though it was evolved with only 40 fitness cases, it correctly
solves all 13x13=169 possible 3-block problems. It even
solves some 4-block problems: for example, it will correctly
produce both an {ABCD} tower and a {DCBA} tower from an
initial state containing an {ABC} tower and the additional
block D on the table. We have not yet fully analyzed the pro-
gram’s robustness for 4-block and larger problems.

Figure 3. Best-of-generation and average fitnesses for exp. #3.

0 100 200
0

20

40

60

80
Best of Gen
Average

GGeenneerraatt iioonn

FFii
ttnn

eess
ss



Discussion
In experiment #1 we wanted to see how well a GP engine
could function in place of a traditional planner, which is
generally invoked to produce a single plan that achieves a
particular set of goals from a particular initial state. While
we were able to evolve a correct, efficient, and parsimo-
nious plan, one is lead to ask why a genetic technique
should used in this case; traditional AI planning algorithms
can solve such problems more reliably and more efficient-
ly. Further, we should note that single blocks-world prob-
lems, at least with our fitness function (based on number of
goals achieved), are not well suited to solution by genetic
programming. This is because the coarseness of the fitness
function provides little guidance to the evolutionary pro-
cess. This can be seen in the first 10 generations of Figure
1, in which the coarseness of the fitness metric leads to
large jumps in the best-of-generation fitness. We succeeded
because the combinatorics of a 3-block world are manage-
able even with minimal guidance, especially with a pro-
gram population size of 200. A more complex domain
would demand a more informative fitness function. But GP
may nonetheless be a good choice for solving some single-
initial-state/single-goal planning problems. In particular, it
can be appropriate when we have trouble representing the
system’s actions declaratively, or when the dynamics of the
domain are best represented via simulation.

GP seems better suited, overall, to the construction of uni-
versal planners of the sort produced in our experiment #2, or
complete domain-dependent planners of the sort produced in
our experiment #3. There will always be problems in achiev-
ing robustness, however, and the genetic programming of
universal planners is necessarily an iterative, experimental
process. The success of a particular run of GP is highly sen-
sitive to seemingly minor changes of parameters. Population
size, crossover parameters, details of the terminal and func-
tion sets, choice of fitness cases, and variations in fitness
metrics may all have large, difficult to predict effects. For
example, we tried variations of blocks-world experiment #3
with identical parameters except for minor variations in the
function and terminal sets (e.g., substituting a DO-UNTIL for
DO-ON-BLOCKS , and providing other functions to access the
goals). Many of these variations failed to produce fit pro-
grams. O’Reilly and Oppacher discuss the sensitivity of GP
to this kind of variation and suggest modifications to the
technique that they believe will lessen this sensitivity
(O’Reilly & Oppacher 1992). But GP is an inherently exper-
imental technique, and the resulting orientation may actually
be quite welcome in some segments of the AI planning
community; several planning researchers have recently
called for just the sort of experimental framework that GP
allows, and indeed requires (Hanks et al. 1993). 

Genetic methods may also provide so-called “anytime”
behavior (Dean & Body 1988), another feature of interest
to the planning community: As can be seen in the fitness
graphs in this paper, genetic programming starts by pro-
ducing poor programs, and gradually improves the quality
of its programs over time. The process can be stopped at
any point to provide the current best-of-run program.

Conclusions

We conclude that GP has much to offer as an AI plan-
ning technology: freedom from declarative representation
constraints, a methodology for building fast, domain-
specific systems, a welcome experimental orientation, and
anytime behavior during evolution. It also has many short-
comings: it is CPU-intensive, it is sensitive to minor
changes in parameters, and it does not yet reliably produce
robust results. Further work is clearly indicated.

Bibliography

Dean, T.; and Boddy, M. 1988. An Analysis of Time-De-
pendent Planning. In Proceedings of the Sixth National
Conference on Artificial Intelligence, AAAI-88, 49–54.

Dewdney, A. K. 1993. The New Turing Omnibus. New
York: W. H. Freeman and Company.

Fikes, R.E.; and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In Artificial Intelligence 2: 189–208.

Ginsberg, M.L. 1990. Computational Considerations in
Reasoning about Action. In Proceedings of the Workshop
on Innovative Approaches to Planning, Scheduling and
Control, K. P. Sycara, ed. Defense Advanced Research
Projects Agency (DARPA).

Hanks, S.; Pollack, M.E.; and Cohen, P.R. 1993. Bench-
marks, Test Beds, Controlled Experimentation, and the De-
sign of Agent Architectures. AI Magazine14 (Winter):
17–42.

Holland, J.H. 1992. Adaptation in Natural and Artificial
Systems. Cambridge, MA: The MIT Press.

Koza, J.R. 1992. Genetic Programming. Cambridge, MA:
The MIT Press.

Nilsson, N. 1989. Action Networks. In Proceedings from
the Rochester Planning Workshop: From Formal Systems
to Practical Systems, J. Tenenberg, ed., Technical Report
284, Dept. of Computer Science, University of Rochester.

O’Reilly, U.; and Oppacher, F. 1992. An Experimental Per-
spective on Genetic Programming. In Parallel Problem
Solving from Nature, 2, Männer, R.; and Manderick, B.,
eds. Amsterdam: Elsevier Science Publishers.

Sacerdoti, E.D. 1975. The Nonlinear Nature of Plans. In
Advance Papers of the Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI-75, 206–214.

Schoppers, M.J. 1987. Universal Plans for Reactive Robots
in Unpredictable Environments. In Proceedings of the
Tenth International Joint Conference on Artificial Intelli-
gence, IJCAI-87, 1039–1046.

Tate, A.; Hendler, J.; and Drummond, M. 1990. A Review
of AI Planning Techniques. In Readings in Planning,
Allen, J.; Hendler, J.; and Tate, A., eds., 26–49. San Mateo,
California: Morgan Kaufmann Publishers, Inc. 


