Spector, L., and A. Alpern. 1994. Criticism, Culture, and the Automatic Generation of Artworks.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI-94, pp. 3-8.
Menlo Park, CA and Cambridge, MA: AAAI Press/The MIT Press.

Criticism, Culture, and the Automatic Generation of Artworks'

Lee Spector and Adam Alpern

School of Communications and Cognitive Science
Hampshire College, Amherst, MA 01002
{Ispector, aalpern} @hamp.hampshire.edu

Abstract

Researchers wishing to create computational systems that
themselves generate artworks face two interacting challenges.
The first is that the standards by which artistic output is judged
are notoriously difficult to quantify. The larger Al community
is currently involved in a rich internal dialogue on methodolog-
ical issues, standards, and rigor, and hence murkiness with re-
gard to the assessment of output must be faced squarely. The
second challenge is that any artwork exists within an extraordi-
narily rich cultural and historical context, and it is rare that an
artist who is ignorant of this context will produce acceptable
works. In this paper we assert that these considerations argue
for case-based Al/Art systems that take critical criteria as pa-
rameters. We describe an example system that produces new
bebop jazz melodies from a case-base of melodies, using ge-
netic programming techniques and a fitness function based on
user-provided critical criteria. We discuss the role that such
techniques may play in future work on Al and the arts.

Introduction: Constructing Artists

Applications of computers to the arts date from the earliest
days of computing. The use of Al technologies in the arts
has a long history as well, particularly in music (Balaban et
al. 1992). The majority of these uses fall into two cate-
gories: systems that perform “art understanding” tasks of
some sort (e.g., music analysis systems), and systems that
function as “intelligent” tools for use by human artists (e.g.,
(Rowe 1993)). Recently, however, a new category of sys-
tems has begun to emerge; a category of systems that are
designed to be artists. By this we mean that such systems,
which we will call “constructed artists,” are supposed to
be capable of creating aesthetically meritorious artworks
on their own, with minimal human intervention. Harold
Cohen’s Aaron system is an early example of this category,
and one of its few clear successes to date (McCorduck
1991). Aaron is a system that creates original drawings,
each unique and potentially surprising to Cohen, that have

!The authors acknowledge the support of the Dorothy and
Jerome Lemelson National Program in Invention, Innovation,
and Creativity.

2An experiment combining public assessment with genetic
techniques similar to those described later in this paper is cur-
rently in progress via mosaic on the internet. The address is:
http://porsche.boltz.cs.cmu.edu:8001/htbin/mjwgenform.

been exhibited in galleries internationally. Aaron was con-
structed through a laborious process of “tutoring” by Co-
hen, himself an accomplished painter, that spanned over a
decade. More recently, work has proceeded on constructed
artists that function as poets (Kurzweil 1990), music com-
posers (Ames & Domino 1992), and aesthetic agents in vir-
tual worlds (Bates 1992). A literature has also emerged on
the computational underpinnings of artistic creativity more
generally (e.g., (Boden 1991)).

Aesthetic Judgements

The philosophy of art, which in the Western tradition dates
at least from Plato, has never been an area of widespread
agreement (see, e.g., (Dickie & Sclafani 1977)). The range
of theories regarding the bases of aesthetic value, judgement
and criticism is extraordinary, and the debates show no signs
of near-term resolution. This presents a problem for Al sci-
entists wishing to produce computational artists: How do we
know when we’ve got one? How do we know if version A is
better than version B, or vice versa? Without the ability to
answer such questions the science of artist construction can-
not proceed, and these questions seem to be inseparably
linked to the murky issues of aesthetic judgement. The larg-
er Al community is currently involved in a dialogue on
mcthodological issues, standards, and rigor; many are call-
ing for the adoption of experimental methods from more tra-
ditional sciences, for the use of standard examples and crite-
ria of assessment, etc. If those of us working on constructed
artists cannot judge our systems without first resolving all of
the open questions regarding the judgement of artworks,
then we will be on shaky methodological ground indeed.
Fortunately, it is possible to separate the two kinds of judge-
ment; we describe one approach to doing so below.

The artworks of Cohen’s Aaron have been judged by the
artworld and by the museum-going public. According to
some theories of art this is the best, or even the only, form
of assessment by which to judge the quality of a work
(Danto 1978). But this sort of judgement has a high price
both in terms of human resources and in terms of time. The
science of artist construction will proceed quite slowly if
each iteration of each system can be assessed only by orga-
nizing a public show and by waiting for critical reviews.2
Of course, Cohen himself also served as a critic of Aaron’s
performance, and he was presumably able to apply the re-
sults of his judgements to the improvement of the program

Art 3

in a reasonable amount of time. But it is not clear how
these interactions can form the basis of a general theory of
aesthetic judgement sufficient to ground a science of artist
construction. At best they are instructive for other artists
with an interest in applying their own critical faculties to
the construction of new artists.

Another approach to this dilemma is to work in a genre
with codified, formalized valuation criteria. This has been a
popular approach in computer music, as rule-systems have
heen developed for many forms of music (e.g., (Ebcioglu
1992, Maxwell 1992)). There are three problems with this
approach. The first is that existing formalizations are often
of “dead” forms—it may be that we understand them well
encugh to codify them only because they have fossilized. If
we want our constructed artists to produce creative works in
live genres, such formalizations are of little value. The sec-
ond problem is that it is not clear that adherence to the rules
of a particular art form is a good indicator of aesthetic value;
it might merely indicate inclusion in the genre, which might
be compatible with aesthetic mediocrity. Third, it is not clear
that work in genres with codified valuation criteria will gen-
eralize to other genres, many of which seem to resist the im-
position of criteria upon which the art world can consense.

The alternative approach that we propose is to factor
aesthetic judgement out of the systems that we develop.
We don’t need to know what the “right” criteria are for
aesthetic judgement; we only need to know that our sys-
tems are capable of conforming to the range of such crite-
ria that might be proposed. If we develop systems that take
critical criteria as parameters, and if our systems work over
a wide range of variation of these parameters, then we can
safely ignore debates about which critical criteria are cor-
rect. We can then ask all opposing parties to submit sets of
critical criteria; although they must all be formalizable,
they may vary considerably. To the extent that we can keep
everyone happy, by producing constructed artists to earn
accolades from any formal critic, we will be making real
progress in the science of artist construction.

Instances of the framework that we present below pro-
duce an artist as output when given a critic (and other data)
as input. The constructed artist may not be able to adapt to
other critics that it encounters later in its career; such adap-
tation is a subject for future work.

An Artist’s Culture

Every artwork exists within a rich cultural and historical
context, and many theorists have argued that good art can
be neither produced nor assessed in ignorance of this con-
text. It is not obvious, to say the least, how a deep appreci-
ation of the human cultural context can be programmed
into a constructed artist. Trurl, the robot who builds an
electronic bard in a humorous story by Stanislaw Lem, is
forced to repeat within the machine “the entire Universe

3Other case-based approaches to creative processes are pre-
sented in (Dartnall & Kim 1993).

4Other uses have been made of evolutionary methods in com-
putational arts. See, e.g., (Todd & Latham 1992).

4 The Arts

from the beginning—or at least a good piece of it.” (Lem
1974) In most real systems to date, features of the cultural
context are implicit in analytical and generative rules, but
there is no direct way to vary the culture experimentally.

We believe that the best approach for providing a cultural
context for a constructed artist is to make a large case-base
of prior works available as a library. In essence, we want to
“factor out” the culture in the same way that we “factor
out” the critic; by developing systems that take “cultures”
as parameters, our systems will be culture-independent and
we will be able to assess the success of our systems across
cultures. The success of such systems should not depend
on any specific cultural context; they should be sufficiently
flexible to perform within a variety of cultures. The cultur-
al case-base should be made available both to the con-
structed artist and to the critics that guide the artist con-
struction process.

It may be argued that there is much more to a culture
than a library of past works. We agree, but we also believe
that a large case-base of successful artworks forms a good
basis for cultural sensitivity.3 Enhanced notions of culture
may be incorporated into the framework, so long as all
culture-dependent elements are provided as variable pa-
rameters to the artist construction system.

Genetic Programming

The framework sketched above calls for an artist con-
struction system that takes as input a set of critical criteria
and a case-base of past artworks. The system should pro-
duce as output a successful constructed artist—that is, a
program that can be executed to produce successful new
artworks relative to the given critic and culture.

The technology of genetic programming (Koza 1992)
provides tools that make the implementation of this frame-
work fairly straightforward. Genetic programming is a
technique for the automatic generation of computer pro-
grams; in our case we can use the technique to automati-
cally generate computer programs that will function as
constructed artists. Genetic programming is an evolution-
ary method in which programs are evolved using a process
modeled on Darwinian natural selection.4 The technique is
a variant of the genetic algorithms of (Holland 1992). The
traditional genetic algorithm evolves fixed-length chromo-
some strings that encode behavior-producing systems,
while genetic programming evolves behavior-producing
computer programs directly. The process of natural selec-
tion is driven by fitness; that is, by some assessment of the
quality of each individual. Genetic programming systems
take fitness functions as parameters. For the production of
constructed artists we can provide critical criteria as pa-
rameters to the system in the form of fitness functions.

A genetic programming system works with a problem-
specific function set and terminal set. These sets contain the
primitive elements out of which all of the output programs
will be constructed. The genetic programming process
starts by creating a large initial population of programs that
are random combinations of elements from the function and
terminal sets. One generally ensures that cach function can

take, in any of its argument positions, any terminal and any
value that might be returned by any function in the function
set. This allows the use of a simple random function gener-
ator, since every combination of functions and terminals
can be guaranteed to execute without signalling an error.

Each of the programs in the initial population is assessed
for fitness. This is usually accomplished by running each
program on a collection of inputs called fitness cases, and
by a running a fitness function on the output of each of
these runs; the resulting values are then combined to pro-
duce a single fitness value for the program.

The fitness values are used in producing the next genera-
tion of programs. The next generation may be produced
from the current generation via a variety of genetic opera-
tions including reproduction, crossover, mutation, permu-
tation, and others. We use only reproduction and crossover
in the present project; (Koza 1992) describes a variety of
genetic operations in detail. The reproduction operator se-
lects a highly fit individual and copies it into the next gen-
eration; this is the most direct way to implement the notion
of “survival of the fittest.” Individuals are selected for re-
production randomly, but the selection function is biased
toward highly fit programs.

Fitness-proportionate reproduction does not introduce
any new individuals to the system—it merely propagates
fit individuals from one generation to the next. The
crossover operation, on the other hand, introduces varia-
tion by selecting two highly fit parents; it generates from
them two offspring, which are produced by swapping ran-
dom fragments of the parents. The resulting programs are
copied to the next generation.

Over many generations of fitness assessment, reproduc-
tion and crossover, the average fitness of the population will
tend to improve, as will the fitness of the best-of-generation
individual from each generation. After a preestablished
number of generations, or after the fitness improves to some
preestablished level, the best-of-run individual is designated
as the result and is produced as the output from the genetic
programming system.

Genetic programming searches the space of computer
programs in an attempt to maximize fitness. It is fitness
that determines the structure of the resulting programs, not
the intuitions of a human programmer or algorithm design-

User-Provided
Critic Function

Function and
Terminal Sets

Case-Base of
Highly-Valued
Works

Genetic Programming SystenDt—‘

lproduces
Constructed Artist)

produces

| Original Artwork I

Figure 1. Diagram of the Genetic Artist Construction framework

er. Koza presents applications of genetic programming to a
wide range of problems, along with arguments to support
its utility as a general automatic programming technique
(Koza 1992).

Genetic Programming of Constructed Artists

Genetic programming provides an obvious method for
building an artist construction system that takes critical cri-
teria as input: We use an off-the-shelf genetic program-
ming system for which we have crafted function and termi-
nal sets adequate for the production of a wide range of
artist programs within some given medium. We then allow
the user to write a critic function that will be used as a
fitness function by the genetic programming system.

Note that we have great freedom in designing the func-
tion and terminal sets. We may use any artwork-producing
functions and terminals that we feel are appropriate for the
given medium. In particular, we may include functions that
access a case-base of prior, highly valued works. The case-
base may contain works from the real history of art in the
given medium, the results of prior runs of genetic pro-
gramming, or any mixture of the two. Access to the case-
base allows the functions in the function set to produce a
range of results depending on the artist’s cultural context.
The case-base access functions should be made available
to the critic functions as well, since many critical criteria
may be best phrased in terms of comparisons to works in
the prevailing culture.

Figure | shows a diagram of the resulting framework for
the genetic programming of culturally-contextualized, critic-
sensitive constructed artists. The arrow from the case-base
to the constructed artist reflects the fact that a constructed
artist is a program that may itself take input. This input
might come from anywhere; it might, for example, come
from a random number generator or from real-time interac-
tion with an audience. In our current work we provide our
constructed artists with input from the case-base; that is,
the constructed artist takes a prior work from the case-base
as input, and produces a new work as output.

Genetic Programming of a Bebop Musician

We illustrate the framework with a system that creates simple
programs that produce Bebop jazz melodies. Jazz melody is
a good medium for this sort of experimentation for several
reasons. First, there are several simple ways to represent
melodies in a form that is manipulable by simple program-
ming constructs. Second, the jazz tradition includes several
“call and response” forms, so the idea of producing a new
work on the basis of an old work has established precedents
within the genre. Third, the jazz literature contains several
analytical works that enumerate critical criteria (e.g., (Coker
1964)), along with many works on technique that provide
guidance in creating a function set (e.g., (Baker 1988)).

We decided to generate programs that produce four-
measure melodies as output when given four-measure
melodies as input. This corresponds to the popular practice

Art 5

of “trading four” in jazz improvisation. We used a weak
representation for melodies: lists of 64 numbers, each of
which represents a pitch that will be sounded for the dura-
tion of a sixteenth note. Rests are represented as -1, and
equivalent adjacent pitches are merged into notes of longer
duration. This representation is inadequate because it can
accommodate neither thirty-second notes nor triplets of any
kind, and because adjacent notes of equivalent pitch must
be separated by a rest in order to sound individually. It is
nonetheless sufficient for many simple melodies, and it has
the advantages of simplicity and ease of manipulation.

We used Koza’s LISP-based genetic programming code,
which is presented in an appendix to (Koza 1992) and is
available on the internet by anonymous FTP.

Our function set, inspired by a list of techniques in (Baker
1988), consists of the following 13 functions: REP takes a
single melody and returns a new melody that consists of the
first measure of the given melody repeated four times. 8VA
takes a single melody and returns it with every note trans-
posed up an octave; notes that are transposed out of the two-
octave range above middle C are wrapped to the bottom of
the range. IVA is similar to 8VA, but the transposition interval
is determined by matching the given melody against the
melodies in the case-base. IVA transposes the given melody
by the average interval between itself and the most similar
melody found in the knowledge base. Similarity is deter-
mined by computing the inter-note intervals for the pair of
melodies to be compared, and by counting the number of
times that three-interval sequences occur in both sequences.
EXTEND takes a single melody and fills any trailing rests
with the melody itself. If given a very short melody EXTEND
may produce a melody with a large number of repetitions.
TRUNC takes a single melody and replaces all notes follow-
ing the last rest with additional rests. DIMINUTE takes a sin-
gle melody and speeds it up. It removes every odd-numbered
element of the melody list, compressing the remaining ele-
ments into the first half of the list and padding the end with
rests. AUGMENT takes a single melody and slows it down,
doubling each element in the first half of the melody, and
discarding the entire second half. FRAGMENT takes two
melodies and returns a melody that has parts taken from
each. The returned melody consists of the first two beats of
the first given melody, the second two beats of the second
given melody, the third two beats of the first given melody,
and so on. The INVERT function takes a single melody and
returns it with each interval inverted. The first note is held
constant, the second note differs from the first by the corre-
sponding interval in the given melody negated, etc. Again,
notes that would be outside of the two octave range above
middle C are wrapped around. RETROGRADE takes a single
melody and returns it reversed. MOST-FAMILIAR takes two
melodies and returns the one that is most similar to those in
the case-base, using the same similarity metric as in IVA.
COMPARE-TRANSPOSE takes a single melody and returns it
unevenly transposed, with each note transposed by half the
difference between it and the corresponding note in the most
similar melody from the case-base. ROTATE takes a single
melody and returns it moved forward in time by one quarter

6 The Arts

note, with the last note wrapped around to the beginning.

Our terminal set consists of a single symbol, CALL-
MELODY, which serves as the input to the programs pro-
duced by the system. One runs the resulting program by
setting the variable CALL-MELODY to some input melody,
and then evaluating the program in a LISP listener.

We ran our system with a case-base consisting of five
four-measure fragments from Charlie Parker songs. We as-
sessed the fitness of each program by running it with each of
the melodies in the case-base as input. Each run produced a
single melody that was assessed on the basis of a set of criti-
cal criteria inspired by those presented in (Baker 1988).
TONAL-NOVELTY-BALANCE rcturns O if there is perfect bal-
ance between novel tonal material and tonal material that can
be found in the case-base. It returns 1 if there is no balance,
and intermediate values for intermediate levels of tonal nov-
elty. Matching is performed with 3-note subsequences of the
melodies. RHYTHMIC-NOVELTY-BALANCE is identical except
that the rhythmic structure of the melody, rather than the
tonal structure, is compared against the melodies in the case-
base. TONAL-RESPONSE-BALANCE compares the melody
produced by the program with the melody that was provid-
ed as input to the program (CALL-MELODY). It compares the
two melodies point-for-point and returns 0 for a perfect bal-
ance of equality and inequality, 1 for complete mismatch-or
exact equivalence, and intermediate values for intermediate
degrees of match. SKIP-BALANCE returns O if the melody
perfectly balances diatonic movement (intervals of less than
3) with “skips” (intervals of size 3 or greater). RHYTHMIC-
COHERENCE returns 0 as long as the melody contains no
single sixteenth notes occurring between longer notes. If
isolated sixteenth notes do occur in the melody, RHYTHMIC-
COHERENCE returns the number such notes.

Four of these five critical functions return real numbers
between 0 and 1, with lower numbers indicating better
melodies. The last critical function returns 0 for a melody
that meets an important constraint, and 1 or greater for
melodies that don’t. The fitness of a melody-producing pro-
gram is calculated as the sum of the values returned by the
critical functions, summed over all of the fitness cases. As-
suming for the moment that RHYTHMIC-COHERENCE returns
no greater than 1, the maximum (worst) fitness value is the
number of critical criteria (5) times the number of fitness
cases (5), or 25. The best programs will have fitness values
considerably closer to 0. Since RHYTHMIC-COHERENCE may
return greater than 1, it is possible to get fitness values high-
er than 25, but we have rarely seen such values in practice.

Results

We ran the genetic programming system with a population
size of 250 for 21 generations. The best program from the
initial, randomly-created population had a fitness of 7.43.
The program was: (FRAGMENT (AUGMENT CALL-MELODY)
CALL-MELODY). This simply interleaves, in two-beat-long
sections, the input melody with a slowed down version of
the input melody. Since many of the critic functions look
for balance, and since the input melody is taken from the
case base, this simple program actually performs very well.

As shown in Figure 2, the average fitness of the popula-
tion improved over the next few generations, but the fitness
of the best-of-generation program did not improve notice-
ably until generation 3, when the following was produced:

(FRAGMENT
(COMPARE-TRANSPOSE
(INVERT (COMPARE-TRANSPOSE CALL-MELODY)))
CALL-MELODY)

This function performs a more complex manipulation of
its input, including two calls to the case-sensitive COM-
PARE-TRANSPOSE function. As shown in Figure 2, the
fitness of the best-of-generation program, along with the
average fitness of the population, continued to improve
through subsequent generations.

The best-of-run program for this run was found on gen-
eration 19 and had a fitness measure of 2.82. It was:

(FRAGMENT
(COMPARE-TRANSPOSE (8VA (COMPARE-TRANSPOSE
(FRAGMENT
(IVA (DIMINUTE (EXTEND CALL-MELODY)))
(FRAGMENT
(EXTEND CALL-MELODY)
(AUGMENT (RETROGRADE (RETROGRADE
(ROTATE (FRAGMENT CALL-MELODY
CALL-MELODY))))H))
(MOST-FAMILIAR (INVERT CALL-MELODY)
: (IVA CALL-MELODY)))

Figure 3 shows a call/response pair in music notation. This
response pleases our critic very well—the sum of fitness
components is 0.19, which is quite close to a perfect score of
0. This should multiplied by S, producing 0.95, for compari-
son to the above-mentioned fitness values. (Recall that the
above fitness values were summed over 5 fitness cases.) The
sum-of-components values for the best-of-run program run
on the 5 fitness cases were (.19, 0.31, 0.65, 0.41, and 1.25.
Although the response in Figure 3 pleases the critic, it does
not please us (the authors) particularly well. This is not an in-
dication of weakness of the genctic programming approach
to musician construction. Nor is it an indication that we made
improper choices (of function set, terminal set, etc.) in apply-
ing the technique; it just means that we should work to im-
prove the critical criteria that we provide as parameters to the
system. The quality of the output vis-a-vis our aesthetic
judgement is largely separable from the ability of the system
to produce critic-pleasing programs. The former is a question
to be argued in the philosophy of art; the latter is an element
of the science of artist construction.

Our example system does have its weaknesses when as-
sessed purely as a critic-pleaser. The best-of-run program
pleases the critic when run on melodies that were used in
the fitness cases, but it is not as robust as we would like.
We ran the program on 3 Charlie Parker melodies that
were not used in the fitness cases and produced sum-of-
components values 0.81, 1.66, and 0.93. These are not ter-
rible; in fact, two of these values are better than the worst
sum-of-components value for a melody used as a fitness

20
8 Best of Gen

) -~ Average
(73]
w
o 104
o
x
[T

0 T Y . T .
0 10 20 30
Generation

Figure 2. Best-of-generation and average fitnesses

case. But on average the program performs better with in-
put from the fitness cases—it can not yet be said to please
our critic in responding to bebop melodies generally.

The lack of robustness is a weakness of our application of
the framework to music, and we are exploring it experimen-
tally. We are working with alternative music representation
schemes, alternative function and terminal sets, and varia-
tions in other parameters of the genetic programming sys-
tem, in an attempt to produce more robust constructed musi-
cians. We must note, however, that variations in the critic
and in the case-base must be explored as well. Although we
would like our system to work well independently of
changes in these parameters, they have an impact on the
ability of the system to produce robust critic-pleasers.

The case for the separability of critical criteria, culture,
and techniques for artist construction has been stated strong-
ly in this paper. In fact, the character of a fitness function
helps to determine the “fitness landscape” (Kinnear 1994)
that is searched by genetic programming. Hence the choice
of critic and the composition of the case-base will both have
an impact on the effectiveness of the artist construction
framework that we have described. For this reason we must
work to develop systems that perform well over ranges of
critical criteria that might be proposed. To the extent that
these ranges depend on our interpretation of the philosophi-
cal discussions of aesthetic judgement, the clean separation
that we would like to maintain between such discussions
and the science of artist construction breaks down. We be-
lieve, however, that reasonable generalizations can be made
in this area, enabling us to work on artist construction sys-
tems with clear, quantitative indicators of success. This be-
lief can only be explored experimentally, by continuing to
apply the framework to the construction of artists in various
media, by working with various sets of critical criteria that
we find in the literature, by providing our systems with ac-
cess to various cultural contexts, and by assessing the ro-
bustness of the art-making programs that result.

The resulting research program presents several chal-
lenges. First there are issues of representation; these are

Art 7

Yardbird Suite by Charlie Parker

{] []
] | he]

i} 1 4
1 ~ Lo & —|

J 4
: |
| | N | o [!
[o INT 1 [
= b g o]

G

Response generated by the constructed musician

7 1P) ™ l
u.,aéd__“_.-/_g_) .
e =, Ll
By
|]
= f = e
D Y I pei
o r >

Figure 3. A call/response pair.

problematic even for music, and more so for other media.
Then there are issues of scale; our example system uses a
tiny case-base and simple critical criteria. While these
suffice to demonstrate the framework, we cannot expect to
be impressed with the output of systems built on such im-
poverished notions of culture and criticism. Finally, al-
though our framework frees us from reliance on any par-
ticular critical criteria, it does require that critical criteria
be encoded; some may question the feasibility of this en-
terprise. We believe that criteria can be extracted from the
critical literature, and we are also investigating the auto-
matic generation of critics from the case-base.

Conclusions

Johnson-Laird, in a computational study of jazz improvisa-
tion, notes that “neo-Darwinian” theories of creativity have
long been espoused, but he rejects them because “their gross
inefficiency renders them highly implausible as an account
of any sort of mental process.” (Johnson-Laird 1991, p.321)
The new technologies of genetic algorithms and genetic pro-
gramming offer the promise of tractable evolutionary pro-
cessing, and hence theories of creativity-through-evolution
may now be explored experimentally. The genetic program-
ming framework for artist construction offers additional ad-
vantages in that it provides a relatively clean way to separate
out issues of aesthetic judgement from issues of system
judgement. Instances of our framework take critics and cul-
tural contexts as parameters, producing constructed artists as
output. This allows us to consider the ability of our system
to please critics within cultures, without involving us in
questions of aesthetics. The separation between the two
forms of judgement is not quite as clean as we would like,
but nobody said it would be easy to raise an artist.

Acknowledgments

Valuable feedback was provided by Rebecca S. Neimark,
Joe Futrelle, and the members of the Propositional Atti-
tudes Task Force at Smith College.

8 The Arts

References

Ames, C.; and Domino, M. 1992. Cybernetic Composer:
An Overview. In Understanding Music with Al, Balaban,
M.; Ebcioglu, K.; and Laske, O., eds. 187-205. Cambridge
MA: The AAAI Press/The MIT Press.

Baker, D. 1988. David Baker’s Jazz Improvisation, Re-
vised Edition. Alfred Publishing Co., Inc.

Balaban, M.; Ebcioglu, K.; and Laske, O., eds. 1992. Un-
derstanding Music with Al. Cambridge MA: The AAAI
Press/The MIT Press.

Bates, J. 1992. Virtual Reality, Art, and Entertainment.
Presence 1: 133-138.

Boden, M.A. 1991. The Creative Mind: Myths & Mecha-
nisms. Basic Books (Harper Collins Publishers).

Coker, J. 1964. Improvising Jazz. New York: Simon and
Schuster, Inc.

Danto, A. 1978. The Artworld. In Philosophy Looks at the
Arts, Margolis, J., ed. 132-144. Philadelphia, PA: Temple
University Press.

Dartnall, T.; Kim, S., eds. 1993. Al and Creativity, Work-
ing Notes, Spring Symposium. AAAI Technical Report.
Dickie, G.; and Sclafani, R.J., eds. 1977. Aesthetics. New
York: St. Martin’s Press.

Ebcioglu, K. 1992. An Expert System for Harmonizing
Chorales in the Style of J. S. Bach. In Understanding Music
with Al, Balaban, M.; Ebcioglu, K.; and Laske, O., eds.
295-333. Cambridge MA: The AAAI Press/The MIT Press.
Holland, J.H. 1992. Adaptation in Natural and Artificial
Systems. Cambridge, MA: The MIT Press.

Johnson-Laird, PN. 1991. Jazz Improvisation: A Theory at
the Computational Level. In Representing Musical Struc-
ture, Howell, P.; West, R.; and Cross, 1., eds. 291-325.
New York: Academic Press.

Kinnear, K.E. Jr. 1994. Fitness Landscapes and Difficulty
in Genetic Programming. In Proceedings of EC94, The
IEEE Conference on Evolutionary Computation, IEEE.
Koza, J.R. 1992. Genetic Programming. Cambridge, MA:
The MIT Press.

Kurzweil, R. 1990. The Age of Intelligent Machines. Cam-
bridge, MA: The MIT Press.

Lem, S. 1974. The Cyberiad. New York: Harcourt Brace
Jovanovich, Publishers.

Maxwell, H.J. 1992. An Expert System for Harmonizing
Analysis of Tonal Music. In Understanding Music with Al,
Balaban, M.; Ebcioglu, K.; and Laske, O., eds. 335-353.
Cambridge MA: The AAAI Press/The MIT Press.
McCorduck, P. 1991. Aaron’s Code: Meta-art, Artificial
Intelligence and the Work of Harold Cohen. New York : W.
H. Freeman and Company.

Rowe, R. 1993. Interactive Music Systems. Cambridge,
MA: The MIT Press.

Todd, S.; and Latham, W. 1992. Evolutionary Art and
Computers. Academic Press.

