Skip to main content

Multidimensional Tags, Cooperative Populations, and Genetic Programming

  • Chapter
Book cover Genetic Programming Theory and Practice IV

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

We present new results on the evolution of tag-mediated cooperation, demonstrating that the use of multidimensional tags can enhance the emergence of high levels of cooperation. We discuss these results in the context of prior cases in which work on the evolution of cooperation has led to practical techniques for improving the problem-solving performance of genetic programming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod, R. and Hamilton, W. D. (1981). The evolution of cooperation. Science, 211:1390–1396.

    Article  MathSciNet  Google Scholar 

  • Axelrod, R., Hammond, R. A., and Grafen, A. (2004). Altruism via kin-selection strategies that rely on arbitrary tags with which they coevolve. Evolution, 58:1833–1838.

    Google Scholar 

  • Brameier, Markus and Banzhaf, Wolfgang (2001). Evolving teams of predictors with linear genetic programming. Genetic Programming and Evolvable Machines, 2(4):381–407.

    Article  MATH  Google Scholar 

  • Burke, Edmund, Gustafson, Steven, and Kendall, Graham (2002). A survey and analysis of diversity measures in genetic programming. In Langdon, W. B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke, E., and Jonoska, N., editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages 716–723, New York. Morgan Kaufmann Publishers.

    Google Scholar 

  • Collins, Robert J. and Jefferson, David R. (1991). Selection in massively parallel genetic algorithms. In Belew, Rick and Booker, Lashon, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 249–256, San Mateo, CA. Morgan Kaufman.

    Google Scholar 

  • Edmonds, Bruce (2006). The emergence of symbiotic groups resulting from skill-differentiation and tags. Journal of Artificial Societies and Social Simulation, 9(1).

    Google Scholar 

  • Fernandez, Francisco, Tomassini, Marco, and Vanneschi, Leonardo (2003). An empirical study of multipopulation genetic programming. Genetic Programming and Evolvable Machines, 4(1):21–51.

    Article  MATH  Google Scholar 

  • Folino, G., Pizzuti, C., Spezzano, G., Vanneschi, L., and Tomassini, M. (2003). Diversity analysis in cellular and multipopulation genetic programming. In Sarker, Ruhul, Reynolds, Robert, Abbass, Hussein, Tan, Kay Chen, McKay, Bob, Essam, Daryl, and Gedeon, Tom, editors, Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pages 305–311, Canberra. IEEE Press.

    Chapter  Google Scholar 

  • Fry, Rodney, Smith, Stephen L., and Tyrrell, Andy M. (2005). A self-adaptive mate selection model for genetic programming. In Corne, David, Michalewicz, Zbigniew, Dorigo, Marco, Eiben, Gusz, Fogel, David, Fonseca, Carlos, Greenwood, Garrison, Chen, Tan Kay, Raidl, Guenther, Zalzala, Ali, Lucas, Simon, Paechter, Ben, Willies, Jennifier, Guervos, Juan J. Merelo, Eberbach, Eugene, McKay, Bob, Channon, Alastair, Tiwari, Ashutosh, Volkert, L. Gwenn, Ashlock, Dan, and Schoenauer, Marc, editors, Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 3, pages 2707–2714, Edinburgh, UK. IEEE Press.

    Chapter  Google Scholar 

  • Fry, Rodney and Tyrrell, Andy (2003). Enhancing the performance of GP using an ancestry-based mate selection scheme. In Cantú-Paz, E., Foster, J. A., Deb, K., Davis, D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M. A., Schultz, A. C., Dowsland, K., Jonoska, N., and Miller, J., editors, Genetic and Evolutionary Computation — GECCO-2003, volume 2724 of LNCS, pages 1804–1805, Chicago. Springer-Verlag.

    Google Scholar 

  • Gustafson, Steven (2004). An Analysis of Diversity in Genetic Programming. PhD thesis, School of Computer Science and Information Technology, University of Nottingham, Nottingham, England.

    Google Scholar 

  • Hales, David (2002). Smart agents don’t need kin-evolving specialisation and cooperation with tags. Technical Report CPM Working Paper 02-89 (version 1), Centre for Policy Modelling.

    Google Scholar 

  • Hales, D. (2005). Altruism ÒFor FreeÓ using Tags. In Paris ECCS’05 Conference, Nov. 2005.

    Google Scholar 

  • Hamilton, W. D. (1963). The evolution of altruistic behavior. American Naturalist, 97:354–356.

    Article  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. i. Journal of Theoretical Biology, 7:1–16.

    Article  Google Scholar 

  • Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. Perseus Books.

    Google Scholar 

  • Jansen, V. A. A. and van Baalen, M (2006). Altruism through beard chromo-dynamics. Nature, 440:663–666.

    Article  Google Scholar 

  • Keijzer, Maarten, Ryan, Conor, Murphy, Gearoid, and Cattolico, Mike (2005). Undirected training of run transferable libraries. In Keijzer, Maarten, Tetta-manzi, Andrea, Collet, Pierre, van Hemert, Jano I., and Tomassini, Marco, editors, Proceedings of the 8th European Conference on Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 361–370, Lausanne, Switzerland. Springer.

    Google Scholar 

  • Luke, Sean and Spector, Lee (1996). Evolving teamwork and coordination with genetic programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L., editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 150–156, Stanford University, CA, USA. MIT Press.

    Google Scholar 

  • McKay, R I (Bob) (2000). Fitness sharing in genetic programming. In Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian, and Beyer, Hans-Georg, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 435–442, Las Vegas, Nevada, USA. Morgan Kaufmann.

    Google Scholar 

  • Michod, R. E. (2003). Cooperation and conflict mediation during the origin of multicellularity. In Hammerstein, Peter, editor, Genetic and Cultural Evolution of Cooperation, pages 291–307. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Nowak, M. A. and Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature, 393:573–577.

    Article  Google Scholar 

  • Pettey, Chrisila C. (1997). Diffusion (cellular) models. In Bäck, Thomas, Fogel, David B., and Michalewicz, Zbigniew, editors, Handbook of Evolutionary Computation, pages C6.4:1–6. Institute of Physics Publishing and Oxford University Press, Bristol, New York.

    Google Scholar 

  • Racine, Alain, Schoenauer, Marc, and Dague, Philippe (1998). A dynamic lattice to evolve hierarchically shared subroutines: DL’GP. In Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C., editors, Proceedings of the First European Workshop on Genetic Programming, volume 1391 of LNCS, pages 220–232, Paris. Springer-Verlag.

    Google Scholar 

  • Riolo, R. L., Cohen, M. D., and Axelrod, R. (2001). Evolution of cooperation without reciprocity. Nature, 414:441–443.

    Article  Google Scholar 

  • Riolo, R. L., Cohen, M. D., and Axelrod, R. (2002). Riolo et al. reply. Nature, 418:500.

    Article  Google Scholar 

  • Roberts, G. and Sherratt, T. N. (2002). Does similarity breed cooperation? Nature, 418:499–500.

    Article  Google Scholar 

  • Ryan, Conor, Keijzer, Maarten, and Cattolico, Mike (2004). Favorable biasing of function sets using run transferable libraries. In O’Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Genetic Programming Theory and Practice II, chapter 7, pages 103–120. Springer, Ann Arbor.

    Google Scholar 

  • Soule, Terence (2000). Heterogeneity and specialization in evolving teams. In Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian, and Beyer, Hans-Georg, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 778–785, Las Vegas, Nevada, USA. Morgan Kaufmann.

    Google Scholar 

  • Spector, L. and Klein, J. (2006). Genetic stability and territorial structure facilitate the evolution of tag-mediated altruism. Artificial Life, 12(4): 1–8.

    Article  Google Scholar 

  • Spector, Lee (2003). An essay concerning human understanding of genetic programming. In Riolo, Rick L. and Worzel, Bill, editors, Genetic Programming Theory and Practice, chapter 2, pages 11–24. Kluwer.

    Google Scholar 

  • Spector, Lee and Klein, Jon (2005). Trivial geography in genetic programming. In Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Genetic Programming Theory and Practice HI, volume 9 of Genetic Programming, chapter 8, pages 109–123. Springer, Ann Arbor.

    Google Scholar 

  • Spector, Lee, Klein, Jon, Perry, Chris, and Feinstein, Mark (2005). Emergence of collective behavior in evolving populations of flying agents. Genetic Programming and Evolvable Machines, 6(1):111–125.

    Article  Google Scholar 

  • Spector, Lee and Luke, Sean (1996). Cultural transmission of information in genetic programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L., editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 209–214, Stanford University, CA, USA. MIT Press.

    Google Scholar 

  • Trivers, R. (1972). The evolution of reciprocal altruism. Quarterly Review of Biology, 46:35–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spector, L., Klein, J. (2007). Multidimensional Tags, Cooperative Populations, and Genetic Programming. In: Riolo, R., Soule, T., Worzel, B. (eds) Genetic Programming Theory and Practice IV. Genetic and Evolutionary Computation. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49650-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49650-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33375-5

  • Online ISBN: 978-0-387-49650-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics