Searching for Quantum Programs and
Quantum Protocols: a review™

Susan Stepney, John A. Clark
Department of Computer Science,
University of York, UK, YO10 5DD

October 9, 2007

Abstract

We review how computational search techniques inspired by biolog-
ical evolution have been used to discover quantum circuits and quan-
tum algorithms. We discuss issues in representing quantum artefacts
in a form suitable for evolutionary search, various quantum artefacts
that have been discovered through evolutionary search, and future
prospects for this approach.

keywords: quantum algorithms, heuristic search, evolutionary algorithms

Contents
1 Introduction

2 Implementation issues
2.1 Representation of candidate solutions
2.2 Evaluating candidate solutions
2.3 Otherissues

3 Evolved quantum artefacts
3.1 Fundamental algorithms
3.2 Hogg’s algorithm
3.3 Probabilistic quantum circuits

*This review is an updated and revised version of [1]

1

3.4 Quantum Fourier Transform 22

3.5 Efficient implementation 23
3.6 Communication, teleportation, entanglement 27
3.7 Summary ... 32
4 The Future 33
4.1 Conclusions: the storysofar 33
4.2 Improving the simulation efficiency 34
4.3 Visualisation. oo 35
4.4 Improved search on rugged landscapes 36
4.5 New quantum problems to explore. 38
4.6 Quantumsearch 40
A Quantum circuits 49
B Quantum Algorithms 52
B.1 Deutsch-Josza Promise 53
B.2 Grover’s Algorithm: searching an unstructured database . . . 54
B.3 Shor’s Quantum Discrete Fourier Transform 55
B.4 Teleportation 56
C Evolutionary Computation 58
C.1 Search terminology 58
C.2 Evolutionary algorithms in general 60
C.3 Evolutionary Strategies and Evolutionary Programming: the
early dayso 63
C.4 Genetic Algorithms: incorporating crossover 63
C.5 Genetic Programming 64

1 Introduction

The modern computer pervades most aspects of our lives. In a short space
of time we have moved from computers that filled many rooms to Weiser’s
ubiquitous computing vision [2], where computers disappear into the fabric
of everyday objects and much computation goes on behind the scenes.

The performance of modern computing platforms has grown at a signif-
icant rate; a home computer is barely out of the box before a newer, more
powerful one is being promoted by its manufacturers. Gordon Moore (co-
founder of Intel) observed in 1965 that the number of transistors per unit
area in an integrated circuit had doubled each year [3]. Subsequently, a
slower but still impressive rate of doubling approximately every 18 months

2

has been observed. (This is now generally referred to as Moore’s Law.) Early
home computers had only a few kilobytes of memory; today, commercially
available ‘memory sticks’ can store a gigabyte or more of information.

Such performance gains cannot continue indefinitely. Indeed, as circuitry
gets ever smaller, with components approaching the atomic scale, the laws
of physics will present barriers to how much further this technology can be
pushed. However, if the laws of physics present a practical problem, for some
applications the laws of physics also provide a radical solution.

If computers are one of the greatest practical developments of the 20th
Century, then quantum mechanics must stand as one of its greatest intel-
lectual achievements. Despite the controversy that has marked quantum
mechanics’ development, as model of behaviour of small-scale phenomena, it
‘works’. Although the ‘meaning’ of quantum mechanics is still hotly debated,
scientists freely use its mathematical theory as given. But only recently,
the consequences of the basic mathematical theory were recognised as being
deeper than we had thought.

In a keynote speech in 1981, Richard Feynman noted that harnessing
quantum phenomena of matter could allow complicated systems to be sim-
ulated effectively [4]. In particular, he proposed that this could be a way of
simulating various quantum mechanical systems. Paul Benioff was actively
researching quantum computation around this time [5, 6].

In 1985 David Deutsch showed how the classical computation model (the
Turing machine) could be simulated using quantum mechanical properties
of matter [7]. Since the Turing Machine is felt to capture what is meant
by ‘computation’ (see the discussion in [8, chapter 1), the whole of classical
computation could, in principle, be carried out using quantum mechanics.
Subsequent developments showed that the laws of physics could be used
to achieve results faster than could be achieved using classical computing.
Deutsch showed the first ‘faster than classical’ computation [7] (concerning
the single bit XOR or parity problem).

The biggest practical impetus came in 1994 when Peter Shor demon-
strated a quantum analogue of the Discrete Fourier Transform [9]. This
could be harnessed effectively to perform factorisation. Most importantly, a
product n = pq of two large primes could be factorised highly efficiently, in
polynomial time. If factorisation can be carried out efficiently then swathes of
public key cryptography are broken and so much communications is rendered
insecure. Factorisation had become quantum computing’s ‘killer application’.

Quantum computation is not yet with us in any practical sense (the
largest number of qubits currently in a quantum computer is 7), but a signif-
icant body of physical scientists are at work on making quantum computing
a practical reality [10]. If history repeats itself, we will get small computers

3

initially that will grow as technology improves. Since quantum computers
seem capable of achieving results unachievable by other means, exploiting
effectively even limited hardware platforms may bring significant economic
benefits.

We now have an opportunity to build the application infrastructure to
run on quantum computers when they eventually come on-stream. Several
researchers have developed new and important quantum algorithms over the
past decade (see §B) but there are fundamentally few distinct quantum algo-
rithms. In some ways novel application development seems to have stalled,
as Williams & Clearwater [11] note:

Of course computer scientists would like to develop a repertoire of
quantum algorithms that can, in principle, solve significant compu-
tational problems faster than any classical algorithm. Unfortunately
the discovery of Shor’s algorithm for factoring large composite integers
was not followed by a wave of new quantum algorithms for lots of other
problems. To date, there are only about seven quantum algorithms
known.

Why is this? The authors of this review believe that intuition about quan-
tum phenomena and the nature of quantum computation is too limited. It
is such a radically different arena, well outside the comfort zone provided by
traditional computation. If our mindsets are the problem then we must seek
to free ourselves, or augment our current capabilities. Nature, in the guise of
quantum mechanical laws, provides us with new computational capabilities.
But nature also is good at invention; evolution is a form of continual reinven-
tion. Here, we review how automated search techniques inspired by biological
systems can be used to uncover new quantum circuits and algorithms.

We review the use of search as a way to explore the space of quantum
circuits. The search space is large, even with only a handful of gate types,
and a handful of qubits. So we need an effective algorithm to search this
very large space; an effective algorithm will necessarily sample only a very
small part of the search space, yet must find good solutions. We concentrate
on the metaheuristic search technique of Evolutionary Algorithms, inspired
by the biological process of evolution.

We provide background material in the appendices. §A has background
on quantum computation and quantum circuits, and §B overviews some
known quantum algorithms. §C overviews metaheuristic search terminology,
and various kinds of evolutionary algorithms.

The body of the review comprises two main sections. In §2 we consider
issues to do with implementing evolutionary search for quantum circuits and

4

type ql g2 param

Figure 1: gate template

protocols. Then in §3 we review the results to date of such searches. In the
final section we discuss future possibilities.

2 Implementation issues

In this section we review some implementation issues that arise when evolu-
tionary algorithms are used to search for quantum algorithms.

2.1 Representation of candidate solutions
2.1.1 Direct encodings

A quantum circuit can be represented as list of gates. The order in which
gates appear in the list is the order in which the corresponding unitary trans-
formations are applied (see §A).

A gate template is a list of slots, where each slot can be instantiated to
attribute values to give a gate. Figure 1 shows a template with a slot for the
type of gate (H, N, CN, etc.), two slots for the identifiers of the qubits upon
which the gate operates, and a slot for a further parameter. All gates have a
type and at least one operational qubit. The remaining slots are interpreted
appropriately for each gate type, or ignored if not needed. For example: a
NOT gate acting on qubit 3 is represented as (IV, 3, *, %), where ‘«’ means the
value in the slot is ignored; a controlled-NOT gate with control qubit 3 and
target qubit 1 is represented as (C'N, 3, 1,); a single qubit rotation U(7) on
qubit 5 is represented by (U, 5, x, 3.14159).

The most basic low level representation of a list of gates is as a bit string.
(Bit string representations are common in genetic algorithm applications.)
Figure 2 shows how sub-sequences of bits might map onto gate slots. So
a string of bits can be decoded as a list of gates, and hence as a quantum
circuit.

Such encodings are not without their problems. Consider a search over 5
gate types, thus requiring at least three bits to represent. But three bits can
represent 8 gate types. We may ensure that an initial population has type
fields with bit values of 000, 001, 010, 011, 100 (that is, only between 0 and 4),
but simple crossover and mutation operations can produce 101, 110, and 111.
These values need to be interpreted as valid gates in some way. Interpreting

type| ql | g2 | parameter type| ql | g2 | parameter

1 1 T T O

CN|11|2| * H|7|*| *

Figure 2: The gate template (top line) is used to interpret a bitstring (middle
line) as a list of tuples representing specific gates (bottom line)

the value modulo 5 produces an acceptable type index, e.g. 110 denotes 6,
and 6 mod 5 is equal to 1, and so 110 would represent gate type 1. With this
scheme, 0 is represented by (000, 101), 1 by (001, 110), 2 by (010, 111), but 3
and 4 have a single representation of 011 and 100 respectively. Thus, some
elements of the space are over-represented, possibly biasing certain types of
search. Other interpretion schemes have their own biases.

Some researchers have used similar simple bit string representations with
genetic algorithms. Although such representations are considered unsophis-
ticated by the wider evolutionary computation community, their application
is not without some success (for example, see the gate implementation work
described in §3.5, and the teleportation circuits described in §3.6), although
this success may be in spite of the representation used.

It is, of course, possible to work directly with character, integer and real
values.

2.1.2 Linear list encodings

Linear genetic programming (see §C.5) can be used to encode variable length
lists of quantum gates. This provides a natural representation and powerful
approach for the evolution of quantum circuitry.

Williams & Gray’s GP approach [12] exemplifies the flexibility afforded
by such schemes, with a variety of evolution operators provided: mutation,
substitution, crossover, transposition, insertion and deletion. (They do not
incorporate features that allow instructions to be skipped.)

Spector et al [13] briefly describe two linear genetic programming vari-
ants: stack based linear genome genetic programming (SBLGP) and stackless
linear genome genetic programming (SLLGP). SBLGP represents programs
as linear lists of functions that communicate via a global stack (thus the
approach generalises away from quantum gate lists to instruction/function
lists). SBLGP lends itself better than functional programming tree based
approaches to the evolution of programs whose working functionality is im-

plemented by side effects (see below). The SBLGP also allows for certain
structuring mechanisms to be incorporated. Spector et al report that SBLGP
was generally favoured over the traditional tree-based approaches described
below. Stackless GP uses a linear list of gates much as described above for
Williams and Gray [12] . Spector et al point out that this may be entirely ap-
propriate when scalability is not an issue (and so the structuring mechanisms
such as parameterised iteration are unnecessary).

Linear genetic programming appears to be a powerful and flexible ap-
proach to evolutionary computation. The approach seems naturally suited
to quantum program evolution since quantum programs are inherently se-
quential, and the implementation seems simpler than for traditional tree
based approaches.

2.1.3 Second order encodings

With some linear list variants, the representations code for specific solutions.
The solution space may be, for example, the set of circuits operating over 4
qubits. An evolved solution might work perfectly over 4 qubits but simply
be inapplicable to a similar problem with 5 qubits.

There is a need to derive scaleable artefacts. A feature of scaleable human-
developed artefacts is the use of structure. For example, a classical adder cir-
cuit comprises a connected series of single bit adders. A 12-bit adder looks
a lot like a 10-bit adder; both are built using the same overall approach,
the difference being that for the 12-bit case the underlying structural idea is
repeated twice more. Modern programming languages also have significant
structuring mechanisms: if-then-else; for-loops, while-loops; functions; pro-
cedures etc. Functions and procedure provide high-level reusable building
blocks, and are usually parameterisable. We would like similar facilities to
be provided for the evolution of quantum algorithms.

Structure additionally aids human understanding, because it captures
an intellectual and communicable idea. Human understanding of evolved
artefacts may be an important goal for evolutionary search in the quantum
domain: it will enable further generalisation of found solutions (§3.6.2), and
deeper understanding of the uncovered mechanisms.

Structure is addressed by using second order encodings. With direct en-
codings we evolve a circuit directly in one step. With second-order encodings,
we evolve a program that when executed produces a circuit. This circuit-
generating program can be run with various parameters to generate different
circuits. For example, if the program is parameterisable in the number of
qubits we could use it to generate circuits for 3, 4, and 5-qubits problems,
and so on (§3.4).

2.1.4 Spector et al’s traditional GP tree encoding

The early GP work by Spector et al (§3.1) uses a second order approach.
Functions parameterised by numbers add gates to the current circuit; the
initial circuit is empty. Subprograms (subtrees) return numeric values that
are either used directly or, after coercion to integers, as parameters of the
parent node. The closure type is ‘number’; this includes integers, rationals,
floating point numbers, and complex numbers.

The approach has various functions to add standard gates to the circuit.
Examples are:

e H-GATE: appends a Hadamard gate to the the circuit. It has one
parameter, coerced to a valid qubit index.

o U-THETA-GATE: appends a rotation gate. It has two parameters: the
first is coerced to a valid qubit index, the second is an angle in radians.

e CNOT-GATE: appends a controlled-NOT gate. It has two parameters,
coerced to form valid source and target qubit indexes.

These functions return the value of their first argument as their result.
A variety of helpful support functions are provided (e.g. mathematical
operations such as +, —, * etc.). Iteration constructs are provided, such as:

e ITERATE. This takes two parameters: the second is a subprogram
body; the first, coerced to a non-negative integer, is the number of
times that body is to be executed.

e [Q. This has a program body as its single parameter. This body is
executed a number of times equal to the number of qubits in the system.

These iteration constructs allow the system to evolve scalable algorithms,
parameterised to be used on systems of different sizes.

The language has a general LISP flavour and representation. Consider the
program in figure 3a; when executed this will produce the result in figure 3b,
which describes the circuit shown in figure 3c.

A typical problem with basic GP approaches is that they are weakly
typed. The coercion of returned values to parameters is somewhat uncon-
vincing and represents a significant potential restriction on the programs
that can practically be evolved. Spector et al [13] also note that tree repre-
sentation comes at a cost in terms of time, space and complexity, with “no
guarantee that they are the most appropriate representation for all prob-
lems”. A major motivation behind the approach — the search for structure
and scalability — is entirely well-founded.

(CNOT-GATE
(U-THETA-GATE PI (/ PI 2.0))
(H-GATE (+1 (/ PI 2.0)))

(a) example program

U-THETA 3 1.57079 // PI = 3.14150 is coerced to 3
H 2 // 1+ PI/2 = 257079 is coerced to 2
C-NOT 3 2 // PI = 3.14150 is coerced to 3

// 2.57079 is coerced to 2

(b) result of execution

g3 10y —|U(1.57079)

q2 |0) [H]
q1 10)

(c) described circuit

Figure 3: Second order encoding of a quantum circuit

2.1.5 Leier and Banzhaf’s Linear Tree GP representations

Kantschik & Banzhaf [14] introduce a new tree-based representation for GP
termed linear tree GP (LTGP). In LTGP a program comprises linear in-
structions sequences connected by branching instructions (figure 4). A path
from the root node to a leaf node defines an execution. The aim is largely
to allow programs to execute different instructions sequences for different
inputs. Leier & Banzhaf [15] have adapted this scheme for evolving quan-
tum programs. Unitary transformations form the program instructions and
measurements form the branching nodes (with the 0 and 1 branches be-
ing executed in the context of those measurements having occurred). Both
branches may be executed if the branching probabilities are non-zero.

2.1.6 Spector’s Push-based system

The most advanced suite of quantum genetic programming tools so far is due
to Spector. A good deal of his book [16] is given over to explaining the basics
of the underlying technological tools. PUSH is a Lisp-like programming
language with very simple syntax:

Figure 4: Linear tree GP representation. White boxes represent program
nodes; grey boxes represent branching nodes.

program ::= instruction | literal | (program®)

There are stacks for different data type operations (integers, Booleans,
floats and so on), as well as a code stack. New stacks can be added (e.g. a
quantum gate stack). The system allows variable names to be associated with
elements (including code fragments) and has features to ensure safe operation
(such as ignoring instructions when there are insufficient arguments on the
appropriate stack).

Execution of a program P is a recursive application of:

if P is a single instruction then execute it
else if P is a literal then push it onto the appropriate stack

else {P is a list} sequentially execute each program in the list
For example, execution of the program
((54 INTEGER.+) (2.0 2.0 FLOAT.*))

causes b and then 4 to be pushed on the integer stack; the 4 and 5 to be
popped from the integer stack and added; the result (9) placed back on
the integer stack; then 2.0 and 2.0 are pushed on the float stack; they are
popped and multiplied; the result (4.0) is pushed on the float stack. See [16]
for further details.

PUSH GP is a genetic programming system that evolves programs in
the PUSH language. The system allows multiple data types, modularity
features, support for recursion and support for code-self development. It
supports some fairly traditional GP operator features.

Spector provides detailed results of applying this system to solution of var-
ious problems: Scaling Majority On, Deutsch-Josza XOR, OR and AND-OR,
Grover’s search (4-item database) and some gate communications problems.
The facilities described in [16] (including visualisation of simulations) col-
lectively form a cohesive quantum genetic programming research suite. The
underlying simplicity of the supporting technology is striking.

10

2.2 Evaluating candidate solutions

Evaluation functions (cost or fitness functions) define what it means to be a
desirable solution to a problem, and provide guidance to the search process
to find more desirable solutions. Williams & Gray [12] note: “We regard the
most sensible evaluation measure as an open question”. This remains the
case at the time of writing this review (2007).

A variety of evaluation functions have been used. We identify and exam-
ine three broad types.

2.2.1 Deviation from target matrix

In their approach Williams & Gray [12] assume that there is a target unitary
matrix U and the task is to evolve a circuit with unitary matrix S that
implements it. They aim to perform what computer scientists would term
refinement: breaking a higher level construct down into the composition of
more concrete (lower-level) ones. Their cost function is given by

2n 2n

f(S,U):ZZ‘Uij—SU

i=1 j=1

R

(1)

This is an intuitively appealing function and it is applied with some suc-
cess (see later). The choice of magnitude of differences is not definitive.
Williams & Gray [12] use R = 1; DiVincenzo & Smolin [17] use R = 2.
Non-integral values or R might prove useful: Clark et al [18] demonstrate
the sensitivity of some (cryptographic) problems to exponent choice.

Lukac et al [19] present a detailed account of the evolution of circuitry
(principally lower level implementations of important ‘gates’) with various
evaluation functions that combine functional correctness (with an error com-
ponent based on matrix element deviations as here) and circuit cost (see
§2.2.3).

2.2.2 Deviation from target amplitude vectors

We might not know the unitary transformation we desire but we may be able
to indicate its likely desired effect on some test inputs, that is, we may be
able to define properties of a desired final amplitude state vector and punish
deviation from them.

Yabuki & Iba [20] use three test cases (fitness cases) for evaluating the
fitness of their evolved teleportation circuits. This is based on the degree of
similarity of the received qubit value with the source qubit to be teleported.
At first sight, it may seem unusual for so few test cases to be needed. On

11

reflection, the reader might find it difficult to conceive of a circuit that suc-
cessfully teleports three random qubit states that is not a generally applicable
teleportation circuit.

For the evolution of deterministic circuits Massey et al [21] use a cost
function given by

f:ZZ:HVTi—VRiH (2)

where Vr; is the target amplitude vector for the ¢th input test case, and Vig;
is the amplitude vector achieved after applying a candidate circuit to the ith
input.

A further nuance can be seen when we wish to evolve circuits that magnify
the amplitudes of results we wish to see. Here the exact amplitudes of the
resulting state vectors may not be crucial. Rather, it is the probability that
matters, and so we can base cost functions on the deviation in magnitude.
(Whether this matters or not depends on what you are evolving the circuit
for. If you want to observe a ‘result’ then it is largely the probabilities that
matter, and so issues of phase etc. are of no concern; if you want to use
the circuit as a component in a wider circuit then amplitude is generally
important.)

Spector et al’s work [22, 23, 24, 13] has a probabilistic notion of suc-
cess and uses a fitness function that captures functional correctness but also
aspects of efficiency. It has the form

f = hits + correctness + efficiency (3)

The hits component is the total number of fitness cases used minus the
number of fitness cases where the program produces the correct answer with
a probability of more than 0.52 (chosen to be far enough away from 0.5 to
be sure it is not due to rounding errors).

The correctness component is defined as

Z max(0, error; — 0.48)

correctness = =L max(hits, 1) N

Because it is desirable for the fitness function to focus on attaining proba-
bilistically correct answers to all fitness cases, rather than simply improving
the probability of success in those fitness cases where it is already good
enough (e.g. simply improving from a 55% success rate to a 60% success
rate), errors smaller than 48% are ignored. Also, it is desirable that rea-
sonably fit programs are compared primarily with respect to the number of

12

fitness cases they produce a (probabilistically) correct answer for, and only
secondarily with respect to the magnitudes of the errors of the incorrect cases;
so the ‘pure’ correctness term is divided by hits (unless hits < 1).

The efficiency is the number of quantum gates in the final solution, di-
vided by a large constant. Therefore, efficiency has a very small effect on
the overall fitness of the solution, until programs are evolved that solve all
fitness cases, at which point the other two terms become zero and the effi-
ciency dominates. The overall effect is that the search initially concentrates
on finding probabilistic solutions to the problem, and then tries to make those
solutions more efficient, in terms of the number of quantum gates used. No
effort is wasted on trying to make the solutions more accurate (i.e. increase
the probability of them correctly giving the answer).

The fitness function of Spector et al has been adopted by Massey et al
[21] for probabilistic circuits. More general fitness functions (but using many
of the same concepts) can be found in Spector’s book [16]. Spector et al
[13] note that the fitness function evolved as their work reported progressed.
Further fitness function details can be found in [23].

2.2.3 Resource usage

Not all search problems start from no idea of the solution. Given a working
circuit, you may wish to improve it in some way. Compilers for traditional
programming languages generally have an optimiser, which applies a series
of semantics-preserving transformations to obtain a program with some im-
proved non-functional aspect, such as average execution speed.

Similar considerations apply to quantum circuitry. Work has been carried
out to determine circuit identities (for example, [25]).

Maslov et al [26] discuss linear cost circuit metrics (a simple weighted
gate count) and non-linear circuit cost metrics (based on the full circuit).
Concentrating solely on efficiency (however defined) simplifies matters: func-
tionality and efficiency may often be in conflict and fitness and cost functions
may be inclined to produce tradeoffs we would not want. It remains, how-
ever, an open question whether it is best to evolve a circuit then optimise it,
or else evolve an efficient circuit in one go. (See also §2.3.2 and §3.5.6).

2.3 Other issues
2.3.1 Structure of the search landscape

The structure of the search landscape has a strong effect on the ease of
searching it. Rugged landscapes are difficult to search, because the fitness of

13

the current position gives little indication of the fitness of nearby positions.
Landscapes with many local optima can ‘trap’ the search. Some of these
problems may be alleviated by choosing the landscape with care. There
are three factors under the control of the designer: (1) the points in the
search landscape itself, determined by how the problem is represented; (2)
the ‘height’ of each point, determined by the fitness function; (3) the move
function, or which points can be reached from which other points, determined
by the choice of genetic operator.

A principled design of the search space needs understanding of how these
various choices affect it. Leier & Banzhaf [27] investigate the shape of the
search landscape for a particular case of the 2- and 3-qubit Deutsch-Josza
problem (with a predetermined gate set and fitness function), for a range
of program sizes (10 to 30 gates), and for mutation operators only. They
investigate ruggedness by estimating the autocorrelation function of time
series generated by random walks around the search space, where the paths
are given by the mutation operators. They investigate the structure of local
isolated optima by estimating certain information measures.

Their results of low autocorrelation indicate extremely rugged landscapes:
“beyond 2 steps most of the points on the landscape path become almost
uncorrelated”. The autocorrelation is slightly larger for n = 3 qubits than
for n = 2, and also for larger programs. The information measure also shows
larger program sizes tend to have smoother landscapes, but also have a more
complex structure of local optima.

It is difficult to interpret what the combined effect of these opposing
trends in ruggedness and local optima might be for even larger program sizes
or higher number of qubits, and whether any improvements in searchabil-
ity are outweighed by the exponentially increasing size of the search spaces.
However, Leier & Banzhaf [27] provide an important first investigation, possi-
bly demonstrating why search for (small) quantum programs is proving quite
tricky. Further investigation of landscape structure in terms of larger pro-
grams, more sophisticated genetic operators, and different fitness functions,
is called for.

2.3.2 Hand processing

Sometimes the mechanisms by which the search proceeds give rise to cir-
cuits that can be simplified. For example, two successive applications of the
Hadamard operation to a qubit (without any intervening operation in the
system) produces no effect (H? = I), and so such a pair of H gates can be
removed. Such ‘junk’ may actually serve a purpose during an evolutionary
search, but at the end it is simply clutter.

14

Various authors have resorted to hand simplification. Such removals are
particular examples of the more general idea of optimisation by semantics-
preserving transformations. This leads to a direct way for highly efficient
circuits to be created from inefficient, but functionally correct, ones.

2.3.3 Simulation issues

Cost function evaluation currently requires simulation of a quantum com-
putation on a classical hardware platform. Simulation efficiency is of major
practical importance.

Spector [16] acknowledges such issues. Consider how a unitary transform
should be stored. The most straighforward approach is to store its 22" ele-
ment matrix, but this becomes unmanageable as the number of qubits in a
system grows. A 15-qubit system would require over a billion entries to be
stored per matrix. For some operations it suffices to use an operation that
has the same effect on the state amplitude vector (Spector [16] refers to this
as “implicit matrix expansion”). For example, it is pointless to store a NOT
operation in its explicit matrix expansion form. It is simpler to invoke a
program that effectively swaps corresponding pairs of amplitudes: if |0z) has
amplitude po, and |1z) has amplitude p;, then the NOT operation on the
first qubit simply swaps these two amplitudes. Massey et al [21] refer to this
particular optimisation as an example of row swapping. Spector’s implicit
matrix expansion is more general. Spector provides algorithms for explicit
matrix expansion and for applying implicitly expanded gates. (Explicit ma-
trix expansion of a gate may still be necessary, e.g. for use in forming some
explicit product matrix.)

3 Evolved quantum artefacts

In this section we review how evolutionary algorithms have been used to
(re)discover quantum algorithms.

3.1 Fundamental algorithms

A number of papers authored in various combinations by Spector, Bernstein,
Barnum and Swami [22, 28, 23, 24, 13| established the field of quantum
genetic programming.

15

1
#
:

"
d
—~
I
S~—

;

I
—~
w15
N~—
D

N

Figure 5: GP evolved (but hand simplified) Grover’s four-item database
search (after [16])

3.1.1 Deutsch-Josza promise

Some of the earliest work using GP aimed to evolve quantum circuitry to
determine properties on oracle functions: given a quantum black-box function
f(ql,...,gqn) determine whether it has the property P(f). The Deutsch-
Josza algorithm to determine whether a function f is balanced or constant
(for a 1-input function f this is the parity problem) is described in §B.1.
[13] presents an evolved solution to the corresponding 2-bit promise problem
(using traditional tree-based GP).

3.1.2 Grover’s search

[13] also describes the evolution using SBLGP (see §2.1.2) of an instantia-
tion of Grover’s algorithm for solving the four-item database problem. (The
database is defined by an oracle function f(x) over 0...3 and the aim is to
return the single index in that range for which f(z) = 1, that is, there is a
single ‘marked’ solution. See §B.2.) This is an important result, since [13]
was published in 1999, a mere two years after Grover published his algorithm
in 1997. Other circuits can be found in [16]. It is not uncommon for human
analysts to simplify evolved artefacts (see §2.3.2). Figure 5 shows a version
of Grover’s solution to the four-item database: this is a hand-simplification
of a GP-evolved circuit [16].

3.1.3 OR problem

Another simple fundamental property concern the OR problem: determine
whether any input z gives rise to a true output f(x).
[28] uses SLLGP to evolve a faster than classical solution to the OR
problem. For the one qubit case an evolved circuit is shown in figure 6.
With initial state |00), application of the first three gates produces the
state

5 (10) (1£(0)) + £ (L)) + 1) (1£(0)) = [£(1))))

16

U

I
X(6) M

Figure 6: Circuit addressing the OR problem (after [28, fig.1])

The measurement gate M1 terminates the computation if a 1 is measured
and the computation continues otherwise. The result of the evaluation of f(0)
v f(1) is taken to be M1 if it returns a 1, or else the result is taken to be
M2. X(0) is defined by

sinf —cosf

X(Q):<cos9 sin9> (5)

Let the four possible functions be foo, fo1, fi0, and fi1. For foo and fiy
there is zero probability of observing a 1 on the first (upper) qubit. For fo;
and fio there is a probability of % of (correctly) observing a 1. If a 0 is
measured then the follow states result:

|00) for foo; [01) for fig; ﬁ |0) (]0) +|1)) for fo; and fio
After applying 1(0) the following states are achieved

00) for foo; —[01) for fii; ﬁ 10) (10) = [1)) for for and fio

This is an important theoretical result in its own right. Previously one-
bit XOR had been shown to be amenable to faster than classical quantum
solution. One-bit OR had now been shown similarly improved by quantum
computational means.

3.1.4 AND/OR problem

For a Boolean function f(x) on n variables the AN D/OR problem considers
a complete balanced binary tree with leaves labelled left to right with the
function values f(0), f(1), ..., f(2"—1). The AND/OR function interprets
this tree as a Boolean expression tree with root AN D node and nodes al-
ternating between OR and AN D as paths are traversed from root to leaves.
For 1, 2 and 3 inputs the AND/OR(f) formulae are

AND/JOR,(f) = f(0)A f(1)

AND/ORy(f) = (f(0)V f(1

AND/OR;(f) = ((f(0)Af(1))V
(

—U(5) H MO
M1
X(0) M

Figure 7: Faster than classical solution to 2 bit AND/OR (6§ = 0.74909)

A
N\

foo for fio fu Pe

0000 0.00560
0001, 0010, 0100, 1000 | 0.28731
0011, 1100 0.21269

0101, 0110, 1001, 1010 | 0.28731
1101, 1110, 1011, 0111 | 0.21269
1111 0.00560

Table 1: Error probabilities for 2-bit AND/OR solution

28] use SLLGP to evolve faster than classical solutions to the two bit
AND/OR problem. Again, some hand-tuning was used to improve the
evolved algorithm. The circuit diagram is shown in figure 7 with error prob-
abilities p, for the various functions f shown in table 1.

3.2 Hogg’s algorithm

Hogg [29] demonstrates efficient quantum algorithms for attacking k-sat
problems. Let Vi, ..., V,, be Boolean literals, and let L; be the literal V;
or its negation. Given a formula that is the conjunction of disjunctions of
k L;

(L11V LigV -+ L) ALy V Log V -+ - Log) Ao o o A (Lt V Ly V + -+ V L)

find an assignment for the V;, ..., V,, that satisfies the formula. A simple
2-sat formula and an assignment that satisfies it is:

(ViVaVo) A (=VivVa) ;s V= true, Vo = true

Though classical algorithms for this problem are of O(n), Hogg’s algo-
rithm is still more efficient. Leier & Banzhaf [15] have evolved circuits equiv-
alent to Hogg’s algorithm for the simple 1-sat case. They present some
“slightly hand tuned quantum algorithms” arising from GP searches for 1-
sat on 2, 3 and 4 variables (table 2).

18

n=2 3 4
HO
HO H1
HO H1 H 2
H1 H?2 H3
INP INP INP
Rzx[37/4] 0 Rx[37/4] 0 Rx[37/4] 0
Rzx[3m/4] 1 Rzx[3m/4] 1 Rx[3m/4] 1
Rzx[3m/4] 2 Rzx([3m/4] 2
Rx[3m/4] 3

Table 2: Solutions to 1-Sat on 2, 3 and 4 variables (Rz[f] is a rotation)

We can readily see there is a pattern suggesting extension of the idea.
Indeed the authors refer to “evidently and ‘visibly’ scalable algorithms, which
correspond to Hogg’s algorithm”. This is useful since evolving quantum
algorithms is likely to be tricky, as they note [15]:

The problems of evolving novel quantum algorithms are evident. Quan-
tum algorithms can be simulated in acceptable time only for very
few qubits without excessive computer power. Moreover, the number
of evaluations per individual to calculate its fitness are given by the
number of fitness-cases usually increases exponentially or even super-
exponentially. As a direct consequence, automatic quantum circuit
design seems to be feasible only for problems with sufficiently small
instances (in the number of required qubits). Thus the examination of
scalability becomes a very important topic and has to be considered
with special emphasis in the future.

Using GP (or other search techniques) to evolve small circuits that can
be analysed and generalised by researchers seems a promising way forward.
Search needs only to augment human ability; it does not need to solve every
problem we throw at it.

3.3 Probabilistic quantum circuits

Massey et al [21, 30] report the results of using two quantum genetic program-
ming suites: QPACE-II and QPACE-III. QPACE-II uses a direct encoding,
whilst QPACE-III uses a second order encoding (where the evolved program
is executed to generate a quantum circuit).

19

) ——— i} —
i

ly) | H |

|2) «@—@—4 m |z and y)

Figure 8: Probabilistic half-adder

|z xor y)

initial correct probability of ending in state

state answer | |000) [001) |010) |011) |100) |101) |[110) |111)
|000) |000) | 0.53 0.22 0 0 0 0.09 0.14 0
|001) |000) | 0.53 0.22 0 0 0 0.09 0.14 0
|010) |010) 0 0.05 0.61 0 0 0.09 0.24 0
|011) |010) 0 0.05 0.61 0 0 0.09 0.24 0
|100) [110) | 0.09 0.04 0.03 0 0 0.02 0.82 0
|101) |110) | 0.09 0.04 0.03 0 0 0.02 0.82 0
|110) |101) 0 0.30 0.10 0 0.02 0.53 0.04 0
|111) |101) 0 0.30 0.10 0 0.02 0.53 0.04 0

Table 3: Probabilities of obtaining outcomes for half adder inputs

3.3.1 Probabilistic half adder

Q-PACE II evolved a deterministic full adder circuit using simple and con-
trolled versions of the N and H gates, and a non-unitary zeroing gate 0. The
found solution had previously been designed by Gosset [31].

The authors report that the evolution of quantum arithmetic circuitry
seems very hard, with more challenging problems remaining unsolved by the
approach, even after a multi-stage approach was adopted. So they moved
away from the search for deterministic circuits to a search for probabilistic
circuits.

Q-PACE II found a probabilistic half-adder on 3 qubits using only the H
gate and the zeroing gate 0, together with their controlled equivalents. The
problem is defined as |z,y, z) — |z, z xor y,z and y), where |z xor y) is the
sum bit and |z and y) the carry bit. Q-PACE II evolved the circuit shown
in figure 8, with probabilistic results shown in table 3.

3.3.2 Probabilistic max function

Q-PACE III evolved a number of probabilistic quantum programs which,
when given a number of suitably encoded [0..3] — [0..3] permutation func-

20

fitness correct probability of ending in state
case answer |00) |01) |10) 111)
) 100),z=0|0.53 0.22 0.03 0.22
)), x = 0.03 0.22 0.53 0.22
)),x=0]0.53 0.22 0.03 0.22
)]10),x = 0.03 0.22 0.53 0.22
3,2,0,1) 100),z=010.53 0.22 0.03 0.22
) [01)
) [11)
) [10)

r=1]022 053 022 0.03
r=31]022 003 022 0.53
Lz=2003 022 0.56 0.19

Table 4: PF MAX 1: results using 8 permutation function fitness cases

@ H |

az LH’}
4as @

0 e O} 1]

Figure 9: PF MAX 1: evolved probabilistic MAX circuit (after hand optimi-
sation)

tions, returned for every one of these permutation functions (with a proba-
bility > 0.5) the value of = that gave the maximum value of f(z) for that
function. (This is called the “PF MAX” problem for short.) Ultimately,
Q-PACE III evolved a program that ‘solved’ the problem for all 24 possible
[0..3] — [0..3] permutation functions.

Q-PACE III evolved the program PF MAX 1 using 8 fitness cases (ex-
pressed as permutations), with probabilistic results shown in table 4.

PF MAX 1 is a probabilistic solution to all 8 of the fitness cases used.
For 20 out of the 24 possible permutation functions, it gives the correct
answer with a probability of more than 0.5; for the other 4 fitness cases, it
gives the correct answer with a higher probability than any given incorrect
answer. Thus PF MAX 1 seems a true MAX algorithm for [0..3] — [0..3]
permutation functions, that “works” on all 24 of these functions. Although
evolved from only 8 fitness cases, the resulting PF MAX 1 is much more
general. The evolved circuit (after hand removal of 5 gates that have no
effect) is shown in figure 9.

Repeated experiments failed to evolve a program that would give the

21

q1 N
@ ——t—

g3 ———o—

Gy ————o—

Figure 10: PF MAX 2: evolved probabilistic MAX circuit (after hand opti-
misation)

correct solution with p > 0.5 for all 24 fitness cases. Relaxing the acceptance
criterion to p > 0.4 enabled Q-PACE III to evolve a single quantum circuit
with p = 0.5 of returning the correct answer for all the 24 fitness cases
(the probabilities of returning incorrect answers are 0.25 or zero). So the
quantum circuit implements a probabilistic MAX function that has twice
the probability of “guessing”. The circuit generated (after hand removal of
several gates that have no effect) is shown in figure 10.

The system is exploiting the initial set-up very efficiently. Suppose, for
example, that the maximum occurs at x = 00. Then |0011) has amplitude
1 (corresponding to probability 1) and |0000), [0001) and [0010) all have
amplitude of 0. Now consider z = 10. We must have f(10) = 00, f(10) = 01,
or f(10) = 10, since the maximum is already reached uniquely by f(00) = 11.
Suppose f(10) = 00. Then the state [1000) has amplitude 3, while [1001),
|1010) and [1011) all have amplitudes of 0. The application of the CCN
operation transforms |[1000) to [0000) with amplitude § whilst [0011) remains
unaltered with amplitude % We now have two eigenstates with = 00 and
amplitude 1: [0000) and |0011). So the probability of now observing one of
these eigenstates is %NL% = % This is a better than classical algorithm. More
generally, if f(z) = 11 then we can consider the states |z11) and |2’ f(2'))
(where 2’ is obtained from z by flipping the first bit) to obtain a similar
result.

Furthermore, there would appear to be an obvious generalisation to n
qubits: let the second negation on qubit 1 be controlled by all the qubits
of f(x). This is another example of an evolved circuit generalised by hu-
man analysis (although it is acknowledged that the degree of improvement
supplied by this generalisation decreases exponentially as n increases.)

3.4 Quantum Fourier Transform

Massey et al [32, 30] report the results of using two quantum genetic pro-
gramming suites, QPACE-III and QPACE-IV, to evolve a variety of QFT

22

circuits (see §B.3). QPACE-III uses a second order encoding (where the
evolved program is executed to generate a quantum circuit); QPACE-IV ad-
ditionally includes parameters, so that the precise circuit generated can be a
function of, for example, the number of qubits.

QPACE-III successfully evolved a 3-qubit QFT. The solution, like many
evolved solutions, is irregular, with little discernable structure.

When QPACE-IV was used on test cases of 1, 2, and 3 qubits, it success-
fully evolved a parameterised circuit that implements the QFT for also 1, 2,
and 3 qubits, but not for higher numbers of qubits. When QPACE-IV was
used on test cases of 1, 2, 3, and 4 qubits, it successfully evolved a parame-
terised circuit that implements the QFT for all numbers of qubits: there is
enough information in the extra test cases to allow it to generalise correctly.

Evolving such a parameterised solution necessarily results in circuits with
more regular structures.

3.5 Efficient implementation
3.5.1 Introduction

We have seen how various evolutionary search techniques had been harnessed
to explore algorithms and circuits expressed in terms of basic operations or
gates. The search space has been essentially ‘physics free’, or, more accu-
rately, ‘implementation independent’.

It is perfectly sensible for algorithm researchers to work in terms of what
basic gates achieve rather than how. As noted earlier, progress in classical
software development has been marked by a drive to ever-increasing levels of
abstraction and there seems little reason to believe that quantum software
should be different. However, the abstract concepts we manipulate must
be implemented in some manner and these implementation issues must be
addressed.

The emerging work on implementation concerns highlights opportunities
for evolutionary search. Efficient implementation at low levels has a major
effect: everything is built on top of it. As Rethinam et al [33] point out,
there is “enormous potential for simplifying the implementation of working
quantum computers”. This section reviews evoutionary search for efficient
implementations of quantum artefacts.

3.5.2 Choice of Gate Set

Given the plethora of possible quantum gates, what sets of gates should a
designer use when considering algorithm development? The gate set must

23

involve at least one multiple qubit gate (since otherwise all operations would
result in states that are expressible as tensor products). The gate set must be
logically sufficiently powerful to allow arbitrary algorithms to be implemented
(although the general motivation is clearly sensible, this requirement may be
challenged: Williams & Gray [12] note “An incomplete gate set may make
sense when the properties of the target computation allow it.”) but must be
guided also by the practicalities of realisation.

Simple gates will map fairly directly onto physical operations on a small
number of qubits. Complex gates implementing complex transformations
will need to be broken down into a series of simpler physically achievable
gates. We know how to compose the operation of a series of transforma-
tions: simply lift each simple operation to the whole system and multiply
the matrices for each such lifted operation. However, we lack a systematic
means of factoring complex operations into a series of smaller convenient
operations. Convenience here may be affected by various criteria: ease of
implementation of the smaller transformations; speed of execution of smaller
gates and their composition etc. Note also that even a simple operation of
controlled-NOT may be more easily implemented if the two qubits concerned
are physically close to each other. Different operations may differ in their
ease of implementation according to the underlying architecture mechanisms
used, for example, quantum dots will favour the implementation of a different
gate set than would NMR based quantum computing.

3.5.3 Scaling down

All of the above work has used ‘basic’ gates to construct circuits and al-
gorithms. However, what counts as ‘basic’ depends on your interests. In
practice, even a simple two-qubit gate such as C'N may require a multi-stage
implementation. For example, Gershenfeld & Chuang [34] describe a Nu-
clear Magnetic Resonance (NMR) scheme for quantum computation based
on ensembles of molecules. They show how radio frequency pulse sequences
can be used to implement arbitrary single-qubit rotations and also the two-
qubit CN gate. (This suffices for all computations.) In computer science
terms, we would generally regard the usual basic gates as assembly language;
the pulse sequence implementation is somewhat akin to a firmware instruc-
tion sequence. The series of rotations Gershenfeld and Chuang’s CN gate
implementation is (up to phase, which can be removed by further rotations)

CNiy = Ry1(—90)R.2(—90)R,1(—90) R.12(180) R,1(90) 9)

There is a choice of pulse sequences (each implementing a rotation) to
implement C'N. Where there is choice, there is potential optimisation. Rethi-

24

nam et al [33] use a basic genetic algorithm (bit string representation with
single point crossover) to evolve pulse sequences to implement CN. The chro-
mosome bit string is decoded as sequence of (rotational axis, angle) pairs.
9 bits are used for the angle of rotation, allowing an accuracy one degree.
They evolved rotation sequences of length 3, more efficient than previously
exhibited solutions. These are

CNiz = Ros(270)Ry212(90) Ryy (90) (10)
CNiz = Ru1(90)R.2(270) Rys10(90) (11)

An important component of one solution to factor N = 15 comprises
two successive CN gates (acting on qubits 1,2 and 2,3 respectively). The
new CN implementation therefore improves the best achieved from 10 to 6
rotations. However, by composing the two operations and seeking a more
direct implementation to this composed circuit a result was found using 5
rotations.

This field of work is significant. Efficiency effects integrity, since inefficient
implementations will be more likely to suffer from environmental interference
and faults due to the practicalities of carrying out operations. Thus, there is
considerable merit in using evolutionary searches to derive excellent low-level
implementations of gates.

Rotations have some angle # as a parameter. Small changes in 6 give
rise to small changes overall: there is an element of natural continuity, which
renders guided search particularly appropriate. CN is not a complex gate
and the search space is very small compared with those of many problems
attacked by evolutionary search. The search space may be too large for
humans to derive optimal micro-circuits but it is clearly within the range of
evolutionary search. The work of [33] is an important contribution.

3.5.4 Higher level basic gates

Lukac et al [19] present a detailed investigation of how efficient low-level im-
plementations can be evolved of some very well-known gates such as Toffoli,
Fredkin and Margolus gates. Their paper provides cost functions that are felt
to be more realistic (in terms of physical realisation costs). Gate implemen-
tations by previous authors were successfully evolved, together with several
elegant new implementations. Local optimisation rules such as commuta-
tivity of certain operators (where the order in which gates are applied does
not affect the result) are invoked to simplify and reduce costs. This work is
a further (and clearly successful) demonstration that evolution, or heuristic
search more generally, will find fruitful application across the spectrum of
gate levels.

25

Khan & Perkowski [35] focus on qutrits: three-valued quantum variables.
They evolve a variety of ternary quantum circuits, with a strong emphasis
on efficiency. Their fitness function includes various terms to minimise the
resources used, in particular, minimising the scratchpad resources, or number
of wires in the circuit. They have found more efficient realisations of certain
basic ternary gates.

3.5.5 Location matters

Most published circuits do not take into account where qubits physically
reside during computation. Some current implementations may involve a line
or small 2D lattice of qubits. In many implementations, two-qubit operations
such as CN may take place only on neighbouring qubits, requiring qubit
values to be progressively swapped until the required pair are neighbouring.
These swaps are simply overheads to be optimised away [36]. There are also
choices to be made as to the physical location where gates will be applied.
Van Meter & Binkley [36] précis their current work on the allocation of
qubits and gates to physical locations and its solution by genetic algorithms,
and report that the approach produces “better layouts than hand-compiled
programs for a 90-instruction program on 32 qubits”.

We believe that issues such as location and reducing the overheads arising
due to features of specific hardware technologies will benefit further from
applications of guided search.

3.5.6 Optimising existing solutions

As noted earlier, given a fully working circuit, you may wish to optimise some
of its non-functional properties. A common approach to such problems in
computer science is to apply a succession of semantics-preserving transforma-
tions, each of which improves the property of interest. (To be precise, such
transformations sometimes alter the functionality a little, but to an extent
that does not matter for most purposes. For example, (a*b)*c = ax(b*c) is
a mathematical identity, but replacing an instance of the left hand side with
the right hand side might give different results in an implementation using
floating point numbers.)

Maslov et al [26] derive efficient schemes for generating and storing iden-
tities for use in quantum sub-circuit substitution. They give examples of how
repeated substitutions can provide significant optimisations. Circuit optimi-
sation is a well-established concept in traditional hardware engineering and
more recently in reversible circuit engineering. We believe that evolution-
ary search will find useful application to the quantum circuit optimisation

26

/] r—-—---1 4 ol -

\>: - RlISU@V|

0 T\ LM | | |

10) L] :: D :/74| |

0) T O T
EPR Alice Bob

Figure 11: Teleportation circuit of Brassard [3§]

problem.

3.6 Communication, teleportation, entanglement

We can be fairly flexible as to what counts as an algorithm or program. As
Clark & Jacob [37] point out, communication protocols can be thought of
as programs implementing (sometimes unreliable) distributed computation.
Quantum mechanics provides us with exciting opportunities to derive new
protocols.

3.6.1 Quantum teleportation

Several evolutionary search researchers have attempted to evolve circuits for
quantum teleportation: a means by which unknown quantum states can be
transferred between locations using only classical channels and pre-existing
entanglement. Brassard’s original teleportation circuit [38] is shown in figure
11, where the single qubit gates are defined by:

() re(a) m

s(0) (3w

As is usual in protocols work, communication is between Alice and Bob.
(Alice, Bob, and Eve, who eavesdrops on communications between Alice and
Bob, are the traditional actors in descriptions of classical secure communi-
cations protocols.)

The first two gates created a maximally entangled pair of qubits, the
lower of which is sent to Bob. The other is sent to Alice. The next two gates
on the send circuit serve to entangle all three qubits. The question marks
denote measurements (giving rise to |0) or |1)) by the sender Alice. The

27

]

EPR, Alice Bob
Figure 12: Evolved teleportation circuit of Williams & Gray [12]

results are then communicated via classical channels to Bob who feeds them
back in as the initial values of the top two qubits of his receive circuit.

Williams & Gray [12] use their list-based GP scheme to attack the design
of the send and receive circuits. The work uses a rank based section scheme,
to avoid premature domination of the population. There is a fair degree of
optimisation sophistication in this work, which is able to produce a variety
of send circuits of similar efficiency to the Brassard circuit and improved
receive circuits. Furthermore, the system allows the user to restrict the
choice of gates. A complete evolved circuit using only L, R and CN is shown
in figure 12.

Williams & Gray [12] use a cost function that measures deviation of the
evolved unitary matrix S from the (assumed known) target matrix U (see
§2.2.1).

Yabuki & Iba [20] also address teleportation. They use a standard genetic
algorithm approach, and they evolve a circuit in one go. They assume (and
interpret everything in this context) that there are three stages (EPR pair
preparation, send, and receive), that Alice can operate on only the first and
second qubits, that measurement is allowed only once, and that the gates are
restricted to {C'N, L, R}. They use a fixed length chromosome comprising
a sequence of three letter codons. The letters of the codon are chosen form
{0,1,2,3}. In general, the first letter of a codon denotes the type of gate;
the second identifies the qubits on which it operates; the third has a variable
interpretation. The first codon to start with a 3 indicates the end of EPR
generation and the start of Alice’s send; the second such codon marks the
partition between Alice and Bob’s sections. The overall interpretation is
based on a different table for each section, see table 5. (For consistency
within this review, we have adopted the convention of Cj; denoting control
qubit ¢ and target qubit j. Yabuki & Iba [20] reverse this convention.)

A chromosome in this scheme that describes William & Gray’s circuit [12]
(figure 12) is shown in figure 13. The first codon 112 indicates the element
in the major row 1, column indexed 1, minor row 2 of the EPR table, hence

28

0 1 2 3]0 1 2 3 0 1 2 3
0| CNyg CNy CNyy CNpo CNyr CNyo 0
CNI() CNOl CN21 CN12 CNl(] CN12 1
CNl() ON()l CNQl ON12 CN20 ONQl 2
3
1| Ly Ly Ly Lo Ly Ly Ly 0
LO L1 L1 L2 Lo L1 LQ 1
Lo L1 Ll LQ L() Ll LQ 2
3
2|1 Ry Ry Ry Ry Ry R, Ry 0
Ry Ry Ry Ry Ry Ry Ry 1
Ry R, Ry Ry Ry Ry Ry 2
3
3 separator measurement
EPR generation Alice send Bob receive

Table 5: Codon interpretation tables for three stages

]112 | 231 | 001 | 331 | 132 | 012 | 221 | 302 | 001 | 100 | 002 | 201\

] EPR | Alice | Bob \

Figure 13: Chromosome corresponding to teleportation circuit [12]

Ly. The second codon maps to an empty element, and so is ignored. 001
decodes to CNyp. 331 marks the start of Alice’s part. 132 is ignored; 012
is CNayp; 221 is Ry. 302 is interpreted as Alice’s measurement. Bob’s four
codons are CNyg, Ly, CNyy and Ry.

Yabuki & Iba [20] evolved a simpler circuit, shown in figure 14. The work
also differs from that of Williams & Gray in that the evaluation function is
based on three fitness cases based on how well the circuit actually teleports,
that is, how well it transfers the source qubit state exactly.

The reader may well be struck by just how small the evolved quantum
teleportation circuits really are. It suggests that truly novel quantum pro-
tocols could be well within reach of evolutionary search. The circuits (or
sub-circuits) evolved were obtained in full knowledge of the structure of Bras-
sard’s original circuit. The concept of teleportation was known, as was the
structure of a solution. We suggest that the evolutionary search community
should co-operate with the quantum information processing community to
pose new and unsolved problems. Problem solving seems within our grasp;
problem finding seems the immediate challenge.

29

gy Lo
@) : - LI AR
O T :
| |
U A — 0 V)
EPR Alice Bob

Figure 14: Yabuki & Iba’s improved teleportation circuit [20]

3.6.2 Communication, and communication resources

A variety of quantum protocols mix classical communication with the ex-
ploitation of entanglement. Teleportation is a high-profile example. Dense
coding is another (where the communication of 1 classical bit of information
coupled with a pre-existing entangled qubit pair allows 2 bits of classical
information to be communicated between sender and receiver, see [8]). The
tradeoffs between classical communication and quantum entanglement re-
sources are not yet well understood. Bennett has conjectured that a single
use of any given two-particle transformation has a unique maximum power
for entanglement or communication (for forward, backward, or two-way com-
munication).

Spector & Bernstein [39] report Smolin as suggesting the gate in equa-
tion 14) as being capable of generating entanglement but not classical com-

munication.)

700 5
010 0

sMoLIN=| o o1 (14)
75 00 =%

Spector & Bernstein [39] evolved a circuit that allows one classical bit to
be communicated per use of the SMOLIN gate. This was analysed and sim-
plified, and subsequently generalised. The three stages of circuit derivation
are shown in figure 15, where

cos@ 0 0 sinf
0 10 0
TO=1"9 01 o0 (15)
sinf 0 0 —cosf

This is another excellent example of small evolved circuits acting as an intel-
lectual spur to creativity in the field. We believe that such ‘concept seeding’
will be a major exploitation avenue for GP-based quantum work.

30

Bob

—U() —HUE)
SMOLIN
T N UG) HVN H
Alice a) evolved circuit
= - ™ Bob
(NFUCH H —UCD)
SMOLIN
W U(s)
Alice b) simplified circuit
— - = Bob
NFHUCH 1 U)
J(0)
T Uu(3)
Alice c) generalised circuit

Figure 15: From evolved circuit to general idea

3.6.3 Entanglement

Entanglement is often regarded as a resource. There are many measures
of entanglement, and it is not fully understood what entanglements can be
achieved. Rubinstein [40] uses GP to evolve maximally entangled states for
3, 4 and 5 qubits. The system is using the same idea in each case; this is
discernible on sight of the circuits produced. (As in figure 15, patterns can
be recognised.)

It is not always necessary to use the full sophistication of evolutionary
algorithms: Brown et al [41] successfully searched for highly entangled states
using a simple hill-climbing algorithm.

Spector & Bernstein [39] demonstrate an evolved circuit that allows two
bits of classical information to be communicated with one-bit of prior entan-
glement, as shown in Figure 16.

We believe that the exploration of entanglement and communication

31

Bob

L
| |
: | U HA-
| | BS()
: (H | : T Phase(m)
e o

entanglement W

Alice

Figure 16: One-bit prior entanglement allows two classical bits communica-
tion [39]

along the lines of Spector & Bernstein’s work will prove a highly fruitful
avenue for evolutionary search. Understanding the fundamental capabilities
of quantum resources is a necessity.

3.7 Summary

The use of evolutionary computation to derive quantum artefacts has seen
substantial progress in a short time. Since its origins in the late 1990s a
considerable variety of problems have been attacked by evolutionary compu-
tation (and genetic algorithms and genetic programming in particular).

Even though the evolution of circuits and algorithms seems hard, we
have seen several examples of novelty. Some work has pushed the frontiers of
knowledge of quantum information processing, producing results of interest
independent of the means of production.

Evolved artefacts have generally been ‘small’, which might raise worries
about scalability. However, small artefacts are amenable to human analysis,
and generalisations can be found.

Finally we note that Quantum Information Processing (QIP) is in its
infancy. Understanding the possibilities and limits of what quantum systems
and resources such as entanglement can offer will prove of major importance.
It is encouraging to se that pieces of work are underway on fundamental
problems of the topic.

32

4 The Future

This section is rather more speculative. First we draw some conclusions from
the results so far achieved. Then, based on theses, above, we discuss aspects
of quantum computation that might show the greatest promise for meta-
heuristic search techniques, and what work needs to be done to prepare the
way.

4.1 Conclusions: the story so far

The above discussion leads us to the following conclusions:

There is nothing much new! There is significant potential for discov-
eries. There are still very few fundamentally different quantum algorithms
(however discovered).

The evolution of novel quantum artefacts is possible, but hard.
The search landscape would appear to be extremely rugged and complicated,
and our ability is currently limited to the evolution of small-scale artefacts.

Small may be beautiful. Heuristic searches for implementations of
even ‘simple’ gates should prove beneficial. This is important in the same way
that improved circuitry for adders and multipliers is important in classical
computing.

From little acorns mighty oaks do grow. The human analysis of
small artefacts can lead to general algorithms being discovered. We should
aim to make best use of the abilities of highly gifted quantum researchers
(they have developed the subject this far). The ability of heuristic searches
to reach surprising results will most likely pique the interest in the quan-
tum scientific community. Are we moving towards an era of GP-assisted
discovery?

We should get back to basics. Work seems targeted at the evolution
of specific circuits, algorithms and protocols. However, quantum mechan-
ics itself is improperly understood. It is not known for example whether
particular entanglements are achievable. There are various measures of en-
tanglement and seeking to optimise these for particular circumstances has
the potential to surprise and outperform the quantum mathematicians (for
whom pen-and-paper analysis remains dominant).

We need to use the power. All work in the area of evolving quantum
artefacts seems to have been carried out using very modest hardware. But
there is a significant trend to widen access to high-end computing power.
Furthermore, programmable hardware is now becoming very cheap, for ex-
ample, racks of field programmable gate arrays (FPGAs) could be used to
provide substantial simulation power. Koza has mapped the increasing suc-

33

cess of GP to the rise in computing power since its emergence. We are now
faced with a similar, if not greater, rise in sheer power. There would seem to
be an opportunity to embrace the emerging availability of such resources.

The emergence of practical quantum computational facilities will enable
even more interesting artefacts to be evolved.

4.2 Improving the simulation efficiency

The quantum search space is exponentially huge, which is why meta-heuristic
search tools are being used. And the cost function evaluation is in its turn
exponentially expensive to evaluate, because of the need to evaluate quantum
algorithms on classical machines. This requires careful design if any but
the most trivial quantum circuits are to be evolved. For example, selection
strategies should be carefully chosen, and adding some noise may help with
certain problems [42].

Attacking the expense of the cost function offers great potential improve-
ment. There are certain techniques that improved the efficiency of classical
simulation; see, for example, Viamontes et al’s QuIDD approach [43], and
Massey et al’s ‘row swapping’ optimisation [21]. However, these provide
significant speed-up only for circuits with a great deal of a certain kind of
structure, unlike those that are generated by random evolutionary moves.

It is already common for cases of expensive cost functions (such as compli-
cated finite element or fluid flow engineering applications) to use some kind
of approximation in the early stages of the search, and to use the full cost
function only towards the end, when the extra precision is necessary. See, for
example [44]. The quantum circuit search space appears to be exceptionally
rugged [27], which also makes search hard. A choice of approximate cost
function that somehow ‘smooths’ the search space [18] may help to make
search progress more effectively. The challenge with quantum circuits is to
find suitable approximations and smoothings.

Eventually, when quantum computers become a reality, it will be possi-
ble to do a form of intrinsic evolution: evaluating the cost function directly
on a quantum computer, thereby gaining exponential speedup over classical
simulations. One should remember, however, that a classical simulation can
calculate the entire probability distribution of the final state, not just pro-
vide the single observation that would be available intrinsically. This extra
information available classically should be exploitable in current work.

34

4.3 Visualisation

Visualisation can often help to understand what is going on in complicated
cases. Can we visualise the execution of a quantum algorithms as an aid to
understanding?

A general single qubit state |®) = a|0) + b|1) is characterised by the
two complex amplitudes a and b. So at first sight this would appear to
require a four-dimensional diagram. However, one of the dimensions reduces
to an ignorable phase, leaving just three dimensions. The customary way to
visualise this state is by using a Bloch sphere, taking the “north pole” to be
|0) and the “south pole” to be |1). Superpositions lie elsewhere, but all on the
surface of the sphere because of the normalisation condition |al* + |b]? = 1.
See, for example, [8, section 1.2] for more description. Note that, although
the vectors |0) and |1) are orthogonal, they appear anti-parallel in the Bloch-
sphere representation, which can sometimes cause confusion.

It is hard to visualise more than one qubit: an n-qubit state is charac-
terised by 2" complex numbers, or 2"*! real numbers. Even losing one of
these as a phase factor is of little help.

The discussion above shows that small circuits of a few qubits are produc-
ing valuable results: sometimes new special purpose results, and sometimes
small results that can then be generalised by a human. So it would seem
worth considering the visualisation of just a small number of qubits, to fur-
ther improve our intuition about quantum algorithms.

Spector [16, section 3.2] uses a cube diagram to represent the state of
3 qubits. Each corner of the cube represent one of the eight states, and a
small disc drawn at each corner represents the amplitude of the respective
state. In Spector’s diagrams, the size of the disc represents the absolute value
of the amplitude, with a minus sign shown if the amplitude is negative: in
Spector’s example quantum circuit, all amplitudes are real, which simplifies
things. See Figure 17.

Spector shows the progress of Grover’s algorithm on 3 qubits as a se-
quence of cube diagrams [16, figs 3.4-3.13]. This sequence vividly shows the
amplitudes initially being smeared out over all the states, and then coming
together on the result states.

It seems worthwhile to explore this form of visualisation further, for more
general cases. Complex amplitudes could be shown using a small vector in
the complex plane at each cube corner (in Spector’s example, all such vectors
are purely leftward or rightward pointing). Higher numbers of qubits could
be shown. A 2D drawing of a 4D hypercube might still allow a sufficiently
“natural” representation. This is topologically equivalent to a side-by-side
pair of cubes. See Figure 18. This suggests that a pair of hypercubes (or a

35

o1 [L11}

1010) 110)

[001) [101)

1000}

100)

(a)

Figure 17: A 3-qubit Spector cube for (a) the state |000) (b) equal superpo-
sition of all states

0110 [1110) 0111
111
10100) 1100 1101)

0101)

10000 | 19019 11010y ||0011 [1011)

A 4

11000) 10001} 1001)

Figure 18: A 4-qubit complex Spector cube for the state \/g(2|0000> -
i]0101) + 4[1111)

pair of pairs of cubes) could be used to represent a 5-qubit state.

4.4 Improved search on rugged landscapes

Quantum search landscapes offer a particular challenge to evolutionary algo-
rithms, since they appear to be exceptionally rugged [27]. Ruggedness is a
general problem in search, and there seems to be no reason to expect a prior:
that evolution, good at searching biological spaces, should be naively appli-
cable to other, artificial, search spaces. Current evolutionary algorithms are
certainly nave when compared to the vast richness of the biological processes
[45].

We believe a more advanced approach is appropriate, examining more
sophisticated biological understandings of evolutionary search, and more so-
phisticated design of the representations and search spaces.

36

4.4.1 Representation

The choice of representation of the problem domain affects the ruggedness
of the landscape, and the comprehensibility of the solutions. Even a trivial
change in representation, say to Gray coding, affects the shape of the search
space tremendously. Other changes, such as embedding in higher dimensions,
can have enormous effects on search efficiency (see, for example, [46]).

The languages used to represent the problem can also effect the under-
standability, and generality, of the solution. For example, using higher level
search languages (encoding algorithms, rather than quantum circuits) leads
to more regular, and hence more comprehensible, solutions (§3.4).

We believe that the effect of quantum problem representation on search
efficiency should be explored, particularly the effect of embedding in higher
dimensions and projecting into lower dimensions, and the use of various
higher level representation language designs.

4.4.2 'Trajectories

Traditional evolutionary search is amnesiac: the next search step depends
only on the current population, not on how it was achieved. Yet there is an
enormous amount of valuable information available in the search trajectory:
the history of populations past (see, for example, [47]).

We believe that if the search trajectory through rugged quantum land-
scapes were analysed, it could used to achieve significantly better results
than those found by the final population alone. In particular, if the final
population fails to capture a solution, analysis of trajectory information may
nevertheless yield a (partial) solution.

4.4.3 Predator-prey coevolution

Lewis Carroll’s Red Queen told Alice that “it takes all the running you can
do to keep in the same place” [48]. Van Valen [49] argues that biological
evolution is like this because the environment of one species is constantly
made more difficult by the evolution of other species.

One way to implement the concept of coevolution in evolutionary com-
puting is to evolve the problems to become harder as the solutions become
better [50]; a population of problems is itself subject to evolution in which
fitness is inversely related to the ease with which the current population
of algorithms can solve them. In this way, the initial solution of relatively
easy problems can lead continuously to more powerful algorithms, without
subjecting the early attempts to the full difficulty (ruggedness) of the final
required solution.

37

4.4.4 Higher-level approaches

Second-order encodings (see §2.1.3) seem to support for more structured,
scalable solutions. Such higher-level approaches could be exploited more.
One such approach is Ryan & O’Neill's Grammatical Evolution [51, 52],
which uses a variable length linear genome to encode references to gram-
mar production rules, and uses these rules to generate the program during

the genotype to phenotype mapping, at which point type information can be
added.

4.5 New quantum problems to explore

The majority of the evolved artefacts so far discovered replicate known re-
sults. This is unsurprising: it is relatively early days, and it is safest to search
in places where one knows there are results, and knows that one will recog-
nise them when one finds them. However, having now proved the concept
that non-trivial quantum computing artefacts can be discovered by evolu-
tionary search, it is time to move beyond reproducing known results into
more challenging areas. In this section we suggest some areas that might be
fruitful.

4.5.1 Quantum error correction

Bell inequalities [53] demonstrate the existence of quantum mechanical (or,
rather, non-classical) effects. However, their physical implementation and
experimental evaluation relies on certain data sampling assumptions in the
presence of detector inefficiencies. It is useful to attempt to devise forms of
these inequalities that are robust to such problems. The brute force search
approach is reaching at the limit of conventional computational power, with
each search for a 12-particle inequality requiring roughly 6-CPU months of
search time!. One could next move to a supercomputer, but we suggest
that an evolutionary search technique would also be applicable to this search
problem.

Linear-optics quantum error correction circuits [54] would allow for easy
integration into a quantum technology infrastructure, by moving the difficul-
ties into resource production. In addition, these circuits have a classical limit
that performs useful error correction [55]. The search space, although looking
at ‘small’ problems, is still huge, because the variables are continuous. There
is currently known a 9-wavepacket code [54] (an analogue of Shor’s original

ISam Braunstein, private communication

38

9-qubit code), but this would be exceedingly difficult to implement exper-
imentally. Instead, it is hoped that a linear-optics analogue of the known
5-qubit code could be constructed, which has a much better chance of being
constructed in the lab. We suggest that an evolutionary search technique
might be able to discover such a 5-wavepacket code.

4.5.2 Searching for extreme examples

Meta-heuristic search has been successfully used to find counter-examples
to conjectures in classical domains, such as classical cryptography [56, 18].
There are many conjectures in quantum computation and quantum infor-
mation theory (such as bounds on entanglement, and channel capacities);
These offer suitable targets to meta-heuristic searches for counterexamples.
For example, Spector & Bernstein [39] use genetic programming to discover
new bounds on quantum communication. More sophisticated cases are yet
to be tackled by search, for example conjectures on the number of mutually
unbiased basis vectors in non-prime power dimensions [57].

4.5.3 Probabilistic results

In addition to the global properties, quantum algorithms are intrinsically
probabilistic, and this feature should be exploited more. There is a rich
area of classical probabilistic algorithms (see for example [58]) that should
be carefully examined for quantum possibilities and inspiration.

There are two different interpretations of what “correct with a probability
of p%” can mean: (1) for a certain p% of its inputs, the circuit gives the right
answer every time (2) for all of its inputs, the circuit that gives the right
answer with probability p% each time. Each interpretation leads to different
kinds of cost functions, and different kinds of quantum algorithms.

4.5.4 Quantum protocols

The evolutionary search work has tended to concentrate on quantum algo-
rithms. Quantum protocols also offer a rich area for search, and evolutionary
search has been used to some degree to explore quantum teleportation and
dense coding, as noted above.

Evolutionary techniques have been used with success to discover efficient
classical communication protocols, for example [37], using the classical pro-
tocol reasoning BAN logic [59]. Can this approach be extended to quantum
protocols? How do we need to extend or change the logics to handle quantum
protocols?

39

4.5.5 Other computational models

Most of the work currently evolves quantum circuits of qubits. There are
other models of quantum computation that could be explored.

It is not necessary to restrict the quantum values to be binary qubits:
qudits, d-dimensional quantum values, are worth investigating (see §3.5.4 for
a qutrit example). It is not even necessary to restrict the quantum values
to be discrete: continuous quantum algorithms exist [60], and might form a
‘smoother’ search space. (Of course, the search space is also larger, as noted
in §4.5.1.)

Non-circuit based models of quantum computation, such as quantum cel-
lular automata [61, 62|, and measurement-based quantum machines [63],
could prove to have more tractable search spaces.

4.6 Quantum search

One reason for interest in quantum algorithms is their increased efficiency.
We are interested in metaheuristic search as an efficient (if approximate) way
of exploring the huge search spaces inhabited by quantum artefacts. Can we
come full circle, and use an efficient quantum search algorithm to search for
quantum artefacts?

Grover’s algorithm uses quantum effects to perform searches more effi-
ciently that can classical algorithms, although it is only a square root, not an
exponential, speedup over the classical case. Clark and Stepney [64] suggest
a hybrid approach to search (in a cryptographic context): use a classical
search to reduce a huge search space to a size that makes Grover’s algorithm
feasible.

4.6.1 Quantum random walks

Quantum random walks [65] are quantum analogues of classical random
walks, with very different properties. For example, the probability distri-
bution for a classical random walk is binomial, with a peak at the origin,
and a width O(y/n) after n steps, whilst the probability distribution for a
quantum random walk is strongly peaked at O(£n/y/2). Childs et al [66]
use a quantum random walk algorithm to find a path through a graph expo-
nentially faster than classically. Quantum random walks can be used as the
basis of efficient search algorithms [67].

40

4.6.2 Quantum genetic algorithms

Quantum effects exploit global properties of the state space; genetic algo-
rithms, as explained by the schema theorem, perform an implicitly parallel
search over global hyperplanes in the search space [68]. Can these two global,
parallel processes be combined to produce a quantum genetic algorithm?

Various authors have claimed quantum-inspired genetic algorithms, in-
spired by the concept of interference [69] or superposition of single qubits
[70, 71]. However, these algorithms use representations that are entirely
classical, in that they do not support entanglement of multiple qubits. Thus
they fail to access the exponential state space size (and hence computational
power) of an entangled quantum system. Additionally, the quantum genetic
operators introduced are not unitary. Hence these cannot be considered to
be true quantum genetic algorithms.

More detailed work by Rylander et al [72] suggests that getting a fruitful
combination is non-trivial, as the genetic operators such as crossover are
tricky to move to the quantum domain.

Udrescu et al [73] point out that a single quantum (binary) chromosome
can hold a superposition of all possible states, and a corresponding fitness
register can hold the corresponding fitnesses. Given an oracle that can mark
the fittest states (all the states greater than some f,q., say), then Grover’s
search can be used to find these states, and no quantum genetic operators
are required. However, this approach is infeasible for large chromosomes, as
this final search would still take time exponential in the length of the chro-
mosome, n, growing as O(y/2"). Note that Grover’s search is applicable to
unstructured data, whereas a genetic algorithm attempts to exploit structure
in the search space, in order to reduce an infeasible problem to a feasible one.

So it seems we will need yet further intuition priming to understand how
to combine quantum inspiration with classical results.

References

[1] Susan Stepney and John A. Clark. Evolving quantum programs
and protocols. In Michael Rieth and Wolfram Schommers, editors,
Handbook of Theoretical and Computational Nanotechnology, volume
3, Quantum and Molecular Computing, Quantum Simulations, chap-
ter 3, pages 113-160. American Scientific Publishers, 2006.

[2] M. Weiser. The computer for the 21st century. Scientific American,
265(3):66-75, Sept 1991.

41

3]

[13]

[14]

[15]

Gordon E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8):114-117, 1965.

Richard P. Feynman. Simulating physics with computers. Int. J. Theor.
Phys., 21(6/7):467-488, 1982.

Paul Benioff. The computer as a physical system: a microscopic quan-
tum mechanical hamiltonian model of computers as represented by
turing machines. J. Stat. Phys., 22:563-591, 1980.

Paul Benioff. Quantum mechanical hamiltonian models of turing ma-
chines that dissipate no energy. Phys. Rev. Lett., 48:1581-1585, 1982.

David Deutsch. Quantum theory, the church-turing principle and the
universal quantum computer. Proc. R. Soc. Lond. A, 400:97-117, 1985.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

Peter Shor. Algorithms for quantum computation: discrete log and
factoring. In Proc. 35th Ann. Symp. Foundations of Computer Science,
pages 124-134. IEEE, 1994.

Dirk Boumeister, Artur Ekert, and Anton Zeilinger, editors. The
Physics of Quantum Information: Quantum Cryptography, Quantum
Teleportation, Quantum Computation. Springer, 2000.

Colin P. Williams and Scott H. Clearwater. Ezplorations in Quantum
Computing. Springer, 1997.

Colin P. Williams and Alexander G. Gray. Automated design of
quantum circuits. In Quantum Computing and Quantum Communi-
cations: First NASA Conference (QCQC’98), LNCS 1509, pages 113—
125. Springer, 1999.

Lee Spector, Howard Barnum, Herbert J. Bernstein, and Nikhil Swamy.
Quantum computing applications of genetic programming. In Advances
in Genetic Programming 3, pages 135-160. MIT Press, 1999.

Wolfgang Kantschik and Wolfgang Banzhaf. Linear tree GP and its
comparison with other GP structures. In FuroGP 2001, LNCS 2038,
pages 302-312. Springer, 2001.

André Leier and Wolfgang Banzhaf. Evolving Hogg’s quantum algo-
rithm using linear-tree GP. In GECCO 2003 [74], pages 390-400.

42

[16]

[17]

[18]

[19]

[20]

[21]

Lee Spector. Automatic Quantum Computer Programming: a genetic
programming approach. Kluwer, 2004.

D. DiVincenzo and J. Smolin. Results on two-bit gate design on quan-
tum computers. In W. Porod and eds G. Frazier, editors, Proc. 2nd
Workshop on Physics and Computation (PhysComp '94), pages 14-23.
IEEE, 1994.

John A. Clark, Jeremy L. Jacob, and Susan Stepney. Searching for cost
functions. In CEC 200/ [75], pages 1517-1524.

Martin Lukac, Marek Perkowski, Hilton Goi, Mkhail Pivtoraiko,
Chung Hyo Yu, Kyusik Chung, Hyunkoo Jee, Byung guk Kim, and
Yong-Duk Kim. Evoluationary approach to quantum reversible cir-
cuits synthesis. Artificial Intelligence Review, 20:361-417, 2003.

Taro Yabuki and Hotoshi Iba. Genetic algorithms for quantum circuit
design — evolving a simpler teleportation circuit. In Late Breaking
Papers at GECCO 2000, pages 425-430, August 2000.

Paul Massey, John A. Clark, and Susan Stepney. Evolving quantum
circuits and programs through genetic programming. In GECCO 2004
[76], pages 569-580.

Howard Barnum, Herbert J. Bernstein, and Lee Spector. A quantum
circuit for or. quant-ph/990756, 1999.

L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy. Genetic pro-
gramming for quantum computers. In Genetic Programming 1998,
pages 365-374. Morgan Kauffman, 1998.

L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy. Finding a
better-than-classical quantum and/or algorithm using genetic program-
ming. In CEC 1999, pages 2239-2246. IEEE, 1999.

Chris Lomont. Quantum circuit identities. quant-ph/0307111, 2003.

D. Maslov, C. Young, D. M. Miller, and G. W. Dueck. Quantum circuit
simplification using templates. In Proc. Conference on Design, Au-
tomation and Test Europe (DATE 05), pages 1208-1213. IEEE, 2005.

André Leier and Wolfgang Banzhaf. Exploring the search space of
quantum programs. In CEC 2003, pages 170-177. IEEE Press, 2003.

43

[28]

[29]

[30]

[31]
[32]

[33]

H. Barnum, H. J. Bernstein, and L. Spector. Quantum circuits for or
and and of ors. J. Physics A: Mathematical and General, 33(45):8047—
8057, November 2000.

Tad Hogg. Solving highly constrained search problems with quantum
computers. J. Artificial Intelligence Research, 10:39-66, 1999.

Paul Massey, John A. Clark, and Susan Stepney. Human-competitive
evolution of quantum computing artefacts by genetic programming.
FEvolutionary Computation Journal, 14(1):22-40, 2006.

Phil Gossett. Quantum carry-save arithmetic. quant-ph /9808061, 1998.

Paul Massey, John A. Clark, and Susan Stepney. Evolution of a human-
competitive Quantum Fourier Transform algorithm using genetic pro-
gramming. In GECCO 2005, pages 1657-1664. ACM Press, 2005.

Manoj Jesu Rethinam, Amil Kumar Javali, E. C. Behrman, J. E. Steck,
and S. R. Skinner. A genetic algorithm for finding pulse sequences for
NMR quantum computing. quant-ph/0404170 v1, April 2004.

Neil A. Gershenfeld and Isaac L. Chuang. Bulk spin-resonance quantum
computing. Science, 275:350-356, January 1997.

M. H. A. Khan and M. Perkowski. Genetic algorithm based synthesis of
multi-output ternary functions using quantum cascade of generalized
ternary gates. In CEC 2004 [75], pages 2194-2201.

Rodney Van Meter and Kevin Binkley. Compiling quantum programs
using genetic algorithms. In The Wild and Crazy Idea Session IV
and abstracts and part of 11th Intl. Conf. Architectural Support for
Programming Languages and Operating Systems, October 2004.

John A. Clark and Jeremy L. Jacob. Protocols are programs too: the
meta-heuristic search for security protocols. Information & Software
Technology, 43(14):891-904, December 2001.

G. Brassard. Teleportation as quantum computation. In Proc. 4th
Workshop on Physics and Computation, New England Complex Sys-
tems Institute 1996, 1996. Also as quant-ph/9605035.

L. Spector and H. J. Bernstein. Communication capacities of some
quantum gates and discovered in part through genetic programming.
In Proc. 6th Int. Conf. Quantum Communication and Measurement
and and Computing (QCMC), pages 500-503. Rinton Press, 2003.

44

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Ben I. P. Rubinstein. Evolving quantum circuits using genetic pro-
gramming. In CEC 2001 [77], pages 144-151.

lain Brown, Susan Stepney, Anthony Sudbery, and Samuel L. Braun-
stein. Searching for multi-qubit entanglement. Journal of Physics A,
38:1119-1131, 2005.

André Leier and Wolfgang Banzhaf. Comparison of selection strategies
for evolutionary quantum circuit design. In GECCO 2004 [76], pages
557-568.

George F. Viamontes, Manoj Rajagopalan, Igor L. Markov, and John P.
Hayes. Gate-level simulation of quantum circuits. quant-ph/0208003,
2002.

Andrew J. Booker, J. E. Dennis Jr., Paul D. Frank, David B. Serafini,
Virginia Torczon, and Michael W. Trosset. A rigorous framework for
optimization of expensive functions by surrogates. Structural Optimiza-
tion, 17(1):1-13, 1999.

Susan Stepney, Tim Clarke, and Peter Young. Plazzmid: An evolution-
ary agent-based architecture inspired by bacteria and bees. In EFCAL
2007, Lisbon, Portugal, September 2007, LNCS. Springer, 2007.

John A. Clark, Jeremy L. Jacob, S. Maitra, and P. Stanica. Almost
Boolean Functions: the design of boolean functions by spectral inver-
sion. Computational Intelligence, 20(3):450-462, 2004.

John A. Clark and Jeremy L. Jacob. Fault injection and a timing
channel on an analysis technique. In Furocrypt 2002, LNCS 2332,
pages 181-196. Springer, 2002.

Lewis Carroll. Through the Looking-Glass (and what Alice found there).
Macmillan & Co, 1872.

Leigh Van Valen. A new evolutionary law. Fwvolutionary Theory, 1:1—
30, 1973.

W. Daniel Hillis. Co-evolving parasites improve simulated evolution as
an optimization procedure. Physica D, 42:228-234, 1990.

Michael O’Neill and Conor Ryan. Grammatical FEvolution: Evolution-
ary Automatic Programming in an Arbitrary Language. Kluwer, 2003.

45

[52]

[53]

[54]

[60]

[61]

Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution:
Evolving programs for an arbitrary language. In EuroGP’98, LNCS
1391, pages 83-96. Springer, 1998.

John S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195—
200, 1964.

Samuel L. Braunstein. Error correction for continuous quantum vari-
ables. Phys. Rev. Lett., 80:4084-4087, 1998.

Samuel L. Braunstein. Quantum error correction for communication
with linear optics. Nature, 394:47-49, 1998.

John A. Clark, Jeremy L. Jacob, Susan Stepney, S. Maitra, and William
Millan. Evolving boolean functions satisfying multiple criteria. In
INDOCRYPT 2002, LNCS 2551, pages 246-259. Springer, 2002.

M.. Planat, H. C. Rosu, and S. Perrine. A survey of finite algebraic
geometrical structures underlying mutually unbiased quantum mea-
surements. Foundations of Physics, 36(11):1662-1680, 2006.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

Michael Burrows, Martin Abadi, and Roger Needham. A logic of au-
thentication. Technical Report SRC Research report 39, February 1989.
http://gatekeeper.research.compaq.com/pub/DEC/SRC /research-
reports/abstracts/src-rr-039.html.

S. L. Braunstein and A. K. Pati, editors. Quantum Information with
Continuous Variables. Springer, 2003.

Gavin K. Brennan and Jamie E. Williams. Entanglement dynamics in
one-dimensional quantum cellular automata. Phys. Rev. A, 68:042311,
2003.

B. Schumacher and R.F. Werner. Reversible quantum cellular au-
tomata. quant-ph/0405174, 2004.

Simon Perdrix and Philippe Jorrand. Measurement-based quantum
Turing Machines and their universality. quant-ph/0404146, 2004.

John A. Clark and Susan Stepney. Fusing natural computational
paradigms for cryptanalysis. or, using heuristic search to bring crypt-
analysis problems within quantum computational range. In CEC' 2006,
pages 200-206. IEEE, 2006.

46

[65]

[66]

[67]

[68]

[69]

[70]

Julia Kempe. Quantum random walks — an introductory overview.

Contemporary Physics, 44(4):307-327, 2003.

Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam
Gutmann, and Daniel A. Spielman. Exponential algorithmic speedup

by quantum walk. In Proc. 35th ACM Symposium on Theory of Com-
puting (STOC 2003), pages 59-68. ACM, 2003.

Neil Shenvi, Julia Kempe, and K. Birgitta Whaley. A quantum random
walk search algorithm. Phys. Rev. A, 67(5):052307, 2003.

John H. Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, 1975.

Ajit Narayanan and Mark Moore. Quantum inspired genetic algo-
rithms. In International Conference on FEwvolutionary Computation,
ICEC-96, pages 61-66. IEEE, 1996.

Kuk-Hyun Han and Jong-Hwan Kim. Quantum-inspired evolutionary
algorithm for a class of combinatorial optimization. IEEFE Trans. Fvol.
Comp., 6(6):580-593, December 2002.

Kuk-Hyun Han and Jong-Hwan Kim. Quantum-inspired evolutionary
algorithms with a new termination criterion, h. gate, and two-phase
scheme. IEEE Trans. Evol. Comp., 8(2):156-169, April 2004.

Bart Rylander, Terry Soule, James Foster, and Jim Alves-Foss. Quan-
tum evolutionary programming. In GECCO 2001, pages 1005-1011.
Morgan Kauffman, 2001.

Mihai Udrescu, Lucian Prodan, and Mircea Vladutiu. Implementing
quantum genetic algorithms: a solution based on Grover’s algorithm.
In Proc. 3rd Conference on Computing Frontiers, Ischia, Italy, May
2006, pages 71-82. ACM, 2006.

Genetic and FEvolutionary Computation Conference: GECCO 2003,
Chicago IL, USA, July 2003, LNCS 2724. Springer, 2003.

International Conference on FEvolutionary Computation: CEC 2004,
Portland OR, USA, June 2004. IEEE, 2004.

Genetic and Fvolutionary Computation Conference: GECCO 2004,
Seattle, USA, June 2004, LNCS 3103. Springer, 2004.

47

[77]

[78]

[79]

[30]

[81]

[82]

[83]

[84]

[87]

[38]

[39]

[90]

International Conference on Evolutionary Computation: CEC 2001,
Seoul, South Korea, May 2001. IEEE Press, 2001.

Eleanor G. Rieffel and Wolfgang Polak. An introduction to quantum
computing for non-physicists. ACM Computing Surveys, 32(3):300—
335, September 2000.

David Deutsch and Richard Josza. Rapid solution of problems by quan-
tum computation. Proc. R. Soc. Lond. A, 439:553-558, 1992.

Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proc. 28th Ann. ACM Symp. on the Theory of Computing
(STOC), pages 212-219, 1996.

Hoi-Kwok Lo, Sandu Popescu, and Tim Spiller, editors. Introduction to
Quantum Computation and Information. World Scientific Publishing,
1998.

N. David Mermin. From classical state-swapping to quantum telepor-
tation. quant-ph/0105177 v4, 2002.

Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern
Heuristics. Springer, 2000.

Sanjeev Kumar and Peter J. Bentley, editors. On Growth, Form and
Computers. Elsevier, 2003.

Leandro de Castro and Jonathan Timmis. Artificial Immune Systems:
a new computational intelligence approach. Springer, 2002.

Ingo Rechenberg. FEvolutionsstrategie: Optimierung Technisher Sys-
teme nach Prinzipien der Biologischen FEvolution. Frommann-
Holzboog, 1963.

Thomas Béck. Fvolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

Lawrence J. Fogel. Biotechnology: Concepts and Applications. Prentice
Hall, 1963.

John H. Holland. Genetic algorithms and the optimum allocation of
trials. SIAM J. Comp., 2(2):88-105, 1973.

David E. Goldberg. Genetic Algorithms in Search and Optimization
and Machine Learning. Addison-Wesley, 1989.

48

[91]

[92]

[93]

[94]

[99]

[100]

[101]

A

David E. Goldberg. The Design of Innovation: Lessons from and for
Competent Genetic Algorithms. Kluwer, 2002.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
1996.

G. R. Harik, F. G. Lobo, and David E. Goldberg. The compact genetic
algorithm. IEEFE Trans. Fvol. Comp., 3(4):287-297, 1999.

Allen E. Nix and Michael D. Vose. Modeling genetic algorithms with
Markov chains. Annals of Mathematics and Artificial Intelligence,
5(1):79-88, 1992.

John R. Koza. Genetic Programming: on the programming of comput-
ers by means of natural selection. MIT Press, 1992.

John R. Koza. Genetic Programming II: automatic discovery of
reusable programs. MIT Press, 1994.

John R. Koza, Forrest H. Bennett III, David Andre, and Martin A.
Keane. Genetic Programming III: Darwinian invention and problem
solving. Morgan Kaufmann, 1999.

John R. Koza, Martin A. Keane, Matthew J. Streeter, William Myd-
lowec, Jessen Yu, and Guido Lanza. Genetic Programming IV: routine
human-competitive machine intelligence. Kluwer, 2003.

Kenneth E. Kinnear Jr, editor. Advances in Genetic Programming.
MIT Press, 1994.

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Fran-
cone. Genetic Programming, An Introduction: on the automatic evo-

lution of computer programs and its applications. Morgan Kaufmann,
1998.

Guy L. Steele. Common Lisp the Language and 2nd edition. Digital
Press, 1990.

Quantum circuits

This appendix gives a brief overview of the quantum concepts necessary
for the paper: qubits, Dirac notation, unitary operations, and the pictorial
representation of quantum gates and circuits. A good introduction to these

49

concepts can be found in [8, 78]. This appendix assumes an understanding
of complex numbers and matrix operations.

A classical computational bit can be in one of two states: 0 or 1. A
corresponding two-state quantum bit, or qubit, may similarly be in one of
two computational ‘basis states’, denoted by |0) and |1), but can also exist
in a complex superposition of these states. A superposition |¥) is denoted
by |[¥) = «|0) + 3|1) where the coefficients o and [are complex numbers
normalised so that |a|? + |5]? = 1.

The state is not directly observable as a superposition. When observed,
the state is found to be |0) with probability |a|?, or |1) with probability |3|>.
a and [are complex probability amplitudes.

The notation |¥) is the conventional Dirac notation shorthand for a col-

umn vector: 0) = < (1)) SIS ((1)) (16)

w=al0sm=alg)es(])=(5) an

So a one-qubit system forms a 2 dimensional space, spanned by the 2 or-
thonormal basis vectors |0) and |1).

A quantum operation is a reversible operation, represented as a unitary
matrix acting on the relevant state vector. (A matrix U is unitary iff UUT =
UtU = I,,, where Ut is the complex conjugate transpose of U, UT = U*T and
I,, is the n x n identity matrix.) For example, the unitary NOT operation N

v=(5)ivm=(1) (5)-(5)=s0+am as

One important quantum gate is the Hadamard gate, which turns pure
states into superpositions:

1
= (4 1) HIO = B0+) H I = S0 - 1) (9
Multiple quantum operations are combined by matrix multiplication (it
is easy to see that the product of two unitary matrices is also unitary).
An n qubit system forms a 2™ dimensional space, spanned by 2" orthonor-
mal basis vectors |k) (a particular k is conventionally written in binary nota-
tion, where each of the n individual digits correspond to one of the n qubits).

Any state vector |¥) may be written in terms of its components with respect
2m—1

to this basis, |¥) = > ay|k), where the oy are the normalised complex
k=0

50

21

probability amplitudes, > |ax|? = 1. So, for example, a two qubit state
k=0

vector can be written

Qg
aq
Q2
a3

| D) = g 00) + ay [01) + a2 [10) + a5 [11) = (20)

A unitary operation on an n qubit system is represented by a 2" x 2"
unitary matrix. For example, consider the 2-qubit controlled not, or C'N,
operator that flips the value of the second qubit if the first has a value of 1,
and leaves it unchanged if the first has a value of 0.

1000
0100

CN = 000 1 (21)
0010

Operations on only a single qubit may nonetheless affect every probability
amplitude in a state vector. For example, in a two-qubit system, applying a
NOT operation to the first qubit carries out the following transformation:

0 [00)+ary [01)+as |10)+as |11) X2 ay [00)+ a3 [01)+a [10) 4+ |11) (22)

The single qubit NOT operator already defined in equation (18) can be
‘lifted’ to an n-qubit system, by using a tensor product. So the 2-qubit
operator that acts as a NOT on the first qubit, and the identity on the

second, is
10 10
Neol — 01®10_0X01 {01
2 10 01—1><10 ox (10
0 1 0 1
0010
0001
“ 11000 (23)
0100

Similarly, the 2-qubit operator that acts as a NOT on the second qubit,
and the identity on the first, is I, ® N. (More work is needed to lift n-qubit
operations to m > mn qubit systems if they are not applied to n contiguous
qubits in the m qubit space, but the principle of tensor products is still used.)

51

Figure 19: An example quantum circuit diagram

A quantum circuit is a sequence of quantum operations (or quantum
‘gates’) that act on an initial quantum state to produce the final quantum
state. A common way to represent this is using a quantum circuit diagram.
Each qubit is represented as a horizontal ‘wire’, and the unitary operations
as ‘gates’ on the relevant wires, read from left to right. If a qubit is not acted
on by a gate, there is an implicit tensor product with the identity transform
on that qubit. So, consider a three-qubit example, where the initial state of
the system is |Oyx), and is operated on by a circuit that applies a Hadamard
operator to the first qubit, then a NOT to the third, then a controlled not
to the second controlled by the first. In matrix form, this is

(CN ® L)1, ® N)(H ® 1) |0yx) (24)

The corresponding quantum circuit diagram form is shown in figure 19.
The diagram makes it easier to see what operations are being applied to what
qubits. However, care should be taken in reading such diagrams, in particu-
lar, in not assuming that the wires hold the ‘values’ of individual qubits. In
some cases it is possible to express the final state as a tensor product of in-
dividual qubit states, and so meaningfully assign states to individual qubits.
For example, after the application of just the Hadamard gate, the state of
the system is a tensor product. However, in general the final superposition
is not expressible as a tensor product; we can talk only about the state of
the whole system, not the states of individual qubits.

B Quantum Algorithms

There are very few distinct quantum algorithms yet known. Indeed, it was
this observation that prompted the authors to engage in using search tech-
niques to look for quantum algorithms in the first place. This appendix
gives an overview of known quantum algorithms that are often the target of
evolutionary search.

52

B.1 Deutsch-Josza Promise

Quantum computation seems particularly suited to problems where some
‘global property’ is sought. The first such algorithm to demonstrate faster
than classical was the Deutsch-Josza promise algorithm [79]. Suppose a black
box calculates the value of a Boolen function f(x) over arangex =0...2"—1,
and there is a guarantee, or promise, that the function is either constant
(f(x) =0, or f(z) = 1, for all z) or is balanced (equal numbers of input
values x give f(z) = 0 as give f(z) = 1). How much effort is required to
determine whether the function is constant or balanced?

For the simplest case of x in the range 0...1, we must carry out two
classical function evaluations. But in the quantum case we need only one.
Since this initially seems such a counter-intuitive result, we describe the
working of the Deutsch-Josza algorithm in some detail.

Start with the state |0)|1) = |01). Now apply the Hadamard transforma-
tion to the first and then to the second qubit, to give

) = 5 (10) (10) = [1)) +[1) (J0) — 1)) (25)

Now apply the unitary function Uy defined by

Uypla) ly) = |2) ly © f(x)) (26)

to give

Up W) = 5 (10)(I£(0)) — [T & £(0))) + 1) (If (1)) — [1 & f(1))))

(=110} (0) = 1) + (=)W 1) (jo) — 1)) (27)

1
2
1
2

Now we have

+5 (10) + 1)) (0) = 1)), i £(0) = f(1)
+5 (10) = [1)) ([0) = [1)), 3 £(0) # f(1)

So the first qubit takes each of two orthogonal values depending on
whether the function is balanced or not. Now apply the Hadamard transfor-
mation to the first qubit, to obtain

@) =+ (1£(0)) & |£(1))) (10) — 1)) (29)

So by measuring the value of the first qubit (one measurement) we can
determine with certainty whether the function is balanced.

Although we are able to determine whether the function is constant or
balanced with a single measurement, we cannot characterise the exact func-
tion. If the function is constant we cannot tell whether it is f(0) = f(1) =0

Uy [w) = { (28)

53

or f(0) = f(1) = 1. We have given up specific information on values of f(x)
for a global property of all such values.

The above algorithm can be extended to work equally efficiently on n
variables.

Calculating global properties efficiently seems to be a task to which quan-
tum computation is well suited. The promise problem is a very restricted
one, with little practical application but its solution is theoretically impor-
tant. The exploitation of quantum phenomena for global property elicitation
seems a promising avenue for further work, both for quantum algorithm de-
velopment by theorists and evolutionary search advocates.

B.2 Grover’s Algorithm: searching an unstructured
database

Consider a function f on the domain 0...2" — 1 with a single value v in
this domain such that some predicate p(v) = true. Can we find this index
value v? In classical computing our best attempt is enumeration, which
on average takes 2" ! tests. Full enumeration takes 2" tests. Grover [80],
however, demonstrates how a quantum search of O(\/Q_”) is possible.

Although the various papers talk about unstructured ‘database’ search,
the principal applications are those for which the database values are calcu-
lated. First place the system in a superposition

2" —1

jQ_n >) (30)

Now apply the operator U, defined such that it inverts the amplitude if
the predicate is satisfied:

=), r=v
Uv|x>—{|x>7 © 4 (31)

It is possible also to apply an operator that inverts about the average:

1tk & —
2 2 2
< _1_|__ &
N N N
2 2 2. <32>
= = T -

The application of these two operators in succession is shown in figure 20.
Inverting the amplitude of the identified element reduces the average ampli-
tude. When we invert about this new average the amplitude of the identified

o4

(a)""" (b)"' | (c)‘

Figure 20: Amplitudes during execution of Grover’s algorithm: (a) super-
position of states (b) after inversion of identified element (c) after inversion
about average value (dashed line)

element is increased (but all the others are decreased). By repeating this
process we can further increase the amplitude of the identified element (and
so increase our chances of observing this element). We omit the details here,
but the description provides a rough motivation for the algorithm.

There are enhancements of this algorithm. The original algorithm gave
a 50% chance of seeing the right result. Subsequent developments have pro-
duced more reliable variants. Also, the approach can be extended to cater
for several index states satisfying the predicate of interest. If there are R
such ‘marked states’ the algorithm will deliver one such state in a search of
order O(y/2"/R). (The original single marked state algorithm has R = 1.)
However, the procedure can easily be overcooked; perform too many itera-
tions and the amplitudes of interest will start to decrease in magnitude. The
optimal number of iterations depends on the number R of marked states.
(This may not be known, but quantum state counting algorithms have been
developed; see [8].) A summary of Grover’s algorithm can be found in [81].

Grover’s search can be regarded as the quantum analogue of brute force
enumeration. It does not avail itself of structure in a particular problem (this
is what is meant by the term ‘unstructured database’).

B.3 Shor’s Quantum Discrete Fourier Transform

In 1994 Peter Shor’s Quantum Discrete Fourier Transform (QDFT) [9] gave
quantum computing its ‘killer application’: composite number factorisation.
Shor showed how the QDFT could be used to determine the periodicity of
given function in polynomial time. A result from 19" century number theory
shows how obtaining the period of a particular function can allow composite
numbers to be factorised. Hence the QDFT gives a polynomial-time factori-
sation algorithm on a quantum computer. Much public key cryptographic
security depends on the supposed computational difficulty of factorisation.
We do not give the details of the algorithm here: suffice it to say that the
algorithm bumps up probabilities of states that are some multiple of periods

95

[¥)
0) q

0) — H (XHZ- W)

Figure 21: Teleportation circuit

%

af

A\

part.

The QDFT has applications to other problems, for example phase esti-
mation and order finding. The general hidden subgroup problem remains a
significant focus of interest. (See [8, Chapter 5].)

B.4 Teleportation

Teleportation uses properties of quantum mechanics to transport precisely a
qubit state from one location to another. A simple teleportation circuit is
shown in figure 21.

The first two gates (Hadamard and controlled-NOT) place the second
and third qubits in a mazimally entanged state. This is done in advance of
preparing the source qubit |¥). The second qubit is sent to Alice and the
third qubit (now entangled with the second) is sent to Bob. Now suppose
the qubit state we Alice wants to transmit is

(W) = al0) +0]1) (33)

After the next two operations (controlled-NOT and Hadamard) the state
of the system is

@) = 5 (100)(al0) +b[1)) + [01) (a|1) +b]0))
+110) (a0) = b 1)) +[11) (a 1) — b]0))) (34)

In each of the four state components the third qubit’s state is defined by a
simple transformation of that of the original source qubit. If Alice measures
the values of the first two qubits the state reduces to a normalised form of one
of the four components. If Alice informs Bob of the measurenment results
(M1 and M2) Bob can uses this information to apply a suitable inverse
transformations to his third entangled qubit to recover the value of the first
source qubit.

For example, if Bob is informed that two measured values were |01) he
can deduce that the remaining state is

|®) = 101) (a[1) +5]0)) (35)

56

By applying the transformation X to the his (third) qubit Bob can recre-
ate the initial ¥, since

“(a)=(ro)(2)=(3) w

If, on the other hand, Bob is informed that two measured values were
|11) he can deduce that the remaining state is

|®) = [11) (a 1) = 0]0)) (37)

Then by applying the transformation X followed by Z, Bob can recreate
the initial V¥, since

(0)=0) () ()=(6) e

The general solution is to apply X*?2 followed by Y !, where X*? means
apply X if M2 = 1 and do nothing otherwise (that is, apply the identity)
etc.

Note that the original state in Alice’s source qubit is lost. It has been
spirited away to Bob’s qubit. No information has been created. (It is a fea-
ture of quantum information that it cannot be copied. This is the celebrated
‘no-cloning’ theorem.) A state infinitely rich in information (any values of a
and b may be used) has been teleported across to another place at the ex-
pense of sending only two classical bits of information. However, we cannot
extract all this information by measurement; when measured we will see a
|0) or a |1).

Teleportation shows us the power of entanglement as a resource. We have
presented it here as an algorithm, but we might just as easily consider it a
basic gate. It all depends on what level of abstraction we wish to use.

The teleportation circuit provides an analogue of a well known classical
state swapping algorithm. Suppose x and y are locations containing bit
values. A traditional approach to swapping involves the use of a temporary
location z. The program is

zi=x;, ri=y;, yi=z; (39)

A more efficient solution that uses no tempory location, and the XOR
function, is
r=r®y; y=xd0yY; T:=xDY; (40)
Starting with the classical circuit for this program, Mermin [82] carries
out justified replacements to derive a quantum analogue, which is the telepor-
tation circuit above. This work is intriguing since it suggests the possibility
of a more systematic approach to finding quantum analogues of classical
circuits.

57

C Evolutionary Computation

This appendix gives some background and terminology on search and evolu-
tionary algorithms in general. Michalewicz & Fogel [83] provide an excellent
introduction to a range of modern heuristic search techniques.

C.1 Search terminology
C.1.1 Solution space and objective function

The solution space Y is the space comprising the real world artefacts of
interest. In our case it is the space of quantum circuits, quantum protocols,
and so on.

The objective function ¢ : ¥ — R measures the real world property to be
optimised, such as accuracy, efficiency, circuit size, and so on. ¢ maps each
element of the solution space to a real number that expresses how ‘good’ it
is, in terms of the real world property.

If there are multiple objectives (such as simultaneous high accuracy and
small circuit size), ¢ can be generalised into an objective vector and used
to pursue multi-objective optimisation, or the objectives can be suitably
weighted and combined in a single ¢. From now on, we assume a scalar
objective function.

C.1.2 Search space

Before optimal solutions can searched for, they need to be encoded into some
computer representation convenient for search. The chosen representation
forms the search space S.

The choice of search space is an important modelling decision. It should
both fit the problem naturally, and be searchable by the chosen algorithm.
The search space may be closely related to the solution space (for example, a
simple numerical representation of certain parameters of interest), or it may
be a less direct representation (for example, a computer program that, when
executed, generates the solution space element). That is, the representation
function I' : S — 3, that maps the search space to the solution space, may
be simple, or extremely complicated. For example, interesting work is being
done on representation functions that correspond to a ‘developmental’ phase
that ‘grows’ from a search space ‘seed’ to the solution space ‘organism’ [84].

The simplest, and possibly most common, choice of search space is bit
strings of length n, S = {0,1}", that directly encode the parameter values
being optimised as a binary value. More structured strings of integers and
characters may be used, for example, encoding gate type and parameters.

58

The search space may comprise computer programs, that on execution
produce (a description of) a candidate quantum circuit. Execution can be
thought of as application of the representation function I'.

C.1.3 The fitness landscape

The evaluation function f : S — R evaluates each element of the search
space. This function should be in a form suitable for efficient computation,
and for use by the chosen search algorithm.

Clearly, f should also be correlated with the objective function ¢: that
is, optimising the fitness should simultaneously optimise the objective. It is
common merely to take f = I'o ¢, effectively ignoring the distinction. In the
case of very indirect encodings, this may be necessary, as there may be no
other useful relationship between the search and solution spaces. But it is
not necessary in general, and transforming the evaluation function in some
suitable way can dramatically alter the efficiency of the search: the choice of
evaluation function is as much a modelling decision as the choice of search
space representation. Furthermore, it is not even necessary to require strict
simultaneous optimisation, provided that the optima of f give ‘good enough’
answers when transformed into the solution space, or give answers suitable
as the starting points for more refined searches.

f is usually called the fitness function if it is being maximised, and the
cost function if it is being minimised, although terminology is not consistent.
Some search implementations require f to be positive.

The fitness function is often described as defining a fitness landscape
over the search space, by analogy to the way height information describes a
topographical landscape over physical space in the world. Thinking of the
fitness function in these terms, it becomes natural to talk of ‘peaks’ of fitness
by analogy with mountain peaks, and of ‘hill climbing’ as a way of ascending
to the peaks. A local optimum is then any peak, and the global optimum
is the highest peak in the landscape, the fitness Everest. (When using cost
functions, the terminology is of ‘valleys’.) The analogy holds most closely
when the search space is a 2-dimensional space of real numbers. In practice,
the search space is more often bit strings or computer programs, and the
analogy becomes more strained, since the space no longer has the continuity
or topology of the original.

C.1.4 Evaluation

For simple representations, the fitness of a candidate solution s can be eval-
uated directly, in terms of the appropriate fitness function, as f s.

59

In the case where there is a large distance between the search space and
solution space, for example in the case of searching ove the space of computer
programs, it is usually necessary to calculate the fitness in terms of the
solution space objective function, as there is no simpler way of evaluating it,
as ¢ I's. So every candidate solution has to be ‘grown’.

For candidates that are computer programs intended to run on a range
of inputs, the fitness is evaluated on a sample of all possible inputs.

C.1.5 Search algorithm

The task of the search algorithm is to find the global optimum, or, more
usually, a ‘sufficiently good’ local optimum. There are two main classes of
search algorithms: solitary and population based.

Solitary algorithms (for example, hill climbing, simulated annealing) con-
sider a single search point s at each iteration step, and generate a trace, or
trajectory, of (search point, evaluation result) pairs T; = ((So,70), - - - (S¢,7¢)),
where r; = [s;.

Population-based algorithms (for example, evolutionary algorithms, swarm
algorithms, immune algorithms) consider a vector of search points s at each
step, and generate a trajectory of sets of (search point vector, evaluation
result vector) pairs T; = ((So, o), ... (S, r¢)). (The length of each vector may
be a function of the iteration step, if the population size can vary.)

The heart of the search algorithm is its move function, which determines
which part of the space to sample next, given the results from the already
sampled space, M : T — S* (where k is the population size). Commonly,
the move function is memoryless; it is a function of only the current state
(st,1¢), and not of the entire trajectory. Less commonly it takes into account
some information about earlier states (for example, tabu searches), and less
commonly still, the entire trajectory of the search so far.

The algorithm also needs a starting point, sg. This is often a random start
state, or may be seeded with ‘good’ known solutions, especially in hybrid
searching combining several algorithms. However, this may sometimes bias
the search away from much better but very different solutions.

Populations tend to contain on the order of 100-1000 individuals, but
much smaller populations are also used.

C.2 Evolutionary algorithms in general

The biological process of evolution provides the metaphor for evolutionary
search algorithms (EAs). The search space comprises a population of ‘chro-
mosomes’, encoding candidate solutions. Each chromosome has several fields,

60

with values called ‘alleles’. The most general form of an EA has the following
pattern:

initialise population ;

while not stopped
evaluate population ;
select parents of next generation ;
breed next generation ;

return fittest in population ;

The specific algorithms incorporate a multitude of variations and optimi-
sations around this theme.

Initialisation and evaluation are covered in the generic search terminol-
ogy; what moslty distinguishes evolutionary algorithms is their selection and
breeding compnents.

C.2.1 Selection

The ‘parents’ who are to provide the input to the next generation are selected
based on their fitness: fit parents are selected preferentially over less fit ones.

Possibly the simplest process is to choose the top n% of the population.
However, there is usually some random element in the selection process, to
help preserve some diversity.

With roulette wheel selection, the chance of being chosen as a parent is
directly proportional to fitness value. This can sometimes lead to premature
convergence if a badly sub-optimal but relatively very fit solution occurs
early. This can be overcome with ranked selection, where the chance of
being chosen is instead proportional to the parent’s fitness ranking.

These processes require the fitness of the entire population to be known.
In some cases, this can be too expensive to calculate. Tournament selection
overcomes this problem. Candidates are selected at random for a tournament,
and the fittest of these goes on to become a parent.

Many algorithms allow the possibility of elitism: keeping the best of the
previous generation in the next, to ensure good solutions are not lost because
of failure to be selected, or unfortunate variation.

C.2.2 Inheritance and variation

Offspring chromosomes are derived from parent chromosomes by inheritance
and variation. Inheritance is simple copying of the chromosome. Inherited
material is varied by the genetic operators of ‘mutation’, and, in some EAs,
of ‘crossover’, the combination of chromosomes from two parents.

61

Mutation is controlled by mutation probability parameters. The muta-
tions possible depend on the data types in the chromosome. For a binary bit
string chromosome, each bit may be flipped with the parameterised proba-
bility. For real number alleles, the value may be changed probabilistically
by a small random amount. For tree-shaped chromosomes, a mutation may
involve randomly selecting a node, and replacing its subtree with a random
subtree.

One-point crossover of strings involves selecting a random position in the
strings, then taking the value of the first string up to this point, and the
second string beyond. More complicated crossover arrangements, with mul-
tiple crossover points, are also used. The simplest versions of these schemes
require all chromosomes to be the same length. It is also important to ensure
a representation that remains valid after such an operation.

Crossover of tree-based representations is achieved by swapping subtrees.
There is precious little biological inspiration to guide the design of tree-
based crossover operators, because of the non-linear nature of the artificial
chromosome being manipulated. However, it still conforms to the original
abstract concept of “inheritance + variation + selection = evolution”, despite
its distance from the biological realisation of this concept.

C.2.3 Stopping condition

The stopping condition usually combines current best fitness and number of
iterations.

The search stops if a good enough solution has been produced. This
requires setting some acceptable threshold fitness to be passed. The search
also stops once a certain threshold number of generations been run. The
result in either case is the current best member of the population.

C.2.4 Diversity and premature convergence

The whole aim of EAs is to provide a process that does not get trapped in
poor local optima, but that has a good chance of finding the global opti-
mum (or at least, a very good local one). Certain choices of the multitude
of parameters governing the behaviour of any one algorithm can result in
premature convergence to sub-optimal solutions, however, so these have to
be chosen with care. This choice can be problem specific, and is currently
more art than science.

Crossover is a mechanism that can move an offspring some distance from
its parents in the search space, but once an allele value has disappeared

62

from the population, crossover cannot reintroduce it. Mutation can, so is an
essential diversity-maintaining mechanism.

Another was of increasing diversity is to inject some ‘new blood’ random
individuals into the population. This needs to be done with care, since
random individuals, especially late in a run, will usually be relatively unfit,
and so eliminated almost immediately. The clonal selection algorithm, an
artificial immune system algorithm with some interesting parallels to EAs,
has automatic introduction of new individuals every generation [85].

C.3 Evolutionary Strategies and Evolutionary Program-
ming: the early days

Some of the earliest work on EAs is known as “Evolutionary Strategies” (ES)
[86, 87]. It is characterised by using real-valued chromosomes, directly repre-
senting solution space values of interest. Originally ES used only mutation,
although more modern variants may incorporate crossover. The mutation
rates are controlled by Gaussian probability distributions generated from
strategy parameters. These parameters are not global and fixed. Rather,
each chromosome can include its own value of these parameters, so that
they also get mutated, in a form of self-adaptation. More advanced strategy
parameters can be used to link mutation rates of different parameters.

Another very early form of EA is known as “Evolutionary Programming”
(EP) [88]. It is rather similar to ES, in that it also uses self-adapting mutation
parameters, and only mutation. The original application was to evolve finite
state automata to recognise and predict strings.

This early work on EAs suffered from being somewhat ahead of its time:
there was simply insufficient computing power to execute the algorithms
except on relatively small problems. Now that computing power has in-
creased so that the algorithms have become practical, interest in them has
re-emerged.

C.4 Genetic Algorithms: incorporating crossover

Genetic Algorithms (GAs) were invented by John Holland [89, 68|, but did
not receive that much prominence until they were promoted by his student
David Goldberg [90, 91]. Mitchell [92] provides a good introduction to GAs.

GAs are the variant of EAs most closely based on biology (though still
very far from its full richness and complexity), having linear chromosomes
with mutation and crossover. The operation of the GA is well-analysed, and
its performance characteristics explained in terms of the schema theorem and

63

A1 | A2 | A3 | A4 A1 | A2 | B2 | B3| B4 | A4

B1|B2|B3| B4 |B5 B1|A3|B5

Figure 22: Flexible crossover with list representation

the related k-armed bandit theory [89], and the building block hypothesis
[90]. (Curiously, however, the “compact GA”, a variant that represents an
entire population as a probability distribution rather than a set of strings,
also performs well [93], even though it cannot be using building blocks of
correlated allele values.) More recently, Nix & Vose [94] have analysed GA
performance using Markov chains.

C.5 Genetic Programming

Although there are earlier variants, the first major use of Genetic Program-
ming (GP) was due to John Koza [95]. GP is a variant of GA where the
chromosomes are computer programs. It is of particular relevance to evolv-
ing quantum programs. Descriptions and applications of GP can be found
in the series of books by Koza [95, 96, 97, 98], and also the collection by
Kinnear [99]. Banzhaf et al [100] provide a good introduction to GP.

The evolved program is usually represented as a tree structure, corre-
sponding to an instance of the parse tree of the programming language. The
genetic operators that mutate and crossover trees can perform quite radical
pruning and grafting of entire subtrees. So it is important to use a program-
ming language that can cope with such manipulations, that remains at least
syntactically correct, and preferably type-correct, after such surgery. Lisp
(for example [101]) is a favourite, for this reason. Also, purpose-designed
domain-specific languages can be used. It can be necessary to constrain the
genetic operators to produce correct trees, or to “fix-up” the trees after the
operations.

Linear genetic programming typically uses varying length lists of im-
perative language instructions [100]. There is generally no a priori reason
for expecting a specific length of solution, and this approach allows simple
manipulation of populations with individuals of varying lengths. Figure 22
illustrates a linear GP crossover operation. Linear GP with classical pro-
gram evolution also allows single operations to be skipped over via preceding
branching instructions.

In the simplest variant of GP, each chromosome is a program that is

64

executed to generate a specific candidate solution. These programs tend to
be input-free and have a single behaviour, and so can be evaluated simply
by executing them.

In the more general case, the program being evolved is expected to work
on a range of inputs. For example, a quantum algorithm is expected to work
for an arbitrary number of qubits. In this case the program is required to
work well for all its inputs, but clearly it is infeasible to evaluate its fitness
on all its inputs. It is instead evaluated on a representative sample of inputs.

65

