Skip to main content

Life as a Cyber-Bio-Physical System

  • Chapter
  • First Online:

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

The study of living systems—including those existing in nature, life as it could be, and even virtual life—needs consideration of not just traditional biology, but also computation and physics. These three areas need to be brought together to study living systems as cyber-bio-physical systems, as zoetic systems. Here I review some of the current work on assembling these areas, and how this could lead to a new Zoetic Science. I then discuss some of the significant scientific advances still needed to achieve this goal. I suggest how we might kick-start this new discipline of Zoetic Science through a program of Zoetic Engineering: designing and building living artefacts. The goal is for a new science, a new engineering discipline, and new technologies, of zoetic systems: self-producing far-from-equilibrium systems embodied in smart functional metamaterials with non-trivial meta-dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    I will not get into definitional questions of what makes systems ‘really’ ‘alive’ [2]. However, consider “living organisms are those material systems that are able to manipulate information so as to produce unexpected solutions that enable them to survive in an unpredictable future”, and “life as a process that enables material systems to manipulate, create, and accumulate information” [3].

  2. 2.

    A distinction is drawn between reproduction (of the physical machinery, the cell) and replication (of the informational content, the DNA) [3]; many abstract models (for example, basic evolutionary algorithms) however do not separate these processes.

  3. 3.

    https://www.merriam-webster.com/dictionary/zoetic.

  4. 4.

    Not to be confused with the separate, though related, etymology of ‘zoology’ via Latin from the Greek \(\zeta \!\tilde{\omega }o\nu \), zōion, animal.

  5. 5.

    I give a slightly longer quotation here than appears in Ingold [95].

  6. 6.

    Abbott [109] attributes this quotation to Johnson [110]; I am unable to find it in that volume.

  7. 7.

    The distinction between complexity and complication is not a sharp distinction, but may be thought of thus: Complexity is associated with dynamic, bottom-up self-organisation, as in complexity science, while complication is associated with top-down organisational structure, as often in engineering; systems with both features have been dubbed ‘wicked’ systems [126].

  8. 8.

    The minimum viable population of a species has been estimated at around 3500–5000 individuals [128], which should be contrasted with the tens or hundreds making up a typical evolutionary algorithm ‘population’.

  9. 9.

    Bains’ argument is in the context of Origin of Life, but is also relevant to the study of life itself.

  10. 10.

    In a closed system, matter cannot move in or out, but energy can, for example, in a closed system in a constant temperature heat bath. In an isolated system, energy is likewise banned from moving in or out and is hence conserved.

  11. 11.

    One might argue that most engineering projects fail in this regard, due to our inability, or lack of desire, to anticipate and mitigate for all the related unwanted consequences.

  12. 12.

    The prefix ‘meta’ originally meant simply ‘after’, but came to the additional meaning of ‘above’ or ‘transcending’, and now also includes the meaning of ‘change’ or ‘transformation’, and more recently of ‘self-reference’ (as in meta-X is the X of X). The ‘transcending’ meaning comes from a misunderstanding of the derivation of the word ‘metaphysics’: the term as originally coined did not mean ‘transcending physics’, but rather as ‘Aristotle’s book after the one called Physics’.

    ‘Metamaterials’ are changed materials: changed by engineering in this case. ‘Meta-dynamics’ is the self-referential use: the dynamics of dynamics. Given the prevalence of the prefix in the topics of interest here, it would be nice to be able to bundle the concepts into the term ‘metaphysics’, but it has already been taken for that unrelated Aristotelian topic. (To add further confusion to naming, ‘meta-dynamics’ is also the name of a computational simulation technique [170, 171], although the original 2002 paper does not name it thus.)

References

  1. Dobzhansky, T.: Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35(3), 125–129 (1973)

    Article  Google Scholar 

  2. Bains, W.: What do we think life is? A simple illustration and its consequences. Int. J. Astrobiol. 13(2), 101–111 (2014)

    Article  Google Scholar 

  3. Danchin, A.: Bacteria as computers making computers. FEMS Microbiol. Rev. 33(1), 3–26 (2009)

    Article  Google Scholar 

  4. Langton, C.G.: Artificial life. In: Artificial Life: the Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems, pp. 1–47. Addison-Wesley (1988)

    Google Scholar 

  5. Keller, E.F. Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Harvard University Press (2002)

    Google Scholar 

  6. James, W.: Principles of Psychology, vol. I. Hentry Holt and Co. (1890)

    Google Scholar 

  7. Smith, J.M., Szathmáry, E.: The Major Transitions in Evolution. Oxford University Press (1995)

    Google Scholar 

  8. Szathmáry, E.: Toward major evolutionary transitions theory 2.0. PNAS 112(33), 10104–10111 (2015)

    Google Scholar 

  9. Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J.A., McMullin, B., de Melo, V.V., Miconi, T., Spector, L., Stepney, S., White, R.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theory Biosci. 135(3), 131–161 (2016)

    Article  Google Scholar 

  10. Stepney, S.: Modelling and measuring open-endedness. In: OEE4 Workshop, at ALife 2021, Prague, Czech Republic (online) (2021)

    Google Scholar 

  11. Beslon, G., Elena, S., Hogeweg, P., Schneider, D., Stepney, S.: Evolving living technologies—insights from the EvoEvo project. In: SSBSE 2018, Montpellier, France. LNCS, vol. 11036, pp. 46–62. Springer (2018)

    Google Scholar 

  12. Marshall, S.M., Mathis, C., Carrick, E., Keenan, G., Cooper, G.J.T., Graham, H., Craven, M., Gromski, P.S., Moore, D.G., Walker, S.I., Cronin, L.: Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nat. Commun. 12(1), 3033 (2021)

    Article  Google Scholar 

  13. Schneider, E.D., Sagan, D.: Into the Cool: Energy Flow, Thermodynamics, and Life. University of Chicago Press (2005)

    Google Scholar 

  14. Russell, M.J.: The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta. Biotheor. 55(2), 133–179 (2007)

    Article  Google Scholar 

  15. Campbell, D., Farmer, D., Crutchfield, J., Jen, E.: Experimental mathematics: the role of computation in nonlinear science. Commun. ACM 28(4), 374–384 (1985)

    Article  MathSciNet  Google Scholar 

  16. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. Westview Press (2015)

    Google Scholar 

  17. Abraham, R.H., Shaw, C.D.: Dynamics: The Geometry of Behavior, 2nd edn. Addison-Wesley (1992)

    Google Scholar 

  18. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237(641), 37–72

    Google Scholar 

  19. Maes, P.: Concepts and experiments in computational reflection. In: OOPSLA ’87, pp. 147–155. ACM (1987)

    Google Scholar 

  20. Horsman, D., Stepney, S., Kendon, V.: The natural science of computation. Commun. ACM 60, 31–34 (2017)

    Article  Google Scholar 

  21. Wegner, P.: Why interaction is more powerful than algorithms. Commun. ACM 40(5), 80–91 (1997)

    Article  Google Scholar 

  22. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys. 20(1–4), 337–354 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  23. Broersma, H., Stepney, S., Wendin, G.: Computability and complexity of unconventional computing devices. In: Stepney et al. [148], pp. 185–229

    Google Scholar 

  24. Jaeger, H.: Toward a generalized theory comprising digital, neuromorphic, and unconventional computing. Neuromorph. Comput. Eng. 1(1) (2021)

    Google Scholar 

  25. Goodwin, B.C.: How the Leopard Changed Its Spots: The Evolution of Complexity. Phoenix (1994)

    Google Scholar 

  26. Jun, S., Mulder, B.: Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. PNAS 103(33), 12388–12393 (2006)

    Article  Google Scholar 

  27. Savage, N.: Computer logic meets cell biology: how cell science is getting an upgrade. Nature 564(7734), S1–S3 (2018)

    Article  Google Scholar 

  28. Yan, K.-K., Fang, G., Bhardwaj, N., Alexander, R.P., Gerstein, M.: Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks. PNAS 107(20), 9186–9191 (2010)

    Article  Google Scholar 

  29. Grozinger, L., Amos, M., Gorochowski, T.E., Carbonell, P., Oyarzún, D.A., Stoof, R., Fellermann, H., Zuliani, P., Tas, H., Goñi-Moreno, A.: Pathways to cellular supremacy in biocomputing. Nat. Commun. 10(1), 5250 (2019)

    Article  Google Scholar 

  30. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice Hall (1993)

    Google Scholar 

  31. Mark Baldwin, J.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)

    Article  Google Scholar 

  32. Adami, C.: Introduction to Artificial Life. Springer (1998)

    Google Scholar 

  33. Danchin, A.: The Delphic Boat: What Genomes Tell Us. Harvard University Press (2002)

    Google Scholar 

  34. Bennett, C.H.: Logical depth and physical complexity. In: Herken, R., (ed.), The Universal Turing Machine: A Half-Century Survey, pp. 227–257. Oxford University Press (1988)

    Google Scholar 

  35. Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)

    Google Scholar 

  36. Lindenmayer, A.: Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18(3), 300–315 (1968)

    Google Scholar 

  37. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer (1990)

    Google Scholar 

  38. Doursat, R., Sayama, H., Michel, O., (eds.), Morphogenetic Engineering: Towards Programmable Complex Systems. Springer (2012)

    Google Scholar 

  39. El Karoui, M., Hoyos-Flight, M., Fletcher, L.: Future trends in synthetic biology-a report. Front. Bioeng. Biotechnol. 7, 175 (2019)

    Article  Google Scholar 

  40. Grohens, T., Meyer, S., Beslon, G.: A genome-wide evolutionary simulation of the transcription-supercoiling coupling. In: ALife 2021. MIT Press (2021)

    Google Scholar 

  41. Holland, J.H., (ed.) Adaptation in Natural and Artificial Systems, (2nd edn, 1992). MIT Press (1975)

    Google Scholar 

  42. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming. Morgan Kaufmann, An Introduction (1998)

    Book  MATH  Google Scholar 

  43. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: ICNN’95, Perth, Australia, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  44. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)

    Google Scholar 

  45. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  46. Flower, D.R., Timmis, J., (eds).: In Silico Immunology. Springer (2007)

    Google Scholar 

  47. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  49. Lones, M.A., Fuente, L.A., Turner, A.P., Caves, L.S.D., Stepney, S., Smith, S.L., Tyrrell, A.M.: Artificial biochemical networks: evolving dynamical systems to control dynamical systems. IEEE Trans. Evolut. Comput. 18(2), 145–166 (2014)

    Article  Google Scholar 

  50. Bonabeau, E.W., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Addison Wesley (1999)

    Google Scholar 

  51. Aranha, C., Villalón, C.L.C., Campelo, F., Dorigo, M., Ruiz, R., Sevaux, M., Sörensen, K., Stützle, T.: The elephant in the room. Metaphor-based metaheuristics, a call for action. Swarm Intell. 16, 1–6 (2021)

    Google Scholar 

  52. Newborough, J., Stepney, S.: A generic framework for population-based algorithms, implemented on multiple fpgas. In: ICARIS 2005, Banff, Canada. LNCS, vol. 3627, pp. 43–55. Springer (2005)

    Google Scholar 

  53. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALife XI, Winchester, UK, pp. 329–336. MIT Press (2008)

    Google Scholar 

  54. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  55. Lones, M.A., Turner, A.P., Fuente, L.A., Stepney, S., Caves, L.S.D., Tyrrell, A.M.: Biochemical connectionism. Natl. Comput. 12(4), 453–472 (2013)

    Article  Google Scholar 

  56. Landauer, R.: Information is physical. Phys. Today 44(5), 23–29 (1991)

    Article  Google Scholar 

  57. Dale, M., Miller, J.F., Stepney, S.: Reservoir computing as a model for in materio computing. In Andrew Adamatzky, editor, Advances in Unconventional Computing, vol 1, pp. 533–571. Springer, 2017

    Google Scholar 

  58. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.: Reservoir computing in material substrates. In: Nakajima, K., Fischer, I., (eds.), Reservoir Computing: Theory, Physical Implementations and Applications, pp. 141–166. Springer (2021)

    Google Scholar 

  59. Clark, A.: Being There: Putting Brain. Oxford University Press, Body and World Together Again (1997)

    Google Scholar 

  60. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press (2007)

    Google Scholar 

  61. Stepney, S.: Embodiment. In: Flower and Timmis [46], chapter 12, pp. 265–288

    Google Scholar 

  62. Müller, V.C., Hoffmann, M.: What is morphological computation? on how the body contributes to cognition and control. Artif. Life 23(1), 1–24 (2017)

    Article  Google Scholar 

  63. Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

    Article  MathSciNet  Google Scholar 

  64. Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)

    Article  MATH  Google Scholar 

  65. Horsman, D., Kendon, V., Stepney, S., Young, J.P.W.: Abstraction and representation in living organisms: when does a biological system compute? In: Dodig-Crnkovic, G., Giovagnoli, R., (eds.), Representation and Reality in Humans, Other Living Organisms and Intelligent Machines, pp. 91–116. Springer (2017)

    Google Scholar 

  66. Stepney, S., Kendon, V.: The representational entity in physical computing. Nat. Comput. 20(2), 233–242 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  67. Russell, B., Stepney, S.: Zermelo navigation and a speed limit to quantum information processing. Phys. Rev. A 90, 012303 (2014)

    Article  Google Scholar 

  68. Lloyd, S.: Ultimate physical limits to computation. Nature 406(6799), 1047–1054 (2000)

    Article  Google Scholar 

  69. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  70. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32(1), 16–23 (1988)

    Article  MathSciNet  Google Scholar 

  71. Gould, S.J.: Wonderful Life: The Burgess Shale and the Nature of History. Hutchinson (1989)

    Google Scholar 

  72. Lehman, J., Clune, J., Misevic, D., Adami, C., Beaulieu, J., Bentley, P.J., Bernard, S., Belson, G., Bryson, D.M., Cheney, N., Cully, A., Donciuex, S., Dyer, F.C., Ellefsen, K.O., Feldt, R., Fischer, S., Forrest, S., Frénoy, A., Gagneé, C., Goff, L.L., Grabowski, L.M., Hodjat, B., Keller, L., Knibbe, C., Krcah, P., Lenski, R.E., Lipson, H., MacCurdy, R., Maestre, C., Miikkulainen, R., Mitri, S., Moriarty, D.E., Mouret, J.-B., Nguyen, A., Ofria, C., Parizeau, M., Parsons, D., Pennock, R.T., Punch, W.F., Ray, T.S., Schoenauer, M., Shulte, E., Sims, K., Stanley, K.O., Taddei, F., Tarapore, D., Thibault, S., Weimer, W., Watson, R., Yosinksi, J.: The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Artif. Life 26(2), 274–306 (2020)

    Article  Google Scholar 

  73. Laughlin, R.B.: A Different Universe: Reinventing Physics from the Bottom Down. Basic Books (2005)

    Google Scholar 

  74. Scheutz, M., (ed.), Computationalism: New Directions. MIT Press (2002)

    Google Scholar 

  75. Cohen, I.R.: Tending Adam’s Garden: Evolving the Cognitive Immune Self. Academic (2000)

    Google Scholar 

  76. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7 (2020)

    Google Scholar 

  77. Brooks, R.A., Flynn, A.M.: Fast, cheap and out of control: a robot invasion of the solar system. J. Br. Interplanet. Soc. 42, 478–485 (1989)

    Google Scholar 

  78. Kelly, K.: Out of Control: The New Biology of Machines. 4th Estate (1994)

    Google Scholar 

  79. Slavkov, I., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F., Kaandorp, J., Hauert, S., Sharpe, J.: Morphogenesis in robot swarms. Sci. Robot. 3(25) (2018)

    Google Scholar 

  80. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics: a review. Front. Robot. AI, 5, 2018

    Google Scholar 

  81. Witkowski, O., Ikegami, T.: How to make swarms open-ended? Evolving collective intelligence through a constricted exploration of adjacent possibles. Artif. Life 25(2), 178–197 (2019)

    Article  Google Scholar 

  82. Hensel, M., Menges, A., Weinstock, M. (eds.): Techniques and Technologies in Morphogenetic Design. Architectural Design, vol. 76, no 2 (2006)

    Google Scholar 

  83. Ireland, T., Garnier, S.: Architecture, space and information in constructions built by humans and social insects: a conceptual review. Philos. Trans. R. Soc. B 373(1753) (2018)

    Google Scholar 

  84. Stepney, S., Diaconescu, A., Doursat, R., Giavitto, J.-L., Miller, J.F., Spicher, A.: Evolving, growing, and gardening cyber-physical systems. In: Armstrong, R., (ed.), Experimental Architecture: Designing the Unknown, pp. 89–101. Routledge (2019)

    Google Scholar 

  85. Armstrong, R.: Soft Living Architecture: An Alternative View of Bio-informed Practice. Bloomsbury (2018)

    Google Scholar 

  86. Ren, L., Li, B., Wang, K., Zhou, X., Song, Z., Ren, L., Liu, Q.: Plant-morphing strategies and plant-inspired soft actuators fabricated by biomimetic four-dimensional printing: a review. Front. Mater. 8 (2021). https://onlinelibrary.wiley.com/toc/15542769/2006/76/2

  87. Li, S., Wang, K.W.: Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspirat. Biomimet. 12(1), 011001 (2016)

    Article  Google Scholar 

  88. Bartlett, S., Wong, M.L.: Defining lyfe in the universe: from three privileged functions to four pillars. Life 10(4) (2020)

    Google Scholar 

  89. Lazebnik, Y.: Can a biologist fix a radio?—or, what I learned while studying apoptosis. Cancer Cell 2, 179–182 (2002)

    Article  Google Scholar 

  90. Müller, K.H.: Second-order science: the revolution of scientific structures. Echoraum (2016)

    Google Scholar 

  91. Evangelidis, B.: Space and time as relations: the theoretical approach of Leibniz. Philosophies 3(2), 9 (2018)

    Article  Google Scholar 

  92. Campbell, R.J., Bickhard, M.H.: Physicalism, emergence and downward causation. Axiomathes 21(1), 33–56 (2011)

    Article  Google Scholar 

  93. Caves, L., de Melo, A.T.: (Gardening) gardening: a relational framework for complex thinking about complex systems. In: Walsh and Stepney [174], pp. 149–196

    Google Scholar 

  94. Gilman, C.P.: Human Work. McClure, Phillips and Co., (1904)

    Google Scholar 

  95. Ingold, T.: An anthropologist looks at biology. Man 25(2), 208–229 (1990)

    Google Scholar 

  96. Cassirer, E.: An Essay on Man: An Introduction to a Philosophy of Human Culture. Yale University Press (1944)

    Google Scholar 

  97. Rescher, N.: Process Metaphysics: An Introduction to Process Philosophy. SUNY Press (1996)

    Google Scholar 

  98. Bickhard, M.H., Campbell, D.T.: Emergence. In: Andersen, P.B., Emmeche, C., Finnemann, N.O., Christiansen, P.V., (eds.), Downward Causation, chapter 14, pp. 322–348. Aarhus University Press (2000)

    Google Scholar 

  99. Bickhard, M.H.: The interactivist model. Synthese 166(3), 547–591 (2009)

    Article  Google Scholar 

  100. Bickhard, M.H.: Some consequences (and enablings) of process metaphysics. Axiomathes 21, 3–32 (2011)

    Article  Google Scholar 

  101. Galton, A., Mizoguchi, R.: The water falls but the waterfall does not fall: new perspectives on objects, processes and events. Appl. Ontol. 4(2), 71–107 (2009)

    Article  Google Scholar 

  102. Meadows, D.H.: Thinking in Systems: A Primer. Earthscan (2008)

    Google Scholar 

  103. von Bertalanffy, L.: General System Theory: Foundations, Development, Applications. George Braziller (1968)

    Google Scholar 

  104. Alexander, C.: A city is not a tree. Architect. Forum 122(1), 58–62 (1965)

    Google Scholar 

  105. DeLanda, M.: A Thousand Years of Nonlinear History. Zone Books (1997)

    Google Scholar 

  106. Varela, F.G., Maturana, H.R., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5(4) (1974)

    Google Scholar 

  107. Beer, R.D.: Autopoiesis and cognition in the game of life. Artif. Life 10(3), 309–326 (2004)

    Article  Google Scholar 

  108. McMullin, B.: Thirty years of computational autopoiesis: a review. Artif. Life 10(3), 277–295 (2004)

    Article  Google Scholar 

  109. Porter Abbott, H.: Unnarratable knowledge: the difficulty of understanding evolution by natural selection. In: Herman, D., (ed.), Narrative Theory and the Cognitive Sciences, pp. 143–162. CSLI (2003)

    Google Scholar 

  110. Johnson, S.: Emergence: The Connected Lives of Ants. Cities, and Software. Penguin, Brains (2001)

    Google Scholar 

  111. Miller, J.F.: The software garden. In: Walsh and Stepney [174], pp. 201–212

    Google Scholar 

  112. Irvine, A.D., Deutsch, H.: Russell’s paradox. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Metaphysics Research Lab. Springer (2021)

    Google Scholar 

  113. Barwise, J., Etchemendy, J.: The Liar: An Essay on Truth and Circularity. Oxford University Press (1987)

    Google Scholar 

  114. Aczel, P.: Non-well-Founded Sets. CSLI (1988)

    Google Scholar 

  115. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Penguin (1979)

    Google Scholar 

  116. Hofstadter, D.R:. I am a Strange Loop. Basic Books (2007)

    Google Scholar 

  117. West, B.J.: Colloquium: fractional calculus view of complexity: a tutorial. Rev. Mod. Phys. 86(4), 1169–1186 (2014)

    Article  Google Scholar 

  118. Jaeger, H.: Today’s dynamical systems are too simple: commentary to Tim van Gelder’s “The dynamical hypothesis in cognitive science’’. Behav. Brain Sci. 21(5), 643–644 (1998)

    Article  Google Scholar 

  119. Stepney, S., Polack, F.A.C., Alden, K., Andrews, P.S., Bown, J.L., Droop, A., Greaves, R.B., Read, M., Sampson, A.T., Timmis, J., Winfield, A.F.T.: Engineering Simulations as Scientific Instruments: A Pattern Language. Springer (2018)

    Google Scholar 

  120. Foe, V.E.: Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107(1), 1–22 (1989)

    Article  Google Scholar 

  121. Stepney, S., Hoverd, T.: Reflecting on open-ended evolution. In: ECAL 2011, Paris, France, pp. 781–788. MIT Press (2011)

    Google Scholar 

  122. Hickinbotham, S., Stepney, S.: Bio-reflective architectures for evolutionary innovation. In: ALife 2016, Cancun, Mexico, pp. 192–199. MIT Press (2016)

    Google Scholar 

  123. Clark, E.B., Hickinbotham, S.J., Stepney, S.: Semantic closure demonstrated by the evolution of a universal constructor architecture in an artificial chemistry. J. R. Soc. Interface 14, 20161033 (2017)

    Article  Google Scholar 

  124. Landauer, R.: Wanted: a physically possible theory of physics. IEEE Spectr. 4(9), 105–109 (1967)

    Article  Google Scholar 

  125. Miller, J.H.: A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society. Basic Books (2015)

    Google Scholar 

  126. Andersson, C., Törnberg, A., Törnberg, P.: Societal systems – complex or worse? Futures 63, 145–157 (2014)

    Article  Google Scholar 

  127. Hester, P.T., Adams, K.M.: Systemic Decision Making: Fundamentals for Addressing Problems and Messes, 2nd edn. Springer (2017)

    Google Scholar 

  128. Traill, L.W., Bradshaw, C.J.A., Brook, B.W.: Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol. Conserv. 139(1), 159–166 (2007)

    Article  Google Scholar 

  129. Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972)

    Article  Google Scholar 

  130. Haw, M.: Middle World: The Restless Heart of Matter and Life. Macmillan (2007)

    Google Scholar 

  131. Bains, W.: Getting beyond the toy domain. Meditations on David Deamer’s “Assembling Life”. Life 10(2), 18 (2020)

    Google Scholar 

  132. Stepney, S.: Digital emergence. In: Gibb, S., Hendry, R.F., Lancaster, T., (eds.), Routledge Handbook of Emergence, pp. 329–338. Routledge (2019)

    Google Scholar 

  133. Sloman, A., Chrisley, R.: Virtual machines and consciousness. J. Conscious. Stud. 10(4–5), 133–172 (2003)

    Google Scholar 

  134. Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D.G., Pfeifer, R.: A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 7, 91 (2013)

    Article  Google Scholar 

  135. Dasmahapatra, S., Werner, J., Zauner, K.-P.: Noise as a computational resource. Int. J. Unconvent. Comput. 2(4), 305–319 (2006)

    Google Scholar 

  136. Hoffmann, P.M.: Life’s Ratchet: How Molecular Machines Extract Order From Chaos. Basic Books (2012)

    Google Scholar 

  137. Banzhaf, W., Yamamoto, L.: Artificial Chemistries. MIT Press (2016)

    Google Scholar 

  138. Faulkner, P., Krastev, M., Sebald, A., Stepney, S.: Sub-symbolic artificial chemistries. In Stepney, S., Adamatzky, A., (eds.), Inspired by Nature: Essays Presented to Julian F. Miller on the Occasion of His 60th Birthday, pp. 287–322. Springer (2018)

    Google Scholar 

  139. Hickinbotham, S., Stepney, S.: Conservation of matter increases evolutionary activity. In: ECAL 2015, York, UK, pp. 98–105. MIT Press (2015)

    Google Scholar 

  140. Hoverd, T., Stepney, S.: Energy as a driver of diversity in open-ended evolution. In: ECAL 2011, Paris, France, pp. 356–363. MIT Press (2011)

    Google Scholar 

  141. Hickinbotham, S., Clark, E., Nellis, A., Stepney, S., Clarke, T., Young, P.: Maximising the adjacent possible in automata chemistries. Artif. Life J. 22(1), 49–75 (2016)

    Article  Google Scholar 

  142. Rosen, R.: Life Itself: A Comprehensive Enquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press (1991)

    Google Scholar 

  143. Kercel, S.W.: Entailment of ambiguity. Chem. Biodivers. 4(10), 2369–2385 (2007)

    Article  Google Scholar 

  144. Bains, W.: Many chemistries could be used to build living systems. Astrobiology 4(2), 137–167 (2004)

    Article  Google Scholar 

  145. Tsilipakos, O., Tasolamprou, A.C., Pitilakis, A., Liu, F., Wang, X., Mirmoosa, M.S., Tzarouchis, D.C., Abadal, S., Taghvaee, H., Liaskos, C., Tsioliaridou, A., Georgiou, J., Cabellos-Aparicio, A., Alarcón, E., Ioannidis, S., Pitsillides, A., Akyildiz, I.F., Kantartzis, N.V., Economou, E.N., Soukoulis, C.M., Kafesaki, M., Tretyakov, S.: Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Adv. Opt. Mater. 8(17), 2000783 (2020)

    Article  Google Scholar 

  146. Yasuda, H., Buskohl, P.R., Gillman, A., Murphey, T.D., Stepney, S., Vaia, R.A., Raney, J.R.: Mechanical computing. Nature 598, 39–48 (2021)

    Article  Google Scholar 

  147. Zauner, K.-P.: From prescriptive programming of solid-state devices to orchestrated self-organisation of informed matter. In: Banâtre, J.-P., Fradet, P., Giavitto, J.L., Michel, O., (eds.), Unconventional Programming Paradigms 2004. LNCS, vol. 3566, pp. 47–55. Springer (2005)

    Google Scholar 

  148. Stepney, S., Rasmussen, S., Amos, M., (eds.), Computational Matter. Springer (2018)

    Google Scholar 

  149. Kaspar, C., Ravoo, B.J., van der Wiel, W.G., Wegner, S.V., Pernice, W.H.P.: The rise of intelligent matter. Nature 594(7863), 345–355 (2021)

    Article  Google Scholar 

  150. Silva, A., Monticone, F., Castaldi, G., Galdi, V., Alù, A., Engheta, N.: Performing mathematical operations with metamaterials. Science 343(6167), 160–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  151. Garrad, M., Chen, H.-Y., Conn, A.T., Hauser, H., Rossiter, J.: Liquid metal logic for soft robotics. IEEE Robot. Autom. Lett. 6(2), 4095–4102 (2021)

    Article  Google Scholar 

  152. Dion, G., Mejaouri, S., Sylvestre, J.: Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 124(15), 152132 (2018)

    Article  Google Scholar 

  153. Barazani, B., Dion, G., Morissette, J.-F., Beaudoin, L., Sylvestre, J.: Microfabricated neuroaccelerometer: integrating sensing and reservoir computing in MEMS. J. Microelectromech. Syst. 29(3), 338–347 (2020)

    Article  Google Scholar 

  154. Stepney, S.: The neglected pillar of material computation. Phys. D 237(9), 1157–1164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  155. Evans, C.G., Winfree, E.: Physical principles for DNA tile self-assembly. Chem. Soc. Rev. 46(12), 3808–3829 (2017)

    Article  Google Scholar 

  156. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  157. Dey, S., Fan, C., Gothelf, K.V., Li, J., Lin, C., Liu, L., Liu, N., Nijenhuis, M.A.D., Saccà, B., Simmel, F.C., Yan, H., Zhan, P.: DNA origami. Nat. Rev. Methods Primers 1(1), 1–24 (2021)

    Google Scholar 

  158. Stepney, S.: Co-designing the computational model and the computing substrate. In: UCNC 2019, Tokyo, Japan. LNCS, vol. 11493, pp. 5–14. Springer (2019)

    Google Scholar 

  159. Vaage, N.S.: Living machines: metaphors we live by. NanoEthics 14(1), 57–70 (2020)

    Article  Google Scholar 

  160. Woese, C.R.: A new biology for a new century. Microbiol. Mol. Biol. Rev. 68(2), 173–186 (2004)

    Article  Google Scholar 

  161. Rao, V.: Tempo: Timing, Tactics and Strategy in Narrative-Driven Decision-Making. Lightning Source (2011)

    Google Scholar 

  162. Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G., Bäck, T., Kok, J.N., (eds.), Handbook of Natural Computing, chapter 59, vol. 4, pp. 1979–2025. Springer (2012)

    Google Scholar 

  163. Giavitto, J.-L., Michel, O.: MGS: A rule-based programming language for complex objects and collections. Electron. Notes Theor. Comput. Sci. 59(4), 286–304 (2001)

    Article  MATH  Google Scholar 

  164. Giavitto, J.-L., Michel, O., Cohen, J., Spicher, A.: Computations in space and space in computations, 137–152 (2005)

    Google Scholar 

  165. Nehaniv, C.L., Rhodes, J., Egri-Nagy, A., Dini, P., Morris, E.R., Horváth, G., Karimi, F., Schreckling, D., Schilstra, M.J.: Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions. Philos. Trans. R. Soc. A 373(2046), 20140223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  166. Dittrich, P., di Fenizio, P.S.: Chemical organisation theory. Bull. Math. Biol. 69(4), 1199–1231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  167. Stepney, S.: Computing with open dynamical systems. In: CogSIMA 2021, Tallin, Estonia (online), pp. 139–143. IEEE (2021)

    Google Scholar 

  168. Soar, R., Amador, G., Bardunias, P., Turner, J.S.: Moisture gradients form a vapor cycle within the viscous boundary layer as an organizing principle to worker termites. Insectes Soc. 66(2), 193–209 (2019)

    Article  Google Scholar 

  169. Prusinkiewicz, P., James, M., Měch, R.: Synthetic topiary. In: SIGGRAPH’94, pp. 351–358. ACM (1994)

    Google Scholar 

  170. Laio, A., Parrinello, M.: Escaping free-energy minima. PNAS 99(20), 12562–12566 (2002)

    Article  Google Scholar 

  171. Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100(2), 020603 (2008)

    Article  Google Scholar 

  172. Walker, S.I., Packard, N., Cody, G.D.: Re-conceptualizing the origins of life. Philos. Trans. A 375(2109) (2017)

    Google Scholar 

  173. Burke, J.: Connections. Book Club Associates (1978)

    Google Scholar 

  174. Walsh, R., Stepney, S., (eds.), Narrating Complexity. Springer (2018)

    Google Scholar 

Download references

Acknowledgements

Some of the ideas and topics presented here grew from a collaboration with Rupert Soar, while co-organising an EPSRC-funded ‘Big Ideas’ workshop in 2019, and from the attendees and presenters at that workshop: Martyn Amos, Rachel Armstrong, Vassilis M. Charitopoulos, René Doursat, Sarah Harris, Tim Ireland, Andrew Jenkins, Veronika Kapsali, Natalio Krasnogor, Ottoline Leyser, Andy Lomas, Tomasz Liskiewicz, Richard James MacCowan, Alison McKay, Robin Ramphal, Robert Richardson, and Tia Shaker.

My further thanks to Rachel Armstrong, Leo Caves, Herbert Jaeger, Rupert Soar, Adam Stanton, Tom McLeish, and three anonymous reviewers, for perceptive and constructive comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Stepney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stepney, S. (2023). Life as a Cyber-Bio-Physical System. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds) Genetic Programming Theory and Practice XIX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-19-8460-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8460-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8459-4

  • Online ISBN: 978-981-19-8460-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics