Skip to main content

Improving NeuroEvolution Efficiency by Surrogate Model-Based Optimization with Phenotypic Distance Kernels

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

In NeuroEvolution, the topologies of artificial neural networks are optimized with evolutionary algorithms to solve tasks in data regression, data classification, or reinforcement learning. One downside of NeuroEvolution is the large amount of necessary fitness evaluations, which might render it inefficient for tasks with expensive evaluations, such as real-time learning. For these expensive optimization tasks, surrogate model-based optimization is frequently applied as it features a good evaluation efficiency. While a combination of both procedures appears as a valuable solution, the definition of adequate distance measures for the surrogate modeling process is difficult. In this study, we will extend cartesian genetic programming of artificial neural networks by the use of surrogate model-based optimization. We propose different distance measures and test our algorithm on a replicable benchmark task. The results indicate that we can significantly increase the evaluation efficiency and that a phenotypic distance, which is based on the behavior of the associated neural networks, is most promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cgplibrary.co.uk - accessed:2018-01-12.

  2. 2.

    Available in the UCI machine learning repository: https://archive.ics.uci.edu/ml/index.php.

References

  1. Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)

    Article  Google Scholar 

  2. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  3. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

    Chapter  Google Scholar 

  4. Turner, A.J., Miller, J.F.: Cartesian genetic programming encoded artificial neural networks: a comparison using three benchmarks. In: Proceedings of GECCO 2013, pp. 1005–1012. ACM (2013)

    Google Scholar 

  5. Koziel, S., Leifsson, L.: Surrogate-based Modeling and Optimization. Applications in Engineering. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7551-4

    Book  MATH  Google Scholar 

  6. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

    Article  Google Scholar 

  7. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Proceedings of GECCO 2014, pp. 871–878. ACM (2014)

    Google Scholar 

  8. Stork, J., Zaefferer, M., Bartz-Beielstein, T.: Distance-based kernels for surrogate model-based neuroevolution. arXiv preprint arXiv:1807.07839 (2018)

  9. Zaefferer, M., Stork, J., Flasch, O., Bartz-Beielstein, T.: Linear combination of distance measures for surrogate models in genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 220–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_18

    Chapter  Google Scholar 

  10. Gaier, A., Asteroth, A., Mouret, J.B.: Data-efficient neuroevolution with kernel-based surrogate models. In: Genetic and Evolutionary Computation Conference (GECCO) (2018)

    Google Scholar 

  11. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol. Comput. 23(3), 343–367 (2015)

    Article  Google Scholar 

  12. Stork, J., Bartz-Beielstein, T., Fischbach, A., Zaefferer, M.: Surrogate assisted learning of neural networks. In: GMA CI-Workshop 2017 (2017)

    Google Scholar 

  13. Turner, A.J., Miller, J.F.: Introducing a cross platform open source Cartesian genetic programming library. Genet. Program. Evolvable Mach. 16(1), 83–91 (2015)

    Article  Google Scholar 

  14. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling. Wiley, Hoboken (2008)

    Book  Google Scholar 

  15. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0_13

    Chapter  Google Scholar 

  16. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Towards Global Optimization 2, North-Holland, pp. 117–129 (1978)

    Google Scholar 

  17. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  18. Zaefferer, M.: Combinatorial Efficient Global Optimization in R - CEGO v2.2.0. https://cran.r-project.org/package=CEGO (2017), https://cran.r-project.org/package=CEGO. Accessed 10 Jan 2018

  19. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the German Federal Ministry of Education and Research in the funding program Forschung an Fachhochschulen under the grant number 13FH007IB6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Stork .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stork, J., Zaefferer, M., Bartz-Beielstein, T. (2019). Improving NeuroEvolution Efficiency by Surrogate Model-Based Optimization with Phenotypic Distance Kernels. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics