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E
ureqa is a symbolic regression program
described by Schmidt and Lipson [11],
freely downloadable from [13], where
there are press citations, a bibliography
of its use in articles, a blog, and a

discussion group. In contrast to typical regression
software, the user does not have to explicitly or
implicitly provide a specific expression containing
unknown constants for the software to determine.
With little or no guidance, symbolic regression
determines not only unknown coefficients but also
the class and form of the model expression. See [9]
for quick insight into the underlying “survival of
the fittest” paradigm for symbolic regression. An
Internet search on “symbolic regression” reveals
that there are other such programs. However, my
skeptic’s curiosity was aroused by such extreme
press praise as

Move over, Einstein: Machines will take it
from here. [10]

There are very clever “thinking machines”
in existence today, such as Watson, the IBM
computer that conquered Jeopardy! last
year. But next to Eureqa, Watson is merely
a glorified search engine. [5]

By one yardstick, Eureqa has even discov-
ered the answer to the ultimate question of
life, the universe and everything. [5]

The program is designed to work with noisy
experimental data, searching for, then returning a
set of result expressions that attempt to optimally
trade off conciseness with accuracy. However, I
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was curious to learn if the program could also

be used as a supplementary tool for experimental

mathematics, computer algebra, and numerical

analysis. In the first few weeks of using this tool, I

have already found that:

1) Eureqa can sometimes do a job of exact simpli-

fication better than existing computer algebra

systems if there is a concise equivalent

expression.

2) Eureqa can often discover simple expres-

sions that approximate more complicated

expressions or fit a set of numerical results

well.

3) Even when the fit isn’t as accurate as de-

sired, the form of a returned expression

often suggests a class of forms to try for

classic regressions, interpolations, or series

expansions giving higher accuracy.

4) Eureqa could do an even better job if it

supplemented its search with exploitation

of more computer algebra and numerical

methods, including classic regression.

5) There are important caveats about how to

use Eureqa effectively.

6) The most extreme press quotes are exag-

gerations, but Eureqa really is quite impres-

sive.

This article has examples that illustrate these

findings, using Eureqa 0.93.1 beta.

Regarding computing times reported herein, the

computer is a 1.60GHz Intel Core 2 Duo U9600

CPU with 3 gigabytes of RAM.
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Exact Simplification and Transformation

A Trigonometric Simplification Example

Here is a Maple 15 assignment of an input trigono-
metric expression to a dependent variable y :

y := cos(x)3 sin(x)+ cos(x)3 sin(x)
2

+ 2 cos(x)3 cos(2x) sin(x)

+ cos(x)3 cos(4x) sin(x)
2

(1)

− 3
2

cos(x) sin(x)3 − 2 cos(x) cos(2x) sin(x)3

− cos(x) cos(4x) sin(x)3

2
.

The default simplification merely combines the
first two terms, which are similar.

However, the simplify(y) function1 required
only 0.03 seconds to return the much simpler

(2) 4 sin(x) cos(x)5
(
2 cos(x)2 − 1

)
.

An equivalent expression produced by the Math-
ematica FullSimplify[. . .] function in only 0.08
seconds is also much simpler:

2 (sin(3x)− sin(x)) cos5(x) .

But the equivalent even simpler form discovered
by Eureqa is

(3) y = cos(x)4 sin(4x) .

That even the simplified model of evolution in
Eureqa can work so well might change some minds.

Caveat : The algorithm uses a random number
generator with no current user control over its
seeding, which appears to be done by the clock.
Therefore sequences are not currently repeatable,
and the computing times to obtain expression (3)
varied dramatically, from 3 seconds to several
minutes. It conceivably could require more time
than you would ever be willing to invest. However,
although even 3 seconds is much longer than the
computer algebra times, it is certainly worth a
few minutes wait to obtain such a nice result, and
such experiments can be done while away from
the computer, such as while eating, sleeping, or
playing cell phone games. There is also an option
to use parallel cloud computing, which reduces the
mean and variance of the elapsed time necessary
to obtain a satisfactory result.

Here is how I used Eureqa to obtain this
delightfully simple exact result (3):

1simplify(. . .) has an optional second keyword argument
“size” that is intended to minimize size, but for this example
the result is less concise than (2).

1) First I plotted expression (1) in Mathematica,
revealing that it is antisymmetric and that its
fundamental period appeared to be π , with
higher frequency components appearing to
have a minimum period of π/4. This was
confirmed by TrigReduce[y], which returned
the equivalent expression

1
16
(sin(2x)+6 sin(4x)+4 sin (6x)+sin(8x)) .

2) I decided to use evenly spaced values of x
because expression (1) is periodic, bounded,
and C∞ for all real x. I guessed that it
might help Eureqa discover and exploit
the antisymmetry if I used sample points
symmetric about x = 0. I also guessed that it
might help Eureqa discover the periodicities
if I used exactly two fundamental periods.
I guessed that using 16 samples within the
minimum period π/4 would be sufficient
to resolve it quite well; then I doubled
that because Eureqa uses some points for
fitting and others for error assessment. This
implies 128 intervals of width π/64 from
−π through π . I then created a table of
17-digit floating-point pairs of x and y , then
exported it to a file by entering

Export
[

“trigExample.csv”, Table[
N [{x, . . .},17], {x,−π, π, π

128
}
]]

where the ellipsis was expression (1).2

3) I then launched Eureqa, opened its
spreadsheet-like Enter Data tab, then
replaced the default data there with mine
by importing file trigExample.csv. In the row
labeled var, I then entered x in column A
and y in column B.

4) The Prepare Data tab then showed superim-
posed plots of the x and y data values and
offered preprocessing options that aren’t
relevant for this very accurate data.

5) Figure 1 shows the Set Target tab:
(a) The pane labeled The Target Expression

suggests the fitting model y = f (x), which is
what I want, so I didn’t change it.

(b) The pane labeled Primary Options has check
boxes for the desired Formula building-
blocks used in composing candidate f (x)
expressions. The default checked ones are
sufficient for the sort of concise equivalent

2The reason for requesting 17 significant digits was that I
wanted Mathematica to use its adaptive significance arith-
metic to give me results estimated to be accurate to 17 digits
despite any catastrophic cancellations, and I wanted Eureqa
to receive a 17th significant digit to help it round the se-
quences of input digit characters to the closest representable
16-digit IEEE double values, which are used by Eureqa.
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Figure 1. Eureqa Set Target tab for exact trigonometric simplification example.

to expression (1) that I am seeking. Therefore
I didn’t check any of the other offered
functions and operators, not all of which
are shown on this screen shot.3 Formula
building blocks also shows the corresponding
Complexity measures, which can be altered
by the user. The complexity measure of an
expression is the sum of the complexities of
its parts.

(c) The drop-down menu labeled Error metric
offers different built-in error measures for
Eureqa to try optimizing. A bound is usually
more reassuring than the alternatives, so
I chose Minimize the worst-case maximum
error. The documentation suggests that

3I could have saved search time by unchecking Division, be-
cause the floating-point coefficients make a denominator
unnecessary for this class of expressions. I could also have
saved search time and perhaps obtained a more accurate
result by checking the Integer Constant box, because integer
coefficients are quite likely for exact equivalent expressions,
making it worth having Eureqa try rounding to see if that
improves the accuracy. However, I decided to accept the de-
fault checked boxes to see if Eureqa could find a good exact
equivalent without any more help from me. Other building
blocks are described at [6].

Maximize the R-squared goodness of fit or
Maximize the correlation coefficient is more
scale and mean invariant, which are desirable
properties too. However, the data is already
well scaled with means of 0.

(d) For the covered Data Splitting drop-down
menu the default alternative is to designate
a certain percentage of the data points
for fitting the data (training) and a certain
percentage for assessing the error measure
(validation). The individual assignments to
these categories are done randomly, with
some overlap if there aren’t many data
points. For the almost exact data in this
article, I would prefer that alternative points
be assigned to alternative categories, with the
end points being used for training. However,
none of the alternatives offered this, so I
chose the default.4

6) I then pressed the Run button on the
Start Search tab and watched the tempo-
ral progress of the search. The plot in

4I have since learned that, with such precise data, another
promising alternative would be to use all of the points for
both training and validation, which is a current option.
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Figure 2. Eureqa Start Search tab for exact trigonometric simplification example.

Figure 2 dynamically zoomed out to show
a log-log plot of the best error measure
obtained so far as a function of computing
time. The Project Log dynamically showed
successive candidates that are better than
any so far on the basis of either complexity or
accuracy. The entertainment of watching the
evolution of these panes is very appealing. It
is similar to rooting for the home team at a
sporting event. Notice that:

(a) Integer powers of subexpressions are rep-
resented in the Project Log as repeated
multiplications, and their complexity is mea-
sured that way. For example, several results
are displayed as

(4) y=cos(x)∗cos(x)∗cos(x)∗cos(x)∗sin(4∗x)

with a complexity measure of 26.5

5The complexity measure seems less than ideal: the ulti-
mately reported formula in the View Results tab of Figure 3
is cos(x)4 sin(4x). This is more concise and requires only
one cosine and two multiplies to compute the cos(x) ∗
cos(x) ∗ cos(x) ∗ cos(x) factor if compiled by any decent
compiler.

(b) Result (4) appears first with a reported Fit of
0.000111, followed by the same expression
with monotonically better fits up through
3.81×10−10 at 39 seconds.6 I terminated the

6The same displayed formula was associated with such dra-
matically different error measures because Eureqa always
rounds its displayed coefficients to about four significant dig-
its, and in this case it enabled display of an exact result to
which it was merely converging. If I had checked the Integer
Constant building block, then Eureqa probably would have
rounded the coefficients to integers. However, y(0.0) = 0.0
and the data varies between about ±3.8, so a maximum
residual of 3.81 × 10−10 is enough to convince most peo-
ple that the displayed result is exact. Nonetheless, the result
expression might not be equivalent to the sampled expres-
sion everywhere between samples even if all the residuals
are 0.0. Also, one or more of those floating-point zeros might
be caused by underflow of numbers whose exact values are
nonzero. For this example we can prove equivalence for all
complex x because

TrigReduce

[(
cos(x)3 sin(x)+ cos(x)3 sin(x)

2
+ · · ·

)

− Cos[x]4 Sin[4x]
]
→ 0 .
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Figure 3. Eureqa View Results tab for exact trigonometric simplification example.

search at 8 minutes, during which Eureqa
tried different formulas that didn’t fit as well,
regardless of how complicated they were.

7) Figure 3 shows the results on the View
Results tab:

(a) In the pane labeled Best Solutions of Different
Sizes, the first column lists the complexity
measure, the second column lists an error
measure, and the third column lists the
corresponding candidate equation. If you
click on a row, the pane in the lower left corner
gives more detail, with various rounded error
measures, including the Primary Objective
that I chose, which was maximum absolute
error.

(b) Eureqa does some automatic expression sim-
plification: Whenever a mutation produces
a new candidate expression or a crossover
produces two new candidates containing
mixtures of the two parents’ subexpressions,
a few transformations are applied to make
the expression more nearly canonical and
to avoid having a misleadingly high com-
plexity on account of uncollected similar
terms, uncombined numeric subexpressions,

etc. This minimal computer algebra is also
used to make the displayed results in the
Best solutions of different sizes pane more
attractive. These transformations include:

• Integer powers and products of sums are
expanded to make them more nearly canonical.7

• Factors and terms are sorted; then similar
factors and terms are collected.

• Numeric subexpressions are reduced to a single
number.

• A few rules such as abs(abs(u))→ abs(u) and
1∗ u → u are applied.

However, you will often see a sub-expression
such as 1 cos(1x). This is because the 1’s are
a result of rounding noninteger coefficients
to the typically displayed 3 or 4 significant
digits. Nonetheless, I noticed unexploited
opportunities, such as Eureqa unnecessarily
trying the sub-expression sin(x+ 6.283). Ex-
ploiting symmetry and angle reduction could

7Unfortunately, expanded forms are often less concise
than equivalent factored forms that would have smaller
Complexity.
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preclude the need to try candidates hav-
ing constant terms outside a much smaller
interval.

(c) The pane in the lower right corner plots an
error measure as a function of complexity
for the twelve reported optimal candidates,
with the currently highlighted candidate as
a larger red dot.

(d) The pane in the upper right corner shows a
plot of the highlighted expression superim-
posed on the validation points in dark blue
and the training points in lighter blue. The
drop-down menu above it offers the option
of instead plotting the residuals at all of the
data points, which gives a much better idea
of the fitting errors as a function of x. If
these residuals had revealed a nonnegligible
recognizable pattern such as being approxi-
mately proportional to sin(16x), then I would
have tried another search with the model
y = f (cos(x), sin(4x), sin(16x)). I would it-
erate this process until there was no further
improvement or the residuals revealed no
nonnegligible recognizable pattern.

Instead of searching for the most concise
equivalent, one can also search for equivalent
expressions of a particular form. For example, we
could request that expression (1) be transformed
into a function without cosines by unchecking
that building block. As another example, the
request z = f1(x) ∗ f2(y) can be used to search
for an equivalent form having separated variables.
(Nonnegative integer suffixes on variable and
function names are pretty-printed as subscripts.)

Some Other Exact Simplification Examples

Using “Assuming[. . . , FullSimplify[. . .]]” in Mathe-
matica and “simplify(. . .), assuming . . .” in Maple,
I could not make them accomplish the follow-
ing quickly successful Eureqa simplifications, for
which I selected the default building blocks, Integer
Constants, and other functions or operators that
occur in the specific given expressions:⌊√

bxc
⌋
+
⌊√
x
⌋
| x ≥ 0→ 2

⌊√
x
⌋
.(5)

q2+
21/3

(√
81q2−12−9q

)2/3
+241/3

62/3
(√

81q2 − 12− 9q
)1/3(6)

−
2 cos

(
1
3 acos

(
− 3

√
3q

2

))
√

3

| |q|< 2

3
√

3
→ q2.

max(x−y, 0)−max(y−x, 0)→ x− y.(7)

• Example (5) comes from [7].

• I tabulated only the real part for example (6), be-
cause rounding errors for the principal branch
of the fractional powers of the negative quantity√

81q2 − 12−9q generated some relatively very
small magnitude imaginary parts.

• To generate 172 → 289 rows of data for example
(7), I used

Apply[Join,Table[N[{x, y,Max[x− 2

3
√

3
y,0]

−Max[y−x,0]},17], {x,−1,1,
1
8
}, {y,−1,1,

1
8
}]].

The examples so far illustrate that Eureqa can
sometimes determine a simpler exact result than a
computer algebra system. However, I constructed
these very simple results, then transformed subex-
pressions in ways that I suspected would be difficult
for common transformations to reverse, particu-
larly if applied to the entire expression rather than
well-chosen pieces. Despite this it was not easy to
find examples for which neither FullSimplify[. . .]
nor simplify(. . .) could determine the very simple
equivalent. Thus, Eureqa should be regarded as an
occasionally beneficial supplement to these func-
tions rather than as a replacement. Also, effective
use of Eureqa requires good judgment in:

• the interval spanned by the sample points, their
number and spacing;

• the form selected for the target expression; and
• the building blocks that are selected together

with their complexities.

Effective use also probably depends on experience
with Eureqa. Therefore, the benefits that I have
discovered should be regarded as a lower bound
because of my novice status.

How to Reduce the Curse of Dimensionality

As illustrated by example (7), data for representing
all combinations of n different values for each ofm
different independent variables requires nm rows,
and we must have n ≥ 2 for Eureqa to discern
any nonconstant dependence on each variable.
Thus, for a given n, this exponential growth
in data rows with the number of independent
variables can greatly increase the time required
for Eureqa to find a good fit. Moreover, yielding to
the consequent temptation to reduce computation
time by reducing n as m increases tends to reduce
the precision of the results. Fortunately, there are
several complementary techniques that sometimes
reduce the effective dimensionality:

1) Dimensional analysis can sometimes re-
duce the number of independent variables,
and [15] describes a Maxima program that
automates this.
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2) If you can partition an expanded or factored
form of your expression into two or more
components having distinct variable sets,
then you can independently fit each of
those components. For example, you can
separately fit max(x−y, 0) −max(y−x, 0)
and max(y−z, 0)−max(z−y, 0) in the sum of
these two expressions, converting a trivariate
example into two bivariate examples.

3) If in every term of a given sum the exponents
of some subset of the variables sum to
the same homogeneity exponent k, then
substitute 1 for one of those variables v,
fit this isomorphic problem, then multiply
every resulting term by the individual power
of v necessary to restore the homogeneity.

4) Unlike many experimental situations, for
experimental mathematics we usually have
complete freedom to choose the data values
of the independent variables. In both uni-
variate and multivariate problems there can
be sweet spots that deliver more accuracy
for a given number of samples than does a
brute force Cartesian product of uniformly
spaced points. These special values are often
related to the zeros or extrema of orthogonal
polynomials. For example, see the multidi-
mensional integral formulas in Chapter 25
of [1].

Approximate Symbolic Results
Ideally a floating point result is either exact or
the closest representable number to the exact
result, with ties broken in favor of having the last
significant bit be 0. Well-designed floating-point
arithmetic comes very close to this ideal: If the exact
result is representable within the thresholds for
overflow and for gradual underflow, then the result
is the exact result for inputs that differ from the
actual inputs by factors between 1− εm and 1+ εm,
where machine epsilon εm is about 1.11 × 10−16

for IEEE double, which corresponds to about 16
significant digits. A relative error bound of ±εm is
the gold standard. There are similar expectations
for operations such as exponentiation and for
functions such as sinusoids or logarithms that
are commonly built into compilers but allowing a
few times εm, which I call the silver standard. It is
a matter of professional pride among numerical
analysts designing general purpose mathematical
software to strive for the silver standard for all
functions provided with the software, and many
users assume this.8 I was curious to know if

8For example, early Microsoft Basic computed elementary
functions, fractional powers, and integer powers to half
the precision of the other arithmetic operators, causing un-
suspecting users to have results that were often far less
accurate than assumed.

Eureqa can help numerical analysis by discovering
concise approximate expressions that meet the
silver standard.

An Antiderivative Example

Many well-known and special-purpose functions
are defined by a definite integral containing a
variable that is not the integration variable, a
definite integral for which there is no known
closed-form expression in terms of simpler known
functions. For example, suppose that I want to
implement an IEEE double version of the Dogbert
W function defined by
(8)

W(x) :=
x∫
0

dt√
1− t2 + 2

π cos
(
πt
2

) | − 1 ≤ x ≤ 1 .

No computer algebra systems that I tried can
determine a closed form for W(x).

Plan B: Do a gold standard numeric integration
for a sequence of x values in the interval−1 ≤ x ≤ 1,
then use Eureqa to discover a silver standard
expression that fits those values well. Here is an
abridged account of my attempt to do this.

1) I entered the Mathematica input

(9)

xWPairs = Table[{N[x,17],

NIntegrate[
1√

(1−t)(1+t)+ 2
π cos

(
πt
2

) ,
{t,0, x},PrecisionGoal → 17,

WorkingPrecision→ 25], {x,−1,1,1/64}].
Then I inspected the 129 number pairs to
make sure there were no imaginary parts,
infinities, or undefined values.9

9 • The data in the Enter Data tab must currently be in-
tegers or finite real floats. A fraction, a floating point
infinity, a nan, or a nonreal number is not accepted.
If an imaginary part of your data is negligible noise,
then replace it with 0.0. Otherwise you must sepa-
rately fit the real and imaginary parts or the absolute
value and the arg, which is the Two-Argument Arc-
tangent in Eureqa. If your data has an undefined
value due to an indeterminate form, then replace it
with the value returned by your computer algebra
limit (. . .) function. If your table has an infinity, then
subtract out or divide out the singularity that is caus-
ing it. Don’t expect a good fit if you simply omit a value
that has infinite magnitude or replace it with an ex-
ceptionally large magnitude having the correct sign,
either of which can dramatically mislead the search.

• I entered 1− t2 as (1− t)(1+ t) in input (9) and else-
where to reduce the magnification of rounding errors
by catastrophic cancellation near x = ±1.

• The reason for WorkingPrecision → 25 is that I
wanted to further reduce this catastrophic cancella-
tion.
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2) All the values were real and finite, so I then
entered

Export [“xWPairs.csv”, xyPairs] ;

then I imported the resulting file into Eureqa
and tried to fit W = f (x) with the default
formula building blocks. After three minutes
of search the most accurate formula was

W = 0.7773112536x
cos(0.4696613973x7)− 0.2294845216x2 ,

which is noninsightful and accurate to a
disappointing maximum absolute error of
about 0.4%.

3) A Mathematica plot of the integrand reveals
a probable explanation: The integrand has
endpoint singularities, and although they
are integrable, the resulting integral has
infinite magnitude low-order derivatives at
the endpoints, which probably makes the
quadrature less accurate and the Eureqa
search slower than otherwise.

4) The plot of numeric antiderivative values on
the Prepare Data tab revealed that it looks
approximately proportional to asin(x).

5) So next I did another Eureqa search after
disabling the sine and cosine building blocks
and making the target expression be W =
f (x, asin(x)). I did not enable the arcsine
building block because I didn’t want Eureqa
to waste time trying arguments that cause
asin(. . .) to be nonreal. In 11 seconds Eureqa
found the following seven-term expression
having a maximum absolute error of only
about 3.1× 10−9:

W = −1.870027576× 10−13(10)

+ 0.7816747744x

+ 0.0147770774x3

− 0.03033616234x2 asin(x)

+ 0.07586494202x asin(x)2

+ 0.0818165982 asin(x)3

+ 0.0009144579166x3 asin(x)2.

I aborted the search at 3 minutes with no
further improvement. Regarding this result:

(a) To view the coefficients rounded to 10
significant digits rather than about 4, I
had to copy the expression from the Best
solutions of different sizes pane in the View
Results tab into Mathematica or a text editor.
Unfortunately there is currently no way to
view or access all 16 digits, so I will have

to polish a result with classic regression
software to obtain a silver standard result.10

(b) I edited the copied formula because it con-
tained annoying superfluous parentheses
and represented integer powers by repeated
multiplication.

(c) The even symmetry of the integrand and the
centered integration from 0 imply that the
antiderivative should have odd symmetry.
Therefore the spurious constant term in
expression (10) should be discarded. Terms
that are contrary to odd symmetry might
arise from the random partitioning of the
data into training and validation sets.

(d) Converting the result to recursive form by
collecting similar powers of x or asin(x)
can significantly reduce the Complexity. For
example, deleting the spurious constant
term, rounding the coefficients in result (10)
for brevity, then collecting with respect to
asin(x)2 give

W = 0.78x+ 0.015x3 − 0.03x2asin(x)

+ (0.076x+ 0.00091x3) asin(x)2

+ 0.082 asin(x)3,

which saves one instance of ∗asin(x)2. At
the expense of comprehensibility, the Com-
plexity and the floating-point substitution
time can be further reduced by Hornerizing
this recursive representation to

W = x(0.78+ 0.015x2)+ asin(x)(−0.03x2

+ (x (0.076+ 0.00091x2)
+ 0.082 asin(x)) asin(x))).

This is another place where more computer
algebra could help Eureqa.

(e) Notice that result (10) has no term that is sim-
ply a numeric multiple of asin(x). Therefore
it doesn’t model the infinite endpoint slopes
associated with the integrand singularities
there. But that is my fault, because the target
expression contains no special encourage-
ment to include a term of that form, and
the plot from the Eureqa Prepare Data tab
reveals that the sample points were not
closely enough spaced near the endpoints to
suggest the infinite slope magnitudes there.

10The rounding of coefficients in the Project Log and Best
solutions of different sizes panes does increase compre-
hensibility, particularly since those panes are regrettably
unscrollable. Even more rounding could justifiably be done
for coefficients of terms whose relative maximum contribu-
tion is small. For example, if the maximum contribution of a
term over all data points is 1%, then its coefficient justifiably
could be rounded to two less significant digits than the coef-
ficient that contributes the most over all data points. See [3]
for more about this idea.
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6) Result (10) suggests that a set of particularly
good fits would be a truncated series of the
form

(c1 asin (x)+ c2 x)

+
(
c3 asin (x)3 + c4 x asin (x)2

+ c5 x2asin (x)+ c6 x3
)
+ · · ·

with numeric coefficients ck. This can be
regarded as a truncated bivariate series in
terms having a power of x times a power
of arcsin(x) that have nondecreasing odd
total degrees. I could constrain Eureqa to
search only within this class of expressions
by entering a target expression having a
particular total degree, such as

W = f1() asin (x)+ f2() x
+ f3() asin (x)3 + f4() x asin (x)2

+ f5() x2asin (x)+ f6() x3.

However, standard regression software is
much faster for merely optimizing some
parameters in a specific form/and more
accurate if done with arbitrary-precision
arithmetic. The largest total degree in Eureqa
result (10) is 5. Consequently, I next used the
Mathematica LinearModelFit [. . .] function
with the 12 basis expressions of the form
xjasin (x)k having odd total degree 1 ≤
j + k ≤ 5. After 0.27 seconds I received the
following eight-term result, whose significant
digits I have truncated for brevity:

22.9x+ 0.012x3 + 0.000097x5(11)

− 22.1 asin (x)− 0.068x2asin (x)

+ 0.78x asin (x)2 + 3.09 asin (x)3

− 0.078 asin (x)5.

The maximum absolute error at the tabulated
points was about 4 × 10−11, which is two
significant digits more than (10) for the same
total degree and only one more term. The 96
percent cancellation between the dominant
terms 22.9x and −22.1 asin (x) for x near 0
is less than ideal, but the small error measure
is very gratifying.

Encouraged, I next tried LinearModelFit [. . .]
with total degree 7, which entails twenty basis
terms. However, the most accurate returned result
also had eight terms and cancellation between the
two dominant terms. Moreover, the error measure
was only slightly smaller, and the coefficients
changed dramatically from those of correspond-
ing terms in (11). Therefore it seems likely that
something important is missing from the basis, pre-
venting results from corresponding to economized
truncations of a convergent infinite series.

Thus it is not promising to try larger total degrees
with this basis in pursuit of a concise numerically
stable silver standard. Nonetheless, this has been
a nice combined use of Eureqa and Mathematica:
After the decision to try a target expression of the
form f (x, asin(x)), Eureqa discovered a concise
form having 9 significant digits and basis functions
of the form xjasin(x). I then used Mathematica
to obtain a result having only one more term
that is accurate to 11 significant digits, which is
more than adequate for many purposes. For this
example Eureqa has served as a muse rather than
as an oracle.

However, I couldn’t help wondering: Is there a
relatively simple class of forms that Eureqa might
have revealed for further polishing to a concise
silver standard fit by Mathematica?

With the help of the Mathematica Series [. . .]
function and an embarrassingly large amount of my
time adapting its results to my desires via a sixteen
line Mathematica function downloadable from a
website [16], I was able to determine an exactly
integrable truncated infinite series expansion of the
integrand that converged sufficiently fast without
undue catastrophic cancellation over the entire
interval −1 ≤ x ≤ 1. Using Assuming[−1 ≤ x ≤
1, Integrate[. . .]], the Hornerized representation
of the corresponding antiderivative is

W̃(x) :=c0 asin(x)

(12)

+x
√
(1−x)(1+x)

(
c1+x2

(
c2+x2(c3+· · ·)

))
.

Being a single series bifocally expanded about
x = ±1, it is C∞ over the entire interior inter-
val −1 < x < 1. Notice that, contrary to the
previous efforts, asin(x) occurs only to the first
power and that all the other terms are multiplied
by

√
(1− x)(1+ x). A good set of basis expres-

sions is thus {asin(x), x1+2k
√
(1− x)(1+ x)} for

k = 0,1, . . . . The higher powers of asin(x) in the
previous basis were being used as flawed surro-
gates for x1+2k

√
(1− x)(1+ x): octagonal pegs in

circumscribed round holes—they sort of fit, but in
an impaired way.

The Mathematica function that I wrote computes
the exact coefficients ck, which involve

√
6 and

powers of π . After writing that function I used
LinearModelFit [. . .] to effectively economize a
higher-degree approximation to a lower-degree
one having nearly the same precision. For the
data I used high-precision numerical integration
after using truncated series (12) to subtract out
and exactly integrate two terms of the endpoint
singularities. This made equally spaced x values
quite acceptable. Experiments revealed that using
terms through coefficient c7 gave an approximation
to y(x) that had a worst absolute error of about
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6×10−16 at the right endpoint, where the value was
about 1.255. A plot of the residuals revealed that
this eight-coefficient approximation has a relative
error of about 5× 10−16, making it silver standard.
Moreover, this plot was essentially noise, revealing
no remaining exploitable residual for IEEE double.

Eureqa did not by itself discover this better basis,
but that is my fault: I never allowed square roots as
a building block. I should have done a little analysis
earlier to wisely suggest a target expression of the
form f (x, asin(x),

√
(1− x)(1+ x)). With a square

root in the integrand denominator, I should have
anticipated a square root in a good approximate
antiderivative numerator. Better yet, I could have
tried the square root that also contains the
cosine term. Using Eureqa effectively for computer
algebra and numerical analysis should be viewed
as a collaboration rather than as a competition. And
Eureqa is not a black box oracle. You cannot leave
your brain behind.

Other Possible Approximate Symbolic Results

There are many other possibilities for using Eureqa
to find a concise expression or to suggest a good
class of expressions that closely approximates a
result that would otherwise have to be presented
only graphically or as a table. For example,

• Inverse functions and solving parametric alge-
braic equations: Suppose that for the example
(8) we also or instead wanted an approximate
symbolic expression for the inverse Dogbert
W function: x as a function of W . Eureqa can
search for such expressions if we simply enter
x = f (W) or, more efficiently for this example,
x = sin(f2()W)+ f3(W).

• Solution of differential, integral, delay, and other
kinds of functional equations: For example, sup-
pose that we have a system of first-order
ordinary differential equations and a tabulated
numerical solution vector [y1(t), y2(t), . . .] for
t = t0, t1, . . . , tn. Then we can use Eureqa to
separately search for good expressions for
y1(t), y2(t), . . . . If we want tn = ∞, then we
should first make a change of independent
variable to map that endpoint to a finite value
in a way that doesn’t introduce a singularity
elsewhere.

• Implicitization: A major application of com-
puter algebra is implicitization of paramet-
ric equations defining curves, surfaces, or
higher-dimensional manifolds. Implicit rep-
resentations are better than parametric for
determining whether a point is inside, outside,
or on a closed manifold. However, exact im-
plicitization algorithms are known only for
certain classes of parametric equations. For
other classes we can try using Eureqa to find

approximate implicit equations. (See [12] for
tips on how to use Eureqa for this purpose.)

Additional Tips and Tricks
Here are a few additional tips and tricks for using
Eureqa effectively in conjunction with computer
algebra or numerical analysis:

1) To increase the chance of obtaining exact
rational coefficients, reduce your input ex-
pression over a common denominator, then
separately tabulate and fit the numerator
and denominator with the Integer Constant
building block checked.

2) To possibly include foreseen exact symbolic
known irrational constants such asπ and

√
2

in your result, for each such constant make
a labeled column of corresponding floating-
point values, preferably accurate to 16 or 17
digits. For example if a column labeled pi
contains 3.1415926535897932 and a column
labeled sqrt2 contains 1.414213562373095,
then check the Integer Constant building
block and use a target expression of a
form such as “. . . = f (pi, sqrt2, . . .)”. These
symbolic constants don’t contribute much
to the curse of dimensionality because they
are invariant, so there is no need to include
more rows on their account.

3) To see if an unrecognizable floating-point
constant in a result is a close approximation
to some unknown relatively simple rational or
irrational constant such as 3/7 or

√
7π , enter

all of the computed digits into the remarkable
free online Inverse Symbolic Calculator [2] or
use the Maple identify(. . .) function, which
is an earlier version thereof.11

4) As with most regression software, Eureqa
tends to express results in terms of the
notoriously ill-conditioned monomial basis
1, x, x2, x3, . . .. To express your result more ac-
curately in terms of an orthogonal polynomial
basis, such as the Chebychev T polynomials,
generate columns labeled T0, T1, . . . , Tn, the
desired constant n at the tabulated values
of the independent variables. After 1 in the
column labeled T0 and the sample values
of x in the column labeled T1, successive
columns can be computed from these by
entering = 2∗ x∗ T1 − T0 in the column la-
beled T2, then= 2∗x∗T2−T1 in the column
labeled T3, etc. You can then use a target

11Inverse Symbolic Calculator can be regarded as symbolic
regression of a single floating-point number to an exact nu-
meric expression that it approximates well. It would be nice
if Eureqa included building blocks for at least simple ratio-
nal constants, quadratic numbers, and multiples of π or e,
which is easy to implement.
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expression of the form “. . . = f (T0, T1, . . .)”.
The Tk variables don’t contribute much to
the curse of dimensionality because they
are totally correlated rather than truly inde-
pendent. Moreover, these variables have the
same Complexity as any other variable, thus
preventing them from being discriminated
against as they would be if you otherwise
equivalently made the target expression be
“. . . = f (1, x, x2 − 1, x3 − 3x, . . .)”.

Seamless Integration of Software Packages
It is usually somewhat of a nuisance to work
between two or more separate software packages
compared to working entirely within one that has
all of the necessary features built in. The extra effort
and the lesser chance of even knowing about two or
more complementary software packages is a great
deterrent to such use. Thus it is good to know that
interfaces are under development for using Eureqa
from within Mathematica, MatLab, Python, .Net,
and Knime, with current versions downloadable
from [13]. Such added interfaces are rarely as
seamless as features that are built in, but they are
often great improvements over communicating by
export-import of files or by copy and paste. Among
other things, the interfaces can accommodate
differences in syntax for expressions.

There is also a different symbolic regression
add-on Gptips for MatLab [8] and one named
DataModeler for Mathematica [4].

The Need for Automation
At any one time, most of us are amateurs with
most of the software that we use. We need all of the
help we can obtain. In response to that need, many
of the best software packages automate certain
portions. However, the previous examples were
not automatic. Training, experience, and judgment
were involved in choosing the data points, target
expression, etc. Some of this could and should be
automated. A qualitative analysis program such as
the Maxima program described in [17] could help
in this regard: Given an expression, this program
attempts to return bounds and indications of
monotonicity, convexity, symmetries, periodicities,
zeros, singularities, limits, and stationary points. To
the extent that this is successful, this information
could be used to choose automatically the function
blocks and for each independent variable the
endpoints, the number of samples, and perhaps
even their distribution. For example:

• If there are poles, then it is best to automatically
convert any tangents to sines divided by cosines,
then form a reduced common denominator,
then use Eureqa to fit separately the numerator
and denominator. Neither the numerator nor

the denominator will contain a pole, but they
still could contain a logarithmic singularity that
would have to be handled by subtracting or
dividing it out.

• It is probably best to choose endpoints that
extend modestly beyond all stationary points
and the real parts of all zeros, including at least
one fundamental period, if any, with enough
points to resolve the shortest period.

• If there is a symmetry and the expression is
C∞ at the symmetric point, then it is probably
best to center the data values on that point.
Otherwise it might be more efficient to make
that symmetry point be one of the endpoints.

Even a purely numeric program that searches for
zeros, singularities, extrema, periodicities, and
symmetries could help in this regard.

Conclusions
1) With wise use, Eureqa can sometimes deter-

mine a simpler exact equivalent expression
better than current computer algebra sys-
tems or sometimes transform an expression
into a desired form that isn’t provided by a
computer algebra system.

2) With wise use, Eureqa can sometimes suggest
promising forms of expressions that approx-
imate a result for which an exact closed form
is unobtainable or excessively complicated.
However, often you will want to obtain a
more accurate result in a thus-revealed class
by using a linear or nonlinear regression pro-
gram built into a computer algebra system
or a statistics package.

3) Some simple interface additions within Eu-
reqa could increase its utility for the above
two purposes. Interfaces to Eureqa within
more software packages would encourage
more use of Eureqa. Embedding Eureqa
within those packages would probably be
even more seamless.

4) Eureqa uses some custom computer alge-
bra and some standard numerical methods
internally. Eureqa would almost certainly
benefit from embedding and exploiting a
well-developed full-fledged computer alge-
bra system together with classic regression
and powerful numerical methods.

5) Eureqa’s most frequent and notable suc-
cesses will probably continue to be with
noisy experimental data, but Eureqa shows
promise for purposes (1) and (2) above.

6) Some of the most extreme press praise is
poetic license sound bites, but symbolic
regression deserves a place in the tool kits
of many mathematicians, engineers, and
scientists.
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Professor of Mathematics

The Department of Mathematics at ETH Zurich  

(www.math.ethz.ch) invites applications for a 

position in an algorithmic area of mathematics 

related to optimization. The duties of the future 

professor include teaching in mathematics and 

related areas. 

We are seeking candidates with an internationally 

recognized research record and with proven  

ability to direct research of highest quality.  

Expertise and a strong background in optimization 

and/or computation will be especially appreciated. 

Willingness to teach at all university levels and 

to collaborate with colleagues from departments 

outside mathematics is expected. 

Together with the colleagues from the department, 

the new professor will be responsible for under-

graduate courses in mathematics at ETH Zurich for 

students of mathematics, engineering and natural 

sciences, and for graduate courses in the programs 

MSc in Applied Mathematics, MSc in Computational 

Science and Engineering, MSc in Statistics, and MSc 

in Quantitative Finance (joint degree with the  

University of Zurich). The successful candidate will 

be expected to teach undergraduate level courses 

(German or English) and graduate level courses 

(English).

Please apply online at www.facultyaffairs.ethz.ch 

Applications should include a curriculum vitae and a 

list of publications. The letter of application should 

be addressed to the President of ETH Zurich, Prof. 

Dr. Ralph Eichler. The closing date for applications  

is 30 September 2013. ETH Zurich is an equal oppor-

tunity and family friendly employer and is further 

responsive to the needs of dual career couples. In 

order to increase the number of women in leading 

academic positions, we specifically encourage  

women to apply.
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