
Evolving object oriented agent programs in
Robocup Domain

David E. Suárez
Student

Universidad Distrital
Member of Laboratory of Automatic,
Microelectronic and Computational

Intelligence (LAMIC)
Bogotá, Colombia

desuarezp@estudiantes
.udistrital.edu.co

Julián Y. Olarte
Student

Universidad Distrital
Member of Laboratory of Automatic,
Microelectronic and Computational

Intelligence (LAMIC)
Bogotá, Colombia

jyolarter@estudiantes
.udistrital.edu.co

Sergio A. Rojas
Faculty mentor

University College of London
Universidad Distrital

Member of Laboratory of Automatic,
Microelectronic and Computational

Intelligence (LAMIC)
Bogotá, Colombia

srojas@udistrital.edu.co

ABSTRACT
This paper describes the application of object oriented genetic
programming to the automatic generation of agents under the
Object Oriented Paradigm. To generate the agent programs code,
we evolve concurrently the methods that represent the agent-
environment interaction. We use like terminals and operations the
objects that correspond to the context elements. This study uses
the simulation league of the Robot World Cup (Robocup) like a
testing environment. The fitness function used evaluates the
behavior of agent player in several levels that indicates the
learning progress. The experimental results indicate that is
possible the agent programs evolution under the Object Oriented
Paradigm.

Categories and Subject Descriptors
I.2.2–Automatic Programming, Program Synthesis; I.2.11–
Distributed Artificial Intelligence, Intelligent agents; D.3.2–
Language Classifications, Object-oriented languages.

General Terms
Algorithms, Design, Languages

Keywords
Genetic Algorithms, Genetic Programming, Agent programs.

1. INTRODUCTION
An agent is a computational process that implements the

autonomous, communicating functionality of an application [6].
Also, the agents “live” in a dynamic virtual or real environment

and perceive and act to achieve goals in a specific context. These
entities require the creation of algorithms that generate intelligent
answers to environment messages for the solution of problems
and conflicts. Some recent research [5][13] suggest that an agent
(in other words their algorithms) can be generated automatically
using Computational Intelligence techniques like Genetic
Algorithms or Genetic Programming.

Genetic Programming Technology (GP)[3] allows the
automatic generation of computer programs by natural selection
and Darwin’s Evolution Theory. The process uses a large initial
population of programs that are random combinations of the
problem’s specific variables and functions. Through the process,
all generated random programs are evaluated using fitness
functions and then they are altered with genetic operations like
mutation or crossover. These genetic operations depend on the
schema representation used in the programs and many alternatives
to standard GP are developed by the GP community. All these
schemas look for generating typically functional or list based
algorithms, except some research based on object oriented
programming [4][9][10].

Last and best implementations of Intelligent Agents and
Multi-agent Systems have been developed on the object oriented
programming (OOP) paradigm [7][11]. It creates a great challenge
for the recent investigation about automatic generation of agents
programs because the implementations under the OOP have high
quality and they have characteristics as re-use, modularity and
high abstraction [3].

All recent research about automatic generation of agent
programs use the standard GP as the generation method, but to the
authors' best knowledge, no work the generation of object
oriented agent programs. This project proposes to use the research
of several authors (e.g., Bruce [4], Langdon [9] and Lucas [10])
who have been working with a GP method for the generation of
object oriented programs to generate object oriented agents, in a
similar way that [5][13]. The proposal for the generation of object
oriented programs include simultaneous induction of several
methods of the same object [4][9] and the use of complex objects
as iterators. Other additional functionality might be the use of
reflexion to explore the API object library system [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO)’05,
June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 …$5.00.

Many experimentation environments exist for intelligent
artificial agents. One of these is the Robot World Cup initiative
(Robocup) [2]. We decided to use this platform because it
provides a testing environment for artificial real agents and
simulated agents which have to play a game similar to soccer. It is
a very interesting problem to researchers in computational
intelligence because it deals with navigation, planning,
communication, cooperation and taking of decision making for
issues that must be solved in real time in a highly dynamically
changing environment. There are many different methods of
producing players to compete in the Robocup competition and the
most popular of which appears to be agent based research. And
the best way to generate agents would be to generate them using
the object oriented paradigm.

2. EVOLVING OBJECT ORIENTED
SOFTWARE AGENTS

Most of implementations of GP search for the generation of
lists or functional based programs, but some investigations have
dealt with the evolution of programs guided by objects. The most
similar prior work to this paper in evolving object oriented
programs is Abbott's initial exploration of Object Oriented
Genetic Programming (OOGP) [1] and Lucas’s exploiting
reflection in OOGP [10]. These studies, and Bruce’s and
Landong’s research, demonstrate that it is possible to
simultaneously evolve object member functions and their
cooperation in the self-organization of the internal memory of the
same one.

In an agent, the interaction model with the environment
defines its internal state. A specific example of information in a
physical agent is the visual and body perception information. The
facts found in the environment change the internal state of an
agent and produce a specific response for the situation.

In object oriented programming, the responses of an agent
might be modelled with an object method call and the
environment information is passed as an argument. The actions of
the agent are executed by calls to objects that reference the
environment. For example, in Aglets platform [8] the object
model defines a set of methods that represents the responsibilities
of the agent in relation to the context. These methods’ set are
standard for all agents and define the calls that the environment
execute over each agent to inform their own changes [7]. All
these methods which represent the agent interaction can be
evolved in a similar way to the stacks and queues examples
evolution in the Bruce’s and Landong’s research.

We wish to evolve the code that implements the response
agent’s methods given a set of method signatures. The methods’
implementation is a sequence of instructions where each
instruction consists of a method reference (the Method to be
invoked) and an object reference (the Object to invoke it on).
Other elements in the methods implementations to be evolved
might be: control instructions (like if or while sentences), and
scope brackets.

In the agent context the principal object to be used is a
reference to the environment and the principal methods of this
reference are messages about the change of the agent state and
queries about environment’s items (e. g., shared elements,
databases, and general info).

3. ROBOCUP AS EXAMPLE
APPLICATION

The Robocup context has appropriate characteristics that
allow software agents to work in. Here, it is possible to exploit the
autonomy, social ability, reactivity, and pro-activity properties.
The Robocup is divided in several categories; one of these
categories is the simulation league, where the players are software
agents programs. In the simulation league, games are carried out
between two teams of eleven players each, under a client/server
scheme with UDP/IP communication protocols. The Robocup
organizers provide the server and the monitor for the simulation.
The players are developed by each research group, and they are
connected as clients to the server.

The simulation server (SoccerServer) takes charge of
controlling all information of the game like ball and players’
position or the time of game. The monitor (SoccerMonitor) makes
the two-dimensional visualization of the game field in the screen.
The clients request information from the server, and based on this,
they execute control commands such as to rotate, to kick, to
move, to speed up, and others.

Each player determines his position in a relative way to
certain objects like goals, limit lines, ball and other players. The
visual information is received every pre-determined period of
time (see Figure 1.). Additionally, the players can receive auditive
and body sense information. The auditive info is composite by the
decisions and referee's orders, and possibly messages sent by their
team partners and coach. The body sense info represents the
action of the environment to the player, for example, the lost of
corporal energy.

Our goal is to automatically develop players which are

designed according to the object oriented paradigm and have
interaction with the soccer server. For this purpose we use the
Java language programming to generate our Agents. In fact, we
have to evolve three principal methods: one to manage the visual
information, other for perceiving sound information and the last
one for the body perception information. The code of our player
(see, Figure 2) has three principal methods that receive as
parameters, objects that represent the complex audio, visual and
body perception information of the players. The reason to evolve
the three methods (and not alone one of them) is which in the
object oriented programming all the methods of a class

Figure 1. The visible range of an individual agent in the
soccer server.

collaborate to each other at the same time to complete the class
objective.

Evolution process experiments begin with the random
generation of our players using the terminals and functions
described in the table 1.

Then a tree representation of agent programs, which include

all response functions, is constructed (see, Figure 3). We use
Strongly Typed Genetic Programming with type inheritance [12];
it allows using several data types and their inheritance hierarchy.
Also, Bruce's research confirms that, in this context, STGP is as
much as or more efficient than the standard GP. To perform the
type inheritance checkup, we used the Java reflection API to

discover the inheritance hierarchy. This indicates that in our
experiments, we do not use data primitive types.

b
r
le

tu
m
k
d
c
tu
a
s
m
d
m
e
le
g

mea
eva
par
gam

imp
gam
sea
last
way

Fi

of p
the
num
sco
(To
rep
of t

sev
mu
than
gen

the
div
imp
gen
valu
evo
Figure 3. Tree representation of object oriented code
agent.
The next step is to take each agent in the population to
sure their performance with the fitness function. This function

luates the players’ behavior in the playing field considering
ameters as goals, shots, passes, and other elements of the
e. For each type of player, there is one fitness function.

The fitness function is designed to induce the player to
rove the behavior to score, in the established time for each
e. The agent's actions have a learning order; first, the ball

rch, second, the proximity to it, third, the kick to the ball and,
ly to score. The fitness function is calculated in the following
:

() () () ()
cycles

pbbb

Total
PGPKPNPV

tness 4321 ∗+∗+∗+∗
= (1)

Where Vb is the number of times that the ball is in the range
layer’s vision; Nb is the average of the distance to the ball per
number of times that the ball is visible for the player; Kb is the
ber of kicks in direction to enemy goal; and Gp is the number

res. All variables depend of the number of cycles per game
talcycles). Each action has a learning weight associated and
resents the level of the each player, for example, the visibility
he ball has weight P1. From this it follows that:

4321 PPPP <<< (2)

When the fittest agents are selected, they are submitted to
eral genetic operations. These operations can be both,
tation and crossover functions, and they work in a similar way
 traditional GP. The whole process is repeated over many

erations until the finalization criterion is reached.

Our developed evolution system called PROLE2 is shown in
Figure 4. It is based on the model described by [13]. It is

ided in two parts; the first one is the Robocup system
lementation and the other one is the agent code generator. The
erated agents are tested in the soccer server and its fitness
Figure 2. Example code of the standard functions to
evolve in an example player agent.
public class PlayerExample extends PlayerAgent{
 // Some declarations
 // Principals function to evolve
 public void onSee(VisualInfo inf) {
 // some evolve code...
 }
 public void onSenseBody(PerceptiveInfo inf){

 // here used the info object.
 // here used the server object
 // to send messages...
 }
 public void onHear(AudibelInfo inf){
 // some evolve code...
 }
 // other functions ...
}
Table 1. Terminals and functions used in these experiments.

Terminals Type Description
all
ightGoal
ftGoal

Objects We use this three principal
objects. All these have this next
properties:

m_isVisible Bool Visibility
m_distance Float Distance to the object
m_direction Integer Direction to the object
m_distChange Integer Delta of the distance
m_dirChange Float Delta of the direction

Functions Type Description

rn(float) void Function that spins the player
ove(float, float) void Function that moves the player

ick(float,float) void Function to kick the ball
ash(float) void Function to dash n steps
atchBall(float) void Function to take the ball (goalie)
rnNeck(float) void Function to turn the head

dd(float,float) Float Arithmetic sum
ub(float,float) Float Arithmetic subtraction
ult(float,float) Float Arithmetic multiplication

ivi(float,float) Float Arithmetic division
od(float,float) Float Arithmetic modulus

quals(bool,bool) Bool Comparative equals (= =)
ss(bool,bool) Bool Comparative less than (<)
reater(bool,bool) Bool Comparative greater than (>)
e is returned to the agent code generator to continue the
lution.

For the experiments a population of 30 players was used

during 60 generations. To each player it was granted a time of 600
cycles to play. The roulette method was used as the selection
method and the genetic operators were crossover and mutation.
The experiments objective was generate autonomous behaviors in
the agents, exploiting the object oriented programming benefits.

4. DISCUSSION
Given the variability and complexity of the environment and

the very long run time required to get practical results, this project
requires a second experimentation phase, where it would be
possible to analyze other items in the agents generation like the
collective behavior [13], intelligence emergence and other topics.

The use of Strongly Typed GP used in these experiments is
the same that propose [12] with the difference that we don’t have
to make a type tree hierarchy, if not that, we used the java API
reflection.

The generated agents in the first experiments exhibited
autonomous behaviors like running behind the ball or searching
and kicking the ball. In response to the sound information, the
agents did not evolve any coherent behavior. Possibly it occurred
because of the deficiency of meaning of set sound stimulus; we
had not planned a sound stimulation strategy. Other element that
can be used to the evaluation of agent programs is the object
oriented metrics.

In particular we demonstrated the possibility of the
generation of object oriented agents programs using the previous
work on OOGP and Automatic generation of agents. We also
demonstrated the emergence of simple behaviors in a system that
is considerably constrained and with high complexity. We believe
that this work presents an approach to the implementation of
evolutionary techniques in commercial systems like all agents
platforms which are developed over object oriented paradigm.

In the future, this research will look for to finish a complete
team for the Robocup simulation league, and later, it will look for
commercial applications for the Object Oriented Agents
automatically generated.

5. ACKNOWLEDGMENTS
Our thanks to the Universidad Distrital, and to all members

of the Laboratory of Automatic, Microelectronic and
Computational Intelligence (LAMIC).

6. REFERENCES
[1] Abbott, R., Guo, J., and Parviz, B., Object-Oriented Genetic

Programming. The 2003 International Conference on
Machine Learning; Models, Technologies and Applications
(MLMTA). 2003. Figure 4. Framework for the evolution of artificial

object oriented players. [2] Birk A., Coradeschi. S., Tadokoro S. (Eds.). RoboCup 2001:
Robot Soccer World Cup V. Berlin: Springer-Verlag. 2002.

[3] Booch, G., Object oriented analysis and design with
applications. Second edition. Redwood City, CA:
Benjamin/Cummings Publishing Company, Inc. 1994.

[4] Bruce, W., The Application of Genetic Programming to the
Automatic Generation of Object-Oriented Programs. Ph.D.
Tesis. On line: ftp://cs.ucl.ac.uk/bruce.thesis.ps.gz. 1995.

[5] Cliff, D., P. Husbands, J-A. Meyer, and S.W. Wilson, Eds.
1994. From Animals to Animats 3. MIT Press.

[6] FIPA Rationale. Foundation for Intelligent Physical Agents.
On line: http://www.cselt.stet.it/fipa/fipa_rationale.htm.
1996.

[7] Garcia, A., Lucena, C. y Cowan, D. Agents in Object-
Oriented Software Engineering. Elsevier: Software: Practice
& Experience. 2003.

[8] IBM, Research. Aglets. On line:
http://www.trl.ibm.com/aglets/, Last change: 14 March,
2002.

[9] Langdon, W. Evolving data structures with genetic
programming. In Proceedings of the Sixth Int. Conf. on
Genetic Algorithms. San Francisco, CA: Larry J. Eshelman,
Ed., pp. 295-302, Morgan Kaufmann.1995.

[10] Lucas, S. Exploiting Reflection in Object Oriented Genetic
Programming. EuroGP 2004: 369-378. 2004.

[11] Omicini, A. From Object to Agent Societies: Abstractions
and Methodologies for the Engineering of Open Distributed
Systems. AI*IA/TABOO Joint Workshop. 2000.

[12] Shoenefeld, D., Haynes, T., Wainwright, R. Type
Inherietance in Strongly Typed Genetic Programming.
Chapter in book: Advances in Genetic Programming 2,
Editors: Kennet E. Kinnear, Jr., And Peter J. Angeline. MIT
Press, 1996.

[13] Spector, L. Automatic Generation of Intelligent Agent
Programs. In IEEE Expert. Jan-Feb 1997, pp. 3-4

ftp://cs.ucl.ac.uk/bruce.thesis.ps.gz.
http://www.cselt.stet.it/fipa/fipa_rationale.htm.
http://www.trl.ibm.com/aglets/

	INTRODUCTION
	EVOLVING OBJECT ORIENTED SOFTWARE AGENTS
	ROBOCUP AS EXAMPLE APPLICATION
	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

