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ABSTRACT 
This paper describes the application of object oriented genetic 
programming to the automatic generation of agents under the 
Object Oriented Paradigm. To generate the agent programs code, 
we evolve concurrently the methods that represent the agent-
environment interaction. We use like terminals and operations the 
objects that correspond to the context elements. This study uses 
the simulation league of the Robot World Cup (Robocup) like a 
testing environment. The fitness function used evaluates the 
behavior of agent player in several levels that indicates the 
learning progress. The experimental results indicate that is 
possible the agent programs evolution under the Object Oriented 
Paradigm.  

Categories and Subject Descriptors 
I.2.2–Automatic Programming, Program Synthesis; I.2.11–
Distributed Artificial Intelligence, Intelligent agents; D.3.2–
Language Classifications, Object-oriented languages. 

General Terms 
Algorithms, Design, Languages 

Keywords 
Genetic Algorithms, Genetic Programming, Agent programs. 

1. INTRODUCTION 
An agent is a computational process that implements the 

autonomous, communicating functionality of an application [6]. 
Also, the agents “live” in a dynamic virtual or real environment 

and perceive and act to achieve goals in a specific context. These 
entities require the creation of algorithms that generate intelligent 
answers to environment messages for the solution of problems 
and conflicts. Some recent research [5][13] suggest that an agent 
(in other words their algorithms) can be generated automatically 
using Computational Intelligence techniques like Genetic 
Algorithms or Genetic Programming. 

Genetic Programming Technology (GP)[3] allows the 
automatic generation of computer programs by natural selection 
and Darwin’s Evolution Theory. The process uses a large initial 
population of programs that are random combinations of the 
problem’s specific variables and functions. Through the process, 
all generated random programs are evaluated using fitness 
functions and then they are altered with genetic operations like 
mutation or crossover. These genetic operations depend on the 
schema representation used in the programs and many alternatives 
to standard GP are developed by the GP community. All these 
schemas look for generating typically functional or list based 
algorithms, except some research based on object oriented 
programming [4][9][10]. 

Last and best implementations of Intelligent Agents and 
Multi-agent Systems have been developed on the object oriented 
programming (OOP) paradigm [7][11]. It creates a great challenge 
for the recent investigation about automatic generation of agents 
programs because the implementations under the OOP have high 
quality and they have characteristics as re-use, modularity and 
high abstraction [3].  

All recent research about automatic generation of agent 
programs use the standard GP as the generation method, but to the 
authors' best knowledge, no work the generation of object 
oriented agent programs. This project proposes to use the research 
of several authors (e.g., Bruce [4], Langdon [9] and Lucas [10] ) 
who have been working with a GP method for the generation of 
object oriented programs to generate object oriented agents, in a 
similar way that [5][13]. The proposal for the generation of object 
oriented programs include simultaneous induction of several 
methods of the same object [4][9] and the use of complex objects 
as iterators. Other additional functionality might be the use of 
reflexion to explore the API object library system [10].  
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Many experimentation environments exist for intelligent 
artificial agents. One of these is the Robot World Cup initiative 
(Robocup) [2]. We decided to use this platform because it 
provides a testing environment for artificial real agents and 
simulated agents which have to play a game similar to soccer. It is 
a very interesting problem to researchers in computational 
intelligence because it deals with navigation, planning, 
communication, cooperation and taking of decision making for 
issues that must be solved in real time in a highly dynamically 
changing environment. There are many different methods of 
producing players to compete in the Robocup competition and the 
most popular of which appears to be agent based research. And 
the best way to generate agents would be to generate them using 
the object oriented paradigm. 

2. EVOLVING OBJECT ORIENTED 
SOFTWARE AGENTS 

Most of implementations of GP search for the generation of 
lists or functional based programs, but some investigations have 
dealt with the evolution of programs guided by objects. The most 
similar prior work to this paper in evolving object oriented 
programs is Abbott's initial exploration of Object Oriented 
Genetic Programming (OOGP) [1] and Lucas’s exploiting 
reflection in OOGP [10]. These studies, and Bruce’s and 
Landong’s research, demonstrate that it is possible to 
simultaneously evolve object member functions and their 
cooperation in the self-organization of the internal memory of the 
same one.  

In an agent, the interaction model with the environment 
defines its internal state. A specific example of information in a 
physical agent is the visual and body perception information. The 
facts found in the environment change the internal state of an 
agent and produce a specific response for the situation.  

In object oriented programming, the responses of an agent 
might be modelled with an object method call and the 
environment information is passed as an argument. The actions of 
the agent are executed by calls to objects that reference the 
environment. For example, in Aglets platform [8] the object 
model defines a set of methods that represents the responsibilities 
of the agent in relation to the context. These methods’ set are 
standard for all agents and define the calls that the environment 
execute over each agent to inform their own changes [7]. All 
these methods which represent the agent interaction can be 
evolved in a similar way to the stacks and queues examples 
evolution in the Bruce’s and Landong’s research. 

We wish to evolve the code that implements the response 
agent’s methods given a set of method signatures. The methods’ 
implementation is a sequence of instructions where each 
instruction consists of a method reference (the Method to be 
invoked) and an object reference (the Object to invoke it on). 
Other elements in the methods implementations to be evolved 
might be: control instructions (like if or while sentences), and 
scope brackets.  

In the agent context the principal object to be used is a 
reference to the environment and the principal methods of this 
reference are messages about the change of the agent state and 
queries about environment’s items (e. g., shared elements, 
databases, and general info).  

3. ROBOCUP AS EXAMPLE 
APPLICATION 

The Robocup context has appropriate characteristics that 
allow software agents to work in. Here, it is possible to exploit the 
autonomy, social ability, reactivity, and pro-activity properties. 
The Robocup is divided in several categories; one of these 
categories is the simulation league, where the players are software 
agents programs. In the simulation league, games are carried out 
between two teams of eleven players each, under a client/server 
scheme with UDP/IP communication protocols. The Robocup 
organizers provide the server and the monitor for the simulation. 
The players are developed by each research group, and they are 
connected as clients to the server. 

The simulation server (SoccerServer) takes charge of 
controlling all information of the game like ball and players’ 
position or the time of game. The monitor (SoccerMonitor) makes 
the two-dimensional visualization of the game field in the screen. 
The clients request information from the server, and based on this, 
they execute control commands such as to rotate, to kick, to 
move, to speed up, and others. 

Each player determines his position in a relative way to 
certain objects like goals, limit lines, ball and other players. The 
visual information is received every pre-determined period of 
time (see Figure 1.). Additionally, the players can receive auditive 
and body sense information. The auditive info is composite by the 
decisions and referee's orders, and possibly messages sent by their 
team partners and coach. The body sense info represents the 
action of the environment to the player, for example, the lost of 
corporal energy. 

 

 
Our goal is to automatically develop players which are 

designed according to the object oriented paradigm and have 
interaction with the soccer server. For this purpose we use the 
Java language programming to generate our Agents. In fact, we 
have to evolve three principal methods: one to manage the visual 
information, other for perceiving sound information and the last 
one for the body perception information. The code of our player 
(see, Figure 2) has three principal methods that receive as 
parameters, objects that represent the complex audio, visual and 
body perception information of the players. The reason to evolve 
the three methods (and not alone one of them) is which in the 
object oriented programming all the methods of a class 

Figure 1. The visible range of an individual agent in the 
soccer server. 



collaborate to each other at the same time to complete the class 
objective. 

Evolution process experiments begin with the random 
generation of our players using the terminals and functions 
described in the table 1. 

 

 
Then a tree representation of agent programs, which include 

all response functions, is constructed (see, Figure 3). We use 
Strongly Typed Genetic Programming with type inheritance [12]; 
it allows using several data types and their inheritance hierarchy. 
Also, Bruce's research confirms that, in this context, STGP is as 
much as or more efficient than the standard GP. To perform the 
type inheritance checkup, we used the Java reflection API to 

discover the inheritance hierarchy. This indicates that in our 
experiments, we do not use data primitive types. 
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Figure 3. Tree representation of object oriented code
agent. 
The next step is to take each agent in the population to 
sure their performance with the fitness function. This function 

luates the players’ behavior in the playing field considering 
ameters as goals, shots, passes, and other elements of the 
e. For each type of player, there is one fitness function.  

The fitness function is designed to induce the player to 
rove the behavior to score, in the established time for each 
e. The agent's actions have a learning order; first, the ball 

rch, second, the proximity to it, third, the kick to the ball and, 
ly to score. The fitness function is calculated in the following 
:  

( ) ( ) ( ) ( )
cycles

pbbb

Total
PGPKPNPV

tness 4321 ∗+∗+∗+∗
=  (1) 

Where Vb is the number of times that the ball is in the range 
layer’s vision; Nb is the average of the distance to the ball per 
number of times that the ball is visible for the player; Kb is the 
ber of kicks in direction to enemy goal; and Gp is the number 

res. All variables depend of the number of cycles per game 
talcycles). Each action has a learning weight associated and 
resents the level of the each player, for example, the visibility 
he ball has weight P1. From this it follows that:  

4321 PPPP <<<  (2) 

When the fittest agents are selected, they are submitted to 
eral genetic operations. These operations can be both, 
tation and crossover functions, and they work in a similar way 
 traditional GP. The whole process is repeated over many 

erations until the finalization criterion is reached.  

Our developed evolution system called PROLE2 is shown in 
Figure 4. It is based on the model described by [13]. It is 

ided in two parts; the first one is the Robocup system 
lementation and the other one is the agent code generator. The 
erated agents are tested in the soccer server and its fitness 
Figure 2. Example code of the standard functions to 
evolve in an example player agent. 
public class PlayerExample extends PlayerAgent{ 
   // Some declarations 
   // Principals function to evolve 
   public void onSee(VisualInfo inf) { 
 // some evolve code... 
   } 
   public void onSenseBody(PerceptiveInfo inf){ 

        // here used the info object.  
        // here used the server object  
        // to send messages... 
   }  
   public void onHear(AudibelInfo inf){ 
        // some evolve code... 
   }   
   // other functions ... 
} 
Table 1. Terminals and functions used in these experiments. 

Terminals Type Description 
all 
ightGoal 
ftGoal 

Objects We use this three principal 
objects. All these have this next 
properties: 

m_isVisible Bool Visibility 
m_distance Float Distance to the object 
m_direction Integer Direction to the object 
m_distChange Integer Delta of the distance 
m_dirChange  Float Delta of the direction 

Functions Type Description 

rn(float) void Function that spins the player 
ove(float, float) void Function that moves the player 

ick(float,float) void Function to kick the ball 
ash(float) void Function to dash n steps  
atchBall(float) void Function to take the ball (goalie) 
rnNeck(float) void Function to turn the head 

dd(float,float) Float Arithmetic sum 
ub(float,float) Float Arithmetic subtraction 
ult(float,float) Float Arithmetic multiplication 

ivi(float,float) Float Arithmetic division 
od(float,float) Float Arithmetic modulus 

quals(bool,bool) Bool Comparative equals ( = = ) 
ss(bool,bool) Bool Comparative less than ( < ) 
reater(bool,bool) Bool Comparative greater than ( > ) 
e is returned to the agent code generator to continue the 
lution.  



 
For the experiments a population of 30 players was used 

during 60 generations. To each player it was granted a time of 600 
cycles to play. The roulette method was used as the selection 
method and the genetic operators were crossover and mutation. 
The experiments objective was generate autonomous behaviors in 
the agents, exploiting the object oriented programming benefits.  

4. DISCUSSION 
Given the variability and complexity of the environment and 

the very long run time required to get practical results, this project 
requires a second experimentation phase, where it would be 
possible to analyze other items in the agents generation like the 
collective behavior [13], intelligence emergence and other topics.  

The use of Strongly Typed GP used in these experiments is 
the same that propose [12] with the difference that we don’t have 
to make a type tree hierarchy, if not that, we used the java API 
reflection.  

The generated agents in the first experiments exhibited 
autonomous behaviors like running behind the ball or searching 
and kicking the ball. In response to the sound information, the 
agents did not evolve any coherent behavior. Possibly it occurred 
because of the deficiency of meaning of set sound stimulus; we 
had not planned a sound stimulation strategy. Other element that 
can be used to the evaluation of agent programs is the object 
oriented metrics. 

In particular we demonstrated the possibility of the 
generation of object oriented agents programs using the previous 
work on OOGP and Automatic generation of agents. We also 
demonstrated the emergence of simple behaviors in a system that 
is considerably constrained and with high complexity. We believe 
that this work presents an approach to the implementation of 
evolutionary techniques in commercial systems like all agents 
platforms which are developed over object oriented paradigm.  

In the future, this research will look for to finish a complete 
team for the Robocup simulation league, and later, it will look for 
commercial applications for the Object Oriented Agents 
automatically generated. 
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