JAIST Repository
https://dspace.jaist.ac.jp/

19/ 876

Title goodooooooooooboboooooooo
Author(s) oo, 00

Citation

Issue Date 1999-03

Type Thesis or Dissertation
Text version aut hor

URL http://hdl.handle.net/ 101
Rights

Description gooo, gooooon, oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Efficient Program Generation
by Genetic Programming

by

Takuya lto

submitted to
Japan Advanced Institute of Science and Technology
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Satoshi Sato

School of Information Science
Japan Advanced Institute of Science and Technology

March 1999

Copyright (© 1999 by Takuya Ito

Contents

Introduction
Crossover
2.1 Building Block Hypothesis 0 o
2.2 The Normal Crossover i
2.3 Improving the Normal Crossover.,
24 Related Works L
2.4.1 The Syntax Approach,
2.4.2 The Semantic Approach
Depth-Dependent Crossover
3.1 Introduction L
3.2 The Depth-Dependent Crossover
3.3 The Revised Depth-Dependent Crossover
3.4 A Difference of the Node Selection Probability of Each Crossover.
3.5 Experimental Results
351 11IMX o e
3.5.2 AEVEN . oo
3.5.3 ANT . . o
3.5.4 Robot
3.6 Conclusion L

Non-Destructive Depth-Dependent Crossover

4.1 Introduction
4.2 Non-Destructive Depth-Dependent Crossover
4.3 Experimental Results oo
4.3.1 1TIMX . .o
4.3.2 AEVEN . .. e
433 ANT . . . e
4.34 Robot
4.4 Conclusion L

A Self-Tuning Mechanism for Depth-Dependent Crossover
5.1 Introduction

5.2 A Self-Tuning Mechanism for Depth-Dependent Crossover
5.3 Experimental Results
5.3.1 11IMX o e
5.3.2 AEVEN . oo

11
11
12
13
14
14
15
21
24
26
31

32
32
33
34
34
38
40
41
43

5.3.3 ANT oL oo 55

534 Robot 59
54 Conclusion e e e 61
Discussion 62
6.1 Depth-Dependent Crossover 62
6.2 Non-destructive Depth-Dependent Crossover 62
6.3 Self-Tuning Depth-Dependent Crossover 64
6.4 Building Block Hypothesis 0000 64
Conclusion 67
7.1 Conclusions e e 67
7.2 Directions for the Future Research 67

Abstract

Genetic Programming (GP) can generate computer programs automatically without
any explicit knowledge for target programs (solution programs). The solution programs
are generated by means of selection and some genetic operators. However, GP has a
difficulty, which it often takes too much time to generate solution programs. This may
be a critical problem when GP generates large scale programs.

The goal of this work is to generate computer programs efficiently by means of the
framework of GP. “Efficient” means to reduce the number of generations which is nec-
essary to generate solution programs. To realize this goal, this work improves a genetic
operator of GP. There are three genetic operators for GP, crossover, mutation and repro-
duction. Among these genetic operators, crossover mainly contributes to searching for
solution programs. Therefore, this work improves crossover. The normal crossover selects
a crossover point randomly so that it breaks building blocks (i.e., effective small program
which contributes to improving fitness performance) due to its blind application. To solve
this problem, this work proposes four new crossovers

The first crossover is a “depth-dependent crossover” and the second crossover is a “re-
vised depth-dependent crossover”. “Depth-dependent” means that node selection prob-
ability is determined by the depth of the tree structure. On these crossovers, shallower
nodes are more often selected, and deeper nodes are selected rarely. The building blocks
can be protected by swapping shallower nodes.

The third crossover is a “non-destructive depth-dependent crossover”, which is a com-
bination of the depth-dependent crossover and a “non-destructive crossover”. “Non-
destructive” means that offsprings of crossover are kept only if their fitness are better
than fitness of their parents. This crossover is proposed to solve the program size prob-
lem of the depth-dependent crossover.

The fourth crossover is a “self-tuning depth-dependent crossover”. On this crossover,
each individual of the population has a different depth selection probability and depth se-
lection probability of a selected individual is copied to the next generation. This crossover
is proposed to enhance the applicability of the depth-dependent crossover for various GP
problems.

This work compares GP performances (i.e., fitness value and the size of generated pro-
grams) of the normal crossover with performances of these four crossovers using standard
GP problems and an original robot problem. These experimental results clarify that the
superiority of the proposed crossovers to the normal crossover.

Furthermore, this work discusses the building block hypothesis, which explains how
crossover searches solution programs with a survey of previous works and these experi-
mental results.

Acknowledgments

I would like to thank Professor Satoshi Sato who is my supervisor. He advised me essential
issues for research, e.g., how to write a quality paper and how to write a quality proposal.

I wish to thank Professor Masayuki Kimura. He was my supervisor when I was a
master student. He advised me how to spend time and how to go ahead with the research.
His advises had a great influence on me so as to process research.

I would like to thank Professor Hitoshi Iba for his helpful discussions. He explained me
expertise of Genetic Programming to me. His comments were very useful for improving
the quality of this thesis. He also gave me a chance to translate Melanie Mithcell’s book
“an introduction to genetic algorithms” from English to Japanese. This was a great
experience for me.

I greatly acknowledge Dr. W. B. Langdon for his useful comments. He advised me
expertise of Genetic Programming, especially, crossover.

I would like to thank Professor Nikolay I. Nikolaev. He explained me fitness landscape
analysis at EuroGP’98.

I wish to thank Professor Ho Tu Bao. He revised our GP’96 paper and gave me a
chance to write our paper of DS98.

I especially thank Professor Seiji Yamada. He told me some topics of evolutionary
robotics at EuroGP’98 and EvoRobot’98.

I would like to thank Dr. Una-May O’Reilly and Dr. Peter J. Angeline. They revised
our paper of “Advances in Genetic Programming 3”.

I wish to give special thank Mr. So Shisei. He gave me useful comments of hardware
when [made a real robot in sub-theme research. Discussions with him about the real
robot were so exciting for me.

Chapter 1

Introduction

There are two approaches to generate computer programs. First is a design approach.
This means that a user writes computer programs. When we write computer programs,
we should know how to generate them and explicit knowledge about target programs.
Therefore, the accumulation and systematization of the knowledge are needed in the
design approach.

Second is an automatic program synthesis approach. This approach does not require
to know how to generate them and explicit knowledge about target programs.

There is Genetic Programming (GP) in automatic program synthesis approach. GP
is based on the theory of evolution [Koza, 1992a]. GP treats computer programs directly
as its genes and generates them by selection and some genetic operators (e.g., crossover,
mutation and so on). First, we prepare (1) the input and the output of the program we
want to obtain, and (2) the set of primitive functions (e.g., boolean functions, arithmetic
functions and conditional functions) that are available. Then, GP can generate computer
programs using selection and some genetic operators.

The algorithm of GP is as follows:

1. Generate randomly M individuals (programs) for an initial population (i.e., 0 gen-
eration).

2. Calculate each individual of the population.
3. Repeat the following steps and generate M individuals for a new generation.
(a) Choose an individual from the present individual using selection (e.g., tourna-

ment selection, roulette wheel selection and so on).

(b) Choose an operator from three genetic operators: crossover, mutation and
reproduction.

(c) If the selected genetic operator is crossover, choose one more individual using
selection.

(d) Apply the selected genetic operator to the selected individual (individuals) and
generate a new individual (individuals).

(e) Insert the generated individual (individuals) as an element (elements) of a new
population.

4. It a terminate criterion is fulfilled, go to step 5. Otherwise, replace the present
population with the new population (increment one generation) and go to step 2.

5. Show a structure of the best individual as an output of the algorithm.

If the number of generations has reached a maximum number or if the solution program
has been found in the middle of the evolution, the terminal criterion is fulfilled.

A structure of the individual (program) is usually a tree structure (LISP S-Expression) .
Figure 1.1 shows an example of the tree structure. On the tree structure, leaves indicate
variables or constants and other nodes mean functions. In GP, a leaf is called a terminal
node and a non-leaf node is called a function node. Genetic operators are applied to the

tree structure. There are three important genetic operators.

Functi on Node

O: Ter mi nal Node

Figure 1.1: Tree Structure

Crossover is an operator which is applied to two individuals. It selects randomly a
crossover point (i.e., node) in each parent and exchanges the selected subtrees be-
tween two parents to produce new children (Figure 1.2).

Mutation is an operator which is applied to an individual. It selects randomly a mu-
tation point (i.e., node) and replaces the selected subtree with a random generated
subtree (Figure 1.3).

Reproduction is an operator which is applied to an individual. It makes a copy of an
individual which is chosen by selection without any modifications.

!Recently, the linear and the graph structure are also studied to treat as GP’s genes
[Banzhafl et al., 1998, pp.239-276]

exchange subtrees
bet ween parents

Child A Child B

replace with
random subtree

Figure 1.3: Mutation

A process of generation of target programs by GP is explained as follows. In GP, a
program is regarded as an individual and is a target of selection. Selection chooses a better

4

program with higher probability. The better program means a program which has a good
fitness. Fitness is an index how good each program is, i.e., how near to target programs
[Banzhaf et al., 1998, p. 126]. A better program prospers in the population (i.e., the
better program is copied frequently at a change of generations) and an inferior program
is reduced by selection and reproduction. However, new programs are not generated by
using only selection and reproduction; crossover and mutation work, too. If new programs
generated by these two genetic operators are superior, they prosper in the population.
After iterating the above process, target programs are expected to be generated.

However, GP has a difficulty because it may take a long time to generate target
programs. This may due to be the fact that it does not have explicit knowledge or
procedure for target programs. This is a critical problem for GP when we use GP to
generate a large scale program (e.g., programs of a word processor, a spread sheet and so
on). The simplest solution to this problem is given by incorporating explicit knowledge
into the automatic program synthesis approach. However, this solution is exactly the
design approach.

The goal of this thesis is to generate computer programs efficiently using the frame
work of GP. “Efficient” means that reduction of the number of generations required to
generate target programs. For the sake of the above goal, this thesis improves a genetic
operator. In GP, there are three important genetic operators, crossover, mutation and
reproduction for GP. The role of crossover is to combine two effective parts (building
blocks) and to generate a larger effective part. Mutation plays a second role in escaping
a local optimum. Reproduction is to copy an individual into the next generation. Among
these genetic operators, this thesis improves crossover so as to pursue the efficiency of the
program generation. The reason why this thesis focuses on crossover is that crossover is
a main genetic operator which searches for a search space [Koza, 1992a, p. 599].

This paper is organized as follows:

Chapter 2 mentions crossover and the building block hypothesis. This hypothesis men-
tions how crossover searches target programs. It also explains the normal crossover
and its drawback.

Chapter 3 proposes two new crossovers to reduce the number of generations which are
necessary to generate target programs. The first crossover is a “depth-dependent
crossover” and the second crossover is a “revised depth-dependent crossover”. “Depth-
dependent” means that node selection probability is determined by the depth of the
tree structure. On these crossovers, shallower nodes are more often selected, and
deeper nodes are selected rarely. The building blocks can be protected by swapping
shallower nodes. This chapter compares GP performances (i.e., fitness value and
the size of generated programs) of the normal crossover with performances of these
two crossovers using standard GP problems and an original robot problem.

Chapter 4 proposes a “non-destructive depth-dependent crossover”, which is a combi-
nation of the depth-dependent crossover and a “non-destructive crossover”. “Non-
destructive” means that offsprings of crossover are kept only if their fitness are better
than fitness of their parents. This crossover is proposed to solve the program size
problem of the depth-dependent crossover. This chapter compares GP performances
of the non-destructive depth-dependent crossover with the original depth-dependent
crossover. Furthermore, this chapter discusses the growth problem of the tree struc-
ture (i.e., the bloating problem) on GP.

Chapter 5 proposes a “self-tuning depth-dependent crossover”. On the self-tuning depth-
dependent crossover, each individual of a population has a different depth selection
probability and depth selection probability of a selected individual is copied to the
next generation. This crossover is proposed to enhance the applicability of the
depth-dependent crossover for various GP problems.

Chapter 6 discusses crossovers proposed above and the building block hypothesis.

Chapter 7 mentions some conclusions of this thesis and future directions of this work.

Chapter 2

Crossover

This chapter describes crossover which is a main genetic operator in order to search
for target programs (solution programs). In GP, solution programs are expected to be
generated by combining building blocks and to make larger building blocks.

Section 2.1 focuses on the building block and the building block hypothesis. This
hypothesis mentions how crossover searches solution programs. Section 2.2 explains the
normal crossover. Section 2.3 describes the approach of this works to improve of crossover.
Section 2.4 mentions some related works as for the improvement of crossover.

2.1 Building Block Hypothesis

Some researchers have defined the building block and studied the building block hypothesis
of GP. For example, Langdon discussed the following definition:

Building block A pattern of genes in a contiguous section of a chromosome
which, if present, confers a high fitness to the individual. According to the
building block hypothesis, a complete solution can be constructed by crossover
joining together in a single individual many building blocks which where orig-
inally spread throughout the population [Langdon, 1998, p. 238].

O’Reilly discussed the building block hypothesis by defining a GP schema [O’Reilly, 1995,
pp- 118 = 137]. A schema is a similarity template describing a subset of strings with sim-
ilarities at certain string positions [Goldberg, 1989, p. 19]. O’Reilly’s schema is based on
Koza’s, which is a set of subtrees which contains specified trees. An example of Koza’s
schema is Hy = { (+ (+ 34)) }. O’Reilly extended Koza’s schema by introducing a don’t
care symbol (or wild card):

A GP-schema H is a set of pairs. FEach pair is a unique S-expression tree or
fragment (i.e., incomplete S-expression tree with some leaves as wild cards) and
a corresponding integer that specifies how many instances of the S-expression
tree or fragment comprise H [O’Reilly, 1995, p. 123].

The fragment is a tree which contains a don’t care symbol (#) such as Holland’s
Genetic Algorithm (GA) schema theorem [Mitchell, 1995, p. 27]. An example of the
fragment is Hy = { (# (+ 3 4)) }. (+ (+ 3 4)) and (— (4 3 4)) are the instances of the
fragment Hj.

The building block is a kind of schema which contributes to giving a high fitness to
the individual. She defined the building block and building block hypothesis for GP by

using an analogy with GA’s as follows [O'Reilly, 1995, p. 130]:

GP building blocks: Low order, consistently compact GP schemas with con-
sistently above average observed performance that are expected to be sampled
at increasing or exponential rates in future generations.

GP Building Block Hypothesis (BBH): The GPBBH states that GP
combines building blocks, the low order, compact highly fit partial solutions
of past samplings, to compose individuals which, over generations, improve in
fitness.

According to their definitions, the building block is a part of program which contributes
to improving fitness performance. The building block hypothesis is explained as follows.
First of all, small building blocks are generated by a random program initialization. The
fitness of an individual which has such building blocks is better than that of an individual
which does not have building blocks. Thus, the individual which has building blocks
can prosper gradually in the population by means of selection. These building blocks
are combined and become larger gradually by crossover. Finally, the solution program is
generated. This is exactly the building block hypothesis and an explanation why GP can
generate the solution program.

2.2 The Normal Crossover

Crossover of GP plays an important role in terms of the generation of a new program.
This means that crossover is a main genetic operator which searches for a search space
[Koza, 1992a, p. 599]. Mutation, another genetic operator which generates a new pro-
gram, searches completely blindly. On the contrary, crossover is a genetic operator which
combines two building blocks and generates larger building blocks.

If crossover is applied to two individuals which have different building blocks, and then
an individual which has both building blocks is generated, the fitness of the individual is
supposed to be improved. Therefore, its parent is replaced by a new individual and the
new individual prospers in the population. Large building blocks are made when crossover
combines small building blocks. The solution program is finally found by iterating the
above process.

A simple role of crossover is to combine two building blocks and to construct larger
building blocks. When crossover works like this, it might as well be said that crossover
works effectively. On the contrary, when crossover breaks building blocks, it works inef-
fectively and fails.

In this work, Koza’s crossover is called a “normal crossover” [Koza, 1992a, pp. 101-
105]. The normal crossover selects a node randomly for each individual. The probability
of choosing a crossover point (the node selection probability) is set to be a constant value
for every node. Therefore, it is likely that the normal crossover might work ineffectively
because the building block can be broken by randomness of the normal crossover.

2.3 Improving the Normal Crossover

A solution to the problem of the normal crossover is that a larger structure is selected
with a high probability. This idea is realized by making the node selection probability
of a shallower node (i.e., a closer node to a root node) higher, and the probability of
a deeper node (i.e., a distant node from a root node) lower. Swapping large structures
may work well for the protection (encapsulation) of generating building blocks. At early
generations, swapping large building blocks does not work advantageously to combine
building blocks, because building blocks are small at early generations.

Fortunately, this problem can be solved easily. The node selection probability of a
crossover point is dependent on an absolute depth (i.e., a number of nodes from a root
node), not on a relative depth of the tree structure. Usually, the size of each individual
(each tree structure) is small at early generations, and then each individual grows up and
the size of each individual gets greater during the evolution [Langdon and Poli, 1997]. At
early generations, an absolute depth of a swapped substructures is not so deep even if
a shallower node is selected as a crossover point. Because the tree structure is shallow
at early generation. As the evolution proceeds and the tree structures grow up, the
absolute size of a swapped substructure becomes deep in proportion to the growth of
the tree structure. This thesis calls this type of crossover a “depth-dependent crossover”
[Tto et al., 1998b].

2.4 Related Works

Some researches tackled to improve the normal crossover. Their studies are classified into
two approaches: the syntax approach and the semantic approach. The depth-dependent
crossover belongs to the syntax approach. The syntax approach is applicable without any
apriori knowledge as to the solution program, so that it can be applied to various GP
problems. On the contrary, the semantic approach is supposed to work effectively because

it knows the meanings of the program structure [Iba and de Garis, 1996]. The syntax ap-
proaches have many examples, such as node selection approach [O’Reilly and Oppacher, 1994,
Harries and Smith, 1997], an intron approach [Nordin et al., 1996] and a brood recombi-
nation approach [Tackett, 1994]. The depth-dependent crossover is based on the node
selection approach.

2.4.1 The Syntax Approach

O’Reilly and Harries aimed at the probability of the node selection. O’Reilly proposed
a height-fair-crossover, in which a crossover point was chosen accordingly to the height
of a tree. She divided nodes of a tree into some groups. The selection probability of
the group was set to be higher as the number of the nodes in a group were smaller
[O’Reilly and Oppacher, 1994]. Harries proposed five depth-based crossovers (SameDepths,
DiffDepths, Std/Same, Std/Diff and Half&Half) [Harries and Smith, 1997]. Their experi-
mental results showed that Std/Same outperformed the other GP operators. The operator
performance was sensitive to the problem domain. Combinations of operators were more
robust. These previous works have shown a certain success to extend crossover in GP.
However, they did not aim at the accumulation of building blocks via the depth selec-
tion probability. The depth-dependent crossover protected break building blocks and

promoted to build larger building blocks by means of swapping shallower nodes.

Nordin introduced Explicitly Defined Introns (EDI’s), which protected genes from de-
structive crossover [Nordin et al., 1996]. Intron is a part of program which does not affect
the fitness of an individual. In other words, intron is a useless part of a program. Thus,
even if crossover is applied to such introns, building blocks can be protected. He showed
improvement of the performances by means of EDI’s in terms of the fitness transition and
computational time. In case of the depth-dependent crossover, it protects building blocks
by depth selection probability.

Tackett proposed a method to reduce the destructive effect of crossover by means
of the blood recombination [Tackett, 1994]. He inferred the observed fact that many
animal species (e.g., fish, bird, etc) produce more offsprings than are expected to live.
In case of the brood recombination, crossover generates N individuals, and then these
individuals are evaluated for the fitness. After sorting by the fitness, best two individuals
are selected and other individuals are discarded. Brood recombination is similar to the
(1, A) selection of Evolutionary Strategies (ES) [Banzhaf et al., 1998, pp. 98-100]. In case
of ES, selection has two deterministic parameters, i.e., p and A. g means the number of
present and also future parents. A means the number of offspring. Therefore, both of the
blood recombination and the (p, A) selection work as an over-production selection.

2.4.2 The Semantic Approach

In case of semantic approach, the operator knows where it should be applied to the
program structure because it knows meanings of the program structure. Therefore, the
semantic approach can search the solution program effectively. There are some studies
of the semantic-based approach. For instance, Iba introduced a subtree value (S-value)
and proposed a recombinative guidance by using the S-value [Iba and de Garis, 1996].
He tried to exploit already build structures by adaptive recombination, in which GP
recombinative operation is guided by the S-value measure. However, the semantic-based
approach might have difficulty. In general, there is no apriori knowledge of the solution
program in GP. The semantic approach can be applied to only limited GP problems. For
instance, a solution of the even-3-parity problem can be used as the apriori knowledge so
as to solve the even-4parity problem. This work chooses the syntax approach because of
the above argument against the semantic approach.

10

Chapter 3

Depth-Dependent Crossover

The standard Genetic Programming (GP) requires huge computational time to search a
solution program. This is a critical problem if we apply GP to a real world problem.
Therefore, this chapter improves a genetic operator to search effectively. There are three
genetic operators, i.e., crossover, mutation and reproduction for GP. Among these genetic
operators, crossover mainly contributes to searching for a solution program. Thus, this
chapter improves crossover. The normal crossover selects a crossover point randomly, so it
destroys building blocks due to its blind application. However, building blocks can be pro-
tected by swapping larger substructures. To realize this idea, this chapter introduces two
new crossovers: a depth-dependent crossover which applies to a shallower node more often
and a revised version of the depth-dependent crossover. This chapter compares GP per-
formances the normal crossover with performances of these depth-dependent crossovers.
These experimental results clarify that the superiority of the proposed crossovers to the
normal crossover.

3.1 Introduction

Recently, Genetic Programming (GP) has been applied to various applications, e.g., a
robot program [Koza, 1991], a multi-agent [Iba, 1997], an image recognition [Iba et al., 1995]
and so on. The standard GP requires huge computational time to search for the solution
program. This is a critical problem when GP is applied to a large scale problem, such
as the automatic generation of a robot control program. Therefore, an effective search
method is required. In many previous studies, it is shown that crossover and selection
mainly contribute to generating the solution in GP [Koza, 1992a, p. 599]. In crossover
and selection, this chapter focuses on crossover and aims at generating computer programs
efficiently by improving crossover.

A program structure of GP is generally a tree structure. The normal crossover selects
randomly a crossover point (node) regardless its position of the tree structure. Thus, if
the normal crossover destroys building blocks, it will degrade the search for the solution
program.

A solution to this difficulty is to swap large structures. We can expect that building
blocks are protected by swapping larger structures. This chapter realized the “depth-
dependent crossover” based on this idea [[to et al., 1998b] (see Section 2.3). This method
is aim for the protection of building blocks and the construction of larger building blocks
by crossover which is applied in a shallower node of the tree structure.

11

This method is expected that number of generation, which is required to search a
search space, is reduced. This chapter verifies the effectiveness of the depth-dependent
crossover through some experiments of the boolean concept formation problems (i.e., the
11-multiplexor and 4-even parity problem), the ANT problem and a robot problem.

This chapter is organized as follows. Section 3.2 explains a mechanism of the depth-
dependent crossover. Section 3.5 describes experiments in several tasks and compares GP
performances of the depth-dependent crossover with performances of the normal crossover.
Section 3.6 mentions some conclusions.

3.2 The Depth-Dependent Crossover

The idea mentioned in Section 2.3 is realized as the following algorithm:

STEP1. For parentl, determine the depth d for a selected tree.
STEP2. For parentl, select randomly a node of which depth is equal to d in STEP1.
STEP3. For parent2, determine the depth d for a selected tree.
STEPA4. For parent2, select randomly a node of which depth is equal to d in STEP3.

STEPS5. Swap the nodes chosen in STEP2 and STEP4.

This thesis calls this algorithm a “depth-dependent crossover” (see Figure 3.1).
The depth selection probability is derived by using the following equations:

Depth Selection Probability
“threshold

Depth 0

Depth 1

. .25% @

[0YOMONOIONC

Figure 3.1: The Depth-Dependent Crossover

threshold; = 1/2¢, if i = depth.
threshold; = threshold; | x 2, (3.1)
otherwise 1 = 0,1,---,depth — 1

where threshold; is the depth selection probability at the ith depth, and depth is the
depth of the tree. The above equations represent that the depth selection probability

12

of the root node is 1.0 and the depth selection probability of any other node is half of
its parent node’s probability (see Figure 3.1). In order to determine the depth d for the
depth-dependent crossover in STEP1, a number ¢ is chosen from between 0 and depth in
proportion to the threshold; value. This process is similar to the roulette wheel selection
used in Genetic Algorithms.

3.3 The Revised Depth-Dependent Crossover

The principle of the depth-dependent crossover is to increase the node selection probability
which swaps larger substructures. The depth-dependent crossover adopts the method
which depends on the absolute depth of the tree structure. This method encourages to
enlarge the size of the swapped substructures during the evolution.

Depth Selection Probability

A threshold :
Subtree Size
e Based Selection

Depth O

Probability
i
eXolilc
BOF100" D0 100 307 100" 0100
i b X 00/0 o2 X 5 X (;,0/‘7

Figure 3.2: The Revised Version of Depth-Dependent Crossover

However, the selection probability of a node is not in proportion to the size of the
swapped substructure in this method. For example, the selection probability of node C,
F. I and L are the same regardless of their subtree sizes. If the node C is selected as
a crossover point, the swapped subtree size is three. On the contrary, if the node L is
selected, the size is two. Thus, crossover swaps larger subtrees when the node C is selected
as the crossover point than the node L.

This inconsistency is solved by moditying STEP2 and STEP4 of the algorithm of the
depth-dependent crossover:

STEP2’. For parentl, select a node in proportion to its subtree size. The depth of the
root node of the subtree is equal to d in STEP1.

STEP4’. For parent2, select a node in proportion to its subtree size. The depth of the
root node of the subtree is equal to d in STEP3.

This thesis calls this crossover the revised depth-dependent crossover (see Figure 3.2).

13

3.4 A Difference of the Node Selection Probability
of Each Crossover

This section shows the difference of the node selection probability of each node among the
normal crossover and the two types of depth-dependent crossover using the tree structure
of Figure 3.1.

In case of the normal crossover, each node is selected with same probability. The tree
structure has 13 nodes, so that the probability of the node Iis 1.0/13 x 100 = 7.7%.

In case of the depth-dependent crossover, the thresholds which are shown in Figure
3.1 are the accumulated values from the deepest node of the tree. Thus, they have to be
changed to relative values. The relative probability of the depth 2 is 0.25/(0.125 + 0.25 +
0.50 4+ 1.00) x 100 = 13.3%. At depth 2, there are 4 nodes which are selected equally, its
chance of selection of the node I'is 13.3%/4 = 3.3%.

In case of the revised depth-dependent crossover, the selection probability of the node
I is based on the size of the subtree. As can be seen in Figure 3.2, the subtree size based
selection probability of the node Iis 3/10 x 100 = 30.0%. So, the selection probability of
the node Iis 0.133 x 0.30 x 100 = 4.0%

Figure 3.3 shows results of the above calculation for all nodes. According to this
figure, the node selection probability of a deeper node of the depth-dependent crossover is
lower than that of the normal crossover. On the contrary, the node selection probability
of a shallower node of the depth-dependent crossover is higher than that of the normal
crossover. In case of the revised depth-dependent crossover, the node selection probability
of a larger subtree is higher than that of a smaller subtree.

7.7%
53.3%

7.7% «— Normal

g-ngN—Depth-Dependent
">~ Revised Depth-Dependent

77% 7.7% 7.7% 7.7% 7.7% 7.7%
11% 1.1% 1.1% 1.1% 1.1% 1.1%
11% 11% 1.1% 1.1% 1.1% 1.1%

Figure 3.3: Node Selection Probability of Each Crossover

3.5 Experimental Results

Effectiveness of the depth-dependent crossover has been investigated for several problems.
This section explains experiments in the Boolean concept formation problems (11MX and
4EVEN), the ANT and a robot problem. Table 3.1 shows the experimental set up. The
NORMAL, the DD and the RDD means the normal, the depth-dependent, the revised

depth-dependent crossover, respectively. All settings of mutation are random.

14

For the sake of comparison, all experiments were conducted until a final generation,
even if a solution was founded during the evolution. Experimental results are based on
the average over twenty runs.

Table 3.1: Experimental Set Up

Setting ‘ Crossover ‘ Mutation ‘

NORMAL | Random Random

DD Depth-Dependent Random

RDD Revised Depth-Dependent | Random
3.5.1 11MX

The task of the 11MX (11-multiplexor) problem is to generate a boolean function which
decodes an address encoded in binary and returns the binary data value of the register at
that address. The 11-multiplexor function has three binary-valued address lines (ag, a1, az)
and eight data registers of binary values (do, dq, -, d7) [Koza, 1992a, p. 170].

Figure 3.4 shows an example of the 11-multiplexor function. In this figure, the function
returns the value of dy because the output of the address lines is 2 (ay = 0, a; = 1, ag = 0).
Thus, the output of the function is 0 when d, is 0, and it is 1 when d, is 1. Equation 3.2
shows this function by boolean symbols.

f((lz, LN ,do) = dzdldodo vV dzdlaodl vV d2a1d0d2 vV d2a1a0d3 vV G2d1d0d4

va2d1G0d5 vV G2G1d0d6 vV G2G1G0d7 (32)

| nput a5 Cut put
11 bits 1 bit

a2 al a0 d7 dé d5 d4 d3 d2 di

010,= 2,

Figure 3.4: The Function of the 11MX Problem

15

The Fitness function of the 11MX problem is:

. sum
Fitness = 100.0 — ——— x 100.0 (3.3)
numins

where numins is the number of fitness cases (i.e., the number of states, 2'' = 2048), sum
is the number of total solutions. This fitness function definition represents an error rate
for total inputs, so the smaller value means the better fitness.

Table 3.2 shows the used parameters. The terminal and the function set are indicated
in Table 3.3 and 3.4, respectively. All experiments were conducted with these parameters
to compare three kinds of crossover settings.

Table 3.2: Parameters for the 11MX Problem

‘ Parameter ‘ Value
Population size 2000
Maximum of generation 20
Maximum depth for new trees 10
Maximum depth after crossover 15
Maximum mutant depth 3
Tree initialization method Grow
Selection method tournament
Tournament size 5
Crossover function point fraction 0.1
Crossover any point fraction 0.6
Fitness proportionate reproduction fraction | 0.2
Mutation fraction 0.1

Table 3.3: The Terminal Set for the 11MX Problem

0 AQ
1 Al
2 A2
3 DO
10 | D7

Table 3.4: The Function Set for the 11MX Problem
‘ ID ‘ Name ‘ Number of Argument ‘

0 AND 2
1 OR 2
2 NOT 2
3 IF 3

Figure 3.5 gives the best and the average fitness on the 11MX problem over twenty
runs. The “best” means the fitness of the best individual and the “average” indicates

16

the average fitness of the population. According to this figure, the RDD gave the best
performance for the best and the average fitness values. Table 3.5 shows averaged numbers
of hits and its standard deviation values at the final generations. If the solution program
was acquired over twenty runs, the hits value is 1.0. On the contrary, if the solution
program was not acquired over twenty runs at all, the value is 0.0. As for the hits
measure, the RDD was also the best among the three cases. These results are examined
statistically with the paired t-test [Freund and Wilson, 1992]. Table 3.6 shows results of
the t-test. This test confirmed that the DD is superior to the NORMAL, and the RDD
is superior to the NORMAL. However, this test did not verify that the RDD is superior
to the DD in terms of the best fitness values.

100 | |
NORMAL (best) ——
DD (best) — N
RDD (best) - -
S0f NORMAL (average) = |
DD (average) —=—
RDD (average) --—-—--
w 60 | |
(2]
Q
c L
i i S
L 40 | L —— |
s i:i\:‘g o

0 5 10 15 20
CGeneration

Figure 3.5: Experimental Results, means of twenty runs (11MX). The fitness of the 11MX
is an error rate for total inputs. The “best” means the fitness of the best individual and
the “average” indicates the average fitness of the population.

Table 3.5: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (11MX). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of three crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.00 (0.00) 3
DD 0.70 (0.46) 2
RDD 0.85 (0.36) 1

17

Table 3.6: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(11MX).

‘ Setting ‘ Best ‘ Average ‘
DD (against NORMAL) 12.01 | 10.27
RDD (against NORMAL) | 9.28 | 15.69
RDD (against DD) -0.11 | 6.78

The DD and the RDD have an effect which swaps deeper subtrees. This works to
protect building blocks. It is considered that this effect relates the improvement of the
fitness performance. Figure 3.6 shows the average absolute depth of swapped subtrees on
the 11MX problem. This figure indicates that the absolute depth of swapped subtrees was
shallow for all three crossover settings at the early generation. However, the DD (and also
the RDD) gradually swapped deeper subtrees than the NORMAL during the evolution.
These phenomena are also observed in the numbers of nodes of the swapped subtrees.
Figure 3.7 shows the numbers of the swapped subtrees of the NORMAL, the DD and
the RDD on the 11MX problem. This figure shows that the numbers of the swapped
subtrees were small for all three crossover settings at the early generation. However, the
DD (and also the RDD) gradually swapped larger subtrees than the NORMAL during

the evolution.

16 T T T
NORVMAL ——
I DD |
14 RBD
12 B X ‘X/:/ (|
10 B ,/x"//xr/i,*""%/{*‘ T
= . x " 3
E— 8 r)(/X/ *x B T
4
2
0 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
CGenerati on

Figure 3.6: Average Absolute Depth of Swapped Tree Structure (11MX)

These phenomena ware related to the tree growth and the fixed depth selection prob-
ability (Equation 3.1). In GP, there is a phenomenon that the tree structure grows with
the process of the generation. This phenomenon is called bloat [Langdon and Poli, 1997].
Angeline clarified that crossover promoted unnecessary bloat by several experimental re-
sults [Angeline, 1998]. The depth selection probability of the DD is depended on the
absolute depth, not on the relative depth and its probability is fixed even if the genera-
tion proceeds. The depth of swapped subtrees becomes deep gradually with the growth

18

of the tree structure. Because a closer node to the root node is selected frequently even
if the tree structure becomes deep. Thus, building blocks are rarely broken. As a result,
the fitness performance is improved.

= NORVAL —— |
DD — L
120 | 5
w .
3 100 /X/
2 ,»’/X/
/’)< %
5 80 e
5 60 [T
Z Y
32 40 ¢ - 7
N |
‘%««/«*:«ﬁéu.,,*
ﬂl—‘j:f‘—"—ﬂ—"_’h t R ! I — !
0

Cener ati on

Figure 3.7: Average Number of Nodes of Swapped Tree Structure (11MX)

An advantage of the RDD is to suppress the growth of the tree structure. Figure
3.8, 3.9 and 3.10 plot the depth of the tree structure, the number of function node, and
the number of terminal node with generations for the 11MX problem, respectively. The
growth pattern of the tree depth of the NORMAL is shallower than that of the DD. The
DD and the RDD show the same pattern (Figure 3.8). The number of the function node
(and also the terminal node) of the DD (and also the RDD) is greater than that of the
NORMAL (Figure 3.9 and 3.10). The algorithm of the DD (and also the RDD) selects
a shallower node frequently as a crossover point. Therefore, it is frequent to occurred
the phenomenon that a small tree on the shallower node is replaced with a large subtree.
In this case, the fitness of an individual that received the large subtree (individual 1) is
improved because there are large building blocks in the received subtrees. On the contrary,
the fitness of an individual that received the small subtree (individual 2) is not improved
because the size of building blocks in the received subtree are small. As a result, the
size of the tree structure evolves to large because individual 1 prospers in the population
and individual 2 is reduced. Thus, it is considered that the selection pressure (i.e., the
pressure which makes the size of the tree structure become large) worked in case of the
DD (and the RDD) [Soule €t al., 1996]. The DD and the RDD induced the bloating

phenomenon easily by means of the above reason.

19

18 ‘

NORMAL ——
16 | DD -
RDD - Koo
14 1
m
8 12
|_
. 10
o
= 8
o
8 6
4
2 L .
0 1 1 1
0 5 10 15 20
Ceneration
Figure 3.8: Depth of Tree (11MX)
100 ‘
© NORVAL ——
ke DD - A p
2 80 | RDD """ *'";;(/// i
g //’/X/
S 60 | X/// n
c g
S N P
(g X
Y— 40 B /,X * i
o X %
)
£
>
Z

Cener ati on

Figure 3.9: Number of Function Node (11MX)

Compared with the number of the function node (and also the terminal node) of the
DD, that of the RDD was small. It is considered that this difference is brought from the
modification of the STEP2 of the algorithm of the DD. In case of the algorithm of the
DD (Figure 3.1), a node in the crossover depth d which is determined in the STEP1 is
selected randomly so that a small subtree is replaced frequently with a large subtree. If
the tree structure which received the large subtree is superior in terms of the fitness to the
tree structure which received the small subtree, it can be considered that the size of the
tree structure evolved to large size. In case of the RDD), the algorithm is made to swap
large subtrees in proportion to the size of subtrees (Figure 3.2) and each parent swaps
a large subtree together. Thus, it is rarely occurred that a small subtree is swapped by

20

a large subtree. Therefore, the RDD could generate small tree structures than the DD
because the RDD controls accurately the size of the tree structure.

140 | NORVAL —— |
s DD
2 120} RDD -
S 100 f Vs
5 80 //X % T
= X x
— 60F ~)]
o X< *
©
€
>
Z

Cener ati on

Figure 3.10: Number of Terminal Node (11MX)

3.5.2 4EVEN

Effectiveness of the depth-dependent crossover is also verified for the even-4parity (4EVEN)
problem. The 4EVEN (even-4-parity) problem is to generate a Boolean function which
returns T if an even number of its Boolean arguments are T, and otherwise returns NIL

[Koza, 1994a, p. 157]. For example, Figure 3.11 shows the output is 1 (T) for inputs of 1
(T), 0 (F), 1 (T) and 0 (F).

0
d2 I
| nput 1 Qut put
4 bits 1 1 bit

Figure 3.11: The Function of the Even-4-Parity

21

The fitness of the 4EVEN problem is also an error rate for inputs i.e., the same as
that of the 11MX problem (Equation 3.3). Note, numins is 2* = 16.

The used parameters are shown in Table 3.7. For the sake of comparison of three
kinds of crossovers, all experiments were conducted with these parameters. The terminal
and the function set are indicated in Table 3.8 and 3.9, respectively.

Table 3.7: Parameters for the 4EVEN Problem

‘ Parameter Value ‘
Population size 2000
Maximum of generation 24
Maximum depth for new trees 6
Maximum depth after crossover 12
Maximum mutant depth 4
Tree initialization method Grow
Selection method Tournament
Tournament size 5
Crossover function point fraction 0.1
Crossover any point fraction 0.6
Fitness proportionate reproduction fraction | 0.2
Mutation fraction 0.1

Table 3.8: The Terminal Set for the 4EEVEN Problem

0 DO
1 D1
2 D2
3 D3

Table 3.9: The Function Set for the 4EVEN Problem
‘ ID ‘ Name ‘ Number of Argument ‘

0 AND 2
1 OR 2
2 NAND | 2
3 NOR 2

Figure 3.12 shows the best and the average fitness values on the 4EVEN problem.
According to this figure, the DD gave the best performance on the best and the average
fitness values. Table 3.10 shows average numbers of hits and its standard deviation at the
final generations over twenty runs on the 4EVEN problem. By using the DD, the solution
program was acquired for all twenty runs. On the contrary, the solution programs was not
acquired in case of the NORMAL. Table 3.11 shows results of the paired t-test about
the best and the average fitness values. According to this test, it has confirmed that the
DD is better than the NORMAL, and the RDD is better than the NORMAL on
the best and the average fitness values. However, it has not verified that the RDD 1is

22

superior to the DD in the average fitness values. The 4EVEN problem is a sort of the
boolean function formation problem the same as 11MX problem. The 4EVEN problem
is similar in character to the 11MX problem. The DD and the RDD are suitable for the
boolean function formation problems based on the experimental results of the 11MX and

the 4AEVEN problem.

100 ‘ ‘
NORMAL (best) ——
DD (best) ———
RDD (best) =

80 r NORMAL (aver age) o i
DD (average) -——=---
RDD (average) --—o--

60 1

Fi t ness

40

20
) X** R gy
. ‘ *;’:i**t* %ok

CGenerati on

Figure 3.12: Experimental Results, means of twenty runs (4EVEN). The fitness of the
4EVEN is an error rate for total inputs. The “best” means the fitness of the best individual
and the “average” indicates the average fitness of the population.

Table 3.10: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (4EVEN). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of three crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.00 (0.00) 3
DD 1.00 (0.00) 1
RDD 0.80 (0.40) 2

Table 3.11: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(4EVEN).

‘ Setting ‘ Best ‘ Average ‘

DD (against NORMAL) 11.00 | 19.29
RDD (against NORMAL) | 8.31 | 12.72
RDD (against DD) -2.18 | -1.32

23

3.5.3 ANT

The depth-dependent crossover were experimented on the ANT problem which is one
of a standard problem on GP. The ANT problem is the task of navigating an artificial
ant so as to find all 89 foods lying along an irregular trail on 32x32 world (Figure 3.13)
[Koza, 1992a, p. 54]. The ant’s goal is to traverse the entire trail (thereby eating all of
the foods) within a limited energy. The ANT can go ahead, turn to the right and the
left. Each motion consumes one energy (total energy is 400). The ANT can detect a food
which is in the front of the ANT.
The fitness of ANT defined as follows:

Fitness = (foods — raw fitness)/ foods (3.4)

where, foods is total number of foods, 89 and raw fitness is the total number of foods of
which the ANT collected.
In other words, if the ant could not eat any foods, the fitness is 1.0 and if the ant could eat
all foods within the limited energy, it is 0.0. The smaller value means the better fitness.
The used parameters are shown in Table 3.12. All experiments were conducted with
these parameters to compare three kinds of crossovers. Table 3.13 and 3.14 show the
terminal and the function set, respectively. The ANT commands (i.e., RIGHT, LEFT and
FORWARD) are assigned to the terminal set. These commands are 0-argument functions.

Bl:start Position B : Food
of ANT

Figure 3.13: The ANT Problem

24

Table 3.12: Parameters for the ANT Problem

‘ Parameter ‘ Value
Population size 2000
Maximum of generation 49
Maximum depth for new trees 10
Maximum depth after crossover 17
Maximum mutant depth 3
Tree initialization method Grow
Selection method Tournament
Tournament size 5
Crossover function point fraction 0.1
Crossover any point fraction 0.6
Fitness proportionate reproduction fraction | 0.2
Mutation fraction 0.1

Table 3.13: The Terminal Set for the ANT Problem

‘ 1D ‘ Name ‘ Function

0 | RIGHT Turns to the right.

1 LEFT Turns to the left

2 | FORWARD | Moves forward with the present ANT’s direction

Table 3.14: The Function Set for the ANT Problem

‘ 1D ‘ Name

‘ Function

0

(If-Food-Ahead pO p1)

Evaluates p0 when a food is in frot of the ANT,
otherwise evaluate p1

1 (Prog2 p0 pl) Evaluates sequentially all the argument forms and
returns the value of the second argument (p1).
2 | (Prog3 p0 pl p2) Evaluates sequentially all the argument forms and

returns the value of the third argument (p2).

Figure 3.14 shows the best and the average fitness for the generation on the ANT
problem. As can be seen in this figure, the NORMAL gave the best performance on the
best fitness value. There is no difference in the average fitness value among the NOR-
MAL, the DD and the RDD. These experimental results are verified statistically. Table
3.16 shows results of t-test. According to this table, there was no difference in the fitness
performance between the DD (also the RDD) and the NORMAL. Table 3.15 shows
average numbers of hits and its standard deviation at the final generations over twenty
runs on the ANT problem. According to this table, the NORMAL was superlative about

the generation ability of solution programs among three crossover settings.

25

- NORMAL (best) ——
", DD (best) ——
Be, RDD (best) -
0.8 r By NORMAL (aver age) e ’
By DD (average) =
5gg RDD (average) --—o--

Fi t ness

0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Gener ation

Figure 3.14: Experimental Results, means of twenty runs (ANT). The fitness of the ANT
is a probability for which the ant could not eat 89 foods. The “best” means the fitness of
the best individual and the “average” indicates the average fitness of the population.

Table 3.15: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (ANT). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of three crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.15 (0.36) 1
DD 0.10 (0.30) 2
RDD 0.00 (0.00) 3

Table 3.16: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(ANT).

‘ Setting ‘ Best ‘ Average ‘

DD (against NORMAL) -0.96 | 1.14
RDD (against NORMAL) | -1.31 | 0.30
RDD (against DD) -0.62 | -0.40

3.5.4 Robot

This section verified effectiveness of the depth-dependent crossovers on a robot problem.
This is to show the feasibility of the depth-dependent crossovers for a real-world task.

The Simulated Robot

An autonomous robot simulator have been constructed (Figure 3.15). The model of this
robot is a behavior-based robot[Maes, 1993]. In this simulator, there are only five types

26

of objects, i.e., the robot, a target object, a station, wall and obstacles in the robot’s work
space (Figure 3.16).

: }——————Eye Sensor Area

Bunp Sensor

Beacon Sensor

Eye Sensor

Figure 3.15: The Simulated Robot

Target bj ect

Obst acl e al |

col l ecti ng
the target
obj ect

descrim nating
bet ween t he target
obj ect and obstacl es

bringi ng the
col l ected
object to
¥ he station

St ati on

avoi di ng
t he obstacl e

Robot (end)

Figure 3.16: The Workspace of the Robot

27

The simulated robot has three types of sensors. They are eight bump sensors, an eye
sensor and a beacon sensor (Table 3.17).

Table 3.17: Sensors of the Simulated Robot

‘ Type ‘ Number ‘ Function
Bump Sensor | 8 Reports whether the robot bumps an object or not.
Eye Sensor 1 Reports the IDs of objects within the eye-sensor area.
Beacon Sensor | 1 Reports the distance between the robot and the station
when the station is within the robot’s sensor range.

The motivation of constructing the above robot simulator is derived from a following
design principle: this robot simulator is constructed so as to close to a real world as much
as possible. In this sense, actual experimental settings are:

1. The robot’s coordinates are arbitrary floating point numbers, but not grid based.

2. The robot commands are taken from a real robot.

Task Overview

The robot task is to collect an object. The robot can discriminate between the target
object and obstacles by means of their colors. This task consists of following subtasks:

1. avoiding obstacles
2. discriminating between the target object and obstacles
3. collecting the target object

4. bringing the collected target object to the station in the limited time

Terminal Set

As commonly used in most GP applications [Ito et al., 1996b], the robot commands were
considered as terminals, i.e., 0-argument function (Table 3.18). When each robot com-
mand is evaluated, one time-step is consumed and each command is evaluated until the
total number of time-steps reaches a certain limitation, or the robot brings the target
object to the station correctly. The maximum number of time-steps is set to be 300.

Table 3.18: Terminal Set (Robot)
‘ ID ‘ Type ‘ Function ‘

0~5|GF Moves forward with the robot speed in its robot’s direction.
The robot speed is assumed to be constant.

6 TR Makes the robot’s body turn 10° to the right.

7 TL Makes the robot’s body turn 10° to the left.

8 MCR | Makes the eye sensor turn 10° to the right.

9 MCL | Makes the eye sensor turn 10° to the left.

10 GP Grasps the target object within the robot’s eye sensor area.

28

The robot does not move when TR, TL, MCR, MCL and GP commands are evalu-
ated. If there is only one GF command in the terminal set, the robot will come to a stop
too soon. This situation is called a deadlock. To prevent this deadlock situation, five GF
commands are included in the terminal set.

Function Set

In order to make the robot respond to its sensor inputs, the 14 functional nodes were
introduced (Table 3.19).

Table 3.19: Function Set for the Robot Problem
‘ 1D ‘ Type Function ‘
0~7 | (BSID p0 p1) Evaluates p0 if the bumplD-sensor reports collision,
pl otherwise.
8 (AS p0 pl p2) Evaluates p0 if the robot approaches the station, pl if
the robot goes away from the station, and p2 if the
station is not within the beacon sensor range.
9 (EWL p0 p1) Evaluates p0 if the wall within the eye-sensor area,
pl otherwise.

10 (EBC pO p1) Evaluates p0 if the obstacle is within the eye-sensor
area, pl otherwise.

11 (ERC pO p1) Evaluates p0 if the target object within the eye-sensor
area, pl otherwise.

12 (ESN pO p1) Evaluates p0 if the station is within the eye-sensor area,

pl otherwise.

13 (PROG?2 pO0 pl) | Evaluates sequentially two argument forms and returns
the value of the second argument (pl).

Fitness Function

The following fitness function is used for this robot task:

dist(S, R;) if the robot has the
Fitness = target object in hand (3.5)
dist(S, RCy) + dist(R;, RC}) otherwise

where S is the position of the station, R, is the the position of the robot at ¢ time-step,
RC, is the the position of the target object at ¢ time-step, dist(x,y) is the Euclidean
distance between = and y.

Note, this fitness function definition does not necessarily represent the hardness of the
problem. For instance, this definition does not care whether there is obstacles between
the robot and the station or not. If there are not obstacles between the robot and the
station, the robot searches only the station. On the contrary, if there is obstacles between
the robot and the station, the robot have to avoid them and search the station. The latter
situation is more difficult for the robot to accomplish the task than the former situation.
However, the above fitness function cannot distinguish these two situations. When the

29

fitness function can distinguish the hardness of the problem, GP can evolve the robot
programs easily, however, this can be a sort of heuristics. Less heuristics are better for
realizing general automatic generation of programs. Thus, the above fitness function has
been chosen.

Experimental Result on the Robot Problem

Figure 3.17 plots the best and the average fitness values for the robot problem. Table
3.20 depicts the used parameters.

Table 3.20: Parameters for the Robot Problem

‘ Parameter ‘ Value
Population size 500
Maximum of generation 49
Maximum depth for new trees 5
Maximum depth after crossover 15
Maximum mutant depth 3
Tree initialization method Grow
Selection method Tournament
Tournament size 5
Crossover function point fraction 0.1
Crossover any point fraction 0.6
Fitness proportionate reproduction fraction | 0.2
Mutation fraction 0.1

200 ‘ ‘ ‘ ‘ ‘
5 NORMAL (best) ——
" DD (best) —- X
" RDD (best) -
150 | % NORMAL (average) o |
% DD (average) =

w e RDD (average) -

i "

c 100 L. 1

t Q‘o\iﬂ

L R eTag

\ @%:. DBDDDBDDDEB
XX 6555"-1. DBDDDDDDDBBDDBDBDDDB
50 - o Oo;goegg-gg;;;:}ll..‘.ll.II\}'Ilfl7
0 1 1 1 1

0 5 10 15 20 25 30 35 40 45
Cener ati on

Figure 3.17: Experimental Results, means of twenty runs (Robot). The fitness of the
Robot is derived from Equation 3.5. The “best” means the fitness of the best individual
and the “average” indicates the average fitness of the population.

30

According to Figure 3.17, the DD gave the best performance on the best fitness value.
As for the average fitness value, the RDD gave the best performance. Table 3.21 shows
the averaged numbers of hits at the final generations over twenty runs. By using the
RDD. the solution program was acquired for all twenty runs.

Table 3.22 shows the result of t-test. It has confirmed that DD was superior to the
NORMAL in terms of the best and the average fitness value. The RDD was better
than the NORMAL on the average fitness value. However, it has not verified that the
RDD was superior to the NORMAL in terms of the best fitness value.

Table 3.21: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (Robot). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of three crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.80 (0.40) 3
DD 0.95 (0.22) 2
RDD 1.00 (0.00) 1

Table 3.22: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(Robot)

‘ Setting ‘ Best ‘ Average ‘

DD (against NORMAL) 3.34 | 2.40
RDD (against NORMAL) | 1.41 | 4.33
RDD (against DD) -1.53 | 2.90

3.6 Conclusion

This chapter proposed the depth-dependent crossover and its revised crossover to improve
the ability about generation of solution programs. This chapter verified effectiveness
of the depth-dependent crossovers by means of several experiments. According to the
experiments, following points made clear:

1. For Boolean problems, two types of the depth-dependent crossovers gave better
performance than the normal crossover.

2. Both of the depth-dependent crossovers and the revised one worked as a protection
against the destructive crossover.

3. The revised depth-dependent crossover controlled the size of a GP tree.

Both of the depth-dependent crossovers and the revised one were superior to the
normal crossover in terms of the fitness performance, however, they generated larger
programs than that by the normal crossover. The next chapter tackled to solve the
program size problem of the depth-dependent crossover by means of introducing non-
destructive crossover [lto et al., 1998a].

31

Chapter 4

Non-Destructive Depth-Dependent
Crossover

In the previous chapter (chapter 3), the depth-dependent crossover was proposed for GP.
The purpose was to solve the difficulty of the blind application of the normal crossover, i.e.,
building blocks are broken unexpectedly. In case of depth-dependent crossover, the depth
selection probability was varied according to the depth of a node. However, the depth-
dependent crossover did not work very effectively as generated programs became larger.
A large size program has three drawbacks: 1. the time necessary to measure their fitness
often dominates total processing time, 2. huge memories are required to evolve programs,
3. analyzing generated programs is difficult. To overcome these difficulties, this chapter
introduce a non-destructive depth-dependent crossover [Ito et al., 1998a], in which each
offspring is kept only if its fitness is better than that of its parent. This chapter compares
GP performances of the original depth-dependent crossover with performances of the non-
destructive depth-dependent crossover to show the effectiveness of the approach. These
experimental results clarify that the non-destructive depth-dependent crossover produces
smaller programs than the original depth-dependent crossover.

4.1 Introduction

The previous chapter has proposed the depth-dependent crossover to improve effectiveness
of crossover for accumulating building blocks via the depth selection probability (Chapter
3). In case of depth-dependent crossover, the depth selection probability was varied
according to the depth of a node. The depth-dependent crossover contributed to the
reduction of the number of generations for the evolution on boolean concept formation
problems. However, there seemed to be a difficulty that the depth-dependent crossover
generated very large size programs. A large size program has following three drawbacks:

1. The time necessary to measure their fitness often dominates total processing time.
2. Huge memories are required to evolve programs.

3. Analyzing generated programs is difficult.

At first, a large program needs huge computational time to evaluate it’s fitness. This
is a critical problem for GP. In GP, evaluation of programs consumes computational time

32

fairly. Second, a large program needs huge memories. It GP generates a small program,
we can save the expenditure of money on computer memories. Third, if a generated
program is small, we can analyze it easily. Due to above reasons, a small size program is
needed for GP.

This chapter tackles the program size problem of the depth-dependent crossover. In
order to solve this problem, this chapter adopted the “non-destructive crossover (NDC)”
to reduce the program size. By this method, each offspring, i.e., a new tree resulting from
crossover, is kept only if its fitness is better than that of its parent [Soule and Foster, 1997].

There have been several related studies which tackled the problem of GP program
size. Soule has considered that shorter programs tend to show better generalization per-
formance than longer programs. Thus he has studied the selective pressure by penalizing
longer programs [Soule et al., 1996]. This method appeared to be effective in bounding
the programs’ size.

Kinnear added the inverse size of generated programs to the fitness measure
[Kinnear, 1993]. However, its fitness measure had the size factor (sf) by which the size of
the program was multiplied for addition. We cannot know in advance the exact value of
the factors. On the contrary, the NDC requires neither semantic heuristics nor problem-
dependent parameters. That means the NDC works purely syntactically.

Iba has introduced a method for controlling program (tree) growth, which used an
MDL (Minimum Description Length) principle to define GP fitness functions
[Iba et al., 1994]. However, MDL-based fitness functions could not be applied to every
kind of problem to be solved by GP. To use MDL-based fitness functions, trees had to
have the two characteristics, i.e., “size-based performance” (the more the tree grows,
the better its performance is) and “decomposition” (the fitness of a substructure is well-
defined itself). However, the NDC can be applied every kind of problem.

This chapter is organized as follows. Section 4.2 described the non-destructive depth-
dependent crossover. Section 4.3 shows several experimental results in several tasks and
compares the performances of the original depth-dependent crossover with performances
of the non-destructive depth-dependent crossover. Some conclusions are given in Section
4.4.

4.2 Non-Destructive Depth-Dependent Crossover

The previous chapter observed that the depth-dependent crossover as well as the revised
depth-dependent crossover produced a much larger program than the normal crossover
[Ito et al., 1998b]. To solve this difficulty, this chapter has introduced the “non-destructive
crossover” based on [Soule and Foster, 1997]. The NDC is a crossover, in which each
offspring is kept only if its fitness is better than that of its parents. Omne benefit of
using the NDC is that the program growth is reduced to only the growth necessary for
improving program fitness [Soule and Foster, 1997, p. 314]. Thus, this chapter uses the
non-destructive crossover to reduce the problem growth on the depth-dependent crossover.
This chapter calls this type of crossover a “non-destructive depth-dependent crossover”
[Ito et al., 1998a]. The algorithm of the non-destructive depth-dependent crossover is
given by adding the following procedure to the algorithm of the original depth-dependent
crossover described in Section 3.2.

STEPG6. Each offspring is kept only if its fitness is better than that of its parent.

33

4.3 Experimental Results

This section has investigated effectiveness of the non-destructive crossover and the original
depth-dependent crossover for several problems. This section shows the experimental
results in Boolean concept formation problems and the ANT problem.

Table 4.1 shows the experimental set up. In case of a NORMAL, crossover points
are selected at random. The DD means using the “depth-dependent” crossover. The
RDD represents the “revised depth-dependent” crossover. These three depth-dependent
crossovers are original ones. The ND-NORMAL denotes the “non-destructive normal”
crossover. The ND-DD means using the “non-destructive depth-dependent” crossover.
The ND-RDD represents the non-destructive revised depth-dependent crossover. These
three non-destructive crossovers are mentioned in Section 4.2. Mutation is randomly
applied for all settings.

Table 4.1: Table 4.1: Experimental Set Up

‘ Setting ‘ Crossover ‘ Mutation ‘
NORMAL Random Random
DD Depth-Dependent Random
RDD Revised Depth-Dependent Random
ND-NORMAL | Random (non-destructive) Random
ND-DD Depth-Dependent (non-destructive) Random
ND-RDD Revised Depth-Dependent (non-destructive) | Random

For the sake of comparison, all experiments were conducted until a final generation,
even if a solution was founded during the evolution. Experimental results are based on
the average over twenty runs.

4.3.1 11MX

Figure 4.1, 4.2 and 4.3 plot the tree depth, the number of the function node, and the
number of the terminal node with generations for the 11MX problem, respectively. The
used parameters are shown in Table 3.2. Details of this task are written in Section 3.5.1.

According to Figure 4.1, the tree depth of the non-destructive crossovers (the ND-
NORMAL, the ND-DD and the ND-RDD) is shallower than by the original ones
(the NORMAL, the DD and the RDD). The number of the function node (also the
number of the terminal node) by the non-destructive crossovers is also smaller than by the
original crossovers (see Figure 4.2 and 4.3). Tree growth pattern of the original crossovers
(the NORMAL, the DD and the RDD) is rising until the final generations. However,
the non-destructive crossovers (the ND-NORMAL, the ND-DD and the ND-RDD)
suppress the program growth in the middle of the evolution. These experimental results
show that the applicability of the non-destructive crossover for combining other crossover
techniques. The non-destructive crossover could generate smaller programs on the four
GP problems. This suggests that the non-destructive crossover does not have problem-
dependent characteristics.

34

Depth of Tree

0 1 1 1
0 5 10 15 20
Ceneration
Figure 4.1: Depth of Tree (11MX)
140 | NO?iVAL —
S -
= ROy ND-NORMAL = |
S 100} N R
o
S 80 e
s L
— 60 r e 1
o -~ I
5 40 ¢
E)
Z
0 —a—H

Cener ati on

Figure 4.2: Number of Function Node (11MX)

Figure 4.4 and 4.5 give the best and the average fitness values for the 11MX problem,
respectively. According to Figure 4.4, the ND-DD gave the best performance for the best
fitness value. The evolution of the ND-DD is the fastest among six crossover settings.
On the contrary, the evolution of the NORMAL is the slowest.

According to Figure 4.5, the ND-DD is superior to the DD. The ND-RDD is also
surpass to the RDD. Each non-destructive crossover is superior to each original crossover.
As for the hits at the final generations, the ND-DD was also the best among the six cases
(see Table 4.2).

The experimental results of the non-destructive crossovers are compared with the
results of the original crossovers using the the paired t-test [Freund and Wilson, 1992].

35

Table 4.3 shows the results of t-test. According to this test, it could not conclude that
the ND-DD is superior to the DD in terms of the best fitness value. On the contrary,
it has confirmed that the RDD is superior to the ND-RDD in terms of the best fitness

value (5% of level of significance).

200 \
° NORVAL ——
he] DD — o
g ROD +
150 ¢ ND- NOCRIVAL 8 i}
= ND-DD =
c ND-RDD =
kS X
S 100 | /X/,)(p
S
©
€
jun
P
Cener ati on
Figure 4.3: Number of Terminal Node (11MX)
100 \
NORVAL —+—
DD
ROD +
80 1 ND- NORMAL o |
ND-DD =
ND-RDD = -
o 60 :
)
c
L 40} .
20 — ,
\‘\QL e} \W‘Q*\g . ‘2
g TR g g
0 ‘ L R %‘?’%ﬁ?&{&;:g g
0 5 10 15 20

CGeneration

Figure 4.4: Best Fitness Value, means of twenty runs (11MX). The fitness of the 11MX
is an error rate for total inputs. The “best” means the fitness of the best individual.

36

100

NORMAL ———
DD
RDD -
N ND- NCRMAL =]
ND- DD ---=---
ND- RDD ---¢ -~
& 60 B |
[¢b)
[
e
g T
T
0 ‘ ‘ U
| 5 - i 20

CGenerati on

Figure 4.5: Average Fitness Value, means of twenty runs (11MX). The fitness of the
11MX is an error rate for total inputs. The “average” indicates the average fitness of the
population.

Table 4.2: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (11MX). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of six crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL 0.00 (0.00) 5
DD 0.70 (0.46) 2
RDD 0.85 (0.36) 1
ND-NORMAL | 0.40 (0.49) I
ND-DD 0.85 (0.36) 1
ND-RDD 0.65 (0.43) 3

Table 4.3: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(11MX).

‘ Setting ‘ Best ‘ Average ‘
ND-NORMAL (against NORMAL) | 5.14 | 12.36
ND-DD (against DD) 0.28 | 5.15
ND-RDD (against RDD) -2.82 | 2.20

37

4.3.2 4EVEN

The purpose of the non-destructive crossover is to suppress the program growth. There
are some advantages when the size of generated programs is reduced. For instance, a
small program does not require huge computer memory. And the computational time of
a small program is smaller than that of a huge program. As for the program size, the
non-destructive crossover was successful for all four GP problems (i.e., the 11MX, the
4EVEN, the ANT and the robot problem). The following three sections (Section 4.3.2,
4.3.3 and 4.3.4) focuses on the best and the average fitness values, which are index of
another program performance.

Figure 4.6 and 4.7 plot the best and the average fitness values for the 4EVEN problem,
respectively. The used parameters are same as Table 3.7. Details of this task are written
in Section 3.5.2. As for the best fitness value, the DD, the RDD and the ND-DD give
good performance. However, the NORMAL, the ND-NORMAL and the ND-RDD
fell into local optimum. This is because these three settings (i.e., the NORMAL, the
ND-NORMAL and the ND-RDD) generated smaller GP trees than that by the former
three settings (i.e., the DD, the RDD and the ND-DD). In terms of the average fitness
value, the ND-DD is better than the DD, and the ND-NORMAL is superior to the
NORMAL. However, the ND-RDD and the RDD shows same performance. According
to the paired t statistical test, it has confirmed that the DD is superior to the ND-DD,
and that the ND-RDD is superior to the RDD in terms of the best fitness values (Table
4.5). The solution program was acquired for all twenty runs by means of the DD (Table
1.4).

100 ‘
NORMAL —
DD -
RDD %

80 | ND- NORMAL &
ND- DD -—-=---
ND- RDD ---o--

60 .

Fi t ness

o
-m_
-

(S}
A R
T?!**{#g -

0 5 10 15 20
CGeneration

Figure 4.6: Best Fitness Value, means of twenty runs (4EVEN). The fitness of the 4EVEN
is an error rate for total inputs. The “best” means the fitness of the best individual.

38

100 ‘

NORVAL ——
DD
RDD —*
80 r ND- NORMAL &]|
ND-DD ---=---
ND- RDD ---=--
® 60 |]
[¢b)
[
o e
22 é@ﬂ ‘
20 | e, e e e
N — f ‘\6»~ o- gt:é;é’;§';§!§:{
0 I)) ‘ - — -
0 5 10 15 20

CGenerati on

Figure 4.7: Average Fitness Value, means of twenty runs (4EVEN). The fitness of the
AEVEN is an error rate for total inputs. The “average” indicates the average fitness of
the population.

Table 4.4: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (4EVEN). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of six crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL 0.00 (0.00) 6
DD 1.00 (0.00) 1
RDD 0.80 (0.40) 2
ND-NORMAL | 0.05 (0.22) 5
ND-DD 0.75 (0.43) 3
ND-RDD 0.15 (0.36) 1

Table 4.5: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(4EVEN).

‘ Setting ‘ Best ‘ Average ‘
ND-NORMAL (against NORMAL) | -1.57 | 2.22
ND-DD (against DD) -2.10 | 5.06
ND-RDD (against RDD) -5.00 | -0.10

39

4.3.3 ANT

Figure 4.8 plots the best fitness values of the ANT problem. The used parameters are
shown in Table 3.12. Details of this task are written in Section 3.5.3. According to Figure
4.8, the performance of the NORMAL was the best in terms of the best fitness values.
On the contrary, the ND-RDD was the worst in terms of the best fitness value. As
can be seen in this figure, all six crossover settings suffered from the into local optimum.
Figure 4.9 shows the average fitness values of the ANT problem. According to this figure,
the ND-DD shows the best performance. However, a difference between the ND-DD
and the other crossover settings are small. On the hits measure, the original crossover and
the non-destructive crossover are the same performance on the ANT problem (see Table
4.6). Table 4.7 indicates that results of the paired t statistical test on the ANT problem.
According to these results, the RDD is superior than the the ND-RDD on the best
fitness value. However this test could not conclude that the ND-DD was superior to the
DD in terms of the best and the average fitness values. There was no critical difference
of the fitness between the original crossover and the non-destructive crossover.

1 T T T
NORMAL ——
DD
osl RDD = |
. ND- NORVAL 8
ND- DD =
b ND- RDD ---o--
n 4
© 0.6
()
c
L 0.4 © 00000 .
< %%é OGGGeeeeeoeoooooeooo(}@e@eoee{
x g_é;é:ﬁ:ﬂﬁﬁﬂﬁ!ﬁ#iliiiiﬁwi
0. 2 i ORI 2 56 56 XXX
0 1

0 5 10 15 20 25 30 35 40 45
Gener ation
Figure 4.8: Best Fitness Value, means of twenty runs (ANT). The fitness of the ANT

is a probability for which the ant could not eat 89 foods. The “best” means the best
individual.

40

Fi t ness

n O, KK
L w o Geoeooe FR Xy =
0.4 » .'iD.DD © Oeoooo{}@oﬁéét%%@é‘ﬁé&ﬁé; %
"saE@gguon)

- ﬂﬂiiiii =) H
EEng sl iiiﬂ-ﬂ»iﬁvl LR B
-nEny

0.2 r i

0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Gener ation

Figure 4.9: Average Fitness Value, means of twenty runs (ANT). The fitness of the ANT
is a probability for which the ant could not eat 89 foods. The “average” indicates mean

in the population.

Table 4.6: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (ANT). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of six crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL 0.15 (0.36) 1
DD 0.10 (0.30) 2
RDD 0.00 (0.00) 1
ND-NORMAL | 0.05 (0.22) 3
ND-DD 0.05 (0.22) 3
ND-RDD 0.05 (0.22) 3

Table 4.7: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(ANT).

‘ Setting ‘ Best ‘ Average ‘
ND-NORMAL (against NORMAL) | -1.61 | 1.93
ND-DD (against DD) -0.64 | 1.72
ND-RDD (against RDD) -2.06 | 0.41

4.3.4 Robot

Figure 4.10 plots the best fitness of the robot problem. The used parameters are shown
in Table 3.20. Details of this task are written in Section 3.5.4. As for the best fitness
value, the original and the non-destructive depth-dependent crossovers (i.e, the DD, the

41

RDD, the ND-DD and the ND-RDD) are superior to the NORMAL and the ND-
NORMAL. Figure 4.11 shows the average fitness of the robot problem. According to
this figure, the ND-DD and the ND-RDD give the best performance among the all six

crossover settings.

120 ‘ ‘
NORVAL ——
| DD -~
100 RDD + 1
\ ND- NORIVAL &
80 ND-DD —--=--- |
o ND- RDD o -
O
c 60 |
T
40 Mt ,
!Kzfg‘é;éiﬂu VDBBDDBBDDBDDEIBBDEIBBDB—
20 ¢ X***ii*gffféjjé§****ﬁ*ﬁfﬂﬁ%ﬂﬂ%%%&%ﬁﬁﬁ

0 5 10 15 20 25 30 35 40 45
Cener ati on

Figure 4.10: Best Fitness Value, means of twenty runs (Robot). The fitness of the Robot
is derived from Equation 3.5. The “best” means the fitness of the best individual.

200 ‘ ‘

150

100

Fi t ness

0 \‘%\ R

- .\ %*'*‘ X . .

L} =] KK S 88 U X X XK AR x = K K3 Kom s Ky s M Ko

S0 RS e
2 3 T ©K KK KKK K-

o
BN R s nenan e R e G EEED
0 1 1 1

0 5 10 15 20 25 30 35 40 45
Cener ati on

Figure 4.11: Average Fitness Value, means of twenty runs (Robot). The fitness of the
Robot is derived from Equation 3.5. The “average” indicates the average fitness of the

population.

In terms of the hits measure, the RDD and the ND-DD generated the solution
program over all twenty runs (see Table 4.8). Table 4.9 shows the results of t-test which
is comparison of the non-destructive and the original crossovers. In terms of the average

42

fitness value, the non-destructive crossovers (i.e., the ND-NORMAL, the ND-DD and
the ND-RDD) are superior to the original crossovers (i.e., the NORMAL, the DD and
the RDD). However, this test did not confirmed that the non-destructive crossovers are

superior to the original crossovers.

Table 4.8: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (Robot). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of six crossover settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL 0.80 (0.40) 5
DD 0.95 (0.22) 3
RDD 1.00 (0.00) 1
ND-NORMAL | 0.75 (0.43) 6
ND-DD 1.00 (0.00) 1
ND-RDD 0.95 (0.22) 3

Table 4.9: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(Robot)

‘ Setting ‘ Best ‘ Average ‘
ND-NORMAL (against NORMAL) | -0.92 | 3.45
ND-DD (against DD) -1.21 | 8.84
ND-RDD (against RDD) 0.03 | 4.03

4.4 Conclusion

This chapter introduced the non-destructive crossover for the depth-dependent crossover
and verified the effectiveness in terms of generated program size and fitness values. As a
result of experiments, the following points have been made clear:

1. For Boolean problems, the non-destructive depth-dependent crossover created smaller
programs than the original depth-dependent crossover.

2. For the ANT problem, the performance for the non-destructive crossover was not

always better.

Previous experimental results have shown that the non-destructive depth-dependent
crossovers (i.e., ND-DD and ND-RDD) did not necessarily give better performance than
the original depth-dependent crossovers (i.e., DD and RDD). However, the purpose of
this chapter was to reduce the size of generated programs for GP. The non-destructive
crossover generated smaller programs with a slight performance degradation.

43

Chapter 5

A Self-Tuning Mechanism for
Depth-Dependent Crossover

The depth-dependent crossover protected building blocks and constructed larger building
blocks easily by swapping higher nodes frequently (see Chapter 3). However, there was a
problem-dependent characteristics on the depth-dependent crossover, because the depth
selection probability was fixed for all nodes in a tree. To solve this difficulty, this chapter
proposes a self-tuning mechanism for the depth selection probability. This chapter calls
this type of crossover a “self-tuning depth-dependent crossover”. This chapter compares
GP performances of the self-tuning depth-dependent crossover with performances of the
original depth-dependent crossover. Our experimental results clarify the superiority of
the self-tuning depth-dependent crossover.

5.1 Introduction

The normal crossover selects randomly a crossover point (node) regardless of its position
within the tree structure. Thus, if the normal crossover destroys building blocks, it will
result in the degradation of the search for a solution program. Swapping a larger struc-
ture is one way to solve the difficulty. Because building blocks are protected by swapping
larger structures. Chapter 3 proposed a “depth-dependent crossover”, in which a crossover
point is determined by a depth selection probability. The depth selection probability is the
probability of selecting a depth to which is applied crossover. The depth selection proba-
bility is higher for a node closer to a root node. The depth-dependent crossover protected
building blocks and constructed larger building blocks easily by swapping higher nodes
frequently. Through the use of the depth-dependent crossover, the number of generation
was expected to decrease for the boolean concept formation problems. However, there is
a problem-dependent characteristic for the depth-dependent crossover, because the depth
selection probability was fixed and given as a user-defined parameter. This explains why
the depth-dependent crossover could not show any advantage for the fitness performance
for the ANT problem (Chapter 3).

This chapter proposes a self-tuning mechanism for the depth selection probability
to avoid the difficulty mentioned above. This type of crossover is called a “self-tuning
depth-dependent crossover” [Ito et al., 1999]. In case of the self-tuning depth-dependent
crossover, each individual has a different depth selection probability. The depth selec-
tion probability of a selected individual is copied to the next generation. By using the

44

self-tuning depth-dependent crossover, it is not required to set up beforehand the depth
selection probability for a particular GP task.

The self-tuning is not necessarily the best strategy. If an optimal depth selection
is known for one GP problem in advance, setting the optimal depth selection would be
better than using the self-tuning mechanism. However, we do not know the optimal depth
selection probability for each GP problem in general. Thus, it is required to design the
self-tuning mechanism for the depth selection probability.

Angeline argued that adaptive abilities can be separated into three basic classes de-
pending on the association between the adaptive parameters and the evolutionary process
[Angeline, 1996].

Population-level adaptations modify population-wide parameters, often include up-
dating the global frequency of operator application and dynamically adjusting the
interpretation of the representation.

Individual-level adaptations associate parameters with each individual that deter-
mine how the algorithm manipulates the individual.

Component-level adaptations associate adaptive parameters with each component
of an evolving individual that determine how each component is modified during
reproduction.

The self-tuning depth-dependent crossover belongs to the individual-level adaptations.
Because each depth selection probability is changed to suit to each individual during
the evolution. There have been other studies of the individual-level adaptations. For
instance, Angeline studied an adaptive crossover [Angeline, 1996], in which a self-adaptive
individual composed of a program tree and a parameter tree. A parameter tree was
identical to its program tree in size and shape. It determined the probability of crossing the
tree at the corresponding position. In case of the self-adaptive crossovers, the probability
of each node of crossover is determined independently regardless of the depth of the tree.
On the contrary, the self-tuning depth-dependent crossover is based on the depth of the
tree, and it protects building blocks from a destructive crossover by which a higher node
is selected as a crossover point frequently.

This chapter is organized as follows. Section 5.2 explains the self-tuning mechanism
for the depth-dependent crossover. Section 5.3 describes several experimental results in
several tasks and compares GP performances of the original depth-dependent crossover
with performances of the self-tuning depth-dependent crossover. Section 5.4 mentions
some conclusions.

5.2 A Self-Tuning Mechanism for Depth-Dependent
Crossover

In case of the depth-dependent crossover !, the depth selection probability is fixed (half of
its parent node’s probability, see Figure 3.1). It is a user-defined parameter. If the depth
selection probability is not set up correctly, crossover may not work well.

!Detailed description of the depth-dependent crossover is given in Section 3.2.

45

To solve this difficulty, this chapter proposes a self-tuning mechanism for the depth
selection probability, in which each tree has a different depth selection probability. Then,
each crossover point is determined by its depth selection probability. If an individual has
a high depth selection probability, it is more highly that crossover will select a shallower
node. Therefore, on average, the selected subtrees will be bigger. On the contrary, if
an individual has a low depth selection probability, crossover will select a deeper node.
Therefore, selected subtrees will be smaller.

Parentl Parent2

r———— hreshold (2.0 0

building block

Child1
- ——-Althreshold (2.0
copy

Depth 0] 100.0%

100.0%

Depth 0

Depth 1]66.7%

.......... Depth 2]44.4%

Depth 3]29.6%

Depth 4 19.8%

Depth 5113 296

Figure 5.1: Self Tuning without Parameter Crossover

It is difficult to evaluate directly whether each depth selection probability is suitable
for each tree structure or not. Because we do not have any evaluation criteria about the
depth selection probability. A high depth selection probability may be good setting for
one tree structure, whereas, a low depth selection probability may work well for another
tree structure. In this self-tuning mechanism, this chapter hypothesized that if the depth
selection probability is effectively assigned to the tree structure, the fitness of the tree
structure is improved. According to this hypothesis, the depth selection probability of a
desirable tree will be copied to the next generation. This means that the depth selection
probability of the tree structure, which is selected by the fitness selection, is also selected
and inherited to the next generation. This advantage is to evaluate both the depth
selection probability and the program fitness (i.e., program performance) by means of
only the fitness selection alone.

This chapter introduces two methods for the above purpose. One is to copy the depth
selection probability of each parent to each child (Figure 5.1). Another method is to swap
the depth selection probability (Figure 5.2). In Figure 5.1, black nodes mean building
blocks. The crossover point of each tree is determined by each depth selection probability.

46

As a result of crossover, two children with the depth selection probability as their parents
are generated. In case of the child 2, if the depth selection probability is not swapped, it
is easy to select a node of building blocks (i.e., black nodes) and to break building blocks.
Because the depth selection probability of nodes within building blocks is higher (i.e., the
probabilities of the depth 3, 4 and 5 is 29.6%, 19.8% and 13.2, respectively). The same is
true of child 1 (i.e., the probability of the depth 2 is 25.0%).

Parentl Parent2

= = threshold (1.5)

Depth 0

Depth 0 | 100.0%

Depth 1 | 66,79

Depth 3

building block

Child1

Depth 0] 100.0%

Depth 0

Depth 1 .07

Depth 2 .0%

Depth 3 |29.6% Depth 312.5%

Depth 4] 6.3%

Depth 5] 3.1%

Figure 5.2: Self Tuning with Parameter Crossover

In case of Figure 5.2, the depth selection probability of each parent is also swapped
when the selected subtrees are swapped. This method may work effectively for large
building blocks. However, it may not be a good strategy for small building blocks. For
instance, in case of Figure 5.2, it is easy to protect building blocks of child 2 by swapping
the depth selection probability. Because the depth selection probability of nodes within
building blocks is low (i.e., the probabilities of the depth 3, 4 and 5 are 12.5%, 6.3%
and 3.1%, respectively). However, in case of child 1, the depth selection probability of
the node within building blocks is high (i.e., the probability of depth 2 is 44.4%). Large
Building blocks of child 2 are protected easily, whereas small building blocks of child 1 are
broken. Therefore, the method of Figure 5.2 is a greedy method. Next section clarifies
differences of these methods (i.e, Figure 5.1 and 5.2).

The above idea of the self-tuning style depth-dependent crossover is realized as fol-
lowing algorithm.

Pre-processing Assign a random depth selection probability between min-probability
and max-probability for the tree initialization.

47

Crossover When applying crossover, the following process is executed:

STEP 1. For parentl, determine the depth d for a selected tree using the depth
selection probability of parentl.

STEP 2. For parentl, select randomly a node whose depth is equal to d in STEP1.

STEP 3. For parent2, determine the depth d for a selected tree using the depth
selection probability of parent2.

STEP 4. For parent2, select randomly a node whose depth is equal to d in STEP3.
STEP 5. Swap the nodes chosen in STEP2 and STEP4.

STEP 6. Swap the depth selection probability (if the self tuning mechanism con-
ducts parameter crossover, i.e., Figure 5.2).

Mutation When applying mutation, the following process is executed:

STEP 1. Mutate a selected tree randomly.

STEP 2. Mutate the depth selection probability of the selected tree between
man-probability and mazx-probability.

This chapter assigns min-probability to 1.5 and maz-probability to 2.0 (i.e., the depth
selection probability of each tree ranges from 1.5 to 2.0). The self-tuning mechanism
searches better depth selection probability for each tree between min-probability and
max-probability. Mutation of the depth selection probability is to escape a local optimum
for the depth selection probability.

The probability of crossover (and mutation) of the depth selection probability is same
as the probability of crossover (and mutation) of the tree structure. This means that the
depth selection probability is also swapped when tree structures are swapped with same
probability (the depth selection probability is also mutated when the tree structure is
mutated).

5.3 Experimental Results

This section has investigated effectiveness of the self-tuning depth-dependent crossover for
several problems. These problems are Boolean concept formation problems (the 11MX
and the 4EVEN), the ANT problem and the robot problem. Table 5.1 shows the experi-
mental set up. The NORMAL, the DD, the SDD and the SDD-XO mean the normal
crossover, the depth-depended crossover (Figure 3.1) and the self-tuning depth-dependent
crossover in which the value of the depth selection probability are not swapped (Figure
5.1), and the self-tuning depth-dependent crossover in which the value of selection proba-
bility are swapped (Figure 5.2), respectively. For the sake of comparison, all experiments
were conducted until a final generation, even if a solution was found during the evolution.
Experimental results are shown on the average over twenty runs.

48

Table 5.1: Experimental Set Up

‘ Setting ‘ Crossover ‘ Mutation ‘
NORMAL | Random Random
DD Depth-Dependent (Figure 3.1) Random
SDD Self-Tuning Depth-Dependent without | Random

Parameter Crossover (Figure 5.1)
SDD-XO Self-Tuning Depth-Dependent with Random

Parameter Crossover (Figure 5.2)

5.3.1 11MX

Figure 5.3 shows the best and the average fitness. Note that the smaller, the better the
fitness is. The used parameters are shown in Table 3.2. Details of this task are written
in Section 3.5.1.

100 ‘ ‘
NORMAL (best) ——
DD (best) ———
SDD (best) =
80 r SDD- XO (best) I

NORMAL (average) -

DD (average) ---
60 SDD (average) -
SDD- XO (aver age)

b e O W O ¥

Fi t ness

0 5 10 15 20
CGenerati on

Figure 5.3: Experimental Results, means of twenty runs (11MX). The fitness of the 11MX
is an error rate for total inputs. The “best” means the fitness of the best individual and
the “average” indicates the average fitness of the population.

According to the best fitness performance curve, the DD shows an ability of which it
searches the solution program quickly. The SDD-XO is slower than the DD, however,
the SDD-XO shows the same fitness performance to the DD at the final generation.
There was no difference between the NORMAL and the SDD on the best fitness. As
for the average fitness, the DD gives the best performance among all crossover settings.
Other three crossover settings show almost the same ability.

This section statistically examined the best and the average fitness performances at
the final generations with the paired t-test. Table 5.2 shows the result of t-test. According
to this test, it has confirmed that the DD was superior to the NORMAL, and that the
SDD-XO was superior to the NORMAL in terms of the best and the average fitness

49

values. However, it has not verified that the SDD was superior to the NORMAL in
terms of the best and the average fitness values. Table 5.3 shows average numbers of hits
and its standard deviation at the final generations over twenty runs. Note, if the solution
program is acquired over twenty runs, the hits valueis 1.0. On the contrary, if the solution
program is not acquired over twenty runs at all, the value is 0.0. According to this table,
both of the DD and the SDD-XO gave best performance among all crossover settings.

Table 5.2: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(11MX)

‘ Setting ‘ Best ‘ Average ‘
DD (against NORMAL) 12.01 | 10.27
SDD (against NORMAL) 0.91 0.77
SDD-XO (against NORMAL) | 9.91 3.21
SDD (against DD) -11.74 | -10.36
SDD-XO (against DD) -0.42 | -6.42
SDD-XO (against SDD) 12.22 | 2.62

Table 5.3: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (11MX). Rank indicates a ranking of four crossover settings

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.00 (0.00) 3
DD 0.70 (0.46) 1
SDD 0.00 (0.00) 3
SDD-XO | 0.70 (0.46) T

18
16
14
12
10

Depth of Tree

o N M O ©

0 5 10 15 20
CGenerati on

Figure 5.4: Depth of Tree (11MX)

50

100

. NORMAL

5 oD
80 | SDD-XO =X]

[)(/

o

T 60 v 1

c y

3 X i

LL o

S 40 i . ~ = T

S X _

o

=

>

Z

Cener ati on

Figure 5.5: Number of Function Nodes (11MX)

i NORMAL —— |
o 140 DD e
SDD xS
2 120+ SDD- XO =]
© 100 | 1
-
B 80 B a
— “ 2
w 60
o
s 40
£
32 20
0t

0 5 10 15 20
CGenerati on

Figure 5.6: Number of Terminal Nodes (11MX)

There was no difference between the SDD-XO and the DD in terms of the best fitness
value as mentioned above. An advantage of the SDD-XO against the DD is to suppress
the size of generated programs (i.e., trees). Figure 5.4, 5.5 and 5.6 plot the depth of the
tree, the number of function nodes and the number of terminal nodes with generations
for the 11MX problem, respectively. The growth pattern of the DD shows the deepest
among all crossover settings. On the contrary, the pattern of the SDD-XO shows the
shallower than that of the DD (Figure 5.4). The number of function nodes (and terminal
nodes) was much larger by the DD than that by the SDD-XO (Figure 5.5 and 5.6). By
using the DD, a shallower node of the tree structure was selected frequently. It frequently
occurred that a small subtree in the shallower node of the tree structure was replaced with
a large subtree.

51

The original depth-dependent and the self-tuning depth-dependent crossover have an
effect that deeper subtrees are swapped more often. This will result in the protection
of building blocks. The fitness performance may be improved because of this effect on
the 11MX problem. Figure 5.7 shows average absolute depth of swapped tree structures
for the 11MX problem. According to this figure, average absolute depth of swapped
subtrees for all crossover settings was shallow at the early generations. However, the
DD swaps deeper subtrees as the evolution proceeds. The SDD-XO swapped shallower
subtrees that the DD. On the contrary, there was no difference between the SDD and the
NORMAL. These phenomena are also observed in the numbers of nodes of the swapped
subtrees (see Figure 5.8).

16 T T T
NORVMAL ——
I DD |
14 BB
12 | SDD-XO g
() //x
o e
|: 10 B //X,/’ . 5 g
"'6 8 |)(//%/ o i) " n
- P =
5 6
a
4
2
0 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
CGenerati on

Figure 5.7: Average Absolute Depth of Swapped Tree Structure (11MX)

140 |\|O?MSIE_) —i
SDD - Koo
7 120 SDD- XO /’
3 100 X
2 x//)(
E 80 7 ,/,X/ 7
= X
) 60 r N |
-g //)(/(//
2 40t
20 I Ax‘-/—x"/X// g P e 4
0 i B B K - e %f*sﬁ%

2 4 6 8 10 12 14 16 18 20
CGeneration

Figure 5.8: Average Number of Nodes of Swapped Tree Structure (11MX)

52

There was a difference between the SDD and the SDD-XO in terms of the size of
the tree structure. This difference was derived from the depth difference of the selection
probability of each individual. Figure 5.9 and 5.10 show transitions of the depth selection
probability during the evolution. The numbers of individuals (z axis) are accumulated
values over twenty runs. For both cases, i.e., the SDD and the SDD-XO, the total
depth selection probability at the initial generation (i.e., generation 0) was nearly same
value (approximately 4000). This was because the depth selection probability of each
individual was generated randomly. However, the number of individuals of lower depth
selection probability increased during the evolution in case of the SDD (Figure 5.9). This
means that crossover points were selected at deeper nodes more often. On the contrary,
the depth selection probability became higher during the evolution by the SDD-XO
(Figure 5.10). This means that crossover points are often selected at shallower nodes.
These phenomena occurred on the other GP problems, i.e., the 4EVEN, the ANT, and
the robot problem.

When we compare two particular crossovers, we have to consider two factors, i.e., the
fitness performance and the number of nodes. Even if the fitness is a good performance, we
cannot insist that one crossover is better if tree structures become large. A large structure
requires huge computer memory and computational time [Ito et al., 1998a]. The DD gave
good performance in terms of the fitness performance, however, it induced the bloat and
enlarged the tree structures. On the other hand, the SDD-XO did not only improve the
fitness performance, but also suppressed the bloat. Thus, the SDD-XO is superior than
the DD on the 11MX problem.

Humber of Ind
10000

700 1

Generation

Figure 5.9: Transitions of the Depth Selection Probability during the Evolution (11MX,
SDD). The numbers of individuals (z axis) are accumulated values over twenty runs.

53

Humber of Ind

10000
7500 1 ‘n .
|| B e
2500 I‘}|I“ ll 1 20
0]] I

Figure 5.10: Transitions of the Depth Selection Probability during the Evolution (11MX,
SDD-XO). The numbers of individuals (z axis) are accumulated values over twenty runs.

5.3.2 4EVEN

This section verified effectiveness of the self-tuning depth-dependent crossover for the
even-4-parity (4EVEN) problem. The used parameters are shown in Table 3.7. Details of

this task are described in Section 3.5.2.

Fi t ness

Figure 5.11: Experimental Results, means of twenty runs (4EVEN). The fitness of the
4EVEN is an error rate for total inputs. The “best” means the fitness of the best individual

Generation

100 ‘ ‘
NORMVAL (best) ——
DD (best) ———
SDD (best) =
80 r SDD- XO (best)

NORMAL (average) -

DD (average) ---
60 | SDD (average)
SDD- XO (average) =

> e ¢ W O ¥

40 i

g
[ON 13
F

.
~ B AL
N - g

o "'ei%‘,‘:g -

»

20 | T, T

0 ‘ ‘ e
O : . 15 20

CGeneration

and the “average” indicates the average fitness of the population.

54

Figure 5.11 plots the best and the average fitness values on the 4EVEN problem.
According to this figure, the DD gave the best performance on the best and the average
fitness values. The SDD-XO was better than the NORMAL, however, the SDD-XO
was not better than the DD on the best fitness. On the average fitness, there was no
difference among the NORMAL, the SDD and the SDD-XO.

Table 5.4 shows results of the paired t-test about the best and the average fitness val-
ues. According to this test, it has confirmed that the DD is better than the NORMAL,
and the SDD-XO is better than the NORMAL on the best and the average fitness
values. It has also confirmed that the DD is better than the SDD-XO on the best and
the average fitness values. Table 5.5 shows average numbers of hits and its standard de-
viation at the final generations over twenty runs. By using the DD, a solution program
was acquired for all twenty runs.

Table 5.4: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(4EVEN)

‘ Setting ‘ Best ‘ Average ‘
DD (against NORMAL) 11.00 | 19.29
SDD (against NORMAL) 2.13 | 2.29
SDD-XO (against NORMAL) | 8.46 | 3.53
SDD (against DD) -9.19 | -13.57
SDD-XO (against DD) -3.55 | -11.51
SDD-XO (against SDD) 6.47 | 1.84

Table 5.5: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (4EVEN). Rank indicates a ranking of four crossover settings

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.00 (0.00) 1
DD 1.00 (0.00) 1
SDD 0.10 (0.30) 3
SDD-XO | 0.60 (0.49) 2

5.3.3 ANT

Next, this sections show the experimental result on the ANT problem. The used param-
eters are shown in Table 3.12. Details of this task are written in Section 3.5.3.

It is reported that this problem appears to be difficult because of the large number
of sub-optimal peaks in the fitness landscape [Langdon and Poli, 1998a] and the depth-
dependent crossover was not effective on this problem (Section 3.5.3).

This section conducted two types of experiments. In the first experiment, the max-
imum depth for a new tree is 10. In the second experiment, the maximum depth for a
new tree is 5 (Table 5.6). This section investigated how these different maximum depth
values affect the performance of the DD, the SDD and the SDD-XO.

55

Table 5.6: Two Types of the Experiment on the ANT Problem
Experiment 1 | maximum depth for a new tree is 10

Experiment 2 | maximum depth for a new tree is 5

Figure 5.12 plots the best and the average fitness values for the ANT problem of
experiment 1 (i.e., the maximum depth for a new tree was 10). According to this figure,
the SDD-XO gave the best performance on the best and the average fitness values. On
the contrary, there was no difference among the NORMAL, the DD and the SDD on
the best fitness value. On the average fitness, there was no difference among all crossover
settings. These results were examined using paired t-test and it has confirmed that the
SDD-XO is superior to the DD on the best value (Figure 5.7). It has also confirmed
that the SDD-XO is superior to the SDD on the best fitness value. On the hits measure,
the SDD-XO give the best performance among all crossover settings (Table 5.10).

N NORMAL (best) ——
™ DD (best) - e
I SDD (best) =
0.8 faee SDD- XO (best) e
"ge, NORVAL (average) -——=-—
\ s, DD (average) -—-—o--
i LY SDD (average) -~ |
@ 0.6 =y '&uh SDD- XO (average) ——=--
GC') a :','o)
L 0.4+
0.2 r
O I I I I I I I

0 5 10 15 20 25 30 35 40 45
Cener ation

Figure 5.12: Experimental Results, means of twenty runs (ANT, Experiment 1). The
fitness of the ANT is a probability for which the ant could not eat 89 foods. The “best”
means the fitness of the best individual and the “average” indicates the average fitness of
the population.

Table 5.7: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(ANT, Experiment 1)

‘ Setting ‘ Best ‘ Average ‘
DD (against NORMAL) -0.96 | 1.14
SDD (against NORMAL) -0.82 | -0.63
SDD-XO (against NORMAL) | 1.34 | 0.06
SDD (against DD) -0.03 | -0.16
SDD-XO (against DD) 2.53 | -0.89
SDD-XO (against SDD) 2.47 1 -0.90

56

Table 5.8: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (ANT, Experiment 1). Rank indicates a ranking of four crossover

settings.
| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.15 (0.36) 2
DD 0.10 (0.30) 3
SDD 0.10 (0.30) 3
SDD-XO | 0.35 (0.48) 1

Figure 5.13 plots the best and the average fitness values for the ANT problem of
experiment 2 (i.e., the maximum depth for a new tree was 5). According to this figure,
the SDD-XO also gave the best performance on the best fitness values. There was
no difference between the NORMAL and the DD on the best fitness value. On the
average fitness, the SDD gave the best performance among all crossover settings. Table
5.10 shows results of paired t-test concerned about the best and the average fitness. It
has confirmed that the SDD-XO was better than the DD. On the hits measure, the

SDD-XO gave the best performance among all crossover settings.

1 T T T T T
Moy NORMAL (best) ——
Saa DD (best)
e SDD (best) s
0.8 t Tmess SDD- XO (best) e i
e, NORVAL (average) --—=--
TRet, DD (average) ---o--
o 0.6 ot SDD (average) -~ |
n n';ix SDD- XO (average) &
QC) S D\G\"?a‘!
— OO;\
f— D \&3 & zg!gl n
LL 0.4 9 ‘9@—5‘ :A:A' tAzrz;{l...ii....i
ko Q‘.999923'&6%—@;&99@@@1
."oo‘...
i‘* . Geee
0.2t PBE0 My i
BDDDD-j**“;ﬁifi’;f:i:;i;ii***** e
B 3 KX K K- K-
DDDBBD‘DDD»DDEDBBD:;;:?;@D&?BD
O 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45
Cener ation

Figure 5.13: Experimental Results, means of twenty runs (ANT, Experiment 2). The
fitness of the ANT is a probability for which the ant could not eat 89 foods. The “best”
means the fitness of the best individual and the “average” indicates the average fitness of
the population.

57

Table 5.9: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(ANT, Experiment 2)

‘ Setting ‘ Best ‘ Average ‘
DD (against NORMAL) 0.29 | 1.56
SDD (against NORMAL) 1.35 | 2.61
SDD-XO (against NORMAL) | 1.69 | 1.26
SDD (against DD) 1.15 | 1.55
SDD-XO (against DD) 1.78 1 0.09
SDD-XO (against SDD) 0.59 | -2.46

Table 5.10: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (ANT, Experiment 2). Rank indicates a ranking of four crossover
settings.

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.20 (0.40) 1
DD 0.25 (0.43) 3
SDD 0.45 (0.50) 2
SDD-XO | 0.60 (0.49) 1

As mentioned above, in case of NORMAL, the number of hits in experiment 2 (i.e.,
the maximum max depth for a new tree is 5) was improved over the number of hits
in experiment 1 (i.e., the maximum max depth for a new tree is 10). However, these
differences were small. In case of the other crossover settings (i.e., the DD, the SDD and
the SDD-XO0), the number of the hits in experiment 2 was superior to that in experiment
2 (Table 5.8 and 5.9).

These phenomena are related to the growth of the depth of the tree. Figure 5.14 and
5.15 show the depth of the tree of experiment 1 and that of experiment 2, respectively.
According to these figure, the depth of the tree of experiment 1 was shallower than that
of experiment 2 in the early generations. In case of experiment 1, the depth of tree grows
quickly as the evolution proceeds. On the contrary, in case of experiment 2, the depth
of tree became deep slowly during the evolution. At the last generation, the depth of
tree was almost same value (about 15) for both experiments. In case of experiments 2,
crossover generated building blocks effectively because the depth of the tree was shallow
at early generations. On the contrary, crossover was not so effective for experiment 1
because the initial tree depth was deep. This is a reason that the performances of the

DD, the SDD and the SDD-XO are better for experiment 2.

58

25 T T T
NORMAL ——
DD
SDD -
o SDD- XO !
)
) e
F 15 | " *:Z: BOIVIVEVEY
©
= 10 .
o
&
5 L .
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Ceneration
Figure 5.14: Depth of Tree (ANT, Experiment 1)
25 T T T
NORMAL ——
DD
SDD -
o SDD- XO !
)
)
=
©
=
a
&

0 5 10 15 20 25 30 35 40 45
CGenerati on

Figure 5.15: Depth of Tree (ANT, Experiment 2)

5.3.4 Robot

Figure 5.16 plots the best and the average fitness values for the robot problem. The used
parameters are shown in Table 3.20. Details of this task are written in Section 3.5.4.
According to Figure 5.16, the DD and the SDD-XO gave the best performance on the
best fitness value. As for the average fitness value, the DD gave the best performance.
Table 5.11 shows the result of t-test. It has confirmed that the DD and the SDD-XO
were superior to the NORMAL in terms of the best fitness value. On the average fitness,

59

the DD and the SDD were better than the NORMAL. However, it has not verified that
the SDD-XO was superior to the NORMAL.

Table 5.12 shows the averaged numbers of his and its standard deviation at the final
generations over twenty runs. By using the SDD-XO, the solution program was acquired
for all twenty runs.

200 -
\ NORMAL (best) —+—
% DD (best) —=—
\ SDD (best) -
150 | % SDD- XO (best) o |
LY NORMAL (average) =
ﬁg DD (average) --o--
a ws SDD (average) -~
LI SDD- XO (aver age) ——=-
2 100 N (ge) |
T \‘\;gfg;ﬂ;jﬁﬁm
R T TP
50 e OeeeeeB@m—&tie,aOQQQ‘)&%%Q%,
B, 1
Ppo_ ' et
H SN R R R AR IR RAAR DR R EL LI IRRRS

O I I I I I I I I I
0 5 10 15 20 25 30 35 40 45

CGenerati on

Figure 5.16: Experimental Results, means of twenty runs (Robot). The fitness of the
Robot is derived from Equation 3.5. The “best” means the fitness of the best individual
and the “average” indicates the average fitness of the population.

Table 5.11: Statistic ¢ for the Best and the Average Fitness Values at the Final Generation
(Robot).

‘ Setting ‘ Best ‘ Average ‘
DD (against NORMAL) 3.34 | 2.40
SDD (against NORMAL) 0.28 | 3.15
SDD-XO (against NORMAL) | 2.50 |-0.09
SDD (against DD) -3.26 | 1.31
SDD-XO (against DD) -0.87 | -2.44
SDD-XO (against SDD) 2.57 | -3.43

Table 5.12: Average Numbers of Hits and its Standard Deviation at the Final Generations
over Twenty Runs (Robot). If the solution program was acquired over twenty runs, the
hits value is 1.0. On the contrary, if the solution program was not acquired over twenty
runs at all, the value is 0.0. Rank indicates a ranking of four crossover settings.

60

| Setting | Hits (Standard Deviation) | Rank |
NORMAL | 0.80 (0.40) 1
DD 0.95 (0.22) 2
SDD 0.95 (0.22) 2
SDD-XO | 1.00 (0.00) 1

5.4 Conclusion

This chapter proposed the self-tuning depth-dependent crossover and examined its per-
formance empirically. As a result of experiments, the following points have been made
clear:

1. The self-tuning depth-dependent crossover worked effectively for the four GP bench-
mark problems.

2. The self-tuning depth-dependent crossover suppressed the growth of the tree struc-
ture.

This chapter realized the individual-level adaptation by means of the self-tuning mech-
anism for the depth selection probability of crossover. Besides the individual adaptations,
there are the population-level adaptations and the component-level adaptations as men-
tioned in the introduction section. Future work will realize these adaptations to scale up
GP performance [Bao et al., 1998].

61

Chapter 6

Discussion

This chapter discusses previous experimental results of the depth-dependent crossover
(Chapter 3), the non-destructive depth-dependent crossover (Chapter 4) and the self-
tuning depth-dependent crossover (Chapter 5). This chapter also give some discussions
as to the building block hypothesis based on survey of former works and the previous
experimental results. This hypothesis mentions how crossover searches for the solution
program (Section 2.1). This chapter is organized as follows. Section 6.1, 6.2 and 6.3
discusses the depth-dependent crossover, the non-destructive depth-dependent crossover
and the self-tuning depth-dependent crossover, respectively. Section 6.4 discusses the
building block hypothesis.

6.1 Depth-Dependent Crossover

The tree structure for the ANT problem is evaluated from left side to right, and a program
including prog2 or prog3 functions conducts a sequential planning. The second argument
of the prog2 statement has to be evaluated effectively only after the first argument is
executed. In other words, the evaluation order is essential for this task. As we have seen
in the previous experiments (Section 3.5.3), the depth-dependent crossover generally pro-
motes the growth of GP trees during the evolution. A large tree includes many redundant
structures, which all contribute to the result of the evaluation. This explains the failure
of the depth-dependent crossover for the ANT problem. On the other hand, in case of
Boolean functions, the evaluation order is not significant. Moreover, even if a tree struc-
ture becomes large and redundant, such a redundancy will work well for solving Boolean
problems. This is because a large solution program include several small substructures
for the Boolean problems.

6.2 Non-destructive Depth-Dependent Crossover

The previous experimental results (Section 4.3) showed that the non-destructive depth-
dependent crossover was not always superior to the original depth-dependent crossover in
terms of the best fitness value. However, the non-destructive depth-dependent crossover
gave better performance than the original depth-dependent crossover in terms of the
average fitness value. This is because most of the individuals “encapsulate junk sub-
programs” as a result of the original depth-dependent crossover. “Encapsulation” means

62

the protection of programs from the destruction by the crossover. The term “junk” means
a sub-program which does not contribute to generating a solution. If the encapsulation
works well, the fitness value of a program is improved. A small number of individuals
get some benefits of improving its fitness from the original depth-dependent crossover.
Thus, the original depth-dependent crossover is a greedy method. A greedy method is
a search method in which most of the individuals are sacrificed to generate a few elites,
as seen by the original depth-dependent crossover. On the contrary, the non-destructive
depth-dependent crossover is not a greedy method.

This claim is clarified by the autocorrelation analysis described below. The auto-
correlation evaluates the mutual role of the fitness function and the genetic operator in
the search process on the landscape [Slavov and Nikolaev, 1997]. The experiment of the
autocorrelation is to generate random programs and then to apply crossover to these
programs. This experiment included a repetition of twenty runs of generating random
10,000 individuals to measure the autocorrelation. Used parameters are the same as the
former experiments. The autocorrelation ranges from -1 to 1. The closer to 1, the more
highly correlated the fitness and the operator are, which means a desirable situation for
the adaptive search. According to this analysis, the non-destructive depth-dependent
crossover shows a higher correlation than the original depth-dependent crossover for the
three problems (see Table 6.1). This result supports the hypothesis, i.e., most of the
individuals “encapsulate junk sub-programs” by means of the DD.

Table 6.1: Autocorrelation

Problem The original crossover The non-destructive crossover
NORMAL | DD | RDD | ND-NORMAL | ND-DD | ND-RDD

11MX 0.38 0.40 | 0.40 0.83 0.75 0.80

4EVEN | 0.47 0.38 | 0.34 0.93 0.89 0.89

ANT 0.48 0.41 | 0.41 0.91 0.84 0.83

Crossover is liable to promote the program growth in size [Soule and Foster, 1997,
Angeline, 1998]. The number by the non-destructive depth-dependent crossover is smaller
than that by the original depth-dependent crossover. This is because the parent is copied
to the next generation if its fitness is not worse than that of the offspring in case of the
non-destructive depth-dependent crossover. Thus, the non-destructive depth-dependent
crossover is expected to generate smaller programs than the original depth-dependent
crossover due to the reduction of the number of crossover.

In case of the Boolean concept formation, the relationship between the fitness and the
program size is strong, so that the large the size, the better the fitness is. One reason why
the original depth-dependent crossover was successful in the Boolean concept formation
seems to be the generation of large programs. In case of the non-destructive depth-
dependent crossover, in which only a better offspring is kept for the next generation, the
program growth in size is prevented so that GP may be easily trapped in a local optimum.

As for the ANT problem, the performance difference could be explained not by the
program size problem, but by the fixed depth selection probability (Equation 3.1). The
fixed depth selection probability is suitable for one GP task. However, it may not be
suitable for another GP task.

63

On the robot problem, the original and the non-destructive depth-dependent crossover
were superior to the normal crossover. This indicates that the depth-dependent crossover
can be applicable to various GP problems except the Boolean concept formation problems.

6.3 Self-Tuning Depth-Dependent Crossover

Section 5.2 has hypothesized that, via a self tuning mechanism, if the depth selection
probability is assigned to the tree structure, the fitness value of the tree structure is
improved. The self-tuning mechanism has been designed to achieve this hypothesis. Pre-
vious experimental results (Section 5.3) have shown that the self-tuning depth-dependent
crossover with parameter crossover (SDD-XO) gave good performance for all the four
GP problems. For these problems, each individual has various kinds of depth selection
probability in early generations because the probability was assigned randomly. However,
the number of individuals of high depth selection probability increased gradually as the
evolution proceeded (Figure 5.10). As a result, the fitness performance was improved.
According to Figure 5.10, the self-tuning mechanism works so as to search for building
blocks globally at early generations and to protect completed building blocks at later
generations. The self-tuning depth-dependent crossover will work for a variety of GP
problems due to this effect (adaptability).

6.4 Building Block Hypothesis

Some researchers argued against the building block hypothesis. Angeline discussed that
the building block hypothesis was not descriptive of crossover [Angeline, 1997]. He com-
pared SHCC (Strong Headless Chicken Crossover) with WHCC (Weak Headless Chicken
Crossover). SHCC works as follows. A random tree was generated for the mate which was
chosen by selection. After crossover generated new trees, the modified mate was selected
to be the offspring of the mate. WHCC works follows. A random tree was generated for
the mate which was chosen by selection. After crossover, the modified mate and the mod-
ified random generated tree were selected with equal probability to be the offspring. His
experimental results showed that the normal crossover gave better results than two types
of HCC for the 6-bit even parity problem. However, there was no significant difference
between the three types for the spiral problem. On the contrary, two types of HCC were
superior to the normal crossover for the sunspot prediction problem. Angeline concluded
that:

The best class of problems to look for potential building blocks would be the
boolean functions. Complex boolean functions often contain sub-functions
that can be composed into the larger solutions[Angeline, 1997, p. 16].

Luke and Spector investigated experimentally the existence of building blocks. They
compared the GP performance of 90% crossover and 10% reproduction with perfor-
mances of 90% mutation and 10% reproduction using GP standard problems (i.e., the
6-multiplexor, the lawnmower, the symbolic regression and the ANT problem)

[Luke and Spector, 1997]. Based on their experimental results, they concluded that:

64

Crossover does often yield better results than subtree mutation, however, the
difference between the two is usually not very significant [Luke and Spector, 1997,
p. 243].

Their conclusion is consistent with Koza’s claim. Koza usually uses only crossover with
large population which consists of variety individuals, in spite of mutation [Koza, 1992a,
p. 106]. They also conducted a revised version of statistical comparison with these two
genetic operators and confirmed that:

Crossover does have some advantage over mutation given the right parameter
settings (primarily larger population sizes), though the difference between the
two surprisingly small [Luke and Spector, 1998, p. 208].

Experimental results of the depth-dependent crossover (Section 3.5) was successful
for the boolean problems (i.e., the 11MX and the 4EVEN). These experimental re-
sults confirmed Angeline’s claim, i.e., the depth-dependent crossover was suitable es-
pecially for the problems that can be decomposed into sub-problems such as boolean
problems. The depth-dependent crossover was also tested for the ANT problem and was
not successful. As shown in Luke’s experimental results, the difference between crossover
and mutation is insignificant [Luke and Spector, 1998]. It is difficult that crossover to
pile up building blocks for the ANT problem, because there are many local optimum
[Langdon and Poli, 1998a]. This is a reason which the depth-dependent crossover was
not successful for the ANT problem.

One drawback of the depth-dependent crossover is derived from the fixed depth selec-
tion probability. Although the size of building blocks of each individual is not always the
same. The same depth selection probability is applied to every selected individual.

To solve this difficulty, the self-tuning mechanism was proposed for the depth-dependent
crossover (Chapter 5). In case of the self-tuning mechanism, its individual is assigned a
different depth selection probability. Then, each crossover point is determined by each
depth selection probability. If an individual has a high depth selection probability, it is
more highly that crossover will select a deeper node. On the contrary, if an individual
has a low probability, crossover will select a shallower node more node. The self-tuning
depth-dependent crossover was not successful for the boolean problems, but was effective
for the ANT problem. According to the transitions of the depth selection probability,
its probability increased during the evolution and thus GP performances were improved
on the SDD-XO (Figure 5.10). This phenomenon indicates that building blocks became
large through the successful evolution.

The depth-dependent crossover (including its various revised versions) was proposed
in order to combine building blocks effectively. In case of the normal crossover, it selects
a node randomly for each individual. Therefore, it is possible that the normal crossover is
liable to break building blocks. To protect building blocks, the depth-dependent crossover
was proposed. It selected a larger structure with a high probability by setting the node
selection probability of a shallower node (a closer node to a root node) to be higher,
and the probability of a deeper node (a distant node from a root node) lower. The
depth-dependent crossover was proposed by the following consideration. At the initial
generation (generation 0), small building blocks are generated by the tree initialization
method. The fitness of individual with such building blocks is better than that of the
individual without building blocks. Therefore, the individuals that have building blocks

65

prosper in a population. As this section discussed above, the applicability of all four
types of the depth-dependent crossovers is based on the building block hypothesis. In
other words, if the building block hypothesis does not hold good, the depth-dependent
crossovers will not be successful. Previous experimental results of four types of the depth-
dependent crossovers clearly show that the building block hypothesis is true of GP as
well.

66

Chapter 7

Conclusion

7.1 Conclusions

The goal of this thesis is to improve the efficiency in the program generation. “Efficiency”
means to reduce the number of generations required to generate the solution program.
For this goal, this thesis proposes four new crossovers for GP.

The first and the second crossovers, i.e., the depth-dependent crossover and the re-
vised one, have contributed to reducing the number of generations for Boolean problems
(Chapter3). This indicated that building blocks were able to be protected so that larger
building blocks were constructed by means of crossover, which was applied to a shallower
node of the tree structure. Compared with the depth-dependent crossover, the revised
depth-dependent crossover have suppressed the size of the tree structure effectively.

The third crossover, i.e., the non-destructive depth-dependent crossover was proposed
to solve the program size problem of the depth-dependent crossover (Chapter 4). By using
the non-destructive depth-dependent crossover, small programs have been generated for all
four GP problems (i.e., the 11MX, the 4EVEN, the ANT and the robot problem). These
experimental results indicated that non-destructive crossover was independent from the
problem domain.

The depth-dependent crossover had the problem dependent characteristic, i.e., it was
successful for Boolean problems but not successful for the ANT problem. To apply the
depth-dependent crossover to various GP problems, the fourth crossover, i.e., the self-
tuning depth-dependent crossover was proposed (Chapter 5). By using the self-tuning
depth-dependent crossover, all four GP have been solved effectively. This self-tuning
depth-dependent crossover was also successful in reducing the program size because of
using the different depth selection probability.

Furthermore, this thesis discussed the building block hypothesis which explains how
crossover searches for the solution program with the survey of previous works and these
experimental results (Section 6.4).

7.2 Directions for the Future Research

This work adopted simple GP which had a single gene. The Future research will include
investigation of effectiveness of the depth-dependent crossovers for other types of GP,
e.g., GP with ADFs (Automatically Defined Functions) [Koza, 1994a]. GP with ADFs

consists of some function-defining branches which contain the definition of functions and

67

the result-producing branch which returns the fitness value by using the function-defining
branches. GP with ADFs generates a program similar to the one coded by human beings.
Usually, we write programs which contain a main function and several subroutines for a
large scale program. Therefore, GP with ADF's is suitable for the large scale problem such
as a read-world problem. It is uncertain that how much the depth-dependent crossovers
generate computer programs efficiently for GP with ADFs. This investigation is essential
for the future research.

Program structures of GP problems used for this work’s experiments (i.e., the 11MX,
the 4EVEN, the ANT and the robot problem) do not include recursive and iterative
functions (e.g., do until). If there are such functions in the function set, GP will generate
more complicated programs. Especially, if recursive functions are included, the generated
programs will be more compact. However, it is difficult for GP to generate programs
which contain such functions. Because if a program structure has recursive and iterative
functions, the program falls into infinite or near-infinite loops easily. The depth-dependent
crossover may not work well for programs which have recursive and iterative functions.
However, this claim is not necessarily clear.

Some researchers tackled to treat recursive functions on GP. For instance, Brave ex-
perimented in GP with recursive ADFs [Brave, 1996]. He extended ADFs which were
allowed to call themselves (i.e., ADF1 included ADF1 in its function set and ADF2 in-
cluded ADF2). According to his experimental results, GP with recursive ADFs showed
the best performance among simple GP, GP with ADFs and GP with recursive ADFs.
The future research also investigates GP performances of the depth-dependent crossover
for using recursive functions.

In this work, a gene structure of GP was a tree. Besides the tree structure, there
are a linear and a graph structure [Banzhaf et al., 1998, pp.239-276]. An example of
the linear structure is machine language (assembly language program) [Crepeau, 1995,
Nordin and Banzhaf, 1995a]. Crepeau proposed the GEMS (Genetic Evolution Machine-
language Software) system to evolve the machine language using the framework of GP.
The GEMS system could interpreted the Z80 microprocessor using only 660 instructions
(the Z80 microprocessor has 691 unique instructions) [Crepeau, 1995].

An example of the graph structure is PADO (Parallel Algorithm Discovery and Or-
chestration) system [Teller, 1996]. In case of PADO, each program consisted of a main
program (MAIN) and private ADFs. Each PADO program was regarded as a directed
graph of N nodes. Fach node could have as many as N outgoing arcs. Teller claimed that
the PADO system could classify signals better than simple GP with the tree structure.

These structures are quite different from the tree structure. Therefore, effectiveness
of the depth-dependent crossovers is uncertain. The future research will also include
verification of the depth-dependent crossovers for these structures.

68

Bibliography

[Aho et al., 1974] Aho, A., Hopcroft, J. and Ullman, J. The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974

[Angeline, 1996] Angeline, J. P. Two Self-Adaptive Crossover Operators for Genetic Pro-
gramming, In Angeline, P. and Kinnear, Jr. K. editors, Advances in Genetic Pro-
gramming 2, pages 89—-110, MIT Press, 1996

[Angeline, 1997] Angeline, J. P. Subtree Crossover: Building Block Engine or Macromu-
tation?, In Koza, J., Deb, K., Dorigo, M., Fogel, D. Garzon, M., Iba, H. and Riolo,
R. editors, Proceedings of the Second Annual Conference Genetic Programming 1997
(GPI7), pages 9-17, MIT Press, 1997

[Angeline, 1998] Angeline, J. Subtree Crossover Causes Bloat In Koza, J. R., Banzhaf,
W., Chellapilla, K., Deb, K. Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D.
E., Iba, H., and Riolo, R. L. editors, Proceedings of the Second Annual Conference
Genetic Programming 1997 (GP98), pages 745-752, MIT Press, 1998

[Banzhaf et al., 1998] Banzhaf, W., Nordin, P., Keller, R. and Francone, F. Genetic

Programming An Introduction, Morgan Kaufmann Publishers, Inc., 1998

[Bao et al., 1998] Bao, H. T., Nguyen, T. D., Nguyen, N. B., and Ito, T. Development of
Some Methods and Tools for Discovering Conceptual Knowledge In Proceedings of
the Discovery Science 1998 The First International Conference on Discovery Science
(DS°98), Springer-Verlag, 1998

[Brave, 1996] Brave, S. Evolving Recursive Programs for Tree Search, In Angeline, P.
and Kinnear, Jr. K. editors, Advances in Genetic Programming 2, pages 203-219,
MIT Press, 1996

[Crepeau, 1995] Crepeau, R. Genetic Evolution of Machine Language Software In Rosca,
J. editor, Proceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications, pages 121-134, University of Rochester, Technical Report
95.2, 1995

[Freund and Wilson, 1992] Freund, R. and Wilson, W. Statistical Methods, Academic
Press, Inc. 1992

[Goldberg, 1989] Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989

[Holland, 1995] Holland, J. H. Hidden Order, Addison-Wesley, 1995

69

[Handley, 1994] Handley, S. G., The Automatic Generation of Plans for a Mobile Robot
via Genetic Programming with Automatically Defined Functions, In Advances in
Genetic Programming, MIT Press, 1994

[Harvey, 1995] Harvey, I. The Artificial Evolution of Adaptive Behavior, PhD Thesis, The
University of Sussex, 1993

[Haynes, 1998] Haynes, T. D. Collective Adaptation: The Sharing of Building Blocks,
PhD thesis, The University of Tulsa, 1998

[Haynes and Wainwright, 1995] Haynes, T. D. and Wainwright R., A Simulation of Adap-
tive Agents in a Hostile Environment, In Proceedings of the 1995 ACM Symposium
on Applied Computing, ACM Press, 1995

[Harries and Smith, 1997] Harries, K. and Smith, P. Exploring Alternative Operators
and Search Strategies in Genetic Programming, In Koza, J., Deb, K., Dorigo, M.,
Fogel, D. Garzon, M., Iba, H. and Riolo, R. editors, Proceedings of the Second Annual
Conference Genetic Programming 1997 (GP97), pages 147-155, MIT Press, 1997

[Iba, 1997] Iba, H. Multiple-Agent Learning for a Robot Navigation Task by Genetic
Programming, In Koza, J., Deb, K., Dorigo, M., Fogel, D. Garzon, M., Iba, H. and

Riolo, R. editors, Proceedings of the Second Annual Conference Genetic Programming
1997 (GP97), pages 9-17, MIT Press, 1997

[Iba and de Garis, 1996] Iba, H. and de Garis, H. Extending Genetic Programming with
Recombinative Guidance, In Angeline, P. and Kinnear, Jr. K. editors, Advances in
Genetic Programming 2, pages 69-88, MIT Press, 1996

[Iba et al., 1995] Iba, H., de Garis, H. and Sato, T. Recombination Guidance for Numeri-
cal Genetic Programming, In Proceedings of the 1995 IEEE International Conference
of Evolutionary Computation, IEEE Press, 1995

[Iba et al., 1994] Iba, H., deGaris, H. and Sato, T. Genetic Programming using a Mini-
mum Description Length Principle, In Kinnear, Jr. K. editor, Advances in Genetic
Programming , pages 265-284, MIT Press, 1994

[lto et al., 1996b] Ito, T., Iba, H. and Kimura, M. Robustness of Robot Programs Gen-
erated by Genetic Programming, In Koza, J., Goldberg, D., Fogel, D. and Riolo,

R. editors, Proceedings of the First Annual Conference Genetic Programming 1996
(GPI6), pages 321-326, MIT Press, 1996

[Ito et al., 1998a] Ito, T. and Iba, H. and Sato, S. Non-Destructive Depth-Dependent
Crossover for Genetic Programming, In Proceedings of the First European Workshop
on Genetic Programming (FuroGP’98), pages 71-82, Springer- Verlag, 1998

[Ito et al., 1998b] Ito, T., Iba, H. and Sato, S. Depth-Dependent Crossover for Genetic
Programming, In Proceedings of the 1998 IEEE International Conference on Fvolu-
tionary Computation (ICEC’98), pages 775-780, IEEE Press, 1998

[Ito et al., 1999] Ito, T., Iba, H. and Sato, S. A Self-Tuning Mechanism for Depth-
Dependent Crossover, In Advances in Genetic Programming 3, MIT Press, 1999

70

[Kinnear, 1993] Kinnear, Jr. K. Generality and Difficulty in Genetic Programming:
Evolving a Sort, In Proceedings of 5th International Joint Conference on Genetic
Algorithms MIT press, 1993

[Koza, 1991] Koza, J. R. FEvolution of Subsumption using Genetic Programming, In
Varela, F. and Bourgine, P. editors, Proceedings of the First Furopean Conference on
Artificial Life. Towards a Practice of Autonomous Systems (ECAL-91), MIT press,
1991

[Koza, 1992a] Koza, J. R. Genetic Programming: On the Programming of Computers by
Natural Selection, MIT press, 1992

[Koza, 1994a] Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable
Programs, MIT press, 1994

[Koza, 1994b] Koza, J. R. Evolution of a Subsumption Architecture that Performs a
Wall Following Task for an Autonomous Mobile Robot via Genetic Programming,
In Petshe T. editor, Computational Learning Theory and Natural Learning Systems,
pages 321-346, MIT Press 1994

[Koza and Rice, 1992] Koza, J. R. and Rice, J. P.; Automatic Programming of Robots us-
ing Genetic Programming, In Proceedings of Tenth National Conference on Artificial

Intelligence, AAAI Press / MIT Press, 1992

[Langdon, 1998] Langdon, W. B. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Kluwer Academic
Publishers, 1998

[Langdon and Poli, 1997] Langdon, W. B. and Poli, R. Fitness Causes Bloat, In 2nd On-
line World Conference on Soft Computing in Engineering Design and Manufacturing
(WSC2), 1997

[Langdon and Poli, 1998a] Langdon, W. B. and Poli, R. Why Ants are Hard, In Koza, J.,
Banzhaf, W., Chellapilla et al. editors, Proceedings of the Third Annual Conference
Genetic Programming 1998 (GP98), pages 193-201, MIT Press, 1998

[Luke and Spector, 1997] Luke, S. and Spector, L. A Comparison of Crossover and Mu-
tation in Genetic Programming, In Koza, J., Deb, K., Dorigo, M., Fogel, D. Garzon,
M., Iba, H. and Riolo, R. editors, Proceedings of the Second Annual Conference Ge-
netic Programming 1997 (GP97), pages 240-248, MIT Press, 1997

[Luke and Spector, 1998] Luke, S. and Spector, L. A Revised Comparison of Crossover
and Mutation in Genetic Programming, In Koza, J., Banzhaf, W., Chellapilla et
al. editors, Proceedings of the Third Annual Conference Genetic Programming 1996
(GPI8), pages 208-213, MIT Press, 1998

[Maes, 1993] Maes, P., Behavior-Based Artificial Intelligence, In From Animals to Ani-
mats 2: Proceedings of the Second International Conference on Simulation of Adap-

tive Behavior (SAB-2), MIT Press, 1993

[Mitchell, 1995] Mitchell, M. An Introduction to Genetic Algorithms, MIT press, 1995

71

[Nordin and Banzhaf, 1995a] Nordin, P. and Banzhaf, W., Genetic Programming Con-
trolling a Miniature Robot, In Working Notes for the AAAI Symposium on Genetic
Programmaing, 1995

[Nordin et al., 1995b] Nordin, P. Francone, F. and Banzhaf, W., Explicitly Defined In-
trons and Destructive Crossover in Genetic Programming, In Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications, Tech-
nical Report of University of Rochester, 1995

[Nordin et al., 1996] Nordin, P., Francone, F. and Banzhaf, W. Explicitly Defined Introns
and Destructive Crossover in Genetic Programming, In Angeline, P. and Kinnear,
Jr. K. editors, Advances in Genetic Programming 2, pages 111-134 MIT Press, 1996

[O’Reilly, 1995] O’Reilly, U.-M. An Analysis of Genetic Programming, PhD Thesis, Car-
leton University, 1995

[O’Reilly and Oppacher, 1994] O’Reilly, U.-M. and Oppacher, F. Program Search with
a Hierarchical Variable Length Representation: Genetic Programming, Simulated
Annealing and Hill Climbing, In Parallel Problem Solving from Nature (PPSN II1),
pages 397-406, Springer-Verlag, 1994

[Reynolds, 1992] Reynolds, C. W., An Evolved, Vision-Based Behavioral Model of Co-
ordinated Group Motion, In Meyer and Wilson editors From Animals to Animats2:
Proceedings of Simulation of Adaptive Behaviour (SAB-92), MIT Press, 1992

[Reynolds, 1994a] Reynolds, C. W., Evolution of Obstacle Avoidance Behavior: Using
Noise to Promote Robust Solutions, In Advances in Genetic Programming, MIT
Press, 1994

[Reynolds, 1994b] Reynolds, C. W., An Evolved, Vision-Based Behavioral Model of Co-
ordinated Group Motion, In Langton editor An Fvolved, Vision-Based Behavioral
Model of Obstacle Avoidance Behaviour, MIT Press, 1994

[Reynolds, 1994¢] Reynolds, C. W., Evolution of Corridor Following Behavior in a Noisy
World, In From Animals to Animats3: Proceedings of Simulation of Adaptive Be-
haviour (SAB-94), MIT Press, 1994

[Rosca, 1997] Rosca, J. P. Hierarchical Learning with Procedural Abstraction Mecha-
nisms, University of Rochester, 1997

[Slavov and Nikolaev, 1997] Slavov, V and Nikolaev, N Fitness Landscapes and Inductive
Genetic Programming, In In Smith, G. editor, Third International Conference on
Artificial Neural Networks and Genetic Algorithms (ICANNGA’97), Springer-Verlag,
Vienna, 1997

[Soule and Foster, 1997] Soule, T. and Foster, J. Code Size and Depth Flows in Genetic
Programming, In Koza, J., Deb, K., Dorigo, M., Fogel, D. Garzon, M., Iba, H. and

Riolo, R. editors, Proceedings of the Second Annual Conference Genetic Programming
1997 (GP97), pages 313-320, MIT Press, 1997

72

[Soule et al., 1996] Soule, T., Foster, J. and Dickinson, J. Code Growth in Genetic Pro-
gramming, In Koza, J., Goldberg, D., Fogel, D. and Riolo, R. editors, Proceedings
of the First Annual Conference Genetic Programming 1996 (GP96), pages 215-223,
MIT Press, 1996

[Tackett, 1994] Tackett, W. A. Recombination, Selection, and the Genetic Construction
of Computer Programs, University of Southern California, Department of Electrical
Engineering Systems, 1994

[Teller, 1996] Teller, A. Evolving Programmers: The Co-evolution of Intelligent Recom-
bination Operators In Angeline, P. and Kinnear, Jr. K. editors, Advances in Genetic
Programming 2, pages 45-68, MIT Press, 1996

73

Publications

[1] Ito, T., Iba, H. and Kimura, M. Robustness of Robot Programs Generated by
Genetic Programming, Japan Advanced Institute of Science and Technology, IS-
RR-96-00011, 1996

[2] Ito, T., Iba, H. and Kimura, M. Robustness of Robot Programs Generated by
Genetic Programming, In Koza, J., Goldberg, D., Fogel, D. and Riolo, R. editors,
Proceedings of the First Annual Conference Genetic Programming 1996 (GP96),
pages 321-326, MIT Press, 1996

[3] Ito, T., Iba, H. and Sato, S. Depth-Dependent Crossover for Genetic Program-
ming, WAL (Workshop on Artificial intelligence toward Learning), Abashiri, 1997,
in Japanese

(4 0000000000000000000 (0 2000)0pages 43-102, 0000
ooooo, 1997

[5] Ito, T., Iba, H. and Sato, S. Non-Destructive Depth-Dependent Crossover for Ge-
netic Programming, In Proceedings of the First European Workshop on Genetic
Programming (EuroGP’98), pages T1-82, Springer-Verlag, 1998

[6] Tto, T., Iba, H. and Sato, S. Depth-Dependent Crossover for Genetic Programming,
In Proceedings of the 1998 IEEFE International Conference on Evolutionary Compu-
tation (ICEC’98), pages 775-780, IEEE Press, 1998

[7] Ho, T. B., Nguyen, T. D., Nguyen, N. B. and Ito, T. Development of Some Meth-
ods and Tools for Discovering Conceptual Knowledge, In Proceedings of the Discov-
ery Science 1998 the First International Conference on Discovery Science (DS’98),
Springer-Verlag, 1998

[8] Ito, T., Iba, H. and Sato, S. A Self-Tuning Mechanism for Depth-Dependent Crossover,
In Advances in Genetic Programming 3, MIT Press, 1999

74

